research papers
The curious case of proton migration under pressure in the malonic acid and 4,4′-bipyridine cocrystal
aFacuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland, bMALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain, and cMALTA-Consolider Team and Departamento de Química Física y Analítica, University of Oviedo, Julián Clavería n° 8, Oviedo 33006, Spain
*Correspondence e-mail: ewapatyk@amu.edu.pl, ferizqui@ucm.es
In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4′-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA−) species coexist up to 3.1 GPa, where a to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2−. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation.
Keywords: proton-transfer reactions; high pressure; ΔpKa rule; crystal engineering; co-crystals; organic solid-state reactions; density functional theory; molecular crystals.
1. Introduction
Organic cocrystals and crystalline organic salts are multicomponent crystals (Grothe et al., 2016) which attract a lot of attention from the research community owing to their properties and potential applications. Organic cocrystals enable tailored optoelectronic, electronic and magnetic properties of materials (Sun et al., 2018; Jiang et al., 2021), whereas organic salts can exhibit (Bryce, 1991; Wang et al., 2022) and high proton conductivity (Xing et al., 2018) when they form crystalline porous organic salts (Yu et al., 2020), an ability for fast transport of polar molecules (Xu et al., 2022), or can even be used for harvesting atmospheric water (Zhang, Fu et al., 2022). Non-crystalline organic salts also have a wide range of applications, for example in photovoltaics (Bates & Lunt, 2017), as ionic liquids (Kaur et al., 2022), or as GUMBOS (group of uniformed materials based on organic salts) and nanoGUMBOS (Tesfai et al., 2009).
Both types of multicomponent crystals play an important role in the pharmaceutical industry (Putra & Uekusa, 2020). The synthesis of salts and cocrystals of active pharmaceutical ingredients (APIs) is a well established strategy for the modification of physicochemical properties of the crystal form of APIs, aimed at improving their bioavailability (Cheney et al., 2010; Sigfridsson et al., 2019; Li et al., 2020), stability (Sigfridsson et al., 2019; Liu et al., 2022) and processability (Karki et al., 2009; Sanphui et al., 2015). In this approach, the API is paired with a compound safe for administration in humans, including other APIs already approved for use, and generally recognized as safe (GRAS; US Food and Drug Administration, 2023) compounds.
To facilitate the formation of crystalline lattices containing two chemical components, their molecules should form complementary intermolecular interactions or one should act as a hydrogen atom donor (Brønsted–Lowry acid) and the other as a hydrogen atom acceptor (Brønsted–Lowry base). For Brønsted–Lowry acid–base pairs, the difference in the acidity and basicity of the two compounds is key to determine whether a cocrystal or a salt is formed. This relationship is described by the empirical ΔpKa rule. Initially, it was based on experimental observations and stated that the formation of a salt is expected when ΔpKa (ΔpKa = pKa [protonated base] − pKa [acid]) is higher than 2 or 3 (Stahl & Wermuth, 2002). This rule was tested against almost 6500 structures of ionized and non-ionized acid–base pairs (Cruz-Cabeza, 2012) deposited in the Cambridge Structural Database (CSD, Groom et al., 2016) and more precise limits were assigned. It was established that for ΔpKa higher than 4 salts prevail, whereas for values lower than −1 cocrystals dominate. For the ΔpKa in the −1 to 4 range, a roughly 40:60 salt:cocrystal ratio is observed, with the 50:50 ratio falling at ΔpKa ca 1. These ratios could be modified depending on the crystal packing and molecular structure (Cruz-Cabeza et al., 2022).
Still, for the APIs that are weak acids or bases, it can be hard to find an appropriate GRAS/API compound that is a strong enough counterpart to propagate hydrogen atom transfer and salt formation under ambient conditions. These molecules that are attractive for pharmaceutical applications require a change in their properties to obtain the desired characteristics of the salt compounds.
The acidity of the compound can be modified by interfering in the chemical structure or by changing the experimental protocol (Perrin et al., 1981; Samuelsen et al., 2019). However, altering the molecular structure can affect the medical performance of the API (Vardanyan & Hruby, 2014), or the derivative can cause severe adverse reaction in humans (Kaniwa & Saito, 2013; Shang et al., 2022). In such cases, a change of other experimental parameters should be considered.
