research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 11| Part 2| March 2024| Pages 168-181
ISSN: 2052-2525

The curious case of proton migration under pressure in the malonic acid and 4,4′-bi­pyridine cocrystal

crossmark logo

aFacuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland, bMALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain, and cMALTA-Consolider Team and Departamento de Química Física y Analítica, University of Oviedo, Julián Clavería n° 8, Oviedo 33006, Spain
*Correspondence e-mail: ewapatyk@amu.edu.pl, ferizqui@ucm.es

Edited by C.-Y. Su, Sun Yat-Sen University, China (Received 10 October 2023; accepted 9 January 2024; online 13 January 2024)

In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4′-bi­pyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2−. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation.

1. Introduction

Organic cocrystals and crystalline organic salts are multicomponent crystals (Grothe et al., 2016[Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237-3243.]) which attract a lot of attention from the research community owing to their properties and potential applications. Organic cocrystals enable tailored optoelectronic, electronic and magnetic properties of materials (Sun et al., 2018[Sun, L., Zhu, W., Yang, F., Li, B., Ren, X., Zhang, X. & Hu, W. (2018). Phys. Chem. Chem. Phys. 20, 6009-6023.]; Jiang et al., 2021[Jiang, M., Zhen, C., Li, S., Zhang, X. & Hu, W. (2021). Front. Chem. 9, 764628. ]), whereas organic salts can exhibit ionic conductivity (Bryce, 1991[Bryce, M. R. (1991). Chem. Soc. Rev. 20, 355-390.]; Wang et al., 2022[Wang, C., Yan, T., Xing, G., Bailey, S., Lambert, C., Fayon, P., Trewin, A. & Ben, T. (2022). J. Solid State Chem. 308, 122903.]) and high proton conductivity (Xing et al., 2018[Xing, G., Yan, T., Das, S., Ben, T. & Qiu, S. (2018). Angew. Chem. Int. Ed. 57, 5345-5349.]) when they form crystalline porous organic salts (Yu et al., 2020[Yu, S., Xing, G.-L., Chen, L.-H., Ben, T. & Su, B.-L. (2020). Adv. Mater. 32, 2003270.]), an ability for fast transport of polar molecules (Xu et al., 2022[Xu, T., Wu, B., Hou, L., Zhu, Y., Sheng, F., Zhao, Z., Dong, Y., Liu, J., Ye, B., Li, X., Ge, L., Wang, H. & Xu, T. (2022). J. Am. Chem. Soc. 144, 10220-10229.]), or can even be used for harvesting atmospheric water (Zhang, Fu et al., 2022[Zhang, S., Fu, J., Das, S., Ye, K., Zhu, W. & Ben, T. (2022). Angew. Chem. Int. Ed. 61, e202208660.]). Non-crystalline organic salts also have a wide range of applications, for example in photovoltaics (Bates & Lunt, 2017[Bates, M. & Lunt, R. R. (2017). Sustain. Energy Fuels, 1, 955-968.]), as ionic liquids (Kaur et al., 2022[Kaur, G., Kumar, H. & Singla, M. (2022). J. Mol. Liq. 351, 118556.]), or as GUMBOS (group of uniformed materials based on organic salts) and nanoGUMBOS (Tesfai et al., 2009[Tesfai, A., El-Zahab, B., Kelley, A. T., Li, M., Garno, J. C., Baker, G. A. & Warner, I. M. (2009). ACS Nano, 3, 3244-3250.]).

Both types of multicomponent crystals play an important role in the pharmaceutical industry (Putra & Uekusa, 2020[Putra, O. D. & Uekusa, H. (2020). Vol. Advances in Organic Crystal Chemistry: Comprehensive Reviews 2020, edited by M. Sakamoto & H. Uekusa, pp. 153-184. Singapore: Springer.]). The synthesis of salts and cocrystals of active pharmaceutical ingredients (APIs) is a well established strategy for the modification of physicochemical properties of the crystal form of APIs, aimed at improving their bioavailability (Cheney et al., 2010[Cheney, M. L., Shan, N., Healey, E. R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2010). Cryst. Growth Des. 10, 394-405.]; Sigfridsson et al., 2019[Sigfridsson, K., Ulvinge, M.-L., Svensson, L. & Granath, A.-K. (2019). Drug Dev. Ind. Pharm. 45, 202-211.]; Li et al., 2020[Li, L., Yin, X.-H. & Diao, K.-S. (2020). RSC Adv. 10, 36125-36134.]), stability (Sigfridsson et al., 2019[Sigfridsson, K., Ulvinge, M.-L., Svensson, L. & Granath, A.-K. (2019). Drug Dev. Ind. Pharm. 45, 202-211.]; Liu et al., 2022[Liu, L., Wang, J.-R. & Mei, X. (2022). CrystEngComm, 24, 2002-2022.]) and processability (Karki et al., 2009[Karki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905-3909.]; Sanphui et al., 2015[Sanphui, P., Mishra, M. K., Ramamurty, U. & Desiraju, G. R. (2015). Mol. Pharm. 12, 889-897.]). In this approach, the API is paired with a compound safe for administration in humans, including other APIs already approved for use, and generally recognized as safe (GRAS; US Food and Drug Administration, 2023[US Food and Drug Administration (2023). Generally Recognized as Safe (GRAS), https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras.]) compounds.

To facilitate the formation of crystalline lattices containing two chemical components, their molecules should form complementary intermolecular interactions or one should act as a hydrogen atom donor (Brønsted–Lowry acid) and the other as a hydrogen atom acceptor (Brønsted–Lowry base). For Brønsted–Lowry acid–base pairs, the difference in the acidity and basicity of the two compounds is key to determine whether a cocrystal or a salt is formed. This relationship is described by the empirical ΔpKa rule. Initially, it was based on experimental observations and stated that the formation of a salt is expected when ΔpKa (ΔpKa = pKa [protonated base] − pKa [acid]) is higher than 2 or 3 (Stahl & Wermuth, 2002[Stahl, P. H. & Wermuth, C. G. (2002). Handbook of Pharmaceutical Salts: Properties, Selection and Use. Weinheim, New York: VHCA: Wiley-VCH.]). This rule was tested against almost 6500 structures of ionized and non-ionized acid–base pairs (Cruz-Cabeza, 2012[Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362-6365.]) deposited in the Cambridge Structural Database (CSD, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and more precise limits were assigned. It was established that for ΔpKa higher than 4 salts prevail, whereas for values lower than −1 cocrystals dominate. For the ΔpKa in the −1 to 4 range, a roughly 40:60 salt:cocrystal ratio is observed, with the 50:50 ratio falling at ΔpKa ca 1. These ratios could be modified depending on the crystal packing and molecular structure (Cruz-Cabeza et al., 2022[Cruz-Cabeza, A. J., Lusi, M., Wheatcroft, H. P. & Bond, A. D. (2022). Faraday Discuss. 235, 446-466.]).

Still, for the APIs that are weak acids or bases, it can be hard to find an appropriate GRAS/API compound that is a strong enough counterpart to propagate hydrogen atom transfer and salt formation under ambient conditions. These molecules that are attractive for pharmaceutical applications require a change in their properties to obtain the desired characteristics of the salt compounds.

The acidity of the compound can be modified by interfering in the chemical structure or by changing the experimental protocol (Perrin et al., 1981[Perrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for Organic Acids and Bases. pp. 12-20. Dordrecht: Springer Netherlands.]; Samuelsen et al., 2019[Samuelsen, L., Holm, R., Lathuile, A. & Schönbeck, C. (2019). Int. J. Pharm. 560, 357-364.]). However, altering the molecular structure can affect the medical performance of the API (Vardanyan & Hruby, 2014[Vardanyan, R. S. & Hruby, V. J. (2014). Future Med. Chem. 6, 385-412.]), or the derivative can cause severe adverse reaction in humans (Kaniwa & Saito, 2013[Kaniwa, N. & Saito, Y. (2013). J. Hum. Genet. 58, 317-326.]; Shang et al., 2022[Shang, Y., Shen, C., Stub, T., Zhu, S., Qiao, S., Li, Y., Wang, R., Li, J. & Liu, J. (2022). Front. Pharmacol. 13, 773282.]). In such cases, a change of other experimental parameters should be considered.

Previous studies have shown how temperature and pressure can affect the pKa of buffer systems (Samuelsen et al., 2019[Samuelsen, L., Holm, R., Lathuile, A. & Schönbeck, C. (2019). Int. J. Pharm. 560, 357-364.]). The observed response of pKa to temperature varied depending on the chemical nature of the buffer system (it was stronger for buffers containing amino groups than for those with carb­oxy­lic acid moieties). Meanwhile, pressure up to 100 MPa affected the pKa to a limited extent. Modification of temperature and pressure facilitates proton-transfer reactions in the liquid (Isaacs et al., 1977[Isaacs, N. S., Javaid, K. & Rannala, E. (1977). Nature, 268, 372-372.]; Koifman et al., 2002[Koifman, N., Cohen, B. & Huppert, D. (2002). J. Phys. Chem. A, 106, 4336-4344.]; Tiefenthaler et al., 2020[Tiefenthaler, L., Kollotzek, S., Ellis, A. M., Scheier, P. & Echt, O. (2020). Phys. Chem. Chem. Phys. 22, 28165-28172.]) and solid states (Martins et al., 2009[Martins, D. M. S., Middlemiss, D. S., Pulham, C. R., Wilson, C. C., Weller, M. T., Henry, P. F., Shankland, N., Shankland, K., Marshall, W. G., Ibberson, R. M., Knight, K., Moggach, S., Brunelli, M. & Morrison, C. A. (2009). J. Am. Chem. Soc. 131, 3884-3893.]; Mitani et al., 1988[Mitani, T., Saito, G. & Urayama, H. (1988). Phys. Rev. Lett. 60, 2299-2302.]; Song & McDermott, 2001[Song, X. & McDermott, A. E. (2001). Magn. Reson. Chem. 39, S37-S43.]; Szafrański & Katrusiak, 2004[Szafrański, M. & Katrusiak, A. (2004). J. Phys. Chem. B, 108, 15709-15713.]; Bhunia et al., 2010[Bhunia, M. K., Das, S. K. & Bhaumik, A. (2010). Chem. Phys. Lett. 498, 145-150.]; Cai & Katrusiak, 2012[Cai, W. & Katrusiak, A. (2012). CrystEngComm, 14, 4420-4424.]; Jones et al., 2012[Jones, A. O. F., Lemée-Cailleau, M.-H., Martins, D. M. S., McIntyre, G. J., Oswald, I. D. H., Pulham, C. R., Spanswick, C. K., Thomas, L. H. & Wilson, C. C. (2012). Phys. Chem. Chem. Phys. 14, 13273-13283.]; Yu et al., 2019[Yu, B., Wang, Y., Wang, L., Tan, X., Zhang, Y.-M., Wang, K., Li, M., Zou, B. & Zhang, S. X.-A. (2019). Phys. Chem. Chem. Phys. 21, 17696-17702.]; Tadokoro et al., 2022[Tadokoro, M., Itoh, M., Nishimura, R., Sekiguchi, K., Hoshino, N., Kamebuchi, H., Miyazaki, J., Kobayashi, F., Mizuno, M. & Akutagawa, T. (2022). Chem. A Eur. J. 28, e202201397.]). However, note that, especially in the context of APIs sensitive to high temperatures, heating may lead to thermal decomposition of the crystal components, which would make this method unsuitable for applications in the pharmaceutical industry. Alternatively, pressure is not as destructive to the molecular structure.

The proton-transfer-promoting action of pressure can be associated with its ability to tune the energy barrier for the reaction, linked to the decrease in the distance between proton donor and acceptor on compression (Krishtalik, 2000[Krishtalik, L. I. (2000). Biochim. Biophys. Acta, 1458, 6-27.]; Kurzydłowski, 2022[Kurzydłowski, D. (2022). RSC Adv. 12, 11436-11441.]). It makes pressure a perfect means to induce transformation of cocrystals into salts. However, currently, the pressure-induced proton transfer in multicomponent crystals remains an understudied phenomenon with very few examples found in the literature, such as: (i) a proton-transfer reaction cooperative with electron transfer in the quinhydrone crystal (a crystalline complex of p-quinone and p-hydro­quinone) (Mitani et al., 1988[Mitani, T., Saito, G. & Urayama, H. (1988). Phys. Rev. Lett. 60, 2299-2302.]); (ii) reaction in 4,4′-bipyridinium squarate (Martins et al., 2009[Martins, D. M. S., Middlemiss, D. S., Pulham, C. R., Wilson, C. C., Weller, M. T., Henry, P. F., Shankland, N., Shankland, K., Marshall, W. G., Ibberson, R. M., Knight, K., Moggach, S., Brunelli, M. & Morrison, C. A. (2009). J. Am. Chem. Soc. 131, 3884-3893.]; Reetz et al., 1994[Reetz, M. T., Höger, S. & Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181-183.]; Ma et al., 2017[Ma, Z., Li, J., Liu, C., Sun, C. & Zhou, M. (2017). Sci. Rep. 7, 4677.]); (iii) double proton-transfer in oxalic acid dihydrate form α (Casati et al., 2009[Casati, N., Macchi, P. & Sironi, A. (2009). Chem. Commun. pp. 2679-2681.]; Macchi et al., 2010[Macchi, P., Casati, N., Marshall, W. G. & Sironi, A. (2010). CrystEngComm, 12, 2596-2603.]; Bhatt et al., 2016[Bhatt, H., Mishra, A. K., Murli, C., Verma, A. K., Garg, N., Deo, M. N. & Sharma, S. M. (2016). Phys. Chem. Chem. Phys. 18, 8065-8074.]); (iv) single proton transfer in cocrystals of phenazine and 2,3-di(2-pyridinyl)pyrazine with fluoranilic acid (Kumai et al., 2012[Kumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036-1046.]; Horiuchi et al., 2013[Horiuchi, S., Kumai, R. & Tokura, Y. (2013). J. Am. Chem. Soc. 135, 4492-4500.]); (v) pressure-induced proton transfer in the cocrystal of 4-methyl­pyridine and penta­chloro­phenol (Funnell et al., 2021[Funnell, N. P., Allan, D. R., Maloney, A. G. P., Smith, R. I., Wilson, C. J. G. & Parsons, S. (2021). CrystEngComm, 23, 769-776.]).

Crystal structures of organic multicomponent crystals in general are rarely studied under pressure. Among high-pressure deposits of the CSD, only a small fraction (26.75%) of such crystals can be found. This subset is considerably smaller compared with the population of multicomponent crystals in the whole CSD (42.76%). Undoubtedly, to truly understand the phenomenon of a pressure-induced proton-transfer reaction between molecules of different chemical compounds in the solid state, further studies of cocrystals and solvates structurally capable to undergo such process should be carried out.

In this work we report results on the effect of pressure on proton migration in a model cocrystal (BIPYMA), built of 4,4′-bi­pyridine (BIPY) and malonic acid (MA). The difference in the pKa of BIPY and malonic acid (MA) is 1.99 and −2.36 for the transfer of the first and second proton (Scheme 1[link]; MA and BIPY acid–base pair after first and second proton transfer), respectively, calculated based on the literature pKa values (Ulstrup et al., 1969[Ulstrup, J. (1969). Acta Chem. Scand. 23, 3091-3109.]; Khalil et al., 2013[Khalil, M. M., Radalla, A. M. & Abd Elnaby, N. M. (2013). J. Solution Chem. 42, 1123-1145.]). It was previously confirmed by X-ray diffraction (XRD) and nuclear quadrupole resonance techniques (Pedireddi et al., 1998[Pedireddi, V. R., Chatterjee, S., Ranganathan, A. & Rao, C. N. R. (1998). Tetrahedron, 54, 9457-9474.]; Seliger & Žagar, 2014[Seliger, J. & Žagar, V. (2014). Phys. Chem. Chem. Phys. 16, 18141-18147.]) that, under ambient conditions, they form a cocrystal of C2/c symmetry, with half the MA and half the BIPY molecules in the asymmetric part of the unit cell.

[Scheme 1]

In this study we aim to answer following three questions: (i) Can pressure induce proton-transfer reactions in BIPYMA? In the case of a positive answer, (ii) which is the pressure needed for the reaction to take place? (iii) Will pressure induce a single or double proton-transfer reaction? An additional objective is to add new data on the pressure effects in cocrystals. To the best of our knowledge, our results are among very few research reports on this phenomenon. After comparison with the available examples reported in the literature, we provide new insights and understanding of proton-transfer reactions in the solid state.

2. Experimental methods

2.1. Cocrystal synthesis

4,4′-Bi­pyridine (91.54 mg) and malonic acid (51.50 mg) were dissolved in 8 ml EtOH:DMSO solution (1:1 v/v ratio) and left for slow evaporation (at room temperature, in a vial covered with a parafilm with a few needle-size holes in it) to yield colourless, needle crystals.

2.2. X-ray diffraction experiments under ambient conditions

X-ray diffraction data for a single crystal of BIPYMA were collected using a four-circle SuperNova single-crystal diffractometer, equipped with a Cu X-ray tube (λ = 1.54178 Å) and Atlas detector. The program CrysAlisPro (Rigaku Oxford Diffaction, 2019[Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.]) was used for data collection.

2.3. Single-crystal high-pressure X-ray diffraction experiments

A single crystal of BIPYMA was mounted in One20 DAC (diamond anvil cell) from Almax Easylab (opening angle of 120°), using a steel gasket (0.15 mm thick) with a 0.43 mm opening, and covered with Daphne oil 7575 as a hydro­static medium. The crystal position was fixed with a cellulose fibre, and a ruby chip was placed in the DAC chamber to enable pressure measurement. The pressure inside the DAC was determined using the ruby-fluorescence method (Piermarini et al., 1975[Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774-2780.]) with a Photon Control Inc. spectrometer (affording accuracy of about 0.02 GPa). The crystal of BIPYMA was compressed isothermally to the highest pressure of 3.33 (2) GPa. The pressure was increased, both gradually and rapidly, and data were collected at 0.25 (2), 0.66 (2), 1.03 (2), 1.33 (2), 1.83 (2), 1.95 (2), 2.19 (2), 2.47 (2), 3.04 (2) and 3.33 (2) GPa for the compressed sample [with crystals under 0.25–2.47 (2) GPa measured in one series, and at 3.04 and 3.33 GPa compressed directly from ambient conditions]; and at 2.76 (2), 2.10 (2), 1.74 (2), 1.54 (2), 0.87 (2), 0.71 (2), 0.48 (2) and 0.14 (2) GPa for a decompressed crystal [to 2.76 (2) GPa decompressed from 3.33 (2) GPa, and in the 2.10–0.14 (2) GPa range decompressed from 2.47 GPa]; see Tables S1–S3 and Figs. S1–S3 of the supporting information. Use of a DAC of the wide opening angle allowed us to collect data having an average completeness in the 45–55% (structures up to 2.47 GPa) and 36–40% (structures above 2.47 GPa) ranges. Additionally, unit-cell parameters were measured for a sample crystal compressed/decompressed in the Merrill–Bassett DAC (Merrill & Bassett, 1974[Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290-294.]), prepared in the same manner as the One20 DAC in the 1.13–3.60 (2) GPa range (Table S2).

X-ray diffraction data were collected with either a New Xcalibur or an Xcalibur four-circle diffractometer, equipped with an Mo X-ray tube (λ = 0.71073 Å) and an EosS2 or EOS CCD detector, respectively. CrysAlisPro was used for data collection.

2.4. Crystal structure solution and refinement

CrysAlisPro was used for UB matrix determination, data reduction and absorption correction. High-pressure crystal structures were solved by intrinsic methods using ShelXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and refined with the least-squares method in ShelXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), using Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) as an interface. The ambient-conditions BIPYMA structure was solved using intrinsic phasing [with ShelXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.])] and was non-spherically refined with NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]; Midgley et al., 2021[Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519-533.]) implemented in Olex2, using Orca (version 5.0; Neese, 2022[Neese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.]) with the PBE method, cc-pVTZ basis set and multiplicity of 2. For the structure at 0.1 MPa, the position of hydrogen atoms was assigned based on electron density, and refined using anisotropic thermal factors. Due to the limited completeness (below 55%) and quality of the high-pressure data, the hydrogen atoms in the high-pressure structures were located at idealized positions based on the molecular geometry and assigned isotropic thermal parameters depending on the equivalent displacement parameters of their carriers. The position of the acidic hydrogen atom (on the MA oxygen versus the BIPY nitro­gen atom) was assigned based on the geometry of the carb­oxy­lic group (the length of the C=O and C—O bonds) and DFT calculations (for additional details see the supporting information). Crystal structures were deposited with the Cambridge Crystallographic Data Centre (CCDC: 2279875–2279893) and can be accessed free of charge by filling out an online form at https://www.ccdc.cam.ac.uk/structures/. Crystallographic details for all structures are listed in Table S1.

2.5. Raman experiments

A powder sample of BIPYMA was loaded into a membrane Merrill–Bassett DAC equipped in class IIa diamonds (alongside a ruby chip and Dahpne 7575 oil). An in-house built Raman spectrometer equipped with a multichannel detector from Hamamatsu Photonics and an M255 laser from Solar Laser Systems was used for spectra collection. Data were collected and processed using the program SpectroLab. Data were collected in two series, for a sample compressed gradually from ambient pressure to 3.51 GPa (Fig. S4), and rapidly to 2.77, 2.92, 2.99, 3.11, 3.24, 3.31, 3.41 and 3.51 GPa, with decompression to ambient pressure after each step (Fig. S5).

2.6. DFT calculations

DFT calculations under static conditions have been performed using the Vienna ab initio Simulation Package (VASP; Kresse & Furthmüller, 1996[Kresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15-50.]) and the projector augmented wave (PAW; Blöchl, 1994[Blöchl, P. E. (1994). Phys. Rev. B, 50, 17953-17979.]) method. We use the Perdew–Burke exchange correlation functional (Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]) and the Grimme D3 dispersion correction with the Becke–Johnson damping function (Grimme et al., 2010[Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.]). A planewave cutoff of 400 eV was chosen with a Gamma centred k-point mesh with a resolution of 0.25 Å−1. The valence active space for C, N, O and H atoms was selected as 4, 5, 6 and 1 electron(s), respectively. Vibrational properties at the gamma point were computed using the finite difference method implemented in the PHONOPY package (Togo et al., 2023[Togo, A., Chaput, L., Tadano, T. & Tanaka, I. (2023). J. Phys. Condens. Matter, 35, 353001.]). Raman intensities were computed using the SpectroscoPY code (Skelton et al., 2017[Skelton, J. M., Burton, L. A., Jackson, A. J., Oba, F., Parker, S. C. & Walsh, A. (2017). Phys. Chem. Chem. Phys. 19, 12452-12465.]). Energy and forces convergence thresholds were set at 10−9 eV and 0.005 eV Å−1, respectively. For further details see the supporting information.

2.7. CSD data mining

The Cambridge Structural Database (version 5.43; November 2022) was searched for entries containing more than one chemical unit using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) and a high-pressure subset, with polymeric structures excluded. The results (840 high-pressure deposits from 193 REFCODE families) were manually revised and the final subset of deposits was reduced by omitting structures of iron carbonate (reduction by 38 deposits in total, across 11 REFCODE families).

3. Results and discussion

3.1. Crystal symmetry and phase transition

The series of XRD experiments, where crystalline samples of BIPYMA were compressed and decompressed, have revealed that the C2/c symmetry of the crystal is preserved on compression up to around 3.1 GPa, while above this pressure a lowering of the crystal symmetry to P21/c is observed. This symmetry change is accompanied by a drop in the unit-cell volume of ca 20 Å3 (∼2%) and significant changes in the length of the unit-cell parameters (Fig. 1[link], Table S1). The changes during the phase transition are also captured by DFT calculations. There is a good agreement in both the volume collapse (∼3%) of the unit cell and the modification of the lattice parameters across the transition (see Figs. 1[link] and 2[link]). In the measured Raman spectra, the main active modes (Fig. S6) show changes in the frequency–pressure slopes that also evidence a phase transition at 2.9 GPa, in good agreement with the experimental XRD data. The compression and phase transition also affect the crystal morphology (Figs. S2 and S3, and Movie S1 of the supporting information). The P21/c phase can be preserved on decompression down to a pressure of ca 2.4 GPa, as confirmed by the measurement of lattice constants (Tables S1 and S2). In summary, the phase transition shows a hysteresis pressure range of about 0.7 GPa at the temperature of the experiment.

[Figure 1]
Figure 1
Pressure dependence of the (a) unit-cell parameters and (b) volume. Full and empty symbols represent data for the compressed and decompressed crystal (where crystal structure was solved and refined), respectively. Data for the compressed/decompressed crystals where only unit-cell parameters were measured are marked with half-empty symbols (Table S2). Horizontal arrows in panel (b) of the figure mark pressure regions where each form of the crystal exists and pressure regions where C2/c and P21/c phases were observed (in purple and black, respectively). Orange–green gradient arrow marks the direction of the transformation from [{\rm BIPYH}_{2}^{2+}{\rm MA}^{2-}] to BIPYH+MA in the P21/c phase. Vertical dashed and dashed-dotted lines mark the transition pressures pt and pt′ between the C2/c and P21/c phases on compression and decompression, respectively. Yellow highlight marks the pressure region where the BIPYMA/BIPYH+MA interconversion can occur. The lines fitted to experimental points are guides to the eye only. Subscripts C and P stand for C2/c and P21/c, respectively.
[Figure 2]
Figure 2
(a) Experimental and calculated EOS for the C2/c and P21/c phases. For the P21/c phase data points, V0 is assumed to be the same as for the C2/c phase. (b) Lattice parameters for the P21/c phase (squares) and the C2/c phase (circles) obtained experimentally (empty symbols) and from DFT simulations (crossed symbols).

Experimental data are also in overall good agreement with the computed lattice and equations of state (EOS) parameters for the C2/c phase, see Fig. 2[link]. For the P21/c phase, the comparison of the EOS parameters is more difficult to carry out due to the scattering in the experimental data, and the lack of a zero-pressure volume value. A Murnaghan EOS is fitted to the experimental PV data of the C2/c phase, yielding the following parameters: V0 = 1227 Å3, B0 = 8.05 GPa, B0 = 7.1. The computed EOS with the data obtained from the DFT simulations agree very well: V0 = 1185 Å3, B0 = 7.89 GPa, B0 = 8.0. For the lattice parameters, the comparison between experiment and simulation is also in good agreement. The largest deviation occurs for the lattice parameter c of the C2/c phase (ca 3%) mainly due to its strong dependence with the β angle of the monoclinic cell, which is the most sensitive parameter to optimize.

3.2. The pressure-induced proton transfer

Analysis of the geometry of the carb­oxy­lic group of MA on compression up to 2.5 GPa suggests that, despite no change in the crystal symmetry, the proton-transfer reaction does occur. When the crystal is compressed, starting at 1.3 GPa, the trend points toward a shortening of the C—OH bond accompanied by an elongation of the C=O bond (Fig. 3[link]), although the lack of data completeness (common for high-pressure experiments, especially for low-symmetry samples) limits the conclusions that can be obtained from this analysis. Note that all data points should not be analysed jointly when it comes to trends visible in them. For the C2/c phase two series (for compressed and decompressed sample crystals, marked in Fig. 3[link] with solid and dashed lines, respectively) should be distinguished. In such cases, when compression of the sample crystal is exclusively analysed, the increase in the length of the double C=O bond and the decrease for the single C—O bonds are more visible. The decompression series can be more biased as some effect might show hysteresis on decompression and also the sample crystal becomes more exhausted with each experimental step. Fortunately, results from the DFT calculations clearly display a reduction of the single C—O bond and an elongation of the double C=O bond on compression, confirming experimental expectations. These bond length changes are linked to the proton transfer from MA to BIPY. Our calculations corroborate that this process depends on the pressure/volume of the unit cell (Figs. S8 and S9).

[Figure 3]
Figure 3
Pressure dependence of the C=O and C—O bond lengths (black triangles and red circles, respectively), as well as the O⋯N and C⋯N distances (blue squares and green diamonds, respectively). Full symbols joined with solid lines mark the compression series for the C2/c phase and the data for the carb­oxy­lic group C12(=O2)O1H of the P21/c phase. Open symbols connected by dotted lines mark the decompression series for the C2/c phase and data for the carb­oxy­lic group C14(=O4)O3H of the P21/c phase. The lower graph shows the difference in the length of carbon–oxygen bonds of the carb­oxy­lic group, with a dashed red horizontal line marking the difference limit of 0.04 Å. All values were calculated using ShelXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]) matrices. BIPY and MA moieties are related by the following symmetry codes: (i) C—O1H⋯N1x, y, z; (ii) C—O3H⋯N21 − x, 1/2 − y, −1/2 + z.

Thus, at volumes of 1300 Å3, for both the C2/c and the P21/c space groups, molecules remain in their neutral form (i.e. no proton has been transferred). On compression, calculations show a proton transfer between the MA and the BIPY molecules in both space groups. This behaviour occurs in the volume range 1200–1100 Å3 (corresponding to experimental pressures between 0.2 and 1.3 GPa) and implies that both the neutral and the monoprotonated species can coexist. In other words, the energetic difference between the two systems is almost independent of the space group (see Fig. S11 and Tables S4–S5). The energy barrier for the proton transfer in the C2/c space group is also predicted to be extremely low (below 1.6 kJ mol−1 at 1150 Å3), which means complete activation at room temperature (Fig. S12).

Therefore, it appears that the first proton transfer occurs at low pressures and generates a structure containing a mixture of neutral and singly charged BIPY. Since structures with neutral and monoprotonated BIPY entities are energetically similar, it is to be expected that hydrogen atoms in the X-ray diffraction analysis show partial occupations in the stability pressure range of the C2/c form, as indeed observed in the crystal structure refinement. For structures in the 0.2–2.5 GPa pressure range, when the difference in the length of carbon–oxygen bonds is not significant (lower than 0.04 Å), the position of the hydrogen atom should be split between the carb­oxy­lic group and the pyridine ring, reflecting the transfer to the BIPY molecule in some parts of the crystal structure (for detailed information of the acidic proton refinement, see the supporting information).

The transition to the P21/c phase occurring above 3.1 GPa can be associated with the double proton transfer from MA to BIPY. This association is corroborated by our DFT calculations, where only the doubly protonated BIPY structure is observed under these conditions. Accordingly, the structural changes and the two proton migrations across the transition can be related in the following manner. As a result of the proton transfer, repulsion between positively charged [{\rm BIPYH}_{2}^{2+}] ions, stacked closely to each other in the crystal structure, arises. This triggers molecular rearrangement, resulting in breaking of the symmetry. The transition leads to the increase of Z′ (from 0.5 to 1), with the asymmetric part of the unit cell comprising one MA2− anion and one [{\rm BIPYH}_{2}^{2+}] cation (compared with half an MA molecule/ion, lying on a special position of a twofold axis symmetry, and half an BIPY molecule/ion, at the special position of a symmetry of a centre of inversion, in the C2/c phase).

Experimentally and computationally, in the C2/c phase, the angle between stacked BIPY entities (i.e. the N1⋯N1⋯C4 angle, see Fig. 4[link]) hardly changes on compression. XRD data show a decrease of less than 2°, from 116.9° at 0.1 MPa to 115.1° at 2.47 GPa. At the same time, the N1⋯N1 distance between two stacked BIPY entities decreases by over 10%, from 4.0772 (3) to 3.6609 (7) Å. As a result, the nitro­gen atoms become not only closer to each other but are also positioned more directly under one another. On transition to the P21/c phase, at 3.33 GPa, the distance between nitro­gen atoms of neighbouring stacked [{\rm BIPYH}_{2}^{2+}] ions decreases slightly to 3.631 (13) Å for the N1⋯N2 (1 − x, −y, 1 − z) contact, and significantly increases to 4.281 (13) Å for the N2⋯N1 (1 − x, 1 − y, 1 − z) [two different values being the result of 1, not 0.5 [{\rm BIPYH}_{2}^{2+}] ion(s) being present in the asymmetric part of the unit cell]. At the same time the angle between stacked [{\rm BIPYH}_{2}^{2+}] ions increases to 125.5 (4) and 133.2 (4)°, respectively. Therefore, even though one N⋯N distance becomes shorter, the nitro­gen atoms are not positioned as directly above one another as in the C2/c phase.

[Figure 4]
Figure 4
Pressure dependence of the N⋯N distances (bottom) and N⋯N⋯C angles (top) between stacked BIPY molecules/ions. Data for the C2/c and P21/c phases are shown with circles/squares and diamond/triangles, respectively. Full symbols in the C2/c phase are for the compression series, and open for the decompression series. In the P21/c phase, full symbols mark the data for the pyrimidine ring of BIPY with the N1 atom (shown in red and green), and open for the ring with the N2 atom (blue and pink). The way distances and angles were measured is presented in the figure inserted into the graph (for clarity, shown for the P21/c phase only). Symmetry codes: (i) 1/2 − x, 1/2 − y, 1 − z; (ii) 1 − x, −y, 1 − z; (iii) 1 − x, 1 − y, 1 − z.

The shift of the BIPY entities and the resulting ripple effect are clearly visible for the structure shown along the [001] direction. In Fig. 5[link], the C2/c and the P21/c structures projected along the c axis are presented. For the purpose of this comparison, the C2/c structure has been transformed and doubled along the b axis, resulting in comparable b and c axes between the two space groups. With this representation, the phase transition is associated with an increase of the γ angle from 78° in the C2/c phase to 90° in the P21/c phase. The angle change causes [{\rm BIPY}{\rm H}^{+}]/[{\rm BIPYH}_{2}^{2+}] ions to open their relative angle ϕ in a scissor like movement. See Section S4 in the supporting information for further details.

[Figure 5]
Figure 5
Structures of the (a) C2/c and (b) P21/c phases represented in equivalent axes. The structure of the C2/c phase has been transformed and doubled along the b axis to have the same number of formula units as the P21/c phase.

Calculations of vibrational frequencies and Raman intensities at experimental volumes were performed after relaxing the atomic positions of the optimized C2/c and P21/c phases at 1230 Å3 (0.1 MPa, neutral) and 1001 Å3 (3.1 GPa, diprotonated), respectively. In the case of the cocrystal, the agreement of experimental and calculated Raman spectra is good for both frequencies and relative intensities, particularly in the region from 1000 to 1600 cm−1. Although the agreement for the salt is not as satisfactory as for the cocrystal, the overall comparison is reasonable (see Fig. S7).

Our calculated Raman spectra exhibit features similar to those present in experimental spectra for neutral and diprotonated BIPY adsorbed in zeolites (Moissette et al., 2001[Moissette, A., Batonneau, Y. & Brémard, C. (2001). J. Am. Chem. Soc. 123, 12325-12334.]) despite these spectra being measured under ambient conditions. The most interesting feature is the splitting observed both in calculations and in experiments of the band at ca 1600 cm−1, characteristic for unprotonated BIPY. After double proton transfer, the splitting disappears and the main band moves closer to 1650 cm−1 (see Fig. S7). Unfortunately, insufficient resolution for the experimental Raman spectra does not allow for observation of the subtle band-splitting, still the shift towards higher values is visible. Overall, the computational results are consistent with the existence of the C2/c phase as neutral under ambient pressure and the P21/c phase as a divalent salt at 3.1 GPa.

3.3. Single versus double proton transfer

As we established in the previous section, the symmetry change is associated with double proton transfer to the BIPY molecule. However, when the P21/c phase was first observed at a pressure of 3.04 (2) GPa, the structure showed the length of the C—O bonds in one of the carb­oxy­lic groups becoming almost the same [1.25 (2) and 1.22 (2) Å], while the C—OH bond on the other side of the MA molecule elongated to 1.31 (2) Å (Fig. 3[link]). This would suggest that only one proton was transferred to the BIPY molecule; however, this conclusion required confirmation with additional techniques as the bond lengths have significant estimated standard deviations. The experimental expectations were corroborated by DFT calculations, which established that the P21/c phase is energetically favoured at volumes lower than 1150 Å3, with the range 1150–1000 Å3 being a metastable region where BIPY is monoprotonated (BIPYH+MA), and below 1000 Å3 (i.e. at a pressure ≥3.1 GPa) where the [{\rm BIPYH}_{2}^{2+}{\rm MA}^{2-}] structure is stable. This outcome was independent from the symmetry of the space group, and the same results were yielded for the C2/c and P21/c space groups.

Since the structure at 3.04 GPa, of unit-cell volume equal to 1001.5 (10) Å3, clearly shows discrepancies in the geometry of the carb­oxy­lic groups, consistent with the BIPYH+MA form, and at the same time is at the very limit of the metastability region, we postulate that the crystal was initially compressed to a volume slightly lower than 1000 Å3, triggering a double proton transfer, and then due to the relaxation of the DAC, the pressure dropped and transition from [{\rm BIPYH}_{2}^{2+}{\rm MA}^{2-}] to BIPYH+MA occurred. This hypothesis can be corroborated by the data collected at 3.33 GPa, where we observe equalization of the carbon–oxygen bonds in both carb­oxy­lic groups of MA, regardless of their absolute length (with deviations from the 1.25 Å bond length for the delocalized carbon–oxygen bond being attributed to the quality of data affected by the use of the DAC). On decompression from 3.33 to 2.76 GPa, we again observe differences in geometry of the carb­oxy­lic groups of MA [1.295 (19) and 1.19 (2) Å versus 1.279 (19) and 1.240 (19) Å for C12—O1 and C12—O2 bonds and for C14—O3 and C14—O4 bonds, respectively]. This is in agreement with the result of theoretical calculations and previous observations at 3.04 GPa, with the structure of P21/c symmetry containing monoprotonated BIPY, being preferred in the volume range 1000–1150 Å3. The variation in the carbon–oxygen bond length for P21/c is presented in Fig. 3[link]; however, note that the `middle' point was measured for one crystal, and the remaining two pressure points for a different sample. In all three structures the atom labels and position of the molecule in the unit cell were selected in the same way to make the structural models uniform. For structures at 2.76 and 3.04 GPa, the symmetry is broken and only one carb­oxy­lic group is deprotonated (in each structure a different carb­oxy­lic group) and data points are shown with respect to a specific oxygen atom which may look like the bond length increases and decreases inconsistently, but the important feature is that the geometry is consistent with deprotonation for only one carb­oxy­lic group.

When compression of the crystal progresses from 0.1 MPa to 2.47 GPa, the O⋯N distance of the OH⋯N hydrogen bond connecting the MA and BIPY molecules into chains decreases (Figs. 3[link] and S10), which should favour proton transfer. The transition from BIPYMA to [{\rm BIPYH}_{2}^{2+}{\rm MA}^{2-}] (at 3.33 GPa) results in further shortening of the O⋯N distances; however, on decompression to 3.04 and 2.76 GPa, when P21/c symmetry is retained but the structure contains monoprotonated BIPY, they elongate, with some becoming even slightly longer than in C2/c phase at 2.47 GPa. Although the limitations coming from the quality of the structures cannot be discarded, the fact the O⋯N distances become longer can be a plausible explanation why there is a preference for monoprotonated salt at volumes higher than 1000 Å3 and why the proton transfer on one side of BIPY was reversed.

3.4. Putting pressure on the ΔpKa rule

To end the discussion of our results, we aim to explore whether a correlation between the ΔpKa rule and pressure-induced proton transfers in multicomponent crystals exists. Pressures observed by us for the first and second proton transfer in BIPYMA (0.2–1.3 and 3.1 GPa, respectively) point out that a larger increase in pressure is required to induce transfer of the second hydrogen atom, i.e. when ΔpKa is lower, since the corresponding ΔpKa values in these processes are 1.99 and −2.36, respectively.

In this respect, the data reported so far are scarce, despite numerous multicomponent crystals being studied under pressure. To the best of our knowledge, identification of this process has only been accomplished in five systems: 4,4′-bipyridinium squarate – BIPYSQA (Reetz et al., 1994[Reetz, M. T., Höger, S. & Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181-183.]; Martins et al., 2009[Martins, D. M. S., Middlemiss, D. S., Pulham, C. R., Wilson, C. C., Weller, M. T., Henry, P. F., Shankland, N., Shankland, K., Marshall, W. G., Ibberson, R. M., Knight, K., Moggach, S., Brunelli, M. & Morrison, C. A. (2009). J. Am. Chem. Soc. 131, 3884-3893.]), oxalic acid dihydrate form α-OXAAH2O (Casati et al., 2009[Casati, N., Macchi, P. & Sironi, A. (2009). Chem. Commun. pp. 2679-2681.]), cocrystal of phenazine with fluoranilic acid – PHENFA (Kumai et al., 2012[Kumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036-1046.]), cocrystal of 2,3-di(2-pyridinyl)pyrazine with fluoranilic acid – DPPZFA (Horiuchi et al., 2013[Horiuchi, S., Kumai, R. & Tokura, Y. (2013). J. Am. Chem. Soc. 135, 4492-4500.]), and cocrystal of 4-methylpyridine with pentachlorophenol – 4MPYPCP (Funnell et al., 2021[Funnell, N. P., Allan, D. R., Maloney, A. G. P., Smith, R. I., Wilson, C. J. G. & Parsons, S. (2021). CrystEngComm, 23, 769-776.]). Details of these experiments including ΔpKa and pressure values are provided in the supporting information and are collected in Table S6. The IR spectroscopic study of the quinhydrone crystal was excluded from the comparison as the reported proton-transfer reaction was cooperative with electron transfer (Mitani et al., 1988[Mitani, T., Saito, G. & Urayama, H. (1988). Phys. Rev. Lett. 60, 2299-2302.]). Fig. 6[link] summarizes the ΔpKa values and pressures at which the proton transfer occurs.

[Figure 6]
Figure 6
The proton-transfer pressure for confirmed reactions in multicomponent crystals as a function of ΔpKa, marked with full circles and solid lines. Solid lines were used when not one specific pressure value was given (BIPYMA-1), or when the proton-transfer pressure was not reported (4MPYPCP). In the latter case, the whole investigated pressure range of the crystal was plotted. Open symbols and dotted lines (at 50% transparency) mark pressure ranges the selected multicomponent crystal structures deposited with the CSD were investigated in, and where the proton-transfer reaction was not observed. For details see Tables S6, S8 and S9. For PYAD, PYGLU, PYCUS, PYMA and PYOX, only ΔpKa for the first proton transfer was included as the ΔpKa for the second proton transfer is below −9 and falls outside the ΔpKa range considered in this work.

In principle, this small number of cases observed does not allow us to propose a conclusive trend. However, when our data and the previous results are all put together, our findings in the BIPYMA system can be generalized as a guideline in the following statement: the lower the ΔpKa value, the higher the pressure needed to initiate the proton-transfer process. For instance, in the range ΔpKa < 0, pressures promoting hydrogen transference decrease from around 5.4 GPa in OXAAH2O to 3.1 GPa in BIPYMA-2 and 1.5 GPa in the case of BIPYSQA. On the other hand, situations where the acid and the base are strong enough to show ΔpKa > 0, i.e the proton transference is favoured, pressures as low as 0.5 GPa or lower are sufficient to induce proton transfer. Thus, DPPZFA (ΔpKa = 1.5) shows a protonation pressure of 0.5 GPa, whereas the first proton transfer in BIPYMA (BIPYMA-1; showing ΔpKa > 1) starts at around 0.2 GPa and extends up to 1.3 GPa, (green vertical line in Fig. 6[link]).

We believe that these results can be considered an extension of the ΔpKa rule. The capability of pressure to enhance interactions reducing interatomic distances between the acid and base functional groups of the coformers favours the protonation reaction. Shorter distances imply a higher affinity of the base for the acid hydrogen since a lower proton-migration barrier is expected, as has been discussed for instance in the case of hydrogen-bonding symmetrization (Meier et al., 2022[Meier, T., Trybel, F., Khandarkhaeva, S., Laniel, D., Ishii, T., Aslandukova, A., Dubrovinskaia, N. & Dubrovinsky, L. (2022). Nat. Commun. 13, 3042.]). This explains why the lower the ΔpKa, the higher the pressure needed to initiate the proton-transfer process.

The implications of our findings can be revealed by considering other cases. For this purpose, the deposits of organic multicomponent crystals (excluding polymeric structures) investigated under high pressure were thoroughly analysed (see Table S7). Out of this subset of multicomponent crystals, seven systems: GLYPAC, CYSH2O, BSULH2O, ALAH2O, GLYTAC, PLYPHAC, PIPPAR [respective CSD refcode family names: AWIHOE (Zakharov et al., 2013[Zakharov, B. A., Losev, E. A. & Boldyreva, E. V. (2013). CrystEngComm, 15, 1693-1697.]), CYSTAC (Johnstone et al., 2009[Johnstone, R. D. L., Lennie, A. R., Parsons, S., Pidcock, E. & Warren, J. E. (2009). Acta Cryst. B65, 731-748.]), IFIZIG (Johnstone et al., 2009[Johnstone, R. D. L., Lennie, A. R., Parsons, S., Pidcock, E. & Warren, J. E. (2009). Acta Cryst. B65, 731-748.]), IMEGIR (Zakharov & Boldyreva, 2013[Zakharov, B. A. & Boldyreva, E. V. (2013). Acta Cryst. B69, 271-280.]), IQOMIM (Losev et al., 2016[Losev, E. A., Zakharov, B. A. & Boldyreva, E. V. (2016). CrystEngComm, 18, 5869-5875.]), NEPXIR (Losev et al., 2016[Losev, E. A., Zakharov, B. A. & Boldyreva, E. V. (2016). CrystEngComm, 18, 5869-5875.]) and COKCEL (Oswald & Pulham, 2008[Oswald, I. D. H. & Pulham, C. R. (2008). CrystEngComm, 10, 1114-1116.])] were selected as potential candidates based on their chemical composition, a molecular arrangement enabling proton-transfer reaction, and ΔpKa values falling in the [−6,2] range (Table S8). However, protonation was not reported in either of these cases because it was not the main goal of the study or due to the experimental limitations.

According to our proposed extended ΔpKa rule, in BSULH2O, CYSH2O, ALAH2O and GLYTAC, the compression should have been sufficient to induce transfer of the hydrogen atom from the Brønsted–Lowry acid to the base. Interestingly, for the case of GLYPAC (ΔpKa = −1.94), GLYPHAC (ΔpKa = −0.49) and PIPPAR (ΔpKa = −0.05), we estimate, based on Fig. 6[link], that pressures between 2–3 GPa, 1–2 GPa and around 0.5–1 GPa, respectively, should produce the proton-transfer reaction.

In very recent work by Ward et al. (2023[Ward, M. R., Bull, C. L., Funnell, N. P., Warren, M. R. & Oswald, I. D. H. (2023). Int. J. Pharm. 647, 123514.]), where a series of pyridine–di­carb­oxy­lic acid systems was investigated under pressure using X-ray and neutron radiation, proton transfer was also not reported. However, in the context of the extended ΔpKa rule, and based on the ΔpKa values and the pressure limits for each of the studied cocrystals (Table S9) it could have been expected only in cocrystals of pyrazine with oxalic acid (PYOX, studied up to 3.5 GPa), succinic acid (PYSUC, studied up to 5.35 GPa) and glutaric acid (PYGLU, studied up to 5.5 GPa), and only for the single proton-transfer reaction. However, if those systems resemble BIPYMA, the first proton transfer might not have been clearly picked up by the diffraction techniques. The expected proton-transfer pressure for PYOX would be approximately 1.5 GPa, whereas for PYSUC and PYGLU pressure in the 4–4.5 GPa range should be sufficient to induce the first proton transfer. In fact, when carbon–oxygen bond lengths for PYSUC are analysed, a trend similar to that for BIPYMA is observed, where the single bond becomes shorter with pressure, while the double bond elongates (Fig. S15). For PYGLU and PYOX such clear trends were not visible (Figs. S16 and S17), but note that in the case of PYOX, most of the reported structures were of low resolution (0.9 Å). Nevertheless, drawing any conclusions on whether proton transfer took place or not based on the reported structural models alone would be biased and further studies with supporting techniques are required.

Although our results are encouraging, we cannot rule out the effect of the crystalline environment in the extended ΔpKa rule. Proton-transfer reactions anticipated under ambient conditions by this rule are not always observed, as explained by the recent results of Cruz-Cabeza et al. (2022[Cruz-Cabeza, A. J., Lusi, M., Wheatcroft, H. P. & Bond, A. D. (2022). Faraday Discuss. 235, 446-466.]). This turned out to be especially pertinent for the amino acids, as it was revealed that, for molecules existing in zwitterion form, the ΔpKa for a 50:50 salt:cocrystal ratio is set at 4.1, significantly higher than 1 observed for the whole population. Such an exceptional situation is explained as due to the particular spatial arrangement of the amino acids. This also suggests that the ΔpKa for preferential salt formation would be higher than expected as well. Therefore, higher pressures might be needed to trigger the reaction than those we suggest for the GLYPAC, GLYPHAC and PIPPAR multicomponent crystals. This would also explain why for BSULH2O, CYSH2O, ALAH2O and GLYTAC (all containing molecules of amino acids in the zwitterion form), proton transfer was not observed.

Unfortunately, the limited available data on pressure-induced proton-transfer reactions between different chemical entities in multicomponent crystals prevents establishing more precise rules about this phenomenon. Moreover, the current literature data hinder formulation of rules, based on the critical donor⋯acceptor distance at which the proton transfer takes place, similar to those expressed for polymerization reactions (Li et al., 2021[Li, F., Xu, J., Wang, Y., Zheng, H. & Li, K. (2021). Molecules, 26, 7581.]; Zhang, Tang et al., 2022[Casati, N., Macchi, P. & Sironi, A. (2009). Chem. Commun. pp. 2679-2681.]; Tang et al., 2023[Tang, X., Dong, X., Zhang, C., Li, K., Zheng, H. & Mao, H. (2023). Matter Radiat. Extremes 8, 058402.]). Out of the reported successful pressure-induced proton-transfer reactions in cocrystals, only two cases could be used for such analysis (BIPYMA and OXAAH2O). Other cases where proton transfer was reported were limited to single measurements, the crystal structure was not determined or the crystal structure did not show the proton transfer, making analysis impossible. In the case of BIPYMA, the donor⋯acceptor distance established by DFT calculations is approximately 2.55 Å, with the experimental values at 3.33 GPa falling below that limit [2.533 (14) and 2.529 (13) Å]. In OXAAH2O at 5.3 GPa, the donor⋯acceptor distance is 2.42 Å (structure OXACDH38) after proton transfer, compared with 2.43 Å at 3.6 GPa (structure OXACDH37) where molecules remain in neutral form. Note that for BIPYMA and OXAAH2O the chemical nature of the hydrogen bond involved in the proton transfer is different. In both cases the oxygen atom is a hydrogen atom donor, but the role of the acceptor is either taken by the nitro­gen atom of BIPY or the oxygen atom of the water molecule, which makes the two systems too different to establish a general donor⋯acceptor distance limit that would determine whether proton transfer takes place or not.

As the coformers in multicomponent crystals where the proton-transfer reaction was confirmed significantly differ in chemical structure and composition, it would be an oversight not to consider the pressure required for the reaction to take place being a result of several factors, including the crystal structure features, compressibility and chemical nature of the components. Although more research is needed, we believe that the extended ΔpKa rule we have shown in this study can serve as a guide.

4. Conclusions

Extensive high-pressure XRD and Raman spectroscopy experiments, coupled with the DFT calculations, have enabled identification of the relevant details of the expected intricate cocrystal–salt landscape of BIPYMA. Our results show that proton transfer to one of the pyridine rings of BIPY in the BIPYMA structure can occur already in the 0.2–1.3 GPa pressure range, with the mixture of BIPYMA and BIPYH+MA species present in the structure retaining the C2/c symmetry. BIPYMA and BIPYH+MA interconversion is possible due to the low-energy barrier (below 0.4 kcal mol−1 at a volume of 1150 Å3) and the low energy difference between both forms. On compression above 3.1 GPa, a double proton transfer occurs which triggers a phase transition. When nitro­gen atoms of BIPY get a formal positive charge, the accompanying repulsion can be released by spreading apart stacked [{\rm BIPYH}_{2}^{2+}] ions, resulting in lowering of the symmetry of the crystal to P21/c. The P21/c phase can be retained on decompression down to 2.4 GPa, with the structure containing monoprotonated BIPY (BIPYH+MA) in this region, where the P21/c phase is metastable. On further decompression to ambient conditions, the proton transfer (from monoprotonated to neutral BIPY) is reversed, similarly to a previously reported reaction observed in crystals of BIPYSQA.

Although, in light of this study, the proton transfer reaction in BIPYMA should not be considered as a continuous process from the perspective of the single O—H⋯N hydrogen bond, it can be described as such in regards to the crystal as a whole, meaning the transfer occurs entirely in some regions of the crystal and do not progress in others. The information we provide herein, in particular the metastability of the high-pressure P21/c phase containing monoprotonated BIPY and the coexistence of BIPYMA and BIPYH+MA in the C2/c phase, shows the complexity of the response of multicomponent crystals amenable to proton transfer to high pressure and intricacies of the cocrystal–salt continuum.

Despite scattered examples of similar cases found in the literature, our comparison has shown a general trend where the value of the proton-transfer pressure is in an inverse relation to ΔpKa. Further exploration of this topic can bring us closer to developing methods for targeted salt formation under high pressure. However, for this to happen it is crucial to be able to predict the required reaction-triggering pressure based on the structural information already available, without the need for cumbersome, time-consuming trial experiments for each individual acid–base pair. This highlights the need for a further thorough study of acid–base systems to fully understand the phenomenon of pressure-induced proton-transfer reactions in multicomponent crystals.