Previous studies have shown how temperature and pressure can affect the pKa of buffer systems (Samuelsen et al., 2019). The observed response of pKa to temperature varied depending on the chemical nature of the buffer system (it was stronger for buffers containing amino groups than for those with carboxylic acid moieties). Meanwhile, pressure up to 100 MPa affected the pKa to a limited extent. Modification of temperature and pressure facilitates proton-transfer reactions in the liquid (Isaacs et al., 1977; Koifman et al., 2002; Tiefenthaler et al., 2020) and solid states (Martins et al., 2009; Mitani et al., 1988; Song & McDermott, 2001; Szafrański & Katrusiak, 2004; Bhunia et al., 2010; Cai & Katrusiak, 2012; Jones et al., 2012; Yu et al., 2019; Tadokoro et al., 2022). However, note that, especially in the context of APIs sensitive to high temperatures, heating may lead to thermal decomposition of the crystal components, which would make this method unsuitable for applications in the pharmaceutical industry. Alternatively, pressure is not as destructive to the molecular structure.
The proton-transfer-promoting action of pressure can be associated with its ability to tune the energy barrier for the reaction, linked to the decrease in the distance between proton donor and acceptor on compression (Krishtalik, 2000; Kurzydłowski, 2022). It makes pressure a perfect means to induce transformation of cocrystals into salts. However, currently, the pressure-induced proton transfer in multicomponent crystals remains an understudied phenomenon with very few examples found in the literature, such as: (i) a proton-transfer reaction cooperative with in the quinhydrone crystal (a crystalline complex of p-quinone and p-hydroquinone) (Mitani et al., 1988); (ii) reaction in 4,4′-bipyridinium squarate (Martins et al., 2009; Reetz et al., 1994; Ma et al., 2017); (iii) double proton-transfer in oxalic acid dihydrate form α (Casati et al., 2009; Macchi et al., 2010; Bhatt et al., 2016); (iv) single proton transfer in cocrystals of phenazine and 2,3-di(2-pyridinyl)pyrazine with fluoranilic acid (Kumai et al., 2012; Horiuchi et al., 2013); (v) pressure-induced proton transfer in the cocrystal of 4-methylpyridine and pentachlorophenol (Funnell et al., 2021).
Crystal structures of organic multicomponent crystals in general are rarely studied under pressure. Among high-pressure deposits of the CSD, only a small fraction (26.75%) of such crystals can be found. This subset is considerably smaller compared with the population of multicomponent crystals in the whole CSD (42.76%). Undoubtedly, to truly understand the phenomenon of a pressure-induced proton-transfer reaction between molecules of different chemical compounds in the solid state, further studies of cocrystals and solvates structurally capable to undergo such process should be carried out.
In this work we report results on the effect of pressure on proton migration in a model cocrystal (BIPYMA), built of 4,4′-bipyridine (BIPY) and malonic acid (MA). The difference in the pKa of BIPY and malonic acid (MA) is 1.99 and −2.36 for the transfer of the first and second proton (Scheme 1; MA and BIPY acid–base pair after first and second proton transfer), respectively, calculated based on the literature pKa values (Ulstrup et al., 1969; Khalil et al., 2013). It was previously confirmed by X-ray diffraction (XRD) and nuclear quadrupole resonance techniques (Pedireddi et al., 1998; Seliger & Žagar, 2014) that, under ambient conditions, they form a cocrystal of C2/c symmetry, with half the MA and half the BIPY molecules in the asymmetric part of the unit cell.
In this study we aim to answer following three questions: (i) Can pressure induce proton-transfer reactions in BIPYMA? In the case of a positive answer, (ii) which is the pressure needed for the reaction to take place? (iii) Will pressure induce a single or double proton-transfer reaction? An additional objective is to add new data on the pressure effects in cocrystals. To the best of our knowledge, our results are among very few research reports on this phenomenon. After comparison with the available examples reported in the literature, we provide new insights and understanding of proton-transfer reactions in the solid state.
2. Experimental methods
2.1. Cocrystal synthesis
4,4′-Bipyridine (91.54 mg) and malonic acid (51.50 mg) were dissolved in 8 ml EtOH:DMSO solution (1:1 v/v ratio) and left for slow evaporation (at room temperature, in a vial covered with a parafilm with a few needle-size holes in it) to yield colourless, needle crystals.