5. Related literature

The following references are cited in the supporting information: Abe et al. (2014[Abe, H., Imai, Y., Takekiyo, T., Yoshimura, Y. & Hamaya, N. (2014). IOP Conf. Ser. Mater. Sci. Eng. 54, 012003.]); Andrzejewski et al. (2011[Andrzejewski, M., Olejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 4892-4899.], 2012[Andrzejewski, M., Olejniczak, A. & Katrusiak, A. (2012). CrystEngComm, 14, 6374-6434.]); Anioła & Katrusiak (2016[Anioła, M. & Katrusiak, A. (2016). CrystEngComm, 18, 3223-3228.], 2017[Anioła, M. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 3134-3141.]); Anioła et al. (2016[Anioła, M., Kwaśna, K., Cai, W. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 6304-6309.]); Bąkowicz & Turowska-Tyrk (2016[Bąkowicz, J. & Turowska-Tyrk, I. (2016). CrystEngComm, 18, 8898-8905.], 2020[Bąkowicz, J. & Turowska-Tyrk, I. (2020). Crystals, 10, 1031.], 2022[Bąkowicz, J. & Turowska-Tyrk, I. (2022). Acta Cryst. B78, 223-230.]); Bedeković et al. (2018[Bedeković, N., Stilinović, V., Friščić, T. & Cinčić, D. (2018). New J. Chem. 42, 10584-10591.]); Bezzu et al. (2019[Bezzu, C. G., Burt, L. A., McMonagle, C. J., Moggach, S. A., Kariuki, B. M., Allan, D. R., Warren, M. & McKeown, N. B. (2019). Nat. Mater. 18, 740-745.]); Bogdanov et al. (2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.], 2022[Bogdanov, N. E., Korabel'nikov, D. V., Fedorov, I. A., Zakharov, B. A. & Boldyreva, E. V. (2022). Acta Cryst. B78, 756-762.]); Boschmann & Miller (2018[Boschmann, E. & Miller, R. D. (2018). Tetrahedron, 74, 2617-2619.]); Budzianowski & Katrusiak (2006[Budzianowski, A. & Katrusiak, A. (2006). J. Phys. Chem. B, 110, 9755-9758.]); Bujak & Angel (2006[Bujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.]); Cameron et al. (2014[Cameron, C. A., Allan, D. R., Kamenev, K. V., Moggach, S. A., Murrie, M. & Parsons, S. (2014). Z. Kristallogr. Cryst. Mater. 229, 200-209.]); Carlsson et al. (2013[Carlsson, S., Zorina, L., Allan, D. R., Attfield, J. P., Canadell, E. & Batail, P. (2013). Inorg. Chem. 52, 3326-3333.]); Chasák et al. (2021[Chasák, J., Šlachtová, V., Urban, M. & Brulíková, L. (2021). Eur. J. Med. Chem. 209, 112872.]); Chia & Trimble (1961[Chia, A. S. & Trimble, R. F. Jr (1961). J. Phys. Chem. 65, 863-866.]); Collings & Hanfland (2019[Collings, I. E. & Hanfland, M. (2019). Molecules, 24, 1759.]); Connor et al. (2015[Connor, L. E., Delori, A., Hutchison, I. B., Nic Daeid, N., Sutcliffe, O. B. & Oswald, I. D. H. (2015). Acta Cryst. B71, 3-9.]); Craig et al. (2018[Craig, G. A., Sarkar, A., Woodall, C. H., Hay, M. A., Marriott, K. E. R., Kamenev, K. V., Moggach, S. A., Brechin, E. K., Parsons, S., Rajaraman, G. & Murrie, M. (2018). Chem. Sci. 9, 1551-1559.]); Dey & Lahiri (2010[Dey, B. P. & Lahiri, S. C. (2010). J. Indian Chem. Soc. 87, 29-41.]); Ehrenreich et al. (2019[Ehrenreich, G., Zeng, M., Burger, Z., Warren, S. R., Gaultois, M. W., Tan, M. & Kieslich, G. (2019). Chem. Commun. 55, 3911-3914.]); Eikeland et al. (2016[Eikeland, E., Thomsen, M. K., Madsen, S. R., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2016). Chem. A Eur. J. 22, 4061-4069.], 2017[Eikeland, E., Thomsen, M. K., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2017). Cryst. Growth Des. 17, 3834-3846.], 2020[Eikeland, E. Z., Borup, M., Thomsen, M. K., Roelsgaard, M., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2020). Cryst. Growth Des. 20, 4092-4099.]); Fabbiani et al. (2003[Fabbiani, F. P. A., Allan, D. R., Dawson, A., David, W. I. F., McGregor, P. A., Oswald, I. D. H., Parsons, S. & Pulham, C. R. (2003). Chem. Commun. pp. 3004-3005.], 2004[Fabbiani, F. P. A., Allan, D. R., David, W. I. F., Moggach, S. A., Parsons, S. & Pulham, C. R. (2004). CrystEngComm, 6, 504-511.], 2007[Fabbiani, F. P. A., Allan, D. R., David, W. I. F., Davidson, A. J., Lennie, A. R., Parsons, S., Pulham, C. R. & Warren, J. E. (2007). Cryst. Growth Des. 7, 1115-1124.], 2009[Fabbiani, F. P. A., Dittrich, B., Florence, A. J., Gelbrich, T., Hursthouse, M. B., Kuhs, W. F., Shankland, N. & Sowa, H. (2009). CrystEngComm, 11, 1396-1406.], 2010[Fabbiani, F. P. A., Levendis, D. C., Buth, G., Kuhs, W. F., Shankland, N. & Sowa, H. (2010). CrystEngComm, 12, 2354-2360.], 2014[Fabbiani, F. P. A., Buth, G., Levendis, D. C. & Cruz-Cabeza, A. J. (2014). Chem. Commun. 50, 1817-1819.], 2016[Fabbiani, F. P. A., Bergantin, S., Gavezzotti, A., Rizzato, S. & Moret, M. (2016). CrystEngComm, 18, 2173-2181.]); Filhol et al. (1981[Filhol, A., Bravic, G., Gaultier, J., Chasseau, D. & Vettier, C. (1981). Acta Cryst. B37, 1225-1235.]); Fornasari et al. (2020[Fornasari, L., Olejniczak, A., Rossi, F., d'Agostino, S., Chierotti, M. R., Gobetto, R., Katrusiak, A. & Braga, D. (2020). Chem. A Eur. J. 26, 5061-5069.]); Friedrich et al. (2020[Friedrich, A., Collings, I. E., Dziubek, K. F., Fanetti, S., Radacki, K., Ruiz-Fuertes, J., Pellicer-Porres, J., Hanfland, M., Sieh, D., Bini, R., Clark, S. J. & Marder, T. B. (2020). J. Am. Chem. Soc. 142, 18907-18923.]); Galica et al. (2020[Galica, T., Konieczny, K. A. & Turowska-Tyrk, I. (2020). J. Photochem. Photobiol. Chem. 386, 112119.]); Galica & Turowska-Tyrk (2019[Galica, T. & Turowska-Tyrk, I. (2019). J. Photochem. Photobiol. Chem. 376, 108-115.]); Galiois et al. (1985[Galiois, B., Gaultier, J., Hauw, C., Chasseau, D., Meresse, A., Filhol, A. & Bechgaard, K. (1985). Mol. Cryst. Liq. Cryst. 119, 225-232.], 1987[Gallois, B., Gaultier, J., Bechtel, F., Filhol, A. & Vettier, C. (1987). Mol. Cryst. Liq. Cryst. 148, 279-293.], 1986[Gallois, B., Gaultier, J., Hauw, C., Lamcharfi, T. & Filhol, A. (1986). Acta Cryst. B42, 564-575.]); Galloway et al. (2010[Galloway, K. W., Moggach, S. A., Parois, P., Lennie, A. R., Warren, J. E., Brechin, E. K., Peacock, R. D., Valiente, R., González, J., Rodríguez, F., Parsons, S. & Murrie, M. (2010). CrystEngComm, 12, 2516.]); Giordano et al. (2020[Giordano, N., Beavers, C. M., Kamenev, K. V., Love, J. B., Pankhurst, J. R., Teat, S. J. & Parsons, S. (2020). Chem. Commun. 56, 3449-3452.]); Granero–García et al. (2017[Granero-García, R., Falenty, A. & Fabbiani, F. P. A. (2017). Chem. A Eur. J. 23, 3691-3698.]); Guionneau et al. (1995[Guionneau, P., Brigouleix, C., Barrans, Y., Goeta, A. E., Létard, J.-F., Howard, J. A. K., Gaultier, J. & Chasseau, D. (2001). C. R. Acad. Sci. Paris Chim. 4, 161-171.], 2001[Guionneau, P., Gaultier, J., Rahal, M., Bravic, G. M., Mellado, J., Chasseau, D., Ducasse, L., Kurmoo, M. & Day, P. (1995). J. Mater. Chem. 5, 1639-1645.]); Guranda et al. (2012[Guranda, D. T., Ushakov, G. A., Yolkin, P. G. & Švedas, V. K. (2012). J. Mol. Catal. B Enzym. 74, 48-53.]); Huq & Stephens (2006[Huq, A. & Stephens, P. W. (2006). Phys. Rev. B, 74, 075424.]); Jaroń et al. (2020[Jaroń, T., Starobrat, A., Struzhkin, V. V. & Grochala, W. (2020). Eur. J. Inorg. Chem. 2020, 3846-3851.]); Johnstone et al. (2008[Johnstone, R. D. L., Francis, D., Lennie, A. R., Marshall, W. G., Moggach, S. A., Parsons, S., Pidcock, E. & Warren, J. E. (2008). CrystEngComm, 10, 1758.]); Jungen et al. (2020[Jungen, S., Paenurk, E. & Chen, P. (2020). Inorg. Chem. 59, 12322-12336.]); Katrusiak et al. (2011[Katrusiak, A., Szafrański, M. & Podsiadło, M. (2011). Chem. Commun. 47, 2107-2109.]); Keller et al. (2018a[Keller, S., Prescimone, A., Bolink, H., Sessolo, M., Longo, G., Martínez-Sarti, L., Junquera-Hernández, J. M., Constable, E. C., Ortí, E. & Housecroft, C. E. (2018a). Dalton Trans. 47, 14263-14276.],b[Keller, S., Prescimone, A., Constable, E. C. & Housecroft, C. E. (2018b). Photochem. Photobiol. Sci. 17, 375-385.]); Khalili et al. (2009[Khalili, F., Henni, A. & East, A. L. L. (2009). J. Chem. Eng. Data, 54, 2914-2917.]); Komatsu et al. (2020[Komatsu, K., Machida, S., Noritake, F., Hattori, T., Sano-Furukawa, A., Yamane, R., Yamashita, K. & Kagi, H. (2020). Nat. Commun. 11, 464.]); Konieczny et al. (2015[Konieczny, K., Bąkowicz, J. & Turowska-Tyrk, I. (2015). CrystEngComm, 17, 7693-7701.], 2016[Konieczny, K., Bąkowicz, J. & Turowska-Tyrk, I. (2016). J. Photochem. Photobiol. Chem. 325, 111-115.], 2017[Konieczny, K., Bąkowicz, J., Galica, T., Siedlecka, R. & Turowska-Tyrk, I. (2017). CrystEngComm, 19, 3044-3050.], 2018[Konieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299.], 2020[Konieczny, K. A., Szczurek, A., Bąkowicz, J., Siedlecka, R., Ciesielski, A., Cyrański, M. K. & Turowska-Tyrk, I. (2020). Cryst. Growth Des. 20, 5061-5071.], 2021[Konieczny, K. A., Bąkowicz, J., Paliwoda, D., Warren, M. R., Ciesielski, A., Cyrański, M. K. & Turowska-Tyrk, I. (2021). Acta Cryst. B77, 321-330.]); Kortüm et al. (1960[Kortüm, G., Vogel, W. & Andrussow, K. (1960). Pure Appl. Chem. 1, 187-536.]); Kozlenko et al. (2005[Kozlenko, D. P., Wasicki, J. W., Glazkov, V. P., Kichanov, S. E., Nawrocik, W. & Savenko, B. N. (2005). Crystallogr. Rep. 50, 78-84.]); Kurnosov et al. (2004[Kurnosov, A. V., Komarov, V. Yu., Voronin, V. I., Teplykh, A. E. & Manakov, A. Yu. (2004). Angew. Chem. Int. Ed. 43, 2922-2924.]); LeBlanc et al. (2018[LeBlanc, L. M., Dale, S. G., Taylor, C. R., Becke, A. D., Day, G. M. & Johnson, E. R. (2018). Angew. Chem. Int. Ed. 57, 14906-14910.]); Le Pevelen et al. (1999[Le Pevelen, D., Barrans, Y., Gaultier, J. & Chasseau, D. (1999). Synth. Met. 102, 1609-1610.]); Lugo & Lubes (2007[Lugo, M. L. & Lubes, V. R. (2007). J. Chem. Eng. Data, 52, 1217-1222.]); Madsen et al. (2014[Madsen, S. R., Thomsen, M. K., Scheins, S., Chen, Y.-S., Finkelmeier, N., Stalke, D., Overgaard, J. & Iversen, B. B. (2014). Dalton Trans. 43, 1313-1320.]); Mailman et al. (2017[Mailman, A., Wong, J. W. L., Winter, S. M., Claridge, R. C. M., Robertson, C. M., Assoud, A., Yong, W., Steven, E., Dube, P. A., Tse, J. S., Desgreniers, S., Secco, R. A. & Oakley, R. T. (2017). J. Am. Chem. Soc. 139, 1625-1635.]); Milašinović et al. (2021[Milašinović, V., Molčanov, K., Krawczuk, A., Bogdanov, N. E., Zakharov, B. A., Boldyreva, E. V., Jelsch, C. & Kojić-Prodić, B. (2021). IUCrJ, 8, 644-654.]); Mínguez Espallargas et al. (2008[Mínguez Espallargas, G., Brammer, L., Allan, D. R., Pulham, C. R., Robertson, N. & Warren, J. E. (2008). J. Am. Chem. Soc. 130, 9058-9071.]); Moggach et al. (2009[Moggach, S. A., Galloway, K. W., Lennie, A. R., Parois, P., Rowantree, N., Brechin, E. K., Warren, J. E., Murrie, M. & Parsons, S. (2009). CrystEngComm, 11, 2601-2604.]); Morency et al. (2021[Morency, M., Néron, S., Iftimie, R. & Wuest, J. D. (2021). J. Org. Chem. 86, 14444-14460.]); Nam et al. (2009[Nam, T., Nara, S. J., Zagol-Ikapitte, I., Cooper, T., Valgimigli, L., Oates, J. A., Porter, N. A., Boutaud, O. & Pratt, D. A. (2009). Org. Biomol. Chem. 7, 5103-5112.]); Naumov et al. (2013[Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990-9995.]); Nazeeruddin & Kalyanasundaram (1989[Nazeeruddin, M. K. & Kalyanasundaram, K. (1989). Inorg. Chem. 28, 4251-4259.]); Nicholas et al. (2021[Nicholas, A. D., Zhao, J., Slebodnick, C., Ross, N. L. & Cahill, C. L. (2021). J. Solid State Chem. 300, 122262.]); Nowicki et al. (2012[Nowicki, W., Olejniczak, A., Andrzejewski, M. & Katrusiak, A. (2012). CrystEngComm, 14, 6428-6434.]); Olejniczak & Katrusiak (2010[Olejniczak, A. & Katrusiak, A. (2010). CrystEngComm, 12, 2528-2532.], 2011[Olejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 2250-2256.]); Olejniczak et al. (2009[Olejniczak, A., Katrusiak, A. & Vij, A. (2009). CrystEngComm, 11, 1240-1244.], 2010[Olejniczak, A., Katrusiak, A. & Szafrański, M. (2010). Cryst. Growth Des. 10, 3537-3546.], 2016[Olejniczak, A., Krūkle-Bērziņa, K. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 3756-3762.], 2018[Olejniczak, A., Szafrański, M. & Katrusiak, A. (2018). Cryst. Growth Des. 18, 6488-6496.], 2020[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2020). Acta Cryst. B76, 1136-1142.], 2022a[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022a). Cryst. Growth Des. 22, 5996-6003.],b[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022b). IUCrJ, 9, 49-54.]); Ono et al. (2018[Ono, T., Tsukiyama, Y., Taema, A., Sato, H., Kiyooka, H., Yamaguchi, Y., Nagahashi, A., Nishiyama, M., Akahama, Y., Ozawa, Y., Abe, M. & Hisaeda, Y. (2018). ChemPhotoChem, 2, 416-420.]); Paliwoda et al. (2018[Paliwoda, D., Szafrański, M., Hanfland, M. & Katrusiak, A. (2018). J. Mater. Chem. C. 6, 7689-7699.]); Parois et al. (2010[Parois, P., Moggach, S. A., Sanchez-Benitez, J., Kamenev, K. V., Lennie, A. R., Warren, J. E., Brechin, E. K., Parsons, S. & Murrie, M. (2010). Chem. Commun. 46, 1881-1883.]); Patyk-Kaźmierczak & Kaźmierczak (2021[Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2021). Cryst. Growth Des. 21, 6879-6888.]); Patyk-Kaźmierczak et al. (2017[Patyk-Kaźmierczak, E., Warren, M. R., Allan, D. R. & Katrusiak, A. (2017). Phys. Chem. Chem. Phys. 19, 9086-9091.]); Pfrunder et al. (2020[Pfrunder, M. C., Whittaker, J. J., Parsons, S., Moubaraki, B., Murray, K. S., Moggach, S. A., Sharma, N., Micallef, A. S., Clegg, J. K. & McMurtrie, J. C. (2020). Chem. Mater. 32, 3229-3234.]); Podsiadło et al. (2010[Podsiadło, M., Jakóbek, K. & Katrusiak, A. (2010). CrystEngComm, 12, 2561-2567.]); Poręba et al. (2019[Poręba, T., Ernst, M., Zimmer, D., Macchi, P. & Casati, N. (2019). Angew. Chem. Int. Ed. 58, 6625-6629.], 2020[Poręba, T., Macchi, P. & Casati, N. (2020). Cryst. Growth Des. 20, 4375-4386.]); Prescimone et al. (2009[Prescimone, A., Sanchez-Benitez, J., Kamenev, K. V., Moggach, S. A., Lennie, A. R., Warren, J. E., Murrie, M., Parsons, S. & Brechin, E. K. (2009). Dalton Trans. pp. 7390-7395.], 2010a[Prescimone, A., Sanchez-Benitez, J., Kamenev, K. K., Moggach, S. A., Warren, J. E., Lennie, A. R., Murrie, M., Parsons, S. & Brechin, E. K. (2010a). Dalton Trans. 39, 113-123.],b[Prescimone, A., Sanchez-Benitez, J., Kamenev, K. V., Warren, J. E., Lennie, A. R., Murrie, M., Parsons, S. & Brechin, E. K. (2010). Z. Naturforschung B, 65, 221-230.]); Price et al. (2022[Price, A. N., Berryman, V., Ochiai, T., Shephard, J. J., Parsons, S., Kaltsoyannis, N. & Arnold, P. L. (2022). Nat. Commun. 13, 3931.]); Priola et al. (2022[Priola, E., Curetti, N., Marabello, D., Andreo, J., Giordana, A., Andreo, L., Benna, P., Freire, P. T. C., Benzi, P., Operti, L. & Diana, E. (2022). CrystEngComm, 24, 2336-2348.]); Raghavendra (2022[Raghavendra, N. (2022). Russ. J. Phys. Chem. 96, 334-339.]); Rejnhardt et al. (2021[Rejnhardt, P., Drozd, M. & Daszkiewicz, M. (2021). Acta Cryst. B77, 996-1002.]); Richardson et al. (2020[Richardson, J. G., Benjamin, H., Moggach, S. A., Warren, L. R., Warren, M. R., Allan, D. R., Saunders, L. K., Morrison, C. A. & Robertson, N. (2020). Phys. Chem. Chem. Phys. 22, 17668-17676.]); Rodríguez–Velamazán et al. (2014[Rodríguez-Velamazán, J. A., Fabelo, O., Beavers, C. M., Natividad, E., Evangelisti, M. & Roubeau, O. (2014). Chem. A Eur. J. 20, 7956-7961.]); Roszak & Katrusiak (2021[Roszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449-455.]); Saouane & Fabbiani (2015[Saouane, S. & Fabbiani, F. P. A. (2015). Cryst. Growth Des. 15, 3875-3884.]); Satthaphut et al. (2014[Satthaphut, , Sutcliffe, & Oswaldiain, (2014). Z. Kristallogr. Cryst. Mater. 229, 101-111.]); Schmitz et al. (2020[Schmitz, D., Kalter, M., Dunbar, A. C., Vöst, M., Fischer, A., Batke, K., Eickerling, G., Ruhland, K., Ebad-Allah, J., Kuntscher, C. & Scherer, W. (2020). Eur. J. Inorg. Chem. 2020, 79-83.]); Schultz et al. (1986[Schultz, A. J., Wang, H. H., Williams, J. M. & Filhol, A. (1986). J. Am. Chem. Soc. 108, 7853-7855.]); Shepherd et al. (2012a[Shepherd, H. J., Palamarciuc, T., Rosa, P., Guionneau, P., Molnár, G., Létard, J.-F. & Bousseksou, A. (2012a). Angew. Chem. Int. Ed. 51, 3910-3914.],b[Shepherd, H. J., Rosa, P., Vendier, L., Casati, N., Létard, J.-F., Bousseksou, A., Guionneau, P. & Molnár, G. (2012b). Phys. Chem. Chem. Phys. 14, 5265-5271.], 2016[Shepherd, H., Tonge, G., Hatcher, L., Bryant, M., Knichal, J., Raithby, P., Halcrow, M., Kulmaczewski, R., Gagnon, K. & Teat, S. (2016). Magnetochemistry, 2, 9.]); Shibaeva et al. (1985[Shibaeva, R. P., Kaminskii, V. P. & Yagubskii, E. B. (1985). Mol. Cryst. Liq. Cryst. 119, 361-373.]); Shimizu et al. (2000[Shimizu, S., Watanabe, N., Kataoka, T., Shoji, T., Abe, N., Morishita, S. & Ichimura, H. (2000). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley.]); Sobczak et al. (2020[Sobczak, S., Półrolniczak, A., Ratajczyk, P., Cai, W., Gładysiak, A., Nikolayenko, V. I., Castell, D. C., Barbour, L. J. & Katrusiak, A. (2020). Chem. Commun. 56, 4324-4327.]); Somayazulu et al. (1996[Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. (1996). Science, 271, 1400-1402.]); Starkey et al. (1986[Starkey, R., Norman, J. & Hintze, M. (1986). J. Chem. Educ. 63, 473.]); Stevens et al. (2016[Stevens, C. J., Prescimone, A., Tuna, F., McInnes, E. J. L., Parsons, S., Morrison, C. A., Arnold, P. L. & Love, J. B. (2016). Inorg. Chem. 55, 214-220.]); Szafrański (2014[Szafrański, M. (2014). CrystEngComm, 16, 6250-6256.], 2020[Szafrański, M. (2020). J. Phys. Chem. C, 124, 11631-11638.]); Szafrański & Ståhl (2016[Szafrański, M. & Ståhl, K. (2016). Cryst. Growth Des. 16, 2157-2166.]); Terlecki et al. (2021[Terlecki, M., Sobczak, S., Leszczyński, M. K., Katrusiak, A. & Lewiński, J. (2021). Chem. A Eur. J. 27, 13757-13764.]); Thiel et al. (2020[Thiel, A. M., Damgaard-Møller, E. & Overgaard, J. (2020). Inorg. Chem. 59, 1682-1691.]); Wallenfels & Friedrich (1960[Wallenfels, K. & Friedrich, K. (1960). Chem. Ber. 93, 3070-3082.]); Ward et al. (2023[Ward, M. R., Bull, C. L., Funnell, N. P., Warren, M. R. & Oswald, I. D. H. (2023). Int. J. Pharm. 647, 123514.]); Ward & Oswald (2019[Ward, M. R. & Oswald, I. D. H. (2019). CrystEngComm, 21, 4437-4443.]); Woodall et al. (2016[Woodall, C. H., Craig, G. A., Prescimone, A., Misek, M., Cano, J., Faus, J., Probert, M. R., Parsons, S., Moggach, S., Martínez-Lillo, J., Murrie, M., Kamenev, K. V. & Brechin, E. K. (2016). Nat. Commun. 7, 13870.]); Wu et al. (2015[Wu, L.-C., Nielsen, M. B., Bremholm, M., Madsen, S. R., Overgaard, J., Newville, M., Chen, Y.-S. & Iversen, B. B. (2015). Chem. Commun. 51, 8868-8871.]); Yamaura & Kato (2002[Yamaura, J.-I. & Kato, R. (2002). Mol. Cryst. Liq. Cryst. 379, 47-52.]); Zakharov et al. (2015[Zakharov, B. A., Marchuk, A. S. & Boldyreva, E. V. (2015). CrystEngComm, 17, 8812-8816.]); Zhang et al. (2022[Zhang, P., Tang, X., Zhang, C., Gao, D., Wang, X., Wang, Y., Guo, W., Zou, R., Han, Y., Lin, X., Dong, X., Li, K., Zheng, H. & Mao, H. (2022). J. Phys. Chem. Lett. 13, 4170-4175.]); Zieliński & Katrusiak (2015[Zieliński, W. & Katrusiak, A. (2015). CrystEngComm, 17, 5468-5473.], 2016[Zielinski, W. & Katrusiak, A. (2016). CrystEngComm, 18, 3211-3215.]).

Supporting information


Computing details top

Malonic acid 4,4'-bipyridyl (BIPYMA) top
Crystal data top
C3H4O4·C10H8N2F(000) = 546.098
Mr = 260.25Dx = 1.405 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 19.5688 (9) ÅCell parameters from 2314 reflections
b = 4.0772 (3) Åθ = 4.7–75.6°
c = 15.9523 (8) ŵ = 0.89 mm1
β = 104.783 (5)°T = 298 K
V = 1230.64 (13) Å3Plate, colourless
Z = 40.23 × 0.14 × 0.06 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1256 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source834 reflections with I 2u(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.5384 pixels mm-1θmax = 76.2°, θmin = 4.7°
ω scansh = 2424
Absorption correction: analytical
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 44
Tmin = 0.874, Tmax = 0.956l = 2019
6263 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.8691P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1256 reflectionsΔρmax = 0.23 e Å3
141 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors.

The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: ORCA 5.0 PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: PBE BASIS SET: cc-pVTZ CHARGE: 0 MULTIPLICITY: 2 DATE: 2022-06-14_11-11-20

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47312 (8)0.0209 (4)0.36217 (10)0.0587 (5)
O20.39097 (8)0.0100 (5)0.23857 (10)0.0804 (6)
N10.38106 (9)0.3587 (5)0.41851 (12)0.0561 (5)
C30.27737 (10)0.6696 (5)0.48304 (12)0.0462 (5)
C60.44870 (10)0.0801 (6)0.28274 (13)0.0484 (5)
C70.50.2889 (9)0.250.0506 (8)
C20.26415 (11)0.5673 (7)0.39728 (14)0.0599 (7)
C10.31706 (11)0.4151 (7)0.36791 (15)0.0623 (7)
C40.34502 (12)0.6118 (8)0.53454 (16)0.0738 (9)
C50.39455 (13)0.4574 (8)0.50024 (16)0.0743 (8)
H70.4722 (12)0.445 (5)0.1990 (14)0.071 (7)
H20.2108 (13)0.599 (8)0.3538 (15)0.117 (12)
H40.3573 (14)0.677 (10)0.6016 (18)0.146 (15)
H10.3082 (13)0.327 (8)0.2993 (15)0.110 (11)
H50.4499 (13)0.397 (9)0.5405 (17)0.132 (14)
H1H0.4336 (14)0.156 (8)0.3830 (16)0.071 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0456 (9)0.0808 (13)0.0494 (9)0.0101 (8)0.0119 (7)0.0061 (8)
O20.0507 (9)0.1295 (18)0.0559 (10)0.0228 (10)0.0040 (7)0.0022 (10)
N10.0456 (9)0.0721 (13)0.0540 (10)0.0089 (9)0.0192 (8)0.0045 (10)
C30.0395 (9)0.0589 (14)0.0403 (10)0.0033 (9)0.0104 (8)0.0008 (9)
C60.0423 (10)0.0597 (14)0.0462 (11)0.0016 (10)0.0164 (9)0.0067 (10)
C70.0542 (19)0.051 (2)0.0513 (19)0.0000000.0213 (16)0.000000
C20.0446 (11)0.0927 (19)0.0428 (11)0.0117 (12)0.0119 (10)0.0092 (12)
C10.0471 (12)0.0939 (19)0.0480 (13)0.0108 (12)0.0163 (10)0.0104 (13)
C40.0448 (12)0.125 (2)0.0475 (13)0.0265 (14)0.0048 (10)0.0180 (15)
C50.0476 (13)0.119 (2)0.0534 (14)0.0248 (15)0.0083 (11)0.0181 (15)
H70.091 (19)0.053 (17)0.078 (18)0.002 (13)0.038 (15)0.011 (12)
H20.062 (15)0.21 (3)0.058 (16)0.04 (2)0.021 (13)0.03 (2)
H40.09 (2)0.25 (4)0.08 (2)0.09 (2)0.003 (16)0.05 (3)
H10.095 (19)0.19 (3)0.045 (15)0.02 (2)0.013 (14)0.036 (19)
H50.061 (16)0.24 (4)0.083 (19)0.06 (2)0.006 (15)0.04 (2)
H1H0.050 (18)0.11 (3)0.057 (19)0.02 (2)0.021 (15)0.011 (19)
Geometric parameters (Å, º) top
O1—C61.302 (2)C7—H7ii1.07 (2)
O1—H1H1.07 (3)C7—H71.07 (2)
O2—C61.203 (2)C2—C11.387 (3)
N1—C11.326 (3)C2—H21.10 (2)
N1—C51.325 (3)C1—H11.12 (2)
C3—C3i1.472 (4)C4—C51.381 (3)
C3—C21.390 (3)C4—H41.07 (3)
C3—C41.388 (3)C5—H51.14 (2)
C6—C7ii1.508 (3)
H1H—O1—C6110.5 (13)C1—C2—C3119.9 (2)
C5—N1—C1117.8 (2)H2—C2—C3119.4 (13)
C4—C3—C2116.20 (19)H2—C2—C1120.6 (13)
O2—C6—O1123.5 (2)C2—C1—N1122.9 (2)
C7ii—C6—O1113.85 (16)H1—C1—N1115.2 (13)
C7ii—C6—O2122.67 (18)H1—C1—C2122.0 (13)
C6—C7—C6ii111.2 (3)C5—C4—C3120.2 (2)
H7—C7—C6110.3 (12)H4—C4—C3119.2 (14)
H7—C7—C6ii109.2 (12)H4—C4—C5120.5 (13)
H7ii—C7—C6ii110.3 (12)C4—C5—N1123.0 (2)
H7ii—C7—C6109.2 (12)H5—C5—N1114.4 (13)
H7—C7—H7ii107 (2)H5—C5—C4122.6 (13)
O1—C6—C7ii—C6ii83.3 (2)N1—C5—C4—C30.2 (4)
O2—C6—C7ii—C6ii95.6 (2)C3i—C3—C2—C1179.7 (3)
N1—C1—C2—C30.4 (3)C3i—C3—C4—C5179.4 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_014) top
Crystal data top
C3H4O4·C10H8N2F(000) = 544
Mr = 260.25Dx = 1.429 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.550 (5) ÅCell parameters from 753 reflections
b = 4.0396 (3) Åθ = 2.9–23.2°
c = 15.854 (5) ŵ = 0.11 mm1
β = 104.96 (4)°T = 298 K
V = 1209.6 (5) Å3Plate, colourless
Z = 40.28 × 0.12 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
804 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.121
Detector resolution: 16.0338 pixels mm-1θmax = 28.4°, θmin = 3.0°
ω and φ scansh = 2224
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.455, Tmax = 0.577l = 1820
6263 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.225 w = 1/[σ2(Fo2) + (0.063P)2 + 3.1475P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
804 reflectionsΔρmax = 0.17 e Å3
88 parametersΔρmin = 0.16 e Å3
18 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4739 (4)0.0151 (12)0.3634 (5)0.061 (4)
H10.44440.12940.37830.091*
O20.3896 (6)0.0194 (16)0.2362 (8)0.077 (5)
C70.4486 (7)0.0845 (19)0.2846 (10)0.039 (5)
C80.50000.295 (2)0.25000.050 (6)
H8A0.52660.43640.29650.059*0.5
H8B0.47340.43640.20350.059*0.5
N10.3813 (5)0.3572 (13)0.4189 (7)0.047 (3)
C20.3169 (6)0.4140 (19)0.3656 (9)0.055 (4)
H20.30740.35310.30710.067*
C30.2644 (6)0.5628 (16)0.3970 (7)0.058 (3)
H30.21940.59460.36010.070*
C40.2790 (6)0.6635 (15)0.4830 (8)0.042 (3)
C50.3441 (7)0.6062 (19)0.5340 (9)0.063 (4)
H50.35560.66490.59270.076*
C60.3939 (7)0.4596 (19)0.4985 (8)0.070 (4)
H60.43950.43270.53420.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.049 (8)0.083 (4)0.054 (8)0.007 (3)0.021 (9)0.010 (3)
O20.051 (10)0.120 (5)0.054 (13)0.019 (5)0.006 (12)0.003 (5)
C70.029 (11)0.059 (4)0.021 (12)0.004 (5)0.004 (12)0.014 (5)
C80.058 (13)0.053 (5)0.038 (13)0.0000.013 (13)0.000
N10.039 (7)0.064 (3)0.038 (8)0.005 (4)0.006 (8)0.003 (4)
C20.043 (8)0.092 (5)0.029 (9)0.020 (6)0.005 (8)0.004 (5)
C30.043 (8)0.083 (5)0.043 (8)0.022 (5)0.003 (8)0.001 (4)
C40.032 (7)0.053 (4)0.040 (9)0.010 (4)0.009 (8)0.003 (4)
C50.048 (8)0.097 (5)0.041 (9)0.029 (5)0.004 (8)0.013 (5)
C60.033 (8)0.121 (6)0.047 (9)0.028 (6)0.006 (8)0.021 (6)
Geometric parameters (Å, º) top
O1—H10.8200C2—H20.9300
O1—C71.285 (18)C2—C31.388 (10)
O2—C71.237 (18)C3—H30.9300
C7—C81.523 (10)C3—C41.381 (16)
C8—C7i1.523 (10)C4—C4ii1.541 (13)
C8—H8A0.9700C4—C51.340 (19)
C8—H8B0.9700C5—H50.9300
N1—C21.343 (18)C5—C61.378 (10)
N1—C61.291 (15)C6—H60.9300
C7—O1—H1109.5C3—C2—H2119.7
O1—C7—C8113.7 (12)C2—C3—H3120.1
O2—C7—O1126.9 (10)C4—C3—C2119.9 (13)
O2—C7—C8119.4 (14)C4—C3—H3120.1
C7i—C8—C7112.1 (7)C3—C4—C4ii119.7 (16)
C7—C8—H8A109.2C5—C4—C3117.8 (8)
C7i—C8—H8A109.2C5—C4—C4ii122.5 (15)
C7i—C8—H8B109.2C4—C5—H5120.3
C7—C8—H8B109.2C4—C5—C6119.4 (13)
H8A—C8—H8B107.9C6—C5—H5120.3
C6—N1—C2118.2 (8)N1—C6—C5124.0 (13)
N1—C2—H2119.7N1—C6—H6118.0
N1—C2—C3120.6 (12)C5—C6—H6118.0
O1—C7—C8—C7i83.3 (7)C2—C3—C4—C51.3 (10)
O2—C7—C8—C7i94.9 (7)C3—C4—C5—C61.8 (12)
N1—C2—C3—C42.1 (11)C4ii—C4—C5—C6178.0 (7)
C2—N1—C6—C54.1 (12)C4—C5—C6—N13.3 (12)
C2—C3—C4—C4ii178.4 (7)C6—N1—C2—C33.4 (12)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Malonic acid 4,4'-bipyridyl (BIPYMA_025) top
Crystal data top
C3H4O4·C10H8N2F(000) = 544
Mr = 260.25Dx = 1.450 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.561 (8) ÅCell parameters from 645 reflections
b = 4.0010 (5) Åθ = 4.4–19.6°
c = 15.776 (9) ŵ = 0.11 mm1
β = 105.08 (6)°T = 298 K
V = 1192.2 (9) Å3Plate, colourless
Z = 40.35 × 0.20 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
784 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.154
Detector resolution: 16.1544 pixels mm-1θmax = 28.1°, θmin = 4.5°
ω and φ scansh = 2524
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 45
Tmin = 0.453, Tmax = 0.577l = 1920
4852 measured reflections
Refinement top
Refinement on F260 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0272P)2 + 1.2859P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
784 reflectionsΔρmax = 0.17 e Å3
88 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4736 (4)0.0115 (10)0.3623 (5)0.056 (2)
H10.44580.14350.37510.085*
O20.3896 (4)0.0240 (14)0.2372 (6)0.077 (3)
C70.4478 (7)0.0944 (16)0.2823 (10)0.044 (3)
C80.50000.3014 (16)0.25000.044 (5)
H8A0.52570.44440.29730.052*0.5
H8B0.47430.44430.20270.052*0.5
N10.3815 (5)0.3518 (14)0.4191 (8)0.047 (3)
C20.3182 (6)0.4138 (18)0.3678 (9)0.053 (4)
H20.30930.35500.30890.063*
C30.2636 (6)0.5625 (13)0.3965 (7)0.056 (3)
H30.21880.59180.35860.067*
C40.2782 (6)0.6630 (14)0.4817 (9)0.041 (3)
C50.3443 (6)0.6107 (16)0.5347 (9)0.060 (4)
H50.35570.67450.59340.072*
C60.3943 (7)0.4600 (16)0.4990 (8)0.067 (3)
H60.44000.43520.53470.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.045 (5)0.067 (3)0.063 (6)0.005 (3)0.024 (6)0.010 (3)
O20.055 (6)0.111 (4)0.066 (8)0.022 (5)0.017 (6)0.008 (5)
C70.059 (8)0.041 (4)0.039 (8)0.002 (5)0.023 (8)0.004 (5)
C80.042 (9)0.038 (4)0.054 (12)0.0000.020 (11)0.000
N10.041 (6)0.063 (3)0.033 (9)0.001 (4)0.004 (8)0.002 (4)
C20.042 (7)0.087 (5)0.023 (9)0.010 (5)0.000 (8)0.006 (5)
C30.049 (7)0.074 (4)0.043 (8)0.014 (4)0.011 (7)0.003 (5)
C40.033 (6)0.047 (4)0.043 (9)0.004 (4)0.011 (8)0.001 (4)
C50.043 (7)0.092 (5)0.044 (9)0.025 (5)0.010 (8)0.010 (5)
C60.036 (7)0.114 (5)0.040 (8)0.022 (6)0.008 (8)0.016 (6)
Geometric parameters (Å, º) top
O1—H10.8200C2—H20.9300
O1—C71.302 (17)C2—C31.397 (9)
O2—C71.210 (18)C3—H30.9300
C7—C81.503 (8)C3—C41.361 (16)
C8—C7i1.503 (8)C4—C4ii1.537 (12)
C8—H8A0.9700C4—C51.362 (19)
C8—H8B0.9700C5—H50.9300
N1—C21.314 (18)C5—C61.387 (9)
N1—C61.294 (16)C6—H60.9300
C7—O1—H1109.5C3—C2—H2118.0
O1—C7—C8112.5 (12)C2—C3—H3121.2
O2—C7—O1124.2 (9)C4—C3—C2117.7 (12)
O2—C7—C8123.2 (13)C4—C3—H3121.2
C7i—C8—C7113.1 (6)C3—C4—C4ii121.3 (17)
C7—C8—H8A109.0C3—C4—C5118.8 (8)
C7i—C8—H8A109.0C5—C4—C4ii119.9 (16)
C7i—C8—H8B109.0C4—C5—H5120.8
C7—C8—H8B109.0C4—C5—C6118.3 (12)
H8A—C8—H8B107.8C6—C5—H5120.8
C6—N1—C2116.7 (9)N1—C6—C5124.3 (13)
N1—C2—H2118.0N1—C6—H6117.9
N1—C2—C3124.0 (13)C5—C6—H6117.9
O1—C7—C8—C7i81.5 (6)C2—C3—C4—C50.8 (9)
O2—C7—C8—C7i95.7 (8)C3—C4—C5—C60.7 (10)
N1—C2—C3—C43.2 (10)C4ii—C4—C5—C6178.5 (5)
C2—N1—C6—C55.3 (11)C4—C5—C6—N13.1 (11)
C2—C3—C4—C4ii178.4 (6)C6—N1—C2—C35.4 (12)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Malonic acid 4,4'-bipyridyl (BIPYMA_048) top
Crystal data top
C3H4O4·C10H8N2F(000) = 544
Mr = 260.25Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.582 (7) ÅCell parameters from 840 reflections
b = 3.9289 (4) Åθ = 3.0–23.7°
c = 15.625 (6) ŵ = 0.11 mm1
β = 105.30 (5)°T = 298 K
V = 1159.5 (7) Å3Plate, colourless
Z = 40.28 × 0.12 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
755 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
Detector resolution: 16.0338 pixels mm-1θmax = 28.7°, θmin = 3.0°
ω and φ scansh = 2324
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.452, Tmax = 0.577l = 1820
5802 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
755 reflectionsΔρmax = 0.15 e Å3
88 parametersΔρmin = 0.13 e Å3
19 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4741 (3)0.0053 (8)0.3642 (4)0.043 (2)
H10.44360.11760.37850.065*
O20.3901 (4)0.0409 (10)0.2371 (5)0.060 (4)
C70.4498 (6)0.1042 (12)0.2846 (8)0.036 (3)
C80.50000.3191 (14)0.25000.035 (3)
H8A0.52680.46430.29730.042*0.5
H8B0.47320.46430.20270.042*0.5
N10.3811 (4)0.3520 (9)0.4177 (5)0.041 (3)
C20.3177 (5)0.4093 (13)0.3660 (7)0.046 (3)
H20.30820.34530.30670.055*
C30.2640 (4)0.5610 (11)0.3954 (5)0.049 (3)
H30.21920.58990.35690.058*
C40.2777 (4)0.6675 (10)0.4816 (6)0.034 (3)
C50.3444 (5)0.6148 (13)0.5356 (7)0.053 (3)
H50.35560.68250.59470.063*
C60.3956 (5)0.4579 (12)0.5010 (6)0.055 (3)
H60.44100.42730.53760.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.029 (5)0.061 (2)0.040 (6)0.008 (2)0.010 (6)0.009 (2)
O20.041 (7)0.097 (3)0.038 (9)0.016 (3)0.006 (8)0.003 (3)
C70.034 (7)0.040 (3)0.030 (8)0.004 (3)0.003 (8)0.005 (3)
C80.034 (7)0.040 (3)0.032 (8)0.0000.011 (7)0.000
N10.038 (6)0.048 (2)0.038 (7)0.005 (3)0.012 (6)0.005 (3)
C20.032 (6)0.075 (3)0.027 (7)0.005 (4)0.003 (6)0.001 (4)
C30.036 (6)0.075 (3)0.033 (6)0.016 (3)0.006 (6)0.006 (3)
C40.030 (5)0.039 (2)0.035 (7)0.007 (3)0.012 (6)0.004 (3)
C50.042 (6)0.083 (3)0.030 (7)0.023 (4)0.004 (6)0.011 (4)
C60.031 (6)0.091 (4)0.035 (6)0.025 (4)0.003 (6)0.010 (4)
Geometric parameters (Å, º) top
O1—H10.8200C2—H20.9300
O1—C71.283 (13)C2—C31.389 (7)
O2—C71.233 (14)C3—H30.9300
C7—C81.501 (7)C3—C41.367 (11)
C8—C7i1.501 (7)C4—C4ii1.503 (9)
C8—H8A0.9700C4—C51.371 (14)
C8—H8B0.9700C5—H50.9300
N1—C21.310 (13)C5—C61.401 (8)
N1—C61.324 (11)C6—H60.9300
C7—O1—H1109.5C3—C2—H2118.4
O1—C7—C8115.2 (10)C2—C3—H3120.4
O2—C7—O1124.5 (7)C4—C3—C2119.2 (9)
O2—C7—C8120.3 (10)C4—C3—H3120.4
C7i—C8—C7111.5 (5)C3—C4—C4ii122.4 (12)
C7—C8—H8A109.3C3—C4—C5117.9 (5)
C7i—C8—H8A109.3C5—C4—C4ii119.7 (11)
C7i—C8—H8B109.3C4—C5—H5120.3
C7—C8—H8B109.3C4—C5—C6119.4 (9)
H8A—C8—H8B108.0C6—C5—H5120.3
C2—N1—C6118.4 (6)N1—C6—C5121.9 (10)
N1—C2—H2118.4N1—C6—H6119.1
N1—C2—C3123.1 (9)C5—C6—H6119.1
O1—C7—C8—C7i82.7 (5)C2—C3—C4—C50.8 (7)
O2—C7—C8—C7i96.6 (6)C3—C4—C5—C60.4 (8)
N1—C2—C3—C42.2 (8)C4ii—C4—C5—C6179.4 (4)
C2—N1—C6—C52.7 (8)C4—C5—C6—N11.4 (8)
C2—C3—C4—C4ii179.7 (5)C6—N1—C2—C33.2 (8)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Malonic acid 4,4'-bipyridyl (BIPYMA_066) top
Crystal data top
C3H4O4·C10H8N2F(000) = 544
Mr = 260.25Dx = 1.487 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.581 (6) ÅCell parameters from 522 reflections
b = 3.9351 (5) Åθ = 4.4–20.3°
c = 15.640 (7) ŵ = 0.11 mm1
β = 105.31 (4)°T = 298 K
V = 1162.4 (7) Å3Plate, colourless
Z = 40.35 × 0.15 × 0.01 mm
Data collection top
Xcalibur, Eos
diffractometer
721 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.136
Detector resolution: 16.1544 pixels mm-1θmax = 28.5°, θmin = 4.5°
ω and φ scansh = 2224
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.454, Tmax = 0.577l = 1716
2535 measured reflections
Refinement top
Refinement on F242 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.089H-atom parameters constrained
wR(F2) = 0.275 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
721 reflectionsΔρmax = 0.21 e Å3
88 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4737 (5)0.0073 (16)0.3636 (8)0.060 (4)
H10.44420.13140.37650.090*
O20.3892 (6)0.0382 (18)0.2364 (10)0.076 (4)
N10.3805 (6)0.3520 (19)0.4158 (11)0.052 (4)
C40.2794 (7)0.665 (2)0.4836 (13)0.044 (4)
C30.2627 (7)0.567 (2)0.3956 (12)0.054 (4)
H30.21810.60180.35710.065*
C80.50000.317 (3)0.25000.050 (7)
H8A0.47430.46260.20220.061*0.5
H8B0.52570.46260.29780.061*0.5
C70.4484 (9)0.108 (3)0.2821 (16)0.061 (4)
C20.3181 (7)0.410 (2)0.3687 (13)0.061 (4)
H20.30790.34100.30980.073*
C50.3442 (7)0.616 (2)0.5341 (12)0.060 (4)
H50.35620.68750.59290.072*
C60.3950 (9)0.456 (3)0.4993 (14)0.070 (5)
H60.44030.42100.53600.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.059 (6)0.063 (5)0.065 (11)0.005 (4)0.030 (8)0.003 (5)
O20.065 (7)0.114 (6)0.055 (12)0.013 (5)0.030 (8)0.002 (5)
N10.054 (6)0.058 (4)0.050 (12)0.001 (5)0.025 (9)0.004 (7)
C40.033 (6)0.061 (6)0.036 (13)0.010 (5)0.009 (9)0.012 (7)
C30.036 (7)0.091 (7)0.032 (12)0.009 (5)0.005 (8)0.003 (8)
C80.071 (11)0.043 (7)0.04 (2)0.0000.024 (16)0.000
C70.059 (8)0.056 (6)0.081 (14)0.005 (6)0.042 (9)0.012 (8)
C20.049 (8)0.097 (7)0.039 (12)0.001 (6)0.015 (8)0.027 (8)
C50.052 (8)0.090 (7)0.035 (12)0.013 (6)0.007 (8)0.013 (8)
C60.043 (8)0.120 (9)0.047 (12)0.013 (7)0.011 (9)0.010 (10)
Geometric parameters (Å, º) top
O1—H10.8200C3—C21.406 (12)
O1—C71.32 (2)C8—H8A0.9700
O2—C71.22 (2)C8—H8B0.9700
N1—C21.27 (2)C8—C71.490 (13)
N1—C61.33 (2)C8—C7ii1.490 (13)
C4—C4i1.533 (18)C2—H20.9300
C4—C31.38 (2)C5—H50.9300
C4—C51.32 (2)C5—C61.404 (13)
C3—H30.9300C6—H60.9300
C7—O1—H1109.5C7—C8—C7ii112.7 (10)
C2—N1—C6116.0 (12)O1—C7—C8113.6 (16)
C3—C4—C4i117 (2)O2—C7—O1122.9 (12)
C5—C4—C4i124 (2)O2—C7—C8123.4 (19)
C5—C4—C3119.6 (11)N1—C2—C3127.3 (18)
C4—C3—H3122.6N1—C2—H2116.3
C4—C3—C2114.9 (17)C3—C2—H2116.3
C2—C3—H3122.6C4—C5—H5120.0
H8A—C8—H8B107.8C4—C5—C6120.1 (18)
C7—C8—H8A109.1C6—C5—H5120.0
C7ii—C8—H8A109.1N1—C6—C5122.1 (19)
C7—C8—H8B109.1N1—C6—H6118.9
C7ii—C8—H8B109.1C5—C6—H6118.9
C4i—C4—C3—C2179.7 (9)C7ii—C8—C7—O180.9 (8)
C4i—C4—C5—C6179.6 (9)C7ii—C8—C7—O296.7 (14)
C4—C3—C2—N10.3 (16)C2—N1—C6—C50.8 (17)
C4—C5—C6—N10.7 (18)C5—C4—C3—C21.8 (15)
C3—C4—C5—C62.0 (17)C6—N1—C2—C31.0 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_071) top
Crystal data top
C3H4O4·C10H8N2F(000) = 544
Mr = 260.25Dx = 1.520 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.604 (5) ÅCell parameters from 870 reflections
b = 3.8747 (3) Åθ = 3.0–22.1°
c = 15.531 (4) ŵ = 0.12 mm1
β = 105.37 (3)°T = 298 K
V = 1137.5 (4) Å3Plate, colourless
Z = 40.28 × 0.12 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
738 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 16.0338 pixels mm-1θmax = 28.5°, θmin = 3.0°
ω and φ scansh = 2324
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.451, Tmax = 0.577l = 1719
5895 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0398P)2 + 1.8605P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
738 reflectionsΔρmax = 0.21 e Å3
88 parametersΔρmin = 0.19 e Å3
42 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4742 (3)0.0015 (8)0.3645 (4)0.038 (2)
H10.44410.11540.37970.056*