2.2. X-ray diffraction experiments under ambient conditions
X-ray diffraction data for a single crystal of BIPYMA were collected using a four-circle SuperNova single-crystal diffractometer, equipped with a Cu X-ray tube (λ = 1.54178 Å) and Atlas detector. The program CrysAlisPro (Rigaku Oxford Diffaction, 2019) was used for data collection.
2.3. Single-crystal high-pressure X-ray diffraction experiments
A single crystal of BIPYMA was mounted in One20 DAC (diamond anvil cell) from Almax Easylab (opening angle of 120°), using a steel gasket (0.15 mm thick) with a 0.43 mm opening, and covered with Daphne oil 7575 as a hydrostatic medium. The crystal position was fixed with a cellulose fibre, and a ruby chip was placed in the DAC chamber to enable pressure measurement. The pressure inside the DAC was determined using the ruby-fluorescence method (Piermarini et al., 1975) with a Photon Control Inc. spectrometer (affording accuracy of about 0.02 GPa). The crystal of BIPYMA was compressed isothermally to the highest pressure of 3.33 (2) GPa. The pressure was increased, both gradually and rapidly, and data were collected at 0.25 (2), 0.66 (2), 1.03 (2), 1.33 (2), 1.83 (2), 1.95 (2), 2.19 (2), 2.47 (2), 3.04 (2) and 3.33 (2) GPa for the compressed sample [with crystals under 0.25–2.47 (2) GPa measured in one series, and at 3.04 and 3.33 GPa compressed directly from ambient conditions]; and at 2.76 (2), 2.10 (2), 1.74 (2), 1.54 (2), 0.87 (2), 0.71 (2), 0.48 (2) and 0.14 (2) GPa for a decompressed crystal [to 2.76 (2) GPa decompressed from 3.33 (2) GPa, and in the 2.10–0.14 (2) GPa range decompressed from 2.47 GPa]; see Tables S1–S3 and Figs. S1–S3 of the supporting information. Use of a DAC of the wide opening angle allowed us to collect data having an average completeness in the 45–55% (structures up to 2.47 GPa) and 36–40% (structures above 2.47 GPa) ranges. Additionally, unit-cell parameters were measured for a sample crystal compressed/decompressed in the Merrill–Bassett DAC (Merrill & Bassett, 1974), prepared in the same manner as the One20 DAC in the 1.13–3.60 (2) GPa range (Table S2).
X-ray diffraction data were collected with either a New Xcalibur or an Xcalibur four-circle diffractometer, equipped with an Mo X-ray tube (λ = 0.71073 Å) and an EosS2 or EOS CCD detector, respectively. CrysAlisPro was used for data collection.
2.4. solution and refinement
CrysAlisPro was used for UB matrix determination, data reduction and absorption correction. High-pressure crystal structures were solved by intrinsic methods using ShelXT (Sheldrick, 2015b) and refined with the least-squares method in ShelXL (Sheldrick, 2015a), using Olex2 (Dolomanov et al., 2009) as an interface. The ambient-conditions BIPYMA structure was solved using intrinsic phasing [with ShelXT (Sheldrick, 2015b)] and was non-spherically refined with NoSpherA2 (Kleemiss et al., 2021; Midgley et al., 2021) implemented in Olex2, using Orca (version 5.0; Neese, 2022) with the PBE method, cc-pVTZ basis set and multiplicity of 2. For the structure at 0.1 MPa, the position of hydrogen atoms was assigned based on electron density, and refined using anisotropic thermal factors. Due to the limited completeness (below 55%) and quality of the high-pressure data, the hydrogen atoms in the high-pressure structures were located at idealized positions based on the molecular geometry and assigned isotropic thermal parameters depending on the equivalent displacement parameters of their carriers. The position of the acidic hydrogen atom (on the MA oxygen versus the BIPY nitrogen atom) was assigned based on the geometry of the carboxylic group (the length of the C=O and C—O bonds) and DFT calculations (for additional details see the supporting information). Crystal structures were deposited with the Cambridge Crystallographic Data Centre (CCDC: 2279875–2279893) and can be accessed free of charge by filling out an online form at https://www.ccdc.cam.ac.uk/structures/. Crystallographic details for all structures are listed in Table S1.