O20.3893 (4)0.0464 (11)0.2367 (6)0.055 (3)
C70.4480 (5)0.1130 (13)0.2830 (8)0.028 (4)
C80.50000.3291 (14)0.25000.039 (4)
H8A0.52580.47660.29810.047*0.5
H8B0.47420.47660.20190.047*0.5
N10.3818 (4)0.3540 (10)0.4181 (5)0.035 (2)
C20.3184 (5)0.4053 (13)0.3657 (6)0.039 (3)
H20.30880.33560.30640.046*
C30.2645 (4)0.5606 (12)0.3953 (5)0.042 (2)
H30.21980.59130.35660.051*
C40.2785 (4)0.6675 (11)0.4826 (6)0.027 (2)
C50.3446 (5)0.6172 (13)0.5356 (6)0.045 (3)
H50.35600.68970.59480.054*
C60.3957 (5)0.4568 (13)0.5018 (6)0.046 (3)
H60.44080.42160.53930.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.029 (5)0.052 (2)0.034 (5)0.007 (2)0.010 (5)0.007 (2)
O20.042 (7)0.081 (3)0.039 (9)0.017 (3)0.009 (8)0.003 (3)
C70.021 (8)0.035 (3)0.024 (9)0.002 (3)0.003 (9)0.009 (3)
C80.058 (9)0.026 (3)0.042 (9)0.0000.029 (9)0.000
N10.029 (5)0.044 (2)0.030 (6)0.003 (3)0.007 (6)0.001 (3)
C20.032 (6)0.063 (3)0.019 (7)0.006 (4)0.003 (6)0.004 (3)
C30.026 (5)0.069 (3)0.029 (6)0.011 (3)0.003 (6)0.003 (3)
C40.022 (5)0.037 (2)0.024 (6)0.002 (3)0.006 (6)0.001 (3)
C50.035 (5)0.067 (3)0.031 (7)0.024 (3)0.005 (6)0.008 (3)
C60.021 (6)0.081 (4)0.028 (6)0.015 (4)0.007 (6)0.008 (4)
Geometric parameters (Å, º) top
O1—H10.8200C2—H20.9300
O1—C71.310 (13)C2—C31.396 (7)
O2—C71.211 (14)C3—H30.9300
C7—C81.510 (7)C3—C41.374 (11)
C8—C7i1.510 (7)C4—C4ii1.506 (9)
C8—H8A0.9700C4—C51.352 (14)
C8—H8B0.9700C5—H50.9300
N1—C21.309 (13)C5—C61.395 (7)
N1—C61.317 (11)C6—H60.9300
C7—O1—H1109.5C3—C2—H2118.7
O1—C7—C8112.9 (9)C2—C3—H3120.5
O2—C7—O1124.6 (7)C4—C3—C2118.9 (9)
O2—C7—C8122.4 (11)C4—C3—H3120.5
C7i—C8—C7112.7 (5)C3—C4—C4ii120.5 (11)
C7—C8—H8A109.1C5—C4—C3117.8 (5)
C7i—C8—H8A109.1C5—C4—C4ii121.7 (11)
C7i—C8—H8B109.1C4—C5—H5119.9
C7—C8—H8B109.1C4—C5—C6120.2 (9)
H8A—C8—H8B107.8C6—C5—H5119.9
C2—N1—C6118.8 (6)N1—C6—C5121.7 (10)
N1—C2—H2118.7N1—C6—H6119.2
N1—C2—C3122.6 (9)C5—C6—H6119.2
O1—C7—C8—C7i80.8 (4)C2—C3—C4—C50.3 (7)
O2—C7—C8—C7i96.9 (6)C3—C4—C5—C61.0 (8)
N1—C2—C3—C40.7 (8)C4ii—C4—C5—C6178.6 (4)
C2—N1—C6—C50.2 (8)C4—C5—C6—N10.8 (8)
C2—C3—C4—C4ii179.3 (5)C6—N1—C2—C30.9 (8)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Malonic acid 4,4'-bipyridyl (BIPYMA_087) top
Crystal data top
C3H4O4·C10H8N2F(000) = 544
Mr = 260.25Dx = 1.540 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.612 (5) ÅCell parameters from 815 reflections
b = 3.8444 (3) Åθ = 3.0–20.9°
c = 15.462 (4) ŵ = 0.12 mm1
β = 105.61 (3)°T = 298 K
V = 1122.8 (4) Å3Plate, colourless
Z = 40.28 × 0.12 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
730 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 16.0338 pixels mm-1θmax = 28.6°, θmin = 3.0°
ω and φ scansh = 2324
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.448, Tmax = 0.577l = 1719
5440 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.4274P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
730 reflectionsΔρmax = 0.22 e Å3
88 parametersΔρmin = 0.18 e Å3
36 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4743 (3)0.0011 (9)0.3652 (4)0.043 (3)
H10.44480.12220.37920.065*
O20.3892 (4)0.0529 (12)0.2363 (6)0.045 (3)
N10.3820 (4)0.3527 (11)0.4185 (6)0.032 (3)
C20.3181 (5)0.4038 (14)0.3648 (7)0.038 (3)
H20.30850.33610.30500.046*
C30.2647 (5)0.5566 (14)0.3955 (6)0.040 (3)
H30.21960.58360.35670.048*
C40.2782 (5)0.6664 (12)0.4819 (6)0.023 (2)
C50.3455 (5)0.6192 (15)0.5373 (7)0.044 (3)
H50.35690.69230.59680.052*
C60.3963 (5)0.4594 (14)0.5023 (6)0.045 (3)
H60.44170.42730.53950.054*
C70.4489 (6)0.1136 (14)0.2847 (9)0.029 (4)
C80.50000.3320 (16)0.25000.035 (5)
H8A0.47340.48060.20200.042*0.5
H8B0.52660.48060.29800.042*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.040 (6)0.052 (2)0.044 (6)0.008 (3)0.022 (6)0.007 (3)
O20.023 (7)0.082 (3)0.021 (9)0.007 (3)0.011 (9)0.001 (3)
N10.025 (5)0.042 (2)0.028 (7)0.001 (3)0.005 (6)0.001 (3)
C20.033 (6)0.063 (4)0.015 (7)0.009 (4)0.001 (6)0.002 (4)
C30.025 (6)0.068 (4)0.023 (6)0.006 (3)0.001 (6)0.006 (3)
C40.014 (5)0.034 (2)0.017 (7)0.000 (3)0.004 (6)0.002 (3)
C50.026 (6)0.072 (4)0.028 (7)0.015 (4)0.002 (6)0.012 (4)
C60.020 (6)0.077 (4)0.030 (7)0.018 (4)0.005 (6)0.009 (4)
C70.019 (9)0.036 (3)0.027 (11)0.002 (4)0.001 (11)0.009 (4)
C80.040 (10)0.034 (4)0.036 (11)0.0000.018 (11)0.000
Geometric parameters (Å, º) top
O1—H10.8200C4—C4i1.511 (10)
O1—C71.285 (14)C4—C51.379 (14)
O2—C71.230 (15)C5—H50.9300
N1—C21.318 (13)C5—C61.397 (8)
N1—C61.315 (11)C6—H60.9300
C2—H20.9300C7—C81.512 (8)
C2—C31.391 (8)C8—C7ii1.512 (8)
C3—H30.9300C8—H8A0.9700
C3—C41.357 (12)C8—H8B0.9700
C7—O1—H1109.5C6—C5—H5120.7
C6—N1—C2119.2 (7)N1—C6—C5122.3 (10)
N1—C2—H2119.2N1—C6—H6118.9
N1—C2—C3121.6 (9)C5—C6—H6118.9
C3—C2—H2119.2O1—C7—C8114.2 (10)
C2—C3—H3120.0O2—C7—O1125.7 (8)
C4—C3—C2120.1 (10)O2—C7—C8120.1 (11)
C4—C3—H3120.0C7—C8—C7ii112.6 (5)
C3—C4—C4i121.9 (12)C7—C8—H8A109.1
C3—C4—C5118.1 (6)C7ii—C8—H8A109.1
C5—C4—C4i119.9 (11)C7—C8—H8B109.1
C4—C5—H5120.7C7ii—C8—H8B109.1
C4—C5—C6118.7 (10)H8A—C8—H8B107.8
O1—C7—C8—C7ii81.7 (5)C2—C3—C4—C50.5 (8)
O2—C7—C8—C7ii97.1 (6)C3—C4—C5—C60.4 (8)
N1—C2—C3—C41.9 (8)C4i—C4—C5—C6179.1 (5)
C2—N1—C6—C51.4 (8)C4—C5—C6—N10.1 (9)
C2—C3—C4—C4i180.0 (5)C6—N1—C2—C32.3 (9)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_103) top
Crystal data top
C3H4O4·C10H8N2F(000) = 544
Mr = 260.25Dx = 1.547 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.598 (9) ÅCell parameters from 647 reflections
b = 3.8374 (5) Åθ = 4.4–20.4°
c = 15.442 (9) ŵ = 0.12 mm1
β = 105.76 (7)°T = 298 K
V = 1117.7 (9) Å3Plate, colourless
Z = 40.33 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
714 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.134
Detector resolution: 16.1544 pixels mm-1θmax = 28.2°, θmin = 4.5°
ω and φ scansh = 2324
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.449, Tmax = 0.576l = 1719
5693 measured reflections
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.038P)2 + 0.1344P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
714 reflectionsΔρmax = 0.20 e Å3
88 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4740 (3)0.0012 (9)0.3643 (4)0.046 (3)
H1A0.44370.11450.37890.069*
O20.3889 (4)0.0528 (11)0.2364 (6)0.052 (4)
N10.3817 (4)0.3509 (10)0.4182 (6)0.034 (3)
C20.3177 (5)0.4037 (13)0.3642 (8)0.040 (3)
H20.30830.33720.30420.048*
C30.2641 (4)0.5561 (12)0.3945 (6)0.047 (3)
H30.21900.58190.35560.056*
C40.2779 (5)0.6674 (12)0.4812 (8)0.030 (3)
C50.3452 (5)0.6197 (13)0.5375 (7)0.047 (3)
H40.35640.69120.59730.056*
C60.3967 (5)0.4597 (13)0.5021 (7)0.047 (3)
H50.44240.43040.53910.056*
C70.4483 (6)0.1188 (13)0.2833 (10)0.036 (5)
C80.50000.3343 (14)0.25000.042 (5)
H8A0.52610.48340.29840.050*0.5
H8B0.47390.48340.20160.050*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.043 (6)0.051 (2)0.052 (7)0.005 (3)0.027 (6)0.011 (3)
O20.038 (7)0.079 (3)0.038 (10)0.018 (3)0.007 (9)0.002 (3)
N10.034 (6)0.040 (2)0.025 (7)0.002 (3)0.005 (7)0.003 (3)
C20.030 (6)0.065 (3)0.024 (8)0.007 (4)0.003 (7)0.003 (4)
C30.041 (6)0.063 (3)0.039 (7)0.010 (3)0.017 (6)0.008 (4)
C40.019 (5)0.036 (3)0.035 (8)0.001 (3)0.007 (7)0.000 (3)
C50.036 (6)0.068 (3)0.034 (8)0.022 (4)0.007 (7)0.003 (4)
C60.025 (6)0.075 (4)0.030 (7)0.014 (4)0.009 (7)0.010 (4)
C70.039 (9)0.025 (3)0.047 (12)0.004 (4)0.020 (11)0.010 (4)
C80.058 (10)0.029 (3)0.051 (13)0.0000.037 (12)0.000
Geometric parameters (Å, º) top
O1—H1A0.8200C4—C4i1.508 (10)
O1—C71.295 (16)C4—C51.381 (16)
O2—C71.220 (17)C5—H40.9300
N1—C21.320 (14)C5—C61.412 (7)
N1—C61.316 (13)C6—H50.9300
C2—H20.9300C7—C81.503 (7)
C2—C31.390 (7)C8—C7ii1.503 (7)
C3—H30.9300C8—H8A0.9700
C3—C41.362 (14)C8—H8B0.9700
C7—O1—H1A109.5C6—C5—H4120.8
C6—N1—C2119.5 (7)N1—C6—C5121.9 (11)
N1—C2—H2119.1N1—C6—H5119.1
N1—C2—C3121.8 (11)C5—C6—H5119.1
C3—C2—H2119.1O1—C7—C8113.6 (11)
C2—C3—H3120.1O2—C7—O1124.0 (8)
C4—C3—C2119.8 (10)O2—C7—C8122.3 (13)
C4—C3—H3120.1C7ii—C8—C7113.2 (5)
C3—C4—C4i122.7 (14)C7ii—C8—H8A108.9
C3—C4—C5118.5 (6)C7—C8—H8A108.9
C5—C4—C4i118.8 (14)C7ii—C8—H8B108.9
C4—C5—H4120.8C7—C8—H8B108.9
C4—C5—C6118.4 (10)H8A—C8—H8B107.7
O1—C7—C8—C7ii80.4 (5)C2—C3—C4—C51.1 (7)
O2—C7—C8—C7ii97.0 (7)C3—C4—C5—C60.4 (8)
N1—C2—C3—C42.6 (8)C4i—C4—C5—C6179.0 (4)
C2—N1—C6—C52.7 (8)C4—C5—C6—N11.2 (8)
C2—C3—C4—C4i179.6 (5)C6—N1—C2—C33.3 (8)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_132) top
Crystal data top
C10H8.353N2·C3H3.647O4F(000) = 544
Mr = 260.25Dx = 1.573 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.631 (5) ÅCell parameters from 640 reflections
b = 3.7932 (3) Åθ = 4.4–21.1°
c = 15.352 (4) ŵ = 0.12 mm1
β = 105.95 (3)°T = 298 K
V = 1099.2 (4) Å3Plate, colourless
Z = 40.33 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
718 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.130
Detector resolution: 16.1544 pixels mm-1θmax = 28.3°, θmin = 4.4°
ω and φ scansh = 2325
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.450, Tmax = 0.576l = 1719
5808 measured reflections
Refinement top
Refinement on F232 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
718 reflectionsΔρmax = 0.18 e Å3
89 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.3170 (4)0.4005 (12)0.3633 (7)0.034 (3)
H20.30720.33090.30300.041*
C30.2638 (4)0.5543 (12)0.3940 (5)0.039 (3)
H30.21860.58060.35500.047*
C40.2783 (4)0.6676 (11)0.4820 (7)0.027 (3)
C50.3454 (4)0.6217 (13)0.5376 (7)0.043 (3)
H50.35710.69490.59770.051*
C60.3961 (5)0.4612 (12)0.5014 (6)0.042 (3)
H60.44190.43340.53870.051*
N10.3821 (4)0.3498 (10)0.4184 (6)0.030 (3)
H10.41410.24540.39910.037*0.18 (6)
C70.4491 (6)0.1247 (11)0.2849 (9)0.030 (4)
C80.50000.3416 (13)0.25000.041 (5)
H8A0.47320.49240.20160.049*0.5
H8B0.52680.49240.29840.049*0.5
O10.4741 (3)0.0048 (9)0.3655 (4)0.040 (3)
H1A0.44370.11180.37970.060*0.82 (6)
O20.3886 (3)0.0613 (10)0.2360 (5)0.052 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.022 (5)0.056 (3)0.020 (7)0.007 (3)0.001 (6)0.004 (3)
C30.027 (6)0.066 (3)0.022 (6)0.009 (3)0.005 (6)0.003 (3)
C40.023 (5)0.028 (2)0.029 (7)0.001 (3)0.008 (6)0.000 (3)
C50.031 (6)0.067 (3)0.028 (7)0.014 (4)0.004 (6)0.011 (4)
C60.016 (6)0.071 (3)0.031 (7)0.013 (4)0.008 (6)0.008 (4)
N10.029 (5)0.038 (2)0.025 (7)0.000 (3)0.006 (6)0.001 (3)
C70.025 (8)0.031 (3)0.033 (10)0.001 (4)0.009 (9)0.010 (4)
C80.056 (9)0.031 (3)0.048 (11)0.0000.034 (10)0.000
O10.034 (6)0.053 (2)0.038 (6)0.006 (2)0.016 (6)0.007 (3)
O20.041 (6)0.070 (3)0.047 (9)0.012 (3)0.013 (8)0.005 (3)
Geometric parameters (Å, º) top
C2—H20.9300C6—N11.298 (12)
C2—C31.386 (7)N1—H10.8600
C2—N11.339 (13)C7—C81.502 (2)
C3—H30.9300C7—O11.282 (15)
C3—C41.371 (13)C7—O21.243 (15)
C4—C4i1.506 (9)C8—C7ii1.502 (2)
C4—C51.371 (15)C8—H8A0.9700
C5—H50.9300C8—H8B0.9700
C5—C61.405 (7)O1—H1A0.8200
C6—H60.9300
C3—C2—H2119.2N1—C6—H6118.4
N1—C2—H2119.2C2—N1—H1120.6
N1—C2—C3121.5 (10)C6—N1—C2118.8 (6)
C2—C3—H3120.1C6—N1—H1120.6
C4—C3—C2119.7 (9)O1—C7—C8115.0 (10)
C4—C3—H3120.1O2—C7—C8120.7 (11)
C3—C4—C4i121.3 (13)O2—C7—O1124.3 (4)
C5—C4—C3118.5 (6)C7—C8—C7ii113.6 (5)
C5—C4—C4i120.2 (12)C7—C8—H8A108.8
C4—C5—H5120.9C7ii—C8—H8A108.8
C4—C5—C6118.2 (10)C7ii—C8—H8B108.8
C6—C5—H5120.9C7—C8—H8B108.8
C5—C6—H6118.4H8A—C8—H8B107.7
N1—C6—C5123.2 (10)C7—O1—H1A109.5
C2—C3—C4—C4i179.4 (5)C4—C5—C6—N11.1 (8)
C2—C3—C4—C50.5 (7)C5—C6—N1—C22.4 (7)
C3—C2—N1—C62.9 (8)N1—C2—C3—C41.9 (7)
C3—C4—C5—C60.1 (7)O1—C7—C8—C7ii80.6 (4)
C4i—C4—C5—C6178.9 (4)O2—C7—C8—C7ii96.8 (6)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_154) top
Crystal data top
C3H3.559O4·C10H8.441N2F(000) = 544
Mr = 260.25Dx = 1.590 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.635 (3) ÅCell parameters from 825 reflections
b = 3.7664 (2) Åθ = 3.0–22.3°
c = 15.296 (3) ŵ = 0.12 mm1
β = 106.03 (2)°T = 298 K
V = 1087.2 (3) Å3Plate, colourless
Z = 40.28 × 0.12 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
711 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 16.0338 pixels mm-1θmax = 28.6°, θmin = 3.0°
ω and φ scansh = 2423
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 45
Tmin = 0.452, Tmax = 0.577l = 1917
5433 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + 3.7975P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
711 reflectionsΔρmax = 0.25 e Å3
89 parametersΔρmin = 0.19 e Å3
43 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4745 (3)0.0071 (9)0.3667 (4)0.033 (2)
H1A0.44320.09660.38250.050*0.78 (7)
O20.3886 (4)0.0664 (10)0.2362 (5)0.045 (3)
N10.3820 (4)0.3490 (10)0.4184 (5)0.030 (2)
H10.41390.24260.39930.037*0.22 (7)
C20.3171 (5)0.3977 (14)0.3627 (7)0.036 (2)
H20.30740.32720.30230.043*
C30.2636 (4)0.5519 (13)0.3935 (5)0.036 (2)
H30.21810.57520.35470.043*
C40.2787 (4)0.6697 (12)0.4820 (6)0.024 (2)
C50.3456 (5)0.6221 (13)0.5380 (6)0.036 (2)
H50.35700.69310.59850.043*
C60.3965 (5)0.4644 (13)0.5022 (6)0.041 (2)
H60.44250.44060.53940.050*
C70.4493 (6)0.1280 (13)0.2859 (8)0.029 (3)
C80.50000.3486 (14)0.25000.031 (3)
H8A0.52710.50050.29840.037*0.5
H8B0.47290.50050.20160.037*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.023 (5)0.051 (2)0.028 (5)0.006 (2)0.009 (6)0.007 (2)
O20.031 (7)0.069 (3)0.030 (8)0.017 (3)0.001 (8)0.004 (3)
N10.029 (5)0.035 (2)0.029 (6)0.000 (3)0.010 (6)0.003 (3)
C20.031 (5)0.056 (3)0.022 (6)0.001 (3)0.008 (5)0.006 (3)
C30.023 (4)0.057 (3)0.025 (5)0.006 (3)0.002 (5)0.001 (3)
C40.019 (4)0.029 (2)0.022 (5)0.005 (3)0.004 (5)0.005 (3)
C50.024 (4)0.057 (3)0.023 (5)0.014 (3)0.000 (5)0.007 (3)
C60.025 (5)0.064 (3)0.029 (6)0.015 (4)0.004 (5)0.008 (4)
C70.030 (7)0.025 (2)0.034 (7)0.002 (3)0.011 (7)0.011 (3)
C80.037 (7)0.020 (3)0.038 (8)0.0000.018 (7)0.000
Geometric parameters (Å, º) top
O1—H1A0.8200C4—C4i1.510 (9)
O1—C71.280 (13)C4—C51.368 (14)
O2—C71.246 (14)C5—H50.9300
N1—H10.8600C5—C61.397 (7)
N1—C21.336 (12)C6—H60.9300
N1—C61.308 (11)C7—C81.512 (7)
C2—H20.9300C8—C7ii1.512 (7)
C2—C31.390 (7)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
C3—C41.377 (11)
C7—O1—H1A109.5C4—C5—C6118.6 (9)
C2—N1—H1120.3C6—C5—H5120.7
C6—N1—H1120.3N1—C6—C5122.6 (10)
C6—N1—C2119.4 (6)N1—C6—H6118.7
N1—C2—H2119.4C5—C6—H6118.7
N1—C2—C3121.2 (9)O1—C7—C8115.3 (9)
C3—C2—H2119.4O2—C7—O1124.9 (7)
C2—C3—H3120.3O2—C7—C8119.7 (10)
C4—C3—C2119.4 (9)C7ii—C8—C7113.3 (5)
C4—C3—H3120.3C7—C8—H8A108.9
C3—C4—C4i120.6 (11)C7ii—C8—H8A108.9
C5—C4—C3118.8 (5)C7ii—C8—H8B108.9
C5—C4—C4i120.6 (11)C7—C8—H8B108.9
C4—C5—H5120.7H8A—C8—H8B107.7
O1—C7—C8—C7ii80.8 (4)C2—C3—C4—C51.8 (7)
O2—C7—C8—C7ii96.8 (6)C3—C4—C5—C61.7 (8)
N1—C2—C3—C42.7 (8)C4i—C4—C5—C6178.4 (5)
C2—N1—C6—C53.4 (8)C4—C5—C6—N12.6 (8)
C2—C3—C4—C4i178.5 (5)C6—N1—C2—C33.5 (8)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_174) top
Crystal data top
C3H3.402O4·C10H8.598N2F(000) = 544
Mr = 260.25Dx = 1.621 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.647 (4) ÅCell parameters from 872 reflections
b = 3.7198 (3) Åθ = 3.0–22.4°
c = 15.191 (4) ŵ = 0.12 mm1
β = 106.21 (3)°T = 298 K
V = 1066.1 (4) Å3Plate, colourless
Z = 40.28 × 0.12 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
690 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
Detector resolution: 16.0338 pixels mm-1θmax = 28.7°, θmin = 3.0°
ω and φ scansh = 2423
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 45
Tmin = 0.452, Tmax = 0.577l = 1917
5209 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0757P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
690 reflectionsΔρmax = 0.20 e Å3
89 parametersΔρmin = 0.19 e Å3
43 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4745 (3)0.0125 (8)0.3675 (4)0.036 (2)
H1A0.44300.08770.38420.054*0.70 (7)
O20.3880 (4)0.0752 (9)0.2352 (5)0.043 (3)
N10.3818 (4)0.3510 (9)0.4180 (5)0.028 (2)
H10.41390.24690.39840.034*0.30 (7)
C20.3174 (5)0.3935 (12)0.3627 (7)0.033 (3)
H20.30800.31750.30210.039*
C30.2634 (4)0.5482 (12)0.3922 (5)0.039 (3)
H30.21800.57130.35250.046*
C40.2784 (4)0.6678 (10)0.4822 (6)0.026 (3)
C50.3457 (5)0.6257 (12)0.5376 (7)0.038 (3)
H50.35720.70230.59830.046*
C60.3972 (5)0.4674 (12)0.5030 (6)0.037 (3)
H60.44320.44360.54070.045*
C70.4491 (5)0.1323 (12)0.2862 (8)0.024 (3)
C80.50000.3534 (14)0.25000.027 (3)
H8A0.47290.50730.20120.033*0.5
H8B0.52710.50730.29880.033*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.031 (5)0.0425 (18)0.039 (6)0.002 (2)0.017 (6)0.008 (2)
O20.030 (6)0.066 (3)0.028 (8)0.009 (3)0.003 (8)0.003 (2)
N10.024 (5)0.036 (2)0.024 (7)0.002 (3)0.006 (6)0.000 (3)
C20.027 (6)0.056 (3)0.013 (7)0.004 (3)0.003 (6)0.004 (3)
C30.028 (6)0.063 (3)0.026 (6)0.001 (3)0.011 (6)0.006 (3)
C40.021 (5)0.029 (2)0.032 (7)0.000 (3)0.012 (6)0.001 (3)
C50.037 (6)0.052 (3)0.025 (7)0.014 (3)0.007 (6)0.003 (3)
C60.021 (6)0.062 (3)0.023 (6)0.008 (3)0.004 (6)0.009 (3)
C70.019 (7)0.029 (2)0.021 (7)0.003 (3)0.001 (7)0.004 (3)
C80.030 (7)0.033 (3)0.018 (8)0.0000.005 (7)0.000
Geometric parameters (Å, º) top
O1—H1A0.8200C4—C4i1.500 (9)
O1—C71.276 (13)C4—C51.365 (13)
O2—C71.252 (13)C5—H50.9300
N1—H10.8600C5—C61.394 (7)
N1—C21.318 (12)C6—H60.9300
N1—C61.315 (11)C7—C81.512 (6)
C2—H20.9300C8—C7ii1.512 (6)
C2—C31.387 (7)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
C3—C41.389 (12)
C7—O1—H1A109.5C4—C5—C6119.7 (9)
C2—N1—H1119.9C6—C5—H5120.1
C6—N1—H1119.9N1—C6—C5121.2 (10)
C6—N1—C2120.2 (6)N1—C6—H6119.4
N1—C2—H2119.0C5—C6—H6119.4
N1—C2—C3122.0 (9)O1—C7—C8115.0 (9)
C3—C2—H2119.0O2—C7—O1126.0 (6)
C2—C3—H3120.7O2—C7—C8119.0 (9)
C2—C3—C4118.6 (9)C7—C8—C7ii114.1 (4)
C4—C3—H3120.7C7ii—C8—H8A108.7
C3—C4—C4i120.8 (12)C7—C8—H8A108.7
C5—C4—C3118.3 (6)C7—C8—H8B108.7
C5—C4—C4i121.0 (11)C7ii—C8—H8B108.7
C4—C5—H5120.1H8A—C8—H8B107.6
O1—C7—C8—C7ii81.0 (4)C2—C3—C4—C50.3 (7)
O2—C7—C8—C7ii97.4 (6)C3—C4—C5—C60.3 (7)
N1—C2—C3—C41.3 (7)C4i—C4—C5—C6179.1 (4)
C2—N1—C6—C52.3 (7)C4—C5—C6—N11.3 (7)
C2—C3—C4—C4i179.1 (5)C6—N1—C2—C32.3 (8)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_183) top
Crystal data top
C3H3.414O4·C10H8.586N2F(000) = 544
Mr = 260.25Dx = 1.610 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.647 (6) ÅCell parameters from 576 reflections
b = 3.7375 (4) Åθ = 4.4–21.3°
c = 15.222 (6) ŵ = 0.12 mm1
β = 106.12 (4)°T = 298 K
V = 1073.8 (6) Å3Plate, colourless
Z = 40.33 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
633 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
Detector resolution: 16.1544 pixels mm-1θmax = 28.3°, θmin = 4.4°
ω and φ scansh = 2224
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 44
Tmin = 0.449, Tmax = 0.575l = 1717
3130 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0248P)2 + 2.6453P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
633 reflectionsΔρmax = 0.20 e Å3
89 parametersΔρmin = 0.24 e Å3
47 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4739 (4)0.0105 (13)0.3663 (6)0.034 (2)
H1A0.44370.11340.37960.052*0.71 (9)
O20.3885 (4)0.0712 (13)0.2362 (7)0.045 (3)
N10.3820 (5)0.3491 (14)0.4183 (7)0.030 (3)
H10.41400.24310.39910.036*0.29 (9)
C40.2773 (6)0.6669 (16)0.4804 (9)0.027 (3)
C30.2638 (6)0.5498 (16)0.3934 (8)0.033 (3)
H30.21850.57310.35380.040*
C80.50000.3503 (18)0.25000.034 (6)
H8A0.52700.50340.29870.041*0.5
H8B0.47300.50350.20130.041*0.5
C70.4495 (7)0.1308 (15)0.2856 (12)0.027 (3)
C60.3971 (7)0.4650 (17)0.5021 (9)0.039 (3)
H60.44320.44260.53950.047*
C50.3451 (6)0.6242 (17)0.5376 (9)0.034 (3)
H50.35630.69870.59820.041*
C20.3174 (6)0.3939 (18)0.3623 (10)0.034 (3)
H20.30770.32050.30170.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.032 (6)0.049 (3)0.025 (6)0.005 (3)0.014 (6)0.003 (3)
O20.032 (5)0.068 (3)0.030 (8)0.015 (4)0.001 (6)0.007 (4)
N10.033 (5)0.040 (3)0.014 (8)0.002 (4)0.001 (7)0.002 (4)
C40.022 (4)0.040 (3)0.015 (7)0.002 (3)0.002 (6)0.003 (3)
C30.028 (4)0.055 (3)0.015 (7)0.003 (3)0.001 (6)0.004 (3)
C80.051 (12)0.020 (4)0.040 (15)0.0000.026 (13)0.000
C70.026 (7)0.032 (4)0.023 (9)0.002 (4)0.007 (8)0.008 (5)
C60.027 (5)0.062 (4)0.021 (7)0.009 (4)0.004 (6)0.007 (4)
C50.026 (5)0.053 (3)0.018 (7)0.007 (3)0.002 (6)0.005 (3)
C20.031 (5)0.058 (4)0.011 (7)0.003 (4)0.003 (6)0.004 (4)
Geometric parameters (Å, º) top
O1—H1A0.8200C3—C21.396 (9)
O1—C71.270 (18)C8—H8A0.9700
O2—C71.245 (19)C8—H8B0.9700
N1—H10.8600C8—C7ii1.501 (2)
N1—C61.301 (15)C8—C71.501 (2)
N1—C21.329 (17)C6—H60.9300
C4—C4i1.498 (13)C6—C51.413 (9)
C4—C31.350 (16)C5—H50.9300
C4—C51.384 (18)C2—H20.9300
C3—H30.9300
C7—O1—H1A109.5C7ii—C8—H8B108.8
C6—N1—H1119.9C7ii—C8—C7113.7 (6)
C6—N1—C2120.2 (10)O1—C7—C8115.6 (13)
C2—N1—H1119.9O2—C7—O1124.2 (6)
C3—C4—C4i123.9 (16)O2—C7—C8120.1 (13)
C3—C4—C5118.2 (8)N1—C6—H6119.2
C5—C4—C4i117.9 (15)N1—C6—C5121.5 (13)
C4—C3—H3119.8C5—C6—H6119.2
C4—C3—C2120.4 (12)C4—C5—C6118.7 (12)
C2—C3—H3119.8C4—C5—H5120.6
H8A—C8—H8B107.7C6—C5—H5120.6
C7—C8—H8A108.8N1—C2—C3120.8 (12)
C7ii—C8—H8A108.8N1—C2—H2119.6
C7—C8—H8B108.8C3—C2—H2119.6
N1—C6—C5—C42.1 (11)C7ii—C8—C7—O181.1 (6)
C4i—C4—C3—C2179.2 (7)C7ii—C8—C7—O297.6 (9)
C4i—C4—C5—C6179.4 (6)C6—N1—C2—C33.1 (11)
C4—C3—C2—N11.8 (10)C5—C4—C3—C20.7 (10)
C3—C4—C5—C60.8 (10)C2—N1—C6—C53.2 (11)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_195) top
Crystal data top
C3H3.599O4·C10H8.401N2F(000) = 544
Mr = 260.25Dx = 1.615 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.662 (9) ÅCell parameters from 563 reflections
b = 3.7264 (6) Åθ = 4.4–21.4°
c = 15.211 (10) ŵ = 0.12 mm1
β = 106.16 (7)°T = 298 K
V = 1070.4 (10) Å3Plate, colourless
Z = 40.33 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
585 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
Detector resolution: 16.1544 pixels mm-1θmax = 28.3°, θmin = 4.4°
ω and φ scansh = 2122
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 44
Tmin = 0.451, Tmax = 0.576l = 1617
2630 measured reflections
Refinement top
Refinement on F244 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
585 reflectionsΔρmax = 0.25 e Å3
89 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4740 (5)0.0106 (14)0.3663 (7)0.045 (5)
H1A0.44340.10740.38030.068*0.80 (11)
O20.3879 (5)0.0717 (15)0.2349 (9)0.050 (6)
C70.4491 (8)0.1353 (16)0.2857 (14)0.028 (5)
C80.50000.3526 (19)0.25000.032 (6)
H8A0.52690.50640.29880.039*0.5
H8B0.47310.50640.20120.039*0.5
N10.3821 (6)0.3508 (15)0.4190 (9)0.033 (4)
H10.41440.24460.40040.040*0.20 (11)
C20.3167 (8)0.3934 (19)0.3601 (12)0.039 (4)
H20.30740.32210.29930.047*
C30.2639 (7)0.5468 (17)0.3928 (10)0.038 (4)
H30.21830.56620.35380.046*
C40.2770 (7)0.6682 (17)0.4796 (11)0.028 (4)
C50.3445 (7)0.6241 (17)0.5373 (11)0.036 (4)
H50.35480.69770.59800.044*
C60.3974 (8)0.4676 (18)0.5041 (11)0.041 (4)
H60.44340.44640.54210.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.051 (10)0.043 (3)0.053 (12)0.002 (3)0.033 (11)0.006 (4)
O20.039 (11)0.073 (4)0.034 (15)0.011 (5)0.005 (13)0.006 (4)
C70.030 (11)0.030 (4)0.023 (14)0.004 (4)0.007 (13)0.001 (5)
C80.040 (12)0.034 (4)0.024 (15)0.0000.012 (13)0.000
N10.046 (8)0.036 (3)0.016 (11)0.004 (4)0.005 (9)0.007 (4)
C20.040 (8)0.062 (4)0.013 (10)0.000 (5)0.004 (8)0.007 (5)
C30.036 (7)0.063 (4)0.014 (10)0.000 (4)0.005 (8)0.001 (5)
C40.032 (7)0.037 (3)0.013 (10)0.002 (4)0.003 (9)0.000 (4)
C50.037 (7)0.051 (4)0.017 (10)0.015 (4)0.001 (8)0.000 (4)
C60.036 (8)0.062 (4)0.021 (10)0.010 (5)0.001 (8)0.003 (5)
Geometric parameters (Å, º) top
O1—H1A0.8200C2—H20.9300
O1—C71.27 (2)C2—C31.394 (11)
O2—C71.26 (2)C3—H30.9300
C7—C81.501 (2)C3—C41.351 (19)
C8—C7i1.501 (2)C4—C4ii1.501 (16)
C8—H8A0.9700C4—C51.38 (2)
C8—H8B0.9700C5—H50.9300
N1—H10.8600C5—C61.405 (11)
N1—C21.356 (19)C6—H60.9300
N1—C61.318 (18)
C7—O1—H1A109.5N1—C2—C3118.4 (15)
O1—C7—C8115.4 (15)C3—C2—H2120.8
O2—C7—O1124.5 (6)C2—C3—H3119.1
O2—C7—C8120.0 (17)C4—C3—C2121.8 (15)
C7i—C8—C7114.7 (7)C4—C3—H3119.1
C7i—C8—H8A108.6C3—C4—C4ii125.1 (19)
C7—C8—H8A108.6C3—C4—C5118.0 (10)
C7i—C8—H8B108.6C5—C4—C4ii116.8 (18)
C7—C8—H8B108.6C4—C5—H5120.1
H8A—C8—H8B107.6C4—C5—C6119.8 (15)
C2—N1—H1119.1C6—C5—H5120.1
C6—N1—H1119.1N1—C6—C5120.0 (16)
C6—N1—C2121.8 (11)N1—C6—H6120.0
N1—C2—H2120.8C5—C6—H6120.0
O1—C7—C8—C7i79.9 (7)C2—C3—C4—C52.4 (11)
O2—C7—C8—C7i96.4 (10)C3—C4—C5—C62.1 (11)
N1—C2—C3—C43.2 (11)C4ii—C4—C5—C6179.1 (6)
C2—N1—C6—C53.5 (11)C4—C5—C6—N12.6 (11)
C2—C3—C4—C4ii179.2 (7)C6—N1—C2—C33.8 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Malonic acid 4,4'-bipyridyl (BIPYMA_210) top
Crystal data top
C3H3.392O4·C10H8.608N2F(000) = 544
Mr = 260.25Dx = 1.625 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.648 (17) ÅCell parameters from 586 reflections
b = 3.7139 (11) Åθ = 4.4–21.3°
c = 15.171 (17) ŵ = 0.12 mm1
β = 106.08 (12)°T = 298 K
V = 1063.7 (17) Å3Plate, colourless
Z = 40.26 × 0.11 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
684 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
Detector resolution: 16.1544 pixels mm-1θmax = 27.9°, θmin = 4.5°
ω and φ scansh = 2423
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 44
Tmin = 0.451, Tmax = 0.576l = 1817
4521 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.0963P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
684 reflectionsΔρmax = 0.26 e Å3
89 parametersΔρmin = 0.25 e Å3
43 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4746 (4)0.0116 (12)0.3671 (6)0.041 (3)
H1A0.44330.08560.38480.062*0.70 (10)
O20.3881 (5)0.0729 (13)0.2360 (8)0.054 (5)
N10.3814 (5)0.3502 (14)0.4177 (8)0.030 (3)
H10.41320.24200.39830.036*0.30 (10)
C20.3174 (7)0.3955 (18)0.3621 (10)0.039 (4)
H20.30780.32420.30110.046*
C30.2645 (6)0.5486 (17)0.3939 (8)0.038 (3)
H30.21910.57030.35440.045*
C40.2775 (6)0.6674 (16)0.4813 (9)0.028 (3)
C50.3458 (6)0.6261 (17)0.5384 (10)0.040 (3)
H50.35730.70150.59920.048*
C60.3970 (7)0.4680 (18)0.5021 (9)0.044 (3)
H60.44330.44640.53900.053*
C70.4480 (8)0.1338 (18)0.2840 (13)0.027 (5)
C80.50000.3532 (19)0.25000.035 (6)
H8A0.52620.50750.29940.042*0.5
H8B0.47380.50750.20060.042*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.039 (7)0.050 (3)0.039 (8)0.002 (3)0.018 (8)0.005 (3)
O20.046 (9)0.077 (4)0.042 (13)0.011 (4)0.016 (12)0.004 (4)
N10.033 (6)0.039 (3)0.016 (9)0.005 (4)0.001 (8)0.005 (4)
C20.037 (7)0.064 (5)0.012 (9)0.009 (5)0.002 (8)0.000 (5)
C30.029 (7)0.066 (4)0.015 (8)0.009 (4)0.000 (7)0.002 (4)
C40.028 (6)0.038 (3)0.017 (9)0.001 (4)0.005 (8)0.001 (4)
C50.034 (7)0.061 (4)0.020 (9)0.013 (4)0.003 (8)0.005 (5)
C60.029 (7)0.069 (4)0.029 (9)0.005 (5)0.001 (7)0.013 (5)
C70.030 (10)0.034 (4)0.010 (13)0.003 (5)0.004 (12)0.002 (5)
C80.046 (12)0.031 (4)0.031 (14)0.0000.016 (13)0.000
Geometric parameters (Å, º) top
O1—H1A0.8200C4—C4i1.486 (13)
O1—C71.31 (2)C4—C51.389 (19)
O2—C71.22 (2)C5—H50.9300
N1—H10.8600C5—C61.403 (10)
N1—C21.315 (18)C6—H60.9300
N1—C61.306 (17)C7—C81.505 (9)
C2—H20.9300C8—C7ii1.505 (9)
C2—C31.383 (10)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
C3—C41.353 (16)
C7—O1—H1A109.5C4—C5—C6118.4 (13)
C2—N1—H1119.7C6—C5—H5120.8
C6—N1—H1119.7N1—C6—C5121.7 (14)
C6—N1—C2120.6 (9)N1—C6—H6119.2
N1—C2—H2119.8C5—C6—H6119.2
N1—C2—C3120.4 (13)O1—C7—C8113.1 (14)
C3—C2—H2119.8O2—C7—O1124.9 (10)
C2—C3—H3119.4O2—C7—C8122.0 (15)
C4—C3—C2121.3 (13)C7ii—C8—C7114.4 (7)
C4—C3—H3119.4C7—C8—H8A108.6
C3—C4—C4i123.3 (16)C7ii—C8—H8A108.6
C3—C4—C5117.6 (8)C7ii—C8—H8B108.6
C5—C4—C4i119.2 (16)C7—C8—H8B108.6
C4—C5—H5120.8H8A—C8—H8B107.6
O1—C7—C8—C7ii79.9 (6)C2—C3—C4—C50.8 (10)
O2—C7—C8—C7ii98.2 (9)C3—C4—C5—C60.6 (11)
N1—C2—C3—C42.5 (10)C4i—C4—C5—C6179.7 (6)
C2—N1—C6—C54.0 (11)C4—C5—C6—N12.2 (11)
C2—C3—C4—C4i179.8 (7)C6—N1—C2—C34.1 (11)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Malonic acid 4,4'-bipyridyl (BIPYMA_219) top
Crystal data top
C3H3.209O4·C10H8.791N2F(000) = 544
Mr = 260.25Dx = 1.644 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.670 (5) ÅCell parameters from 550 reflections
b = 3.6881 (3) Åθ = 4.4–21.5°
c = 15.112 (5) ŵ = 0.12 mm1
β = 106.48 (4)°T = 298 K
V = 1051.3 (5) Å3Plate, colourless
Z = 40.35 × 0.20 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
623 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
Detector resolution: 16.1544 pixels mm-1θmax = 28.4°, θmin = 4.4°
ω and φ scansh = 2225
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 44
Tmin = 0.450, Tmax = 0.577l = 1717
2411 measured reflections
Refinement top
Refinement on F225 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.093H-atom parameters constrained
wR(F2) = 0.215 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.317P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
623 reflectionsΔρmax = 0.22 e Å3
89 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4742 (5)0.0132 (16)0.3677 (7)0.040 (4)
H1A0.44330.10050.38240.061*0.60 (11)
O20.3875 (5)0.0812 (14)0.2358 (8)0.043 (5)
C70.4491 (9)0.1369 (17)0.2851 (15)0.028 (6)
C80.50000.358 (2)0.25000.043 (8)
H8A0.47310.51340.20060.051*0.5
H8B0.52690.51340.29940.051*0.5
N10.3824 (7)0.3502 (16)0.4190 (10)0.032 (6)
H10.41470.24340.40040.039*0.40 (11)
C20.3167 (7)0.388 (2)0.3604 (12)0.033 (4)
H20.30740.31120.29950.040*
C30.2630 (7)0.5419 (19)0.3914 (10)0.036 (4)
H30.21730.56050.35180.043*
C40.2777 (7)0.6675 (19)0.4813 (11)0.026 (4)
C50.3453 (7)0.6312 (19)0.5380 (12)0.036 (4)
H50.35670.71020.59890.044*
C60.3975 (8)0.472 (2)0.5028 (11)0.038 (4)
H60.44380.45480.54060.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.047 (9)0.048 (4)0.031 (11)0.000 (4)0.020 (10)0.006 (4)
O20.037 (9)0.066 (4)0.023 (13)0.003 (4)0.005 (12)0.001 (5)
C70.017 (12)0.028 (5)0.037 (19)0.001 (5)0.005 (16)0.007 (6)
C80.064 (17)0.036 (6)0.04 (2)0.0000.03 (2)0.000
N10.036 (11)0.034 (4)0.025 (16)0.001 (4)0.007 (14)0.001 (5)
C20.028 (8)0.058 (5)0.010 (11)0.006 (5)0.000 (10)0.001 (5)
C30.028 (7)0.059 (4)0.016 (10)0.002 (4)0.002 (9)0.002 (5)
C40.022 (7)0.036 (4)0.017 (10)0.005 (4)0.001 (9)0.000 (4)
C50.028 (7)0.054 (4)0.021 (11)0.012 (4)0.005 (9)0.000 (5)
C60.021 (8)0.055 (5)0.030 (12)0.010 (5)0.008 (10)0.006 (6)
Geometric parameters (Å, º) top
O1—H1A0.8200C2—H20.9300
O1—C71.29 (2)C2—C31.393 (11)
O2—C71.25 (2)C3—H30.9300
C7—C81.501 (2)C3—C41.386 (19)
C8—C7i1.501 (2)C4—C4ii1.494 (16)
C8—H8A0.9700C4—C51.37 (2)
C8—H8B0.9700C5—H50.9300
N1—H10.8600C5—C61.410 (11)
N1—C21.350 (19)C6—H60.9300
N1—C61.297 (19)
C7—O1—H1A109.5N1—C2—C3119.8 (15)
O1—C7—C8115.1 (16)C3—C2—H2120.1
O2—C7—O1124.2 (7)C2—C3—H3120.1
O2—C7—C8120.7 (17)C4—C3—C2119.9 (15)
C7—C8—C7i114.1 (7)C4—C3—H3120.1
C7—C8—H8A108.7C3—C4—C4ii122.4 (19)
C7i—C8—H8A108.7C5—C4—C3118.5 (10)
C7—C8—H8B108.7C5—C4—C4ii119.1 (19)
C7i—C8—H8B108.7C4—C5—H5120.5
H8A—C8—H8B107.6C4—C5—C6119.1 (15)
C2—N1—H1119.4C6—C5—H5120.5
C6—N1—H1119.4N1—C6—C5121.5 (16)
C6—N1—C2121.1 (11)N1—C6—H6119.2
N1—C2—H2120.1C5—C6—H6119.2
O1—C7—C8—C7i80.6 (7)C2—C3—C4—C50.9 (12)
O2—C7—C8—C7i99.0 (11)C3—C4—C5—C60.8 (12)
N1—C2—C3—C42.3 (12)C4ii—C4—C5—C6179.4 (7)
C2—N1—C6—C53.6 (12)C4—C5—C6—N12.1 (12)
C2—C3—C4—C4ii179.5 (8)C6—N1—C2—C33.6 (12)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Malonic acid 4,4'-bipyridyl (BIPYMA_247) top
Crystal data top
C3H3.406O4·C10H8.594N2F(000) = 544
Mr = 260.25Dx = 1.663 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.687 (13) ÅCell parameters from 533 reflections
b = 3.6609 (7) Åθ = 4.4–21.6°
c = 15.043 (13) ŵ = 0.13 mm1
β = 106.48 (9)°T = 298 K
V = 1039.6 (12) Å3Plate, colourless
Z = 40.35 × 0.20 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
615 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.137
Detector resolution: 16.1544 pixels mm-1θmax = 28.4°, θmin = 4.4°
ω and φ scansh = 2225
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 44
Tmin = 0.456, Tmax = 0.576l = 1717
2467 measured reflections
Refinement top
Refinement on F243 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0121P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
615 reflectionsΔρmax = 0.18 e Å3
89 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4748 (4)0.0171 (13)0.3674 (7)0.034 (4)
H1A0.44720.12690.38040.051*0.70 (8)
O20.3871 (4)0.0867 (12)0.2364 (9)0.046 (6)
C70.4479 (9)0.1392 (19)0.2852 (14)0.025 (5)
C80.50000.3648 (19)0.25000.036 (7)
H8A0.52650.52130.29980.043*0.5
H8B0.47350.52130.20020.043*0.5
N10.3820 (6)0.3487 (15)0.4185 (9)0.028 (3)
H10.41400.24160.39910.034*0.30 (8)
C20.3163 (6)0.3871 (17)0.3597 (11)0.034 (3)
H20.30670.31100.29840.041*
C30.2627 (6)0.5422 (16)0.3917 (9)0.034 (3)
H30.21680.56130.35260.041*
C40.2784 (6)0.6659 (16)0.4814 (10)0.025 (3)
C50.3471 (6)0.6326 (15)0.5393 (10)0.032 (3)
H50.35870.71680.60010.039*
C60.3985 (7)0.4692 (17)0.5040 (10)0.034 (3)
H60.44480.44620.54160.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.033 (8)0.040 (3)0.036 (10)0.004 (3)0.019 (9)0.003 (4)
O20.033 (9)0.062 (4)0.042 (15)0.012 (4)0.008 (13)0.008 (4)
C70.038 (11)0.026 (4)0.012 (15)0.009 (5)0.007 (14)0.001 (6)
C80.037 (12)0.039 (5)0.036 (18)0.0000.017 (15)0.000
N10.033 (6)0.037 (3)0.013 (10)0.006 (4)0.004 (8)0.003 (4)
C20.032 (6)0.052 (4)0.016 (9)0.008 (4)0.001 (7)0.001 (5)