2.5. Raman experiments
A powder sample of BIPYMA was loaded into a membrane Merrill–Bassett DAC equipped in class IIa diamonds (alongside a ruby chip and Dahpne 7575 oil). An in-house built Raman spectrometer equipped with a multichannel detector from Hamamatsu Photonics and an M255 laser from Solar Laser Systems was used for spectra collection. Data were collected and processed using the program SpectroLab. Data were collected in two series, for a sample compressed gradually from ambient pressure to 3.51 GPa (Fig. S4), and rapidly to 2.77, 2.92, 2.99, 3.11, 3.24, 3.31, 3.41 and 3.51 GPa, with decompression to ambient pressure after each step (Fig. S5).
2.6. DFT calculations
DFT calculations under static conditions have been performed using the Vienna ab initio Simulation Package (VASP; Kresse & Furthmüller, 1996) and the projector augmented wave (PAW; Blöchl, 1994) method. We use the Perdew–Burke exchange correlation functional (Perdew et al., 1996) and the Grimme D3 dispersion correction with the Becke–Johnson damping function (Grimme et al., 2010). A planewave cutoff of 400 eV was chosen with a Gamma centred k-point mesh with a resolution of 0.25 Å−1. The valence active space for C, N, O and H atoms was selected as 4, 5, 6 and 1 electron(s), respectively. Vibrational properties at the gamma point were computed using the finite difference method implemented in the PHONOPY package (Togo et al., 2023). Raman intensities were computed using the SpectroscoPY code (Skelton et al., 2017). Energy and forces convergence thresholds were set at 10−9 eV and 0.005 eV Å−1, respectively. For further details see the supporting information.
2.7. CSD data mining
The Cambridge Structural Database (version 5.43; November 2022) was searched for entries containing more than one chemical unit using ConQuest (Bruno et al., 2002) and a high-pressure subset, with polymeric structures excluded. The results (840 high-pressure deposits from 193 REFCODE families) were manually revised and the final subset of deposits was reduced by omitting structures of iron carbonate (reduction by 38 deposits in total, across 11 REFCODE families).
3. Results and discussion
3.1. Crystal symmetry and phase transition
The series of XRD experiments, where crystalline samples of BIPYMA were compressed and decompressed, have revealed that the C2/c symmetry of the crystal is preserved on compression up to around 3.1 GPa, while above this pressure a lowering of the crystal symmetry to P21/c is observed. This symmetry change is accompanied by a drop in the unit-cell volume of ca 20 Å3 (∼2%) and significant changes in the length of the unit-cell parameters (Fig. 1, Table S1). The changes during the are also captured by DFT calculations. There is a good agreement in both the volume collapse (∼3%) of the and the modification of the lattice parameters across the transition (see Figs. 1 and 2). In the measured Raman spectra, the main active modes (Fig. S6) show changes in the frequency–pressure slopes that also evidence a at 2.9 GPa, in good agreement with the experimental XRD data. The compression and also affect the crystal morphology (Figs. S2 and S3, and Movie S1 of the supporting information). The P21/c phase can be preserved on decompression down to a pressure of ca 2.4 GPa, as confirmed by the measurement of lattice constants (Tables S1 and S2). In summary, the shows a hysteresis pressure range of about 0.7 GPa at the temperature of the experiment.
Experimental data are also in overall good agreement with the computed lattice and equations of state (EOS) parameters for the C2/c phase, see Fig. 2. For the P21/c phase, the comparison of the EOS parameters is more difficult to carry out due to the scattering in the experimental data, and the lack of a zero-pressure volume value. A Murnaghan EOS is fitted to the experimental P–V data of the C2/c phase, yielding the following parameters: V0 = 1227 Å3, B0 = 8.05 GPa, B′0 = 7.1. The computed EOS with the data obtained from the DFT simulations agree very well: V0 = 1185 Å3, B0 = 7.89 GPa, B′0 = 8.0. For the lattice parameters, the comparison between experiment and simulation is also in good agreement. The largest deviation occurs for the lattice parameter c of the C2/c phase (ca 3%) mainly due to its strong dependence with the β angle of the monoclinic cell, which is the most sensitive parameter to optimize.