C30.022 (5)0.056 (4)0.022 (9)0.004 (4)0.001 (7)0.003 (4)
C40.022 (5)0.033 (3)0.019 (9)0.006 (3)0.005 (8)0.002 (4)
C50.030 (6)0.049 (4)0.015 (9)0.003 (4)0.002 (7)0.005 (4)
C60.027 (6)0.049 (4)0.021 (9)0.001 (4)0.003 (7)0.010 (5)
Geometric parameters (Å, º) top
O1—H1A0.8200C2—H20.9300
O1—C71.28 (2)C2—C31.399 (9)
O2—C71.23 (2)C3—H30.9300
C7—C81.524 (9)C3—C41.372 (18)
C8—C7i1.524 (9)C4—C4ii1.516 (12)
C8—H8A0.9700C4—C51.39 (2)
C8—H8B0.9700C5—H50.9300
N1—H10.8600C5—C61.403 (9)
N1—C21.351 (18)C6—H60.9300
N1—C61.311 (17)
C7—O1—H1A109.5N1—C2—C3119.5 (14)
O1—C7—C8112.9 (15)C3—C2—H2120.3
O2—C7—O1126.1 (11)C2—C3—H3120.3
O2—C7—C8121.0 (16)C4—C3—C2119.4 (13)
C7i—C8—C7114.4 (7)C4—C3—H3120.3
C7i—C8—H8A108.7C3—C4—C4ii120.8 (17)
C7—C8—H8A108.7C3—C4—C5119.6 (8)
C7i—C8—H8B108.7C5—C4—C4ii119.5 (17)
C7—C8—H8B108.7C4—C5—H5120.7
H8A—C8—H8B107.6C4—C5—C6118.6 (13)
C2—N1—H1118.9C6—C5—H5120.7
C6—N1—H1118.9N1—C6—C5120.6 (14)
C6—N1—C2122.2 (10)N1—C6—H6119.7
N1—C2—H2120.3C5—C6—H6119.7
O1—C7—C8—C7i79.7 (6)C2—C3—C4—C50.5 (11)
O2—C7—C8—C7i99.8 (11)C3—C4—C5—C60.5 (11)
N1—C2—C3—C42.5 (10)C4ii—C4—C5—C6178.7 (6)
C2—N1—C6—C52.5 (11)C4—C5—C6—N10.4 (11)
C2—C3—C4—C4ii179.8 (6)C6—N1—C2—C33.6 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
4,4'-bipyridine hydrogen malonate (BIPYMA_276) top
Crystal data top
C3H3O4·C10H9N2F(000) = 544
Mr = 260.25Dx = 1.702 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.412 (4) ÅCell parameters from 1058 reflections
b = 7.9665 (11) Åθ = 3.2–25.9°
c = 15.576 (9) ŵ = 0.13 mm1
β = 103.33 (6)°T = 298 K
V = 1015.7 (8) Å3Block, colourless
Z = 40.34 × 0.17 × 0.08 mm
Data collection top
Xcalibur, Eos
diffractometer
998 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 16.1544 pixels mm-1θmax = 28.2°, θmin = 2.9°
ω and φ scansh = 1010
Absorption correction: analytical
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1010
Tmin = 0.987, Tmax = 0.990l = 1615
4177 measured reflections
Refinement top
Refinement on F283 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
998 reflectionsΔρmax = 0.19 e Å3
173 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0365 (11)0.7531 (6)0.8729 (7)0.047 (5)
O20.2386 (11)0.6828 (6)0.7512 (6)0.040 (4)
O40.2242 (10)0.7367 (6)0.7466 (6)0.038 (4)
O10.0626 (10)0.7200 (6)0.6235 (7)0.038 (4)
H10.11330.64260.60750.057*
C120.122 (2)0.7499 (10)0.7064 (13)0.037 (7)
C140.0897 (18)0.7840 (9)0.7908 (12)0.030 (6)
C130.0271 (10)0.8763 (7)0.7456 (6)0.032 (5)
H13A0.03390.94890.69970.038*
H13B0.10140.94530.78820.038*
N20.7720 (12)0.0427 (6)0.4219 (8)0.040 (3)
H20.83580.11150.40360.048*
N10.2536 (13)0.5119 (7)0.5728 (9)0.041 (4)
C50.3217 (12)0.3566 (7)0.4562 (8)0.039 (3)
H50.29770.32550.39710.047*
C90.8047 (13)0.0003 (7)0.5064 (9)0.042 (3)
H90.89480.04460.54580.050*
C20.3845 (13)0.4514 (8)0.6279 (9)0.042 (3)
H2A0.40640.48150.68710.051*
C30.4892 (12)0.3439 (7)0.5982 (9)0.041 (3)
H30.58170.30490.63810.050*
C40.4612 (13)0.2933 (7)0.5126 (9)0.038 (3)
C100.6438 (14)0.0179 (8)0.3656 (9)0.042 (4)
H100.62370.01560.30680.051*
C60.2160 (13)0.4666 (7)0.4867 (9)0.037 (3)
H60.12240.50750.44850.044*
C110.5381 (13)0.1300 (7)0.3911 (8)0.043 (3)
H110.44740.17080.35060.052*
C80.7043 (12)0.1111 (7)0.5349 (8)0.039 (3)
H80.72790.14040.59430.047*
C70.5710 (14)0.1807 (7)0.4798 (10)0.039 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.052 (9)0.047 (3)0.051 (12)0.007 (3)0.031 (10)0.007 (3)
O20.049 (8)0.060 (3)0.009 (11)0.004 (3)0.005 (9)0.002 (3)
O40.034 (7)0.060 (3)0.017 (12)0.002 (3)0.000 (9)0.005 (3)
O10.037 (8)0.052 (3)0.026 (11)0.009 (3)0.009 (9)0.004 (4)
C120.041 (13)0.047 (5)0.029 (19)0.003 (5)0.024 (15)0.010 (6)
C140.025 (11)0.035 (4)0.027 (17)0.004 (4)0.002 (14)0.005 (5)
C130.039 (9)0.039 (3)0.018 (12)0.005 (3)0.007 (10)0.005 (3)
N20.042 (7)0.035 (3)0.053 (10)0.003 (3)0.029 (8)0.000 (4)
N10.058 (8)0.039 (3)0.037 (10)0.006 (3)0.032 (8)0.004 (4)
C50.049 (7)0.039 (3)0.040 (9)0.002 (3)0.031 (7)0.005 (4)
C90.052 (8)0.042 (3)0.039 (10)0.008 (3)0.029 (7)0.006 (4)
C20.054 (8)0.043 (4)0.038 (9)0.006 (4)0.027 (7)0.003 (5)
C30.048 (7)0.040 (3)0.045 (9)0.004 (3)0.028 (7)0.008 (4)
C40.049 (6)0.028 (3)0.050 (9)0.004 (3)0.035 (7)0.005 (4)
C100.056 (8)0.041 (4)0.039 (10)0.005 (4)0.031 (8)0.006 (4)
C60.038 (7)0.040 (3)0.036 (9)0.002 (3)0.018 (7)0.005 (4)
C110.050 (7)0.044 (3)0.043 (9)0.004 (3)0.025 (7)0.004 (4)
C80.042 (7)0.045 (4)0.041 (9)0.005 (3)0.030 (7)0.001 (4)
C70.046 (7)0.036 (3)0.046 (9)0.004 (3)0.032 (7)0.004 (4)
Geometric parameters (Å, º) top
O3—C141.279 (19)C5—C61.407 (9)
O2—C121.19 (2)C9—H90.9300
O4—C141.240 (19)C9—C81.364 (9)
O1—H10.8200C2—H2A0.9300
O1—C121.30 (2)C2—C31.381 (10)
C12—C131.498 (11)C3—H30.9300
C14—C131.523 (10)C3—C41.361 (16)
C13—H13A0.9700C4—C71.462 (10)
C13—H13B0.9700C10—H100.9300
N2—H20.8600C10—C111.381 (9)
N2—C91.327 (17)C6—H60.9300
N2—C101.316 (18)C11—H110.9300
N1—C21.321 (18)C11—C71.405 (17)
N1—C61.355 (17)C8—H80.9300
C5—H50.9300C8—C71.363 (18)
C5—C41.388 (17)
C12—O1—H1109.5N1—C2—C3120.7 (13)
O2—C12—O1125.2 (11)C3—C2—H2A119.7
O2—C12—C13120.5 (16)C2—C3—H3118.9
O1—C12—C13114.3 (15)C4—C3—C2122.1 (13)
O3—C14—C13116.2 (14)C4—C3—H3118.9
O4—C14—O3124.1 (11)C5—C4—C7120.8 (13)
O4—C14—C13119.6 (15)C3—C4—C5116.3 (8)
C12—C13—C14108.9 (5)C3—C4—C7123.0 (13)
C12—C13—H13A109.9N2—C10—H10119.0
C12—C13—H13B109.9N2—C10—C11121.9 (13)
C14—C13—H13A109.9C11—C10—H10119.0
C14—C13—H13B109.9N1—C6—C5118.6 (12)
H13A—C13—H13B108.3N1—C6—H6120.7
C9—N2—H2119.4C5—C6—H6120.7
C10—N2—H2119.4C10—C11—H11120.8
C10—N2—C9121.2 (8)C10—C11—C7118.4 (13)
C2—N1—C6121.0 (8)C7—C11—H11120.8
C4—C5—H5119.3C9—C8—H8118.7
C4—C5—C6121.3 (12)C7—C8—C9122.7 (12)
C6—C5—H5119.3C7—C8—H8118.7
N2—C9—H9120.4C11—C7—C4121.6 (13)
N2—C9—C8119.2 (13)C8—C7—C4121.6 (13)
C8—C9—H9120.4C8—C7—C11116.7 (8)
N1—C2—H2A119.7
O3—C14—C13—C1292.7 (12)C2—N1—C6—C51.5 (10)
O2—C12—C13—C1481.7 (13)C2—C3—C4—C50.4 (9)
O4—C14—C13—C1283.9 (12)C2—C3—C4—C7179.5 (5)
O1—C12—C13—C1496.5 (11)C3—C4—C7—C11179.6 (6)
N2—C9—C8—C70.2 (9)C3—C4—C7—C84.0 (9)
N2—C10—C11—C70.6 (10)C4—C5—C6—N10.6 (9)
N1—C2—C3—C41.3 (10)C10—N2—C9—C80.9 (9)
C5—C4—C7—C111.3 (9)C10—C11—C7—C4177.4 (5)
C5—C4—C7—C8176.9 (7)C10—C11—C7—C81.6 (9)
C9—N2—C10—C110.6 (11)C6—N1—C2—C31.9 (11)
C9—C8—C7—C4177.2 (5)C6—C5—C4—C30.0 (9)
C9—C8—C7—C111.4 (10)C6—C5—C4—C7179.2 (4)
4,4'-bipyridine hydrogen malonate (BIPYMA_304_rc) top
Crystal data top
C3H3O4·C10H9N2F(000) = 544
Mr = 260.25Dx = 1.726 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.438 (6) ÅCell parameters from 723 reflections
b = 7.9032 (14) Åθ = 3.2–26.4°
c = 15.425 (10) ŵ = 0.13 mm1
β = 103.18 (8)°T = 298 K
V = 1001.5 (10) Å3Plate, colourless
Z = 40.28 × 0.12 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
947 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.145
Detector resolution: 16.0338 pixels mm-1θmax = 28.1°, θmin = 3.2°
ω and φ scansh = 1010
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 109
Tmin = 0.452, Tmax = 0.578l = 1718
2932 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
947 reflectionsΔρmax = 0.21 e Å3
173 parametersΔρmin = 0.20 e Å3
91 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0594 (14)0.7176 (9)0.6207 (9)0.037 (3)
O20.2380 (13)0.6832 (9)0.7501 (9)0.039 (3)
O30.0319 (13)0.7615 (8)0.8725 (8)0.033 (3)
H3A0.09430.70150.89260.049*
O40.2262 (13)0.7458 (9)0.7443 (9)0.044 (4)
N10.2593 (17)0.5096 (10)0.5736 (10)0.030 (4)
H10.19890.58070.59330.035*
N20.7730 (16)0.0524 (10)0.4188 (11)0.028 (4)
C20.3850 (18)0.4483 (11)0.6271 (12)0.028 (3)
H20.40490.47750.68700.034*
C30.4908 (17)0.3417 (10)0.5993 (11)0.033 (3)
H30.58280.30270.63970.039*
C40.4618 (18)0.2927 (11)0.5127 (12)0.027 (3)
C50.3229 (17)0.3550 (11)0.4552 (12)0.029 (3)
H50.29870.32350.39550.035*
C60.2198 (17)0.4648 (10)0.4869 (11)0.026 (3)
H60.12580.50630.44920.031*
C70.5783 (19)0.1799 (12)0.4823 (13)0.030 (3)
C80.7042 (17)0.1079 (11)0.5343 (11)0.026 (3)
H80.72680.13260.59490.032*
C90.8045 (17)0.0026 (11)0.5037 (11)0.030 (4)
H90.89670.04380.54310.036*
C100.6515 (18)0.0161 (13)0.3682 (13)0.036 (4)
H100.63520.01120.30820.043*
C110.5370 (17)0.1281 (10)0.3900 (11)0.032 (4)
H110.44450.16510.34920.039*
C120.120 (2)0.7493 (15)0.7010 (14)0.027 (4)
C130.0284 (15)0.8807 (10)0.7441 (10)0.031 (3)
H13A0.10530.94450.78840.037*
H13B0.02770.95920.69910.037*
C140.095 (2)0.7931 (14)0.7881 (14)0.027 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.024 (9)0.068 (5)0.015 (8)0.001 (4)0.004 (8)0.009 (5)
O20.041 (8)0.069 (5)0.005 (8)0.004 (5)0.001 (7)0.009 (5)
O30.017 (8)0.058 (5)0.022 (9)0.005 (4)0.002 (8)0.012 (5)
O40.034 (8)0.071 (5)0.028 (10)0.008 (5)0.008 (8)0.011 (5)
N10.037 (9)0.044 (5)0.007 (10)0.014 (5)0.006 (9)0.001 (5)
N20.020 (9)0.044 (5)0.017 (10)0.003 (5)0.002 (9)0.002 (6)
C20.026 (8)0.034 (5)0.021 (9)0.001 (5)0.001 (7)0.003 (6)
C30.028 (7)0.039 (5)0.026 (8)0.006 (4)0.004 (7)0.002 (5)
C40.024 (7)0.036 (4)0.019 (8)0.002 (4)0.001 (7)0.003 (5)
C50.023 (7)0.046 (5)0.017 (8)0.002 (4)0.003 (7)0.004 (5)
C60.021 (8)0.035 (5)0.017 (9)0.004 (4)0.005 (7)0.003 (5)
C70.024 (7)0.045 (5)0.020 (8)0.003 (4)0.002 (7)0.000 (5)
C80.023 (8)0.040 (5)0.015 (9)0.008 (4)0.003 (7)0.001 (5)
C90.023 (9)0.048 (5)0.018 (9)0.007 (5)0.003 (8)0.004 (6)
C100.026 (9)0.055 (6)0.022 (10)0.002 (5)0.004 (8)0.004 (6)
C110.026 (8)0.046 (5)0.021 (9)0.005 (4)0.002 (7)0.000 (6)
C120.036 (9)0.038 (6)0.008 (8)0.000 (5)0.004 (8)0.009 (6)
C130.039 (8)0.035 (5)0.017 (9)0.007 (4)0.002 (7)0.011 (5)
C140.036 (9)0.029 (5)0.014 (9)0.014 (5)0.001 (8)0.005 (6)
Geometric parameters (Å, º) top
O1—C121.25 (2)C5—H50.9300
O2—C121.22 (2)C5—C61.395 (11)
O3—H3A0.8200C6—H60.9300
O3—C141.31 (2)C7—C81.31 (3)
O4—C141.22 (2)C7—C111.45 (2)
N1—H10.8600C8—H80.9300
N1—C21.28 (2)C8—C91.373 (12)
N1—C61.35 (2)C9—H90.9300
N2—C91.34 (2)C10—H100.9300
N2—C101.26 (2)C10—C111.406 (12)
C2—H20.9300C11—H110.9300
C2—C31.366 (12)C12—C131.534 (14)
C3—H30.9300C13—H13A0.9700
C3—C41.36 (2)C13—H13B0.9700
C4—C51.39 (2)C13—C141.533 (14)
C4—C71.480 (13)
C14—O3—H3A109.5C7—C8—C9123.0 (18)
C2—N1—H1119.3C9—C8—H8118.5
C2—N1—C6121.4 (11)N2—C9—C8121.7 (16)
C6—N1—H1119.3N2—C9—H9119.2
C10—N2—C9115.6 (11)C8—C9—H9119.2
N1—C2—H2118.8N2—C10—H10115.5
N1—C2—C3122.3 (16)N2—C10—C11129.0 (18)
C3—C2—H2118.8C11—C10—H10115.5
C2—C3—H3120.0C7—C11—H11123.6
C4—C3—C2120.0 (16)C10—C11—C7112.9 (15)
C4—C3—H3120.0C10—C11—H11123.6
C3—C4—C5117.6 (10)O1—C12—C13115.5 (17)
C3—C4—C7120.0 (16)O2—C12—O1128.2 (15)
C5—C4—C7122.4 (16)O2—C12—C13116.1 (18)
C4—C5—H5120.0C12—C13—H13A109.6
C4—C5—C6119.9 (15)C12—C13—H13B109.6
C6—C5—H5120.0H13A—C13—H13B108.1
N1—C6—C5118.6 (15)C14—C13—C12110.3 (7)
N1—C6—H6120.7C14—C13—H13A109.6
C5—C6—H6120.7C14—C13—H13B109.6
C8—C7—C4124.9 (18)O3—C14—C13111.1 (17)
C8—C7—C11117.5 (11)O4—C14—O3127.2 (15)
C11—C7—C4117.0 (16)O4—C14—C13121.2 (18)
C7—C8—H8118.5
O1—C12—C13—C1492.2 (15)C4—C7—C11—C10177.6 (7)
O2—C12—C13—C1484.5 (18)C5—C4—C7—C8174.8 (11)
N1—C2—C3—C42.1 (15)C5—C4—C7—C113.5 (14)
N2—C10—C11—C76.2 (16)C6—N1—C2—C33.5 (17)
C2—N1—C6—C52.7 (16)C7—C4—C5—C6178.1 (7)
C2—C3—C4—C50.1 (14)C7—C8—C9—N24.5 (15)
C2—C3—C4—C7178.8 (8)C8—C7—C11—C105.7 (14)
C3—C4—C5—C60.5 (14)C9—N2—C10—C115.4 (18)
C3—C4—C7—C86.7 (17)C10—N2—C9—C84.0 (14)
C3—C4—C7—C11178.0 (9)C11—C7—C8—C95.4 (17)
C4—C5—C6—N10.7 (14)C12—C13—C14—O392.9 (15)
C4—C7—C8—C9176.7 (8)C12—C13—C14—O479.7 (18)
4,4'-bipyridine malonate (BIPYMA_333) top
Crystal data top
C3H2O4·C10H10N2F(000) = 544
Mr = 260.25Dx = 1.747 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.40 (1) ÅCell parameters from 793 reflections
b = 7.886 (3) Åθ = 3.2–25.3°
c = 15.389 (19) ŵ = 0.13 mm1
β = 103.93 (14)°T = 298 K
V = 989.5 (18) Å3Block, colourless
Z = 40.37 × 0.19 × 0.09 mm
Data collection top
New Xcalibur, EosS2
diffractometer
888 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 8.0169 pixels mm-1θmax = 28.2°, θmin = 2.9°
ω and φ scansh = 1010
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 1010
Tmin = 0.636, Tmax = 0.732l = 1514
2861 measured reflections
Refinement top
Refinement on F286 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.0286P)2 + 5.1029P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
888 reflectionsΔρmax = 0.28 e Å3
172 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0294 (17)0.7604 (10)0.8775 (13)0.040 (6)
O20.2384 (17)0.6814 (11)0.7511 (12)0.040 (7)
O40.2246 (16)0.7494 (10)0.7447 (12)0.039 (6)
O10.0660 (19)0.7179 (11)0.6204 (13)0.044 (7)
C120.118 (3)0.7517 (15)0.700 (2)0.045 (9)
C140.082 (3)0.7922 (15)0.794 (2)0.047 (8)
C130.0303 (19)0.8845 (12)0.7447 (13)0.044 (7)
H13A0.11030.95180.78660.053*
H13B0.03390.95980.69980.053*
N20.772 (2)0.0506 (12)0.4175 (15)0.031 (5)
H20.83280.12180.39810.037*
N10.259 (2)0.5093 (11)0.5736 (15)0.036 (5)
H10.19750.57770.59450.044*
C50.3231 (19)0.3543 (12)0.4544 (15)0.033 (5)
H50.29860.32360.39430.040*
C90.806 (2)0.0057 (12)0.5031 (15)0.028 (5)
H90.89820.05100.54240.034*
C20.387 (2)0.4498 (14)0.6252 (17)0.041 (5)
H2A0.40990.48160.68510.049*
C30.493 (2)0.3422 (13)0.5989 (15)0.040 (4)
H30.58650.30450.64010.048*
C40.462 (2)0.2903 (12)0.5122 (16)0.033 (4)
C100.648 (2)0.0139 (13)0.3656 (17)0.031 (5)
H100.62480.01760.30560.037*
C60.217 (2)0.4668 (10)0.4859 (14)0.029 (5)
H60.12280.50950.44760.035*
C110.543 (2)0.1290 (13)0.3916 (15)0.038 (5)
H110.45280.17260.35020.046*
C80.708 (2)0.1070 (12)0.5350 (15)0.031 (4)
H80.73280.13540.59550.037*
C70.575 (2)0.1759 (14)0.4785 (17)0.035 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.033 (13)0.046 (6)0.051 (19)0.005 (4)0.031 (15)0.002 (6)
O20.050 (15)0.058 (6)0.009 (17)0.004 (5)0.002 (16)0.009 (6)
O40.040 (14)0.050 (5)0.026 (17)0.006 (5)0.006 (15)0.007 (5)
O10.058 (14)0.049 (6)0.036 (19)0.005 (5)0.035 (16)0.006 (6)
C120.051 (16)0.021 (6)0.08 (3)0.003 (7)0.053 (18)0.015 (9)
C140.050 (17)0.019 (6)0.09 (2)0.004 (6)0.052 (18)0.006 (9)
C130.061 (14)0.027 (6)0.059 (18)0.006 (5)0.041 (14)0.013 (6)
N20.025 (11)0.039 (6)0.034 (13)0.005 (5)0.018 (11)0.001 (6)
N10.042 (11)0.028 (5)0.049 (14)0.006 (5)0.031 (11)0.004 (6)
C50.016 (9)0.036 (6)0.054 (14)0.005 (5)0.019 (9)0.013 (7)
C90.027 (11)0.032 (6)0.029 (14)0.003 (5)0.011 (11)0.000 (6)
C20.059 (13)0.033 (6)0.037 (13)0.003 (6)0.025 (11)0.008 (7)
C30.039 (11)0.032 (6)0.051 (13)0.013 (5)0.015 (10)0.014 (7)
C40.026 (9)0.019 (5)0.055 (13)0.009 (4)0.012 (10)0.011 (6)
C100.035 (12)0.036 (6)0.025 (14)0.002 (6)0.013 (11)0.008 (6)
C60.027 (10)0.014 (5)0.048 (14)0.003 (4)0.015 (10)0.009 (6)
C110.041 (12)0.040 (6)0.038 (13)0.010 (6)0.017 (11)0.012 (7)
C80.025 (10)0.039 (6)0.035 (13)0.007 (5)0.021 (10)0.001 (7)
C70.031 (10)0.040 (6)0.044 (13)0.003 (5)0.027 (11)0.007 (7)
Geometric parameters (Å, º) top
O3—C141.28 (3)C5—C61.421 (14)
O2—C121.25 (4)C9—H90.9300
O4—C141.30 (3)C9—C81.382 (15)
O1—C121.22 (4)C2—H2A0.9300
C12—C131.537 (19)C2—C31.362 (17)
C14—C131.533 (18)C3—H30.9300
C13—H13A0.9700C3—C41.36 (3)
C13—H13B0.9700C4—C71.490 (17)
N2—H20.8600C10—H100.9300
N2—C91.33 (3)C10—C111.390 (15)
N2—C101.26 (3)C6—H60.9300
N1—H10.8600C11—H110.9300
N1—C21.26 (3)C11—C71.35 (3)
N1—C61.35 (3)C8—H80.9300
C5—H50.9300C8—C71.35 (3)
C5—C41.38 (3)
O2—C12—C13115 (3)N1—C2—H2A117.8
O1—C12—O2124.9 (18)N1—C2—C3124 (2)
O1—C12—C13120 (3)C3—C2—H2A117.8
O3—C14—O4125.9 (16)C2—C3—H3120.2
O3—C14—C13119 (2)C4—C3—C2120 (2)
O4—C14—C13115 (3)C4—C3—H3120.2
C12—C13—H13A110.0C5—C4—C7120 (2)
C12—C13—H13B110.0C3—C4—C5117.0 (13)
C14—C13—C12108.6 (9)C3—C4—C7122 (2)
C14—C13—H13A110.0N2—C10—H10117.7
C14—C13—H13B110.0N2—C10—C11125 (2)
H13A—C13—H13B108.3C11—C10—H10117.7
C9—N2—H2120.9N1—C6—C5117.6 (18)
C10—N2—H2120.9N1—C6—H6121.2
C10—N2—C9118.1 (14)C5—C6—H6121.2
C2—N1—H1119.6C10—C11—H11120.8
C2—N1—C6120.8 (15)C7—C11—C10118 (2)
C6—N1—H1119.6C7—C11—H11120.8
C4—C5—H5119.7C9—C8—H8120.0
C4—C5—C6121 (2)C7—C8—C9120 (2)
C6—C5—H5119.7C7—C8—H8120.0
N2—C9—H9119.4C11—C7—C4121 (2)
N2—C9—C8121 (2)C11—C7—C8117.6 (14)
C8—C9—H9119.4C8—C7—C4121 (2)
O3—C14—C13—C1295 (2)C2—N1—C6—C50.4 (18)
O2—C12—C13—C1480 (2)C2—C3—C4—C51.4 (16)
O4—C14—C13—C1283 (2)C2—C3—C4—C7178.6 (10)
O1—C12—C13—C1498 (2)C3—C4—C7—C11178.6 (12)
N2—C9—C8—C71.1 (17)C3—C4—C7—C85.6 (18)
N2—C10—C11—C70.0 (19)C4—C5—C6—N10.7 (15)
N1—C2—C3—C41.2 (19)C10—N2—C9—C80.8 (18)
C5—C4—C7—C111.5 (17)C10—C11—C7—C4176.2 (9)
C5—C4—C7—C8177.3 (12)C10—C11—C7—C80.2 (18)
C9—N2—C10—C110 (2)C6—N1—C2—C31 (2)
C9—C8—C7—C4176.7 (9)C6—C5—C4—C31.2 (15)
C9—C8—C7—C110.7 (18)C6—C5—C4—C7178.5 (9)
 