3.2. The pressure-induced proton transfer
Analysis of the geometry of the carboxylic group of MA on compression up to 2.5 GPa suggests that, despite no change in the crystal symmetry, the proton-transfer reaction does occur. When the crystal is compressed, starting at 1.3 GPa, the trend points toward a shortening of the C—OH bond accompanied by an elongation of the C=O bond (Fig. 3), although the lack of data completeness (common for high-pressure experiments, especially for low-symmetry samples) limits the conclusions that can be obtained from this analysis. Note that all data points should not be analysed jointly when it comes to trends visible in them. For the C2/c phase two series (for compressed and decompressed sample crystals, marked in Fig. 3 with solid and dashed lines, respectively) should be distinguished. In such cases, when compression of the sample crystal is exclusively analysed, the increase in the length of the double C=O bond and the decrease for the single C—O bonds are more visible. The decompression series can be more biased as some effect might show hysteresis on decompression and also the sample crystal becomes more exhausted with each experimental step. Fortunately, results from the DFT calculations clearly display a reduction of the single C—O bond and an elongation of the double C=O bond on compression, confirming experimental expectations. These bond length changes are linked to the proton transfer from MA to BIPY. Our calculations corroborate that this process depends on the pressure/volume of the (Figs. S8 and S9).
Thus, at volumes of 1300 Å3, for both the C2/c and the P21/c space groups, molecules remain in their neutral form (i.e. no proton has been transferred). On compression, calculations show a proton transfer between the MA and the BIPY molecules in both space groups. This behaviour occurs in the volume range 1200–1100 Å3 (corresponding to experimental pressures between 0.2 and 1.3 GPa) and implies that both the neutral and the monoprotonated species can coexist. In other words, the energetic difference between the two systems is almost independent of the (see Fig. S11 and Tables S4–S5). The energy barrier for the proton transfer in the C2/c is also predicted to be extremely low (below 1.6 kJ mol−1 at 1150 Å3), which means complete activation at room temperature (Fig. S12).
Therefore, it appears that the first proton transfer occurs at low pressures and generates a structure containing a mixture of neutral and singly charged BIPY. Since structures with neutral and monoprotonated BIPY entities are energetically similar, it is to be expected that hydrogen atoms in the X-ray C2/c form, as indeed observed in the For structures in the 0.2–2.5 GPa pressure range, when the difference in the length of carbon–oxygen bonds is not significant (lower than 0.04 Å), the position of the hydrogen atom should be split between the carboxylic group and the pyridine ring, reflecting the transfer to the BIPY molecule in some parts of the (for detailed information of the acidic proton see the supporting information).
show partial occupations in the stability pressure range of theThe transition to the P21/c phase occurring above 3.1 GPa can be associated with the double proton transfer from MA to BIPY. This association is corroborated by our DFT calculations, where only the doubly protonated BIPY structure is observed under these conditions. Accordingly, the structural changes and the two proton migrations across the transition can be related in the following manner. As a result of the proton transfer, repulsion between positively charged ions, stacked closely to each other in the arises. This triggers resulting in breaking of the symmetry. The transition leads to the increase of Z′ (from 0.5 to 1), with the asymmetric part of the comprising one MA2− anion and one cation (compared with half an MA molecule/ion, lying on a special position of a twofold axis symmetry, and half an BIPY molecule/ion, at the special position of a symmetry of a centre of inversion, in the C2/c phase).
Experimentally and computationally, in the C2/c phase, the angle between stacked BIPY entities (i.e. the N1⋯N1⋯C4 angle, see Fig. 4) hardly changes on compression. XRD data show a decrease of less than 2°, from 116.9° at 0.1 MPa to 115.1° at 2.47 GPa. At the same time, the N1⋯N1 distance between two stacked BIPY entities decreases by over 10%, from 4.0772 (3) to 3.6609 (7) Å. As a result, the nitrogen atoms become not only closer to each other but are also positioned more directly under one another. On transition to the P21/c phase, at 3.33 GPa, the distance between nitrogen atoms of neighbouring stacked ions decreases slightly to 3.631 (13) Å for the N1⋯N2 (1 − x, −y, 1 − z) contact, and significantly increases to 4.281 (13) Å for the N2⋯N1 (1 − x, 1 − y, 1 − z) [two different values being the result of 1, not 0.5 ion(s) being present in the asymmetric part of the unit cell]. At the same time the angle between stacked ions increases to 125.5 (4) and 133.2 (4)°, respectively. Therefore, even though one N⋯N distance becomes shorter, the nitrogen atoms are not positioned as directly above one another as in the C2/c phase.