Acknowledgements

Author contributions. EPK: conceptualization, formal analysis, investigation (XRD, Raman), resources, writing – original draft, writing – review and editing, visualization, supervision, project administration, funding acquisition; FI: conceptualization, formal analysis, investigation (DFT), writing – review and editing, visualization; AL: conceptualization, formal analysis, investigation (DFT), writing – review and editing, visualization; MK: formal analysis, writing – review and editing; AO: investigation (XRD), visualization; IM: investigation (XRD, Raman); JMR: conceptualization, formal analysis, writing – review and editing, supervision (DFT), project administration, funding acquisition.

Funding information

The following funding is acknowledged: National Science Centre, Poland (grant No. UMO-2020/39/D/ST4/00260 awarded to EPK, MK, IM and AO); Principado de Asturias-FEDER (grant No. AYUD/2021/51036 awarded to FIR, AL and JMR); Agencia Estatal de Investigación (grant No. PID2021-122585NB-C21-2 awarded to FIR, AL and JMR). X-ray diffraction experiments were carried out in part at the Center for Advanced Technology, Adam Mickiewicz University, via paid access.

References

First citationAbe, H., Imai, Y., Takekiyo, T., Yoshimura, Y. & Hamaya, N. (2014). IOP Conf. Ser. Mater. Sci. Eng. 54, 012003.  Google Scholar
First citationAndrzejewski, M., Olejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 4892–4899.  Web of Science CSD CrossRef CAS Google Scholar
First citationAndrzejewski, M., Olejniczak, A. & Katrusiak, A. (2012). CrystEngComm, 14, 6374–6434.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnioła, M. & Katrusiak, A. (2016). CrystEngComm, 18, 3223–3228.  Google Scholar
First citationAnioła, M. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 3134–3141.  Google Scholar
First citationAnioła, M., Kwaśna, K., Cai, W. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 6304–6309.  Google Scholar
First citationBąkowicz, J. & Turowska-Tyrk, I. (2016). CrystEngComm, 18, 8898–8905.  Google Scholar
First citationBąkowicz, J. & Turowska-Tyrk, I. (2020). Crystals, 10, 1031.  Google Scholar
First citationBąkowicz, J. & Turowska-Tyrk, I. (2022). Acta Cryst. B78, 223–230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBates, M. & Lunt, R. R. (2017). Sustain. Energy Fuels, 1, 955–968.  Web of Science CrossRef CAS Google Scholar
First citationBedeković, N., Stilinović, V., Friščić, T. & Cinčić, D. (2018). New J. Chem. 42, 10584–10591.  Google Scholar
First citationBezzu, C. G., Burt, L. A., McMonagle, C. J., Moggach, S. A., Kariuki, B. M., Allan, D. R., Warren, M. & McKeown, N. B. (2019). Nat. Mater. 18, 740–745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBhatt, H., Mishra, A. K., Murli, C., Verma, A. K., Garg, N., Deo, M. N. & Sharma, S. M. (2016). Phys. Chem. Chem. Phys. 18, 8065–8074.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBhunia, M. K., Das, S. K. & Bhaumik, A. (2010). Chem. Phys. Lett. 498, 145–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlöchl, P. E. (1994). Phys. Rev. B, 50, 17953–17979.  CrossRef Web of Science Google Scholar
First citationBogdanov, N. E., Korabel'nikov, D. V., Fedorov, I. A., Zakharov, B. A. & Boldyreva, E. V. (2022). Acta Cryst. B78, 756–762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285–291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoschmann, E. & Miller, R. D. (2018). Tetrahedron, 74, 2617–2619.  Web of Science CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBryce, M. R. (1991). Chem. Soc. Rev. 20, 355–390.  CrossRef CAS Web of Science Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2006). J. Phys. Chem. B, 110, 9755–9758.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322–10331.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCai, W. & Katrusiak, A. (2012). CrystEngComm, 14, 4420–4424.  Web of Science CSD CrossRef CAS Google Scholar
First citationCameron, C. A., Allan, D. R., Kamenev, K. V., Moggach, S. A., Murrie, M. & Parsons, S. (2014). Z. Kristallogr. Cryst. Mater. 229, 200–209.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarlsson, S., Zorina, L., Allan, D. R., Attfield, J. P., Canadell, E. & Batail, P. (2013). Inorg. Chem. 52, 3326–3333.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCasati, N., Macchi, P. & Sironi, A. (2009). Chem. Commun. pp. 2679–2681.  Web of Science CSD CrossRef Google Scholar
First citationChasák, J., Šlachtová, V., Urban, M. & Brulíková, L. (2021). Eur. J. Med. Chem. 209, 112872.  Web of Science PubMed Google Scholar
First citationCheney, M. L., Shan, N., Healey, E. R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2010). Cryst. Growth Des. 10, 394–405.  Web of Science CSD CrossRef CAS Google Scholar
First citationChia, A. S. & Trimble, R. F. Jr (1961). J. Phys. Chem. 65, 863–866.  CrossRef CAS Web of Science Google Scholar
First citationCollings, I. E. & Hanfland, M. (2019). Molecules, 24, 1759.  Web of Science CSD CrossRef PubMed Google Scholar
First citationConnor, L. E., Delori, A., Hutchison, I. B., Nic Daeid, N., Sutcliffe, O. B. & Oswald, I. D. H. (2015). Acta Cryst. B71, 3–9.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCraig, G. A., Sarkar, A., Woodall, C. H., Hay, M. A., Marriott, K. E. R., Kamenev, K. V., Moggach, S. A., Brechin, E. K., Parsons, S., Rajaraman, G. & Murrie, M. (2018). Chem. Sci. 9, 1551–1559.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365.  CAS Google Scholar
First citationCruz-Cabeza, A. J., Lusi, M., Wheatcroft, H. P. & Bond, A. D. (2022). Faraday Discuss. 235, 446–466.  Web of Science CAS PubMed Google Scholar
First citationDey, B. P. & Lahiri, S. C. (2010). J. Indian Chem. Soc. 87, 29–41.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEhrenreich, G., Zeng, M., Burger, Z., Warren, S. R., Gaultois, M. W., Tan, M. & Kieslich, G. (2019). Chem. Commun. 55, 3911–3914.  Web of Science CSD CrossRef CAS Google Scholar
First citationEikeland, E., Thomsen, M. K., Madsen, S. R., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2016). Chem. A Eur. J. 22, 4061–4069.  Web of Science CSD CrossRef CAS Google Scholar
First citationEikeland, E., Thomsen, M. K., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2017). Cryst. Growth Des. 17, 3834–3846.  Web of Science CSD CrossRef CAS Google Scholar
First citationEikeland, E. Z., Borup, M., Thomsen, M. K., Roelsgaard, M., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2020). Cryst. Growth Des. 20, 4092–4099.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbiani, F. P. A., Allan, D. R., David, W. I. F., Davidson, A. J., Lennie, A. R., Parsons, S., Pulham, C. R. & Warren, J. E. (2007). Cryst. Growth Des. 7, 1115–1124.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbiani, F. P. A., Allan, D. R., David, W. I. F., Moggach, S. A., Parsons, S. & Pulham, C. R. (2004). CrystEngComm, 6, 504–511.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbiani, F. P. A., Allan, D. R., Dawson, A., David, W. I. F., McGregor, P. A., Oswald, I. D. H., Parsons, S. & Pulham, C. R. (2003). Chem. Commun. pp. 3004–3005.  Web of Science CSD CrossRef Google Scholar
First citationFabbiani, F. P. A., Bergantin, S., Gavezzotti, A., Rizzato, S. & Moret, M. (2016). CrystEngComm, 18, 2173–2181.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbiani, F. P. A., Buth, G., Levendis, D. C. & Cruz-Cabeza, A. J. (2014). Chem. Commun. 50, 1817–1819.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbiani, F. P. A., Dittrich, B., Florence, A. J., Gelbrich, T., Hursthouse, M. B., Kuhs, W. F., Shankland, N. & Sowa, H. (2009). CrystEngComm, 11, 1396–1406.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbiani, F. P. A., Levendis, D. C., Buth, G., Kuhs, W. F., Shankland, N. & Sowa, H. (2010). CrystEngComm, 12, 2354–2360.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilhol, A., Bravic, G., Gaultier, J., Chasseau, D. & Vettier, C. (1981). Acta Cryst. B37, 1225–1235.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFornasari, L., Olejniczak, A., Rossi, F., d'Agostino, S., Chierotti, M. R., Gobetto, R., Katrusiak, A. & Braga, D. (2020). Chem. A Eur. J. 26, 5061–5069.  Web of Science CSD CrossRef CAS Google Scholar
First citationFriedrich, A., Collings, I. E., Dziubek, K. F., Fanetti, S., Radacki, K., Ruiz-Fuertes, J., Pellicer-Porres, J., Hanfland, M., Sieh, D., Bini, R., Clark, S. J. & Marder, T. B. (2020). J. Am. Chem. Soc. 142, 18907–18923.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFunnell, N. P., Allan, D. R., Maloney, A. G. P., Smith, R. I., Wilson, C. J. G. & Parsons, S. (2021). CrystEngComm, 23, 769–776.  Web of Science CSD CrossRef CAS Google Scholar
First citationGalica, T., Konieczny, K. A. & Turowska-Tyrk, I. (2020). J. Photochem. Photobiol. Chem. 386, 112119.  Web of Science CSD CrossRef Google Scholar
First citationGalica, T. & Turowska-Tyrk, I. (2019). J. Photochem. Photobiol. Chem. 376, 108–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationGaliois, B., Gaultier, J., Hauw, C., Chasseau, D., Meresse, A., Filhol, A. & Bechgaard, K. (1985). Mol. Cryst. Liq. Cryst. 119, 225–232.  CSD CrossRef CAS Web of Science Google Scholar
First citationGallois, B., Gaultier, J., Bechtel, F., Filhol, A. & Vettier, C. (1987). Mol. Cryst. Liq. Cryst. 148, 279–293.  CSD CrossRef CAS Web of Science Google Scholar
First citationGallois, B., Gaultier, J., Hauw, C., Lamcharfi, T. & Filhol, A. (1986). Acta Cryst. B42, 564–575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalloway, K. W., Moggach, S. A., Parois, P., Lennie, A. R., Warren, J. E., Brechin, E. K., Peacock, R. D., Valiente, R., González, J., Rodríguez, F., Parsons, S. & Murrie, M. (2010). CrystEngComm, 12, 2516.  Web of Science CSD CrossRef Google Scholar
First citationGiordano, N., Beavers, C. M., Kamenev, K. V., Love, J. B., Pankhurst, J. R., Teat, S. J. & Parsons, S. (2020). Chem. Commun. 56, 3449–3452.  Web of Science CSD CrossRef CAS Google Scholar
First citationGranero–García, R., Falenty, A. & Fabbiani, F. P. A. (2017). Chem. A Eur. J. 23, 3691–3698.  Google Scholar
First citationGrimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.  Web of Science CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243.  Web of Science CrossRef CAS Google Scholar
First citationGuionneau, P., Brigouleix, C., Barrans, Y., Goeta, A. E., Létard, J.-F., Howard, J. A. K., Gaultier, J. & Chasseau, D. (2001). C. R. Acad. Sci. Paris Chim. 4, 161–171.  CAS Google Scholar
First citationGuionneau, P., Gaultier, J., Rahal, M., Bravic, G. M., Mellado, J., Chasseau, D., Ducasse, L., Kurmoo, M. & Day, P. (1995). J. Mater. Chem. 5, 1639–1645.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuranda, D. T., Ushakov, G. A., Yolkin, P. G. & Švedas, V. K. (2012). J. Mol. Catal. B Enzym. 74, 48–53.  Web of Science CrossRef CAS Google Scholar
First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2013). J. Am. Chem. Soc. 135, 4492–4500.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHuq, A. & Stephens, P. W. (2006). Phys. Rev. B, 74, 075424.  Web of Science CrossRef Google Scholar
First citationIsaacs, N. S., Javaid, K. & Rannala, E. (1977). Nature, 268, 372–372.  CrossRef CAS Web of Science Google Scholar
First citationJaroń, T., Starobrat, A., Struzhkin, V. V. & Grochala, W. (2020). Eur. J. Inorg. Chem. 2020, 3846–3851.  Google Scholar
First citationJiang, M., Zhen, C., Li, S., Zhang, X. & Hu, W. (2021). Front. Chem. 9, 764628.   Google Scholar
First citationJohnstone, R. D. L., Francis, D., Lennie, A. R., Marshall, W. G., Moggach, S. A., Parsons, S., Pidcock, E. & Warren, J. E. (2008). CrystEngComm, 10, 1758.  Web of Science CSD CrossRef Google Scholar
First citationJohnstone, R. D. L., Lennie, A. R., Parsons, S., Pidcock, E. & Warren, J. E. (2009). Acta Cryst. B65, 731–748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, A. O. F., Lemée-Cailleau, M.-H., Martins, D. M. S., McIntyre, G. J., Oswald, I. D. H., Pulham, C. R., Spanswick, C. K., Thomas, L. H. & Wilson, C. C. (2012). Phys. Chem. Chem. Phys. 14, 13273–13283.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJungen, S., Paenurk, E. & Chen, P. (2020). Inorg. Chem. 59, 12322–12336.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKaniwa, N. & Saito, Y. (2013). J. Hum. Genet. 58, 317–326.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatrusiak, A., Szafrański, M. & Podsiadło, M. (2011). Chem. Commun. 47, 2107–2109.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaur, G., Kumar, H. & Singla, M. (2022). J. Mol. Liq. 351, 118556.  Web of Science CrossRef Google Scholar
First citationKeller, S., Prescimone, A., Bolink, H., Sessolo, M., Longo, G., Martínez-Sarti, L., Junquera-Hernández, J. M., Constable, E. C., Ortí, E. & Housecroft, C. E. (2018a). Dalton Trans. 47, 14263–14276.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKeller, S., Prescimone, A., Constable, E. C. & Housecroft, C. E. (2018b). Photochem. Photobiol. Sci. 17, 375–385.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalil, M. M., Radalla, A. M. & Abd Elnaby, N. M. (2013). J. Solution Chem. 42, 1123–1145.  Web of Science CrossRef CAS Google Scholar
First citationKhalili, F., Henni, A. & East, A. L. L. (2009). J. Chem. Eng. Data, 54, 2914–2917.  Web of Science CrossRef CAS Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoifman, N., Cohen, B. & Huppert, D. (2002). J. Phys. Chem. A, 106, 4336–4344.  Web of Science CrossRef CAS Google Scholar
First citationKomatsu, K., Machida, S., Noritake, F., Hattori, T., Sano-Furukawa, A., Yamane, R., Yamashita, K. & Kagi, H. (2020). Nat. Commun. 11, 464.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKonieczny, K. A., Bąkowicz, J., Paliwoda, D., Warren, M. R., Ciesielski, A., Cyrański, M. K. & Turowska-Tyrk, I. (2021). Acta Cryst. B77, 321–330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKonieczny, K. A., Szczurek, A., Bąkowicz, J., Siedlecka, R., Ciesielski, A., Cyrański, M. K. & Turowska-Tyrk, I. (2020). Cryst. Growth Des. 20, 5061–5071.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonieczny, K., Bąkowicz, J., Galica, T., Siedlecka, R. & Turowska-Tyrk, I. (2017). CrystEngComm, 19, 3044–3050.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonieczny, K., Bąkowicz, J. & Turowska-Tyrk, I. (2015). CrystEngComm, 17, 7693–7701.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonieczny, K., Bąkowicz, J. & Turowska-Tyrk, I. (2016). J. Photochem. Photobiol. Chem. 325, 111–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299.  Web of Science CSD CrossRef Google Scholar
First citationKortüm, G., Vogel, W. & Andrussow, K. (1960). Pure Appl. Chem. 1, 187–536.  Google Scholar
First citationKozlenko, D. P., Wasicki, J. W., Glazkov, V. P., Kichanov, S. E., Nawrocik, W. & Savenko, B. N. (2005). Crystallogr. Rep. 50, 78–84.  Web of Science CrossRef CAS Google Scholar
First citationKresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15–50.  CrossRef CAS Web of Science Google Scholar
First citationKrishtalik, L. I. (2000). Biochim. Biophys. Acta, 1458, 6–27.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036–1046.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKurnosov, A. V., Komarov, V. Yu., Voronin, V. I., Teplykh, A. E. & Manakov, A. Yu. (2004). Angew. Chem. Int. Ed. 43, 2922–2924.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurzydłowski, D. (2022). RSC Adv. 12, 11436–11441.  Web of Science PubMed Google Scholar
First citationLeBlanc, L. M., Dale, S. G., Taylor, C. R., Becke, A. D., Day, G. M. & Johnson, E. R. (2018). Angew. Chem. Int. Ed. 57, 14906–14910.  Web of Science CrossRef CAS Google Scholar
First citationLe Pevelen, D., Barrans, Y., Gaultier, J. & Chasseau, D. (1999). Synth. Met. 102, 1609–1610.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Xu, J., Wang, Y., Zheng, H. & Li, K. (2021). Molecules, 26, 7581.  Web of Science CrossRef PubMed Google Scholar
First citationLi, L., Yin, X.-H. & Diao, K.-S. (2020). RSC Adv. 10, 36125–36134.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, L., Wang, J.-R. & Mei, X. (2022). CrystEngComm, 24, 2002–2022.  Web of Science CrossRef CAS Google Scholar
First citationLosev, E. A., Zakharov, B. A. & Boldyreva, E. V. (2016). CrystEngComm, 18, 5869–5875.  Web of Science CSD CrossRef CAS Google Scholar
First citationLugo, M. L. & Lubes, V. R. (2007). J. Chem. Eng. Data, 52, 1217–1222.  Web of Science CrossRef Google Scholar
First citationMa, Z., Li, J., Liu, C., Sun, C. & Zhou, M. (2017). Sci. Rep. 7, 4677.  Web of Science CrossRef PubMed Google Scholar
First citationMacchi, P., Casati, N., Marshall, W. G. & Sironi, A. (2010). CrystEngComm, 12, 2596–2603.  Web of Science CrossRef CAS Google Scholar
First citationMadsen, S. R., Thomsen, M. K., Scheins, S., Chen, Y.-S., Finkelmeier, N., Stalke, D., Overgaard, J. & Iversen, B. B. (2014). Dalton Trans. 43, 1313–1320.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMailman, A., Wong, J. W. L., Winter, S. M., Claridge, R. C. M., Robertson, C. M., Assoud, A., Yong, W., Steven, E., Dube, P. A., Tse, J. S., Desgreniers, S., Secco, R. A. & Oakley, R. T. (2017). J. Am. Chem. Soc. 139, 1625–1635.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMartins, D. M. S., Middlemiss, D. S., Pulham, C. R., Wilson, C. C., Weller, M. T., Henry, P. F., Shankland, N., Shankland, K., Marshall, W. G., Ibberson, R. M., Knight, K., Moggach, S., Brunelli, M. & Morrison, C. A. (2009). J. Am. Chem. Soc. 131, 3884–3893.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeier, T., Trybel, F., Khandarkhaeva, S., Laniel, D., Ishii, T., Aslandukova, A., Dubrovinskaia, N. & Dubrovinsky, L. (2022). Nat. Commun. 13, 3042.  Web of Science CrossRef PubMed Google Scholar
First citationMerrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294.  CrossRef Web of Science Google Scholar
First citationMidgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMilašinović, V., Molčanov, K., Krawczuk, A., Bogdanov, N. E., Zakharov, B. A., Boldyreva, E. V., Jelsch, C. & Kojić-Prodić, B. (2021). IUCrJ, 8, 644–654.  Web of Science CSD CrossRef PubMed IUCr Journals Google Scholar
First citationMínguez Espallargas, G., Brammer, L., Allan, D. R., Pulham, C. R., Robertson, N. & Warren, J. E. (2008). J. Am. Chem. Soc. 130, 9058–9071.  Web of Science PubMed Google Scholar
First citationMitani, T., Saito, G. & Urayama, H. (1988). Phys. Rev. Lett. 60, 2299–2302.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMoggach, S. A., Galloway, K. W., Lennie, A. R., Parois, P., Rowantree, N., Brechin, E. K., Warren, J. E., Murrie, M. & Parsons, S. (2009). CrystEngComm, 11, 2601–2604.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoissette, A., Batonneau, Y. & Brémard, C. (2001). J. Am. Chem. Soc. 123, 12325–12334.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorency, M., Néron, S., Iftimie, R. & Wuest, J. D. (2021). J. Org. Chem. 86, 14444–14460.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNam, T., Nara, S. J., Zagol-Ikapitte, I., Cooper, T., Valgimigli, L., Oates, J. A., Porter, N. A., Boutaud, O. & Pratt, D. A. (2009). Org. Biomol. Chem. 7, 5103–5112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNaumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990–9995.  Web of Science CSD CrossRef CAS Google Scholar
First citationNazeeruddin, M. K. & Kalyanasundaram, K. (1989). Inorg. Chem. 28, 4251–4259.  CrossRef CAS Web of Science Google Scholar
First citationNeese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.  Google Scholar
First citationNicholas, A. D., Zhao, J., Slebodnick, C., Ross, N. L. & Cahill, C. L. (2021). J. Solid State Chem. 300, 122262.  Web of Science CSD CrossRef Google Scholar
First citationNowicki, W., Olejniczak, A., Andrzejewski, M. & Katrusiak, A. (2012). CrystEngComm, 14, 6428–6434.  Web of Science CSD CrossRef CAS Google Scholar
First citationUS Food and Drug Administration (2023). Generally Recognized as Safe (GRAS), https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-grasGoogle Scholar
First citationOlejniczak, A. & Katrusiak, A. (2010). CrystEngComm, 12, 2528–2532.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 2250–2256.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2020). Acta Cryst. B76, 1136–1142.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022a). Cryst. Growth Des. 22, 5996–6003.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022b). IUCrJ, 9, 49–54.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationOlejniczak, A., Katrusiak, A. & Szafrański, M. (2010). Cryst. Growth Des. 10, 3537–3546.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A., Katrusiak, A. & Vij, A. (2009). CrystEngComm, 11, 1240–1244.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A., Krūkle-Bērziņa, K. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 3756–3762.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A., Szafrański, M. & Katrusiak, A. (2018). Cryst. Growth Des. 18, 6488–6496.  Web of Science CSD CrossRef CAS Google Scholar
First citationOno, T., Tsukiyama, Y., Taema, A., Sato, H., Kiyooka, H., Yamaguchi, Y., Nagahashi, A., Nishiyama, M., Akahama, Y., Ozawa, Y., Abe, M. & Hisaeda, Y. (2018). ChemPhotoChem, 2, 416–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationOswald, I. D. H. & Pulham, C. R. (2008). CrystEngComm, 10, 1114–1116.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaliwoda, D., Szafrański, M., Hanfland, M. & Katrusiak, A. (2018). J. Mater. Chem. C. 6, 7689–7699.  Web of Science CSD CrossRef CAS Google Scholar
First citationParois, P., Moggach, S. A., Sanchez-Benitez, J., Kamenev, K. V., Lennie, A. R., Warren, J. E., Brechin, E. K., Parsons, S. & Murrie, M. (2010). Chem. Commun. 46, 1881–1883.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatyk-Kaźmierczak, E. & Kaźmierczak, M. (2021). Cryst. Growth Des. 21, 6879–6888.  Google Scholar
First citationPatyk-Kaźmierczak, E., Warren, M. R., Allan, D. R. & Katrusiak, A. (2017). Phys. Chem. Chem. Phys. 19, 9086–9091.  Web of Science PubMed Google Scholar
First citationPedireddi, V. R., Chatterjee, S., Ranganathan, A. & Rao, C. N. R. (1998). Tetrahedron, 54, 9457–9474.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPerrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for Organic Acids and Bases. pp. 12–20. Dordrecht: Springer Netherlands.  Google Scholar
First citationPfrunder, M. C., Whittaker, J. J., Parsons, S., Moubaraki, B., Murray, K. S., Moggach, S. A., Sharma, N., Micallef, A. S., Clegg, J. K. & McMurtrie, J. C. (2020). Chem. Mater. 32, 3229–3234.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780.  CrossRef CAS Web of Science Google Scholar
First citationPodsiadło, M., Jakóbek, K. & Katrusiak, A. (2010). CrystEngComm, 12, 2561–2567.  Google Scholar
First citationPoręba, T., Ernst, M., Zimmer, D., Macchi, P. & Casati, N. (2019). Angew. Chem. Int. Ed. 58, 6625–6629.  Google Scholar
First citationPoręba, T., Macchi, P. & Casati, N. (2020). Cryst. Growth Des. 20, 4375–4386.  Google Scholar
First citationPrescimone, A., Sanchez-Benitez, J., Kamenev, K. K., Moggach, S. A., Warren, J. E., Lennie, A. R., Murrie, M., Parsons, S. & Brechin, E. K. (2010a). Dalton Trans. 39, 113–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrescimone, A., Sanchez-Benitez, J., Kamenev, K. V., Moggach, S. A., Lennie, A. R., Warren, J. E., Murrie, M., Parsons, S. & Brechin, E. K. (2009). Dalton Trans. pp. 7390–7395.  Web of Science CSD CrossRef Google Scholar
First citationPrescimone, A., Sanchez-Benitez, J., Kamenev, K. V., Warren, J. E., Lennie, A. R., Murrie, M., Parsons, S. & Brechin, E. K. (2010). Z. Naturforschung B, 65, 221–230.  Web of Science CrossRef CAS Google Scholar
First citationPrice, A. N., Berryman, V., Ochiai, T., Shephard, J. J., Parsons, S., Kaltsoyannis, N. & Arnold, P. L. (2022). Nat. Commun. 13, 3931.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPriola, E., Curetti, N., Marabello, D., Andreo, J., Giordana, A., Andreo, L., Benna, P., Freire, P. T. C., Benzi, P., Operti, L. & Diana, E. (2022). CrystEngComm, 24, 2336–2348.  Web of Science CSD CrossRef CAS Google Scholar
First citationPutra, O. D. & Uekusa, H. (2020). Vol. Advances in Organic Crystal Chemistry: Comprehensive Reviews 2020, edited by M. Sakamoto & H. Uekusa, pp. 153–184. Singapore: Springer.  Google Scholar
First citationRaghavendra, N. (2022). Russ. J. Phys. Chem. 96, 334–339.  Web of Science CrossRef CAS Google Scholar
First citationReetz, M. T., Höger, S. & Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181–183.  CSD CrossRef Web of Science Google Scholar
First citationRejnhardt, P., Drozd, M. & Daszkiewicz, M. (2021). Acta Cryst. B77, 996–1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRichardson, J. G., Benjamin, H., Moggach, S. A., Warren, L. R., Warren, M. R., Allan, D. R., Saunders, L. K., Morrison, C. A. & Robertson, N. (2020). Phys. Chem. Chem. Phys. 22, 17668–17676.  Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
First citationRigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationRodríguez–Velamazán, J. A., Fabelo, O., Beavers, C. M., Natividad, E., Evangelisti, M. & Roubeau, O. (2014). Chem. A Eur. J. 20, 7956–7961.  Google Scholar
First citationRoszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamuelsen, L., Holm, R., Lathuile, A. & Schönbeck, C. (2019). Int. J. Pharm. 560, 357–364.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSanphui, P., Mishra, M. K., Ramamurty, U. & Desiraju, G. R. (2015). Mol. Pharm. 12, 889–897.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaouane, S. & Fabbiani, F. P. A. (2015). Cryst. Growth Des. 15, 3875–3884.  Web of Science CSD CrossRef CAS Google Scholar
First citationSatthaphut, , Sutcliffe, & Oswaldiain, (2014). Z. Kristallogr. Cryst. Mater. 229, 101–111.  Google Scholar
First citationSchmitz, D., Kalter, M., Dunbar, A. C., Vöst, M., Fischer, A., Batke, K., Eickerling, G., Ruhland, K., Ebad–Allah, J., Kuntscher, C. & Scherer, W. (2020). Eur. J. Inorg. Chem. 2020, 79–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchultz, A. J., Wang, H. H., Williams, J. M. & Filhol, A. (1986). J. Am. Chem. Soc. 108, 7853–7855.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSeliger, J. & Žagar, V. (2014). Phys. Chem. Chem. Phys. 16, 18141–18147.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShang, Y., Shen, C., Stub, T., Zhu, S., Qiao, S., Li, Y., Wang, R., Li, J. & Liu, J. (2022). Front. Pharmacol. 13, 773282.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShepherd, H., Tonge, G., Hatcher, L., Bryant, M., Knichal, J., Raithby, P., Halcrow, M., Kulmaczewski, R., Gagnon, K. & Teat, S. (2016). Magnetochemistry, 2, 9.  Google Scholar
First citationShepherd, H. J., Palamarciuc, T., Rosa, P., Guionneau, P., Molnár, G., Létard, J.-F. & Bousseksou, A. (2012a). Angew. Chem. Int. Ed. 51, 3910–3914.  Web of Science CSD CrossRef CAS Google Scholar
First citationShepherd, H. J., Rosa, P., Vendier, L., Casati, N., Létard, J.-F., Bousseksou, A., Guionneau, P. & Molnár, G. (2012b). Phys. Chem. Chem. Phys. 14, 5265–5271.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShibaeva, R. P., Kaminskii, V. P. & Yagubskii, E. B. (1985). Mol. Cryst. Liq. Cryst. 119, 361–373.  CSD CrossRef CAS Web of Science Google Scholar
First citationShimizu, S., Watanabe, N., Kataoka, T., Shoji, T., Abe, N., Morishita, S. & Ichimura, H. (2000). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley.  Google Scholar
First citationSigfridsson, K., Ulvinge, M.-L., Svensson, L. & Granath, A.-K. (2019). Drug Dev. Ind. Pharm. 45, 202–211.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSkelton, J. M., Burton, L. A., Jackson, A. J., Oba, F., Parker, S. C. & Walsh, A. (2017). Phys. Chem. Chem. Phys. 19, 12452–12465.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSobczak, S., Półrolniczak, A., Ratajczyk, P., Cai, W., Gładysiak, A., Nikolayenko, V. I., Castell, D. C., Barbour, L. J. & Katrusiak, A. (2020). Chem. Commun. 56, 4324–4327.  Web of Science CSD CrossRef CAS Google Scholar
First citationSomayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. (1996). Science, 271, 1400–1402.  CSD CrossRef CAS Web of Science Google Scholar
First citationSong, X. & McDermott, A. E. (2001). Magn. Reson. Chem. 39, S37–S43.  Web of Science CrossRef CAS Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2002). Handbook of Pharmaceutical Salts: Properties, Selection and Use. Weinheim, New York: VHCA: Wiley-VCH.  Google Scholar
First citationStarkey, R., Norman, J. & Hintze, M. (1986). J. Chem. Educ. 63, 473.  CrossRef Web of Science Google Scholar
First citationStevens, C. J., Prescimone, A., Tuna, F., McInnes, E. J. L., Parsons, S., Morrison, C. A., Arnold, P. L. & Love, J. B. (2016). Inorg. Chem. 55, 214–220.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSun, L., Zhu, W., Yang, F., Li, B., Ren, X., Zhang, X. & Hu, W. (2018). Phys. Chem. Chem. Phys. 20, 6009–6023.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSzafrański, M. (2014). CrystEngComm, 16, 6250–6256.  Google Scholar
First citationSzafrański, M. (2020). J. Phys. Chem. C, 124, 11631–11638.  Google Scholar
First citationSzafrański, M. & Katrusiak, A. (2004). J. Phys. Chem. B, 108, 15709–15713.  Google Scholar
First citationSzafrański, M. & Ståhl, K. (2016). Cryst. Growth Des. 16, 2157–2166.  Google Scholar
First citationTadokoro, M., Itoh, M., Nishimura, R., Sekiguchi, K., Hoshino, N., Kamebuchi, H., Miyazaki, J., Kobayashi, F., Mizuno, M. & Akutagawa, T. (2022). Chem. A Eur. J. 28, e202201397.  Web of Science CSD CrossRef Google Scholar
First citationTang, X., Dong, X., Zhang, C., Li, K., Zheng, H. & Mao, H. (2023). Matter Radiat. Extremes 8, 058402.  Web of Science CrossRef Google Scholar
First citationTerlecki, M., Sobczak, S., Leszczyński, M. K., Katrusiak, A. & Lewiński, J. (2021). Chem. A Eur. J. 27, 13757–13764.  Web of Science CSD CrossRef CAS Google Scholar
First citationTesfai, A., El-Zahab, B., Kelley, A. T., Li, M., Garno, J. C., Baker, G. A. & Warner, I. M. (2009). ACS Nano, 3, 3244–3250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThiel, A. M., Damgaard-Møller, E. & Overgaard, J. (2020). Inorg. Chem. 59, 1682–1691.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTiefenthaler, L., Kollotzek, S., Ellis, A. M., Scheier, P. & Echt, O. (2020). Phys. Chem. Chem. Phys. 22, 28165–28172.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTogo, A., Chaput, L., Tadano, T. & Tanaka, I. (2023). J. Phys. Condens. Matter, 35, 353001.  Web of Science CrossRef Google Scholar
First citationUlstrup, J. (1969). Acta Chem. Scand. 23, 3091–3109.  CrossRef CAS Web of Science Google Scholar
First citationVardanyan, R. S. & Hruby, V. J. (2014). Future Med. Chem. 6, 385–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWallenfels, K. & Friedrich, K. (1960). Chem. Ber. 93, 3070–3082.  CrossRef CAS Web of Science Google Scholar
First citationWang, C., Yan, T., Xing, G., Bailey, S., Lambert, C., Fayon, P., Trewin, A. & Ben, T. (2022). J. Solid State Chem. 308, 122903.