The shift of the BIPY entities and the resulting ripple effect are clearly visible for the structure shown along the [001] direction. In Fig. 5, the C2/c and the P21/c structures projected along the c axis are presented. For the purpose of this comparison, the C2/c structure has been transformed and doubled along the b axis, resulting in comparable b and c axes between the two space groups. With this representation, the is associated with an increase of the γ angle from 78° in the C2/c phase to 90° in the P21/c phase. The angle change causes / ions to open their relative angle ϕ in a scissor like movement. See Section S4 in the supporting information for further details.
Calculations of vibrational frequencies and Raman intensities at experimental volumes were performed after relaxing the atomic positions of the optimized C2/c and P21/c phases at 1230 Å3 (0.1 MPa, neutral) and 1001 Å3 (3.1 GPa, diprotonated), respectively. In the case of the cocrystal, the agreement of experimental and calculated Raman spectra is good for both frequencies and relative intensities, particularly in the region from 1000 to 1600 cm−1. Although the agreement for the salt is not as satisfactory as for the cocrystal, the overall comparison is reasonable (see Fig. S7).
Our calculated Raman spectra exhibit features similar to those present in experimental spectra for neutral and diprotonated BIPY adsorbed in zeolites (Moissette et al., 2001) despite these spectra being measured under ambient conditions. The most interesting feature is the splitting observed both in calculations and in experiments of the band at ca 1600 cm−1, characteristic for unprotonated BIPY. After double proton transfer, the splitting disappears and the main band moves closer to 1650 cm−1 (see Fig. S7). Unfortunately, insufficient resolution for the experimental Raman spectra does not allow for observation of the subtle band-splitting, still the shift towards higher values is visible. Overall, the computational results are consistent with the existence of the C2/c phase as neutral under ambient pressure and the P21/c phase as a divalent salt at 3.1 GPa.
3.3. Single versus double proton transfer
As we established in the previous section, the symmetry change is associated with double proton transfer to the BIPY molecule. However, when the P21/c phase was first observed at a pressure of 3.04 (2) GPa, the structure showed the length of the C—O bonds in one of the carboxylic groups becoming almost the same [1.25 (2) and 1.22 (2) Å], while the C—OH bond on the other side of the MA molecule elongated to 1.31 (2) Å (Fig. 3). This would suggest that only one proton was transferred to the BIPY molecule; however, this conclusion required confirmation with additional techniques as the bond lengths have significant estimated standard deviations. The experimental expectations were corroborated by DFT calculations, which established that the P21/c phase is energetically favoured at volumes lower than 1150 Å3, with the range 1150–1000 Å3 being a metastable region where BIPY is monoprotonated (BIPYH+MA−), and below 1000 Å3 (i.e. at a pressure ≥3.1 GPa) where the structure is stable. This outcome was independent from the symmetry of the and the same results were yielded for the C2/c and P21/c space groups.
Since the structure at 3.04 GPa, of unit-cell volume equal to 1001.5 (10) Å3, clearly shows discrepancies in the geometry of the carboxylic groups, consistent with the BIPYH+MA− form, and at the same time is at the very limit of the metastability region, we postulate that the crystal was initially compressed to a volume slightly lower than 1000 Å3, triggering a double proton transfer, and then due to the relaxation of the DAC, the pressure dropped and transition from to BIPYH+MA− occurred. This hypothesis can be corroborated by the data collected at 3.33 GPa, where we observe equalization of the carbon–oxygen bonds in both carboxylic groups of MA, regardless of their absolute length (with deviations from the 1.25 Å bond length for the delocalized carbon–oxygen bond being attributed to the quality of data affected by the use of the DAC). On decompression from 3.33 to 2.76 GPa, we again observe differences in geometry of the carboxylic groups of MA [1.295 (19) and 1.19 (2) Å versus 1.279 (19) and 1.240 (19) Å for C12—O1 and C12—O2 bonds and for C14—O3 and C14—O4 bonds, respectively]. This is in agreement with the result of theoretical calculations and previous observations at 3.04 GPa, with the structure of P21/c symmetry containing monoprotonated BIPY, being preferred in the volume range 1000–1150 Å3. The variation in the carbon–oxygen bond length for P21/c is presented in Fig. 3; however, note that the `middle' point was measured for one crystal, and the remaining two pressure points for a different sample. In all three structures the atom labels and position of the molecule in the were selected in the same way to make the structural models uniform. For structures at 2.76 and 3.04 GPa, the symmetry is broken and only one carboxylic group is deprotonated (in each structure a different carboxylic group) and data points are shown with respect to a specific oxygen atom which may look like the bond length increases and decreases inconsistently, but the important feature is that the geometry is consistent with deprotonation for only one carboxylic group.
When compression of the crystal progresses from 0.1 MPa to 2.47 GPa, the O⋯N distance of the OH⋯N hydrogen bond connecting the MA and BIPY molecules into chains decreases (Figs. 3 and S10), which should favour proton transfer. The transition from BIPYMA to (at 3.33 GPa) results in further shortening of the O⋯N distances; however, on decompression to 3.04 and 2.76 GPa, when P21/c symmetry is retained but the structure contains monoprotonated BIPY, they elongate, with some becoming even slightly longer than in C2/c phase at 2.47 GPa. Although the limitations coming from the quality of the structures cannot be discarded, the fact the O⋯N distances become longer can be a plausible explanation why there is a preference for monoprotonated salt at volumes higher than 1000 Å3 and why the proton transfer on one side of BIPY was reversed.
3.4. Putting pressure on the ΔpKa rule
To end the discussion of our results, we aim to explore whether a correlation between the ΔpKa rule and pressure-induced proton transfers in multicomponent crystals exists. Pressures observed by us for the first and second proton transfer in BIPYMA (0.2–1.3 and 3.1 GPa, respectively) point out that a larger increase in pressure is required to induce transfer of the second hydrogen atom, i.e. when ΔpKa is lower, since the corresponding ΔpKa values in these processes are 1.99 and −2.36, respectively.
In this respect, the data reported so far are scarce, despite numerous multicomponent crystals being studied under pressure. To the best of our knowledge, identification of this process has only been accomplished in five systems: 4,4′-bipyridinium squarate – BIPYSQA (Reetz et al., 1994; Martins et al., 2009), oxalic acid dihydrate form α-OXAAH2O (Casati et al., 2009), cocrystal of phenazine with fluoranilic acid – PHENFA (Kumai et al., 2012), cocrystal of 2,3-di(2-pyridinyl)pyrazine with fluoranilic acid – DPPZFA (Horiuchi et al., 2013), and cocrystal of 4-methylpyridine with pentachlorophenol – 4MPYPCP (Funnell et al., 2021). Details of these experiments including ΔpKa and pressure values are provided in the supporting information and are collected in Table S6. The IR spectroscopic study of the quinhydrone crystal was excluded from the comparison as the reported proton-transfer reaction was cooperative with (Mitani et al., 1988). Fig. 6 summarizes the ΔpKa values and pressures at which the proton transfer occurs.
In principle, this small number of cases observed does not allow us to propose a conclusive trend. However, when our data and the previous results are all put together, our findings in the BIPYMA system can be generalized as a guideline in the following statement: the lower the ΔpKa value, the higher the pressure needed to initiate the proton-transfer process. For instance, in the range ΔpKa < 0, pressures promoting hydrogen transference decrease from around 5.4 GPa in OXAAH2O to 3.1 GPa in BIPYMA-2 and 1.5 GPa in the case of BIPYSQA. On the other hand, situations where the acid and the base are strong enough to show ΔpKa > 0, i.e the proton transference is favoured, pressures as low as 0.5 GPa or lower are sufficient to induce proton transfer. Thus, DPPZFA (ΔpKa = 1.5) shows a protonation pressure of 0.5 GPa, whereas the first proton transfer in BIPYMA (BIPYMA-1; showing ΔpKa > 1) starts at around 0.2 GPa and extends up to 1.3 GPa, (green vertical line in Fig. 6).
We believe that these results can be considered an extension of the ΔpKa rule. The capability of pressure to enhance interactions reducing interatomic distances between the acid and base functional groups of the coformers favours the protonation reaction. Shorter distances imply a higher affinity of the base for the acid hydrogen since a lower proton-migration barrier is expected, as has been discussed for instance in the case of hydrogen-bonding symmetrization (Meier et al., 2022). This explains why the lower the ΔpKa, the higher the pressure needed to initiate the proton-transfer process.
The implications of our findings can be revealed by considering other cases. For this purpose, the deposits of organic multicomponent crystals (excluding polymeric structures) investigated under high pressure were thoroughly analysed (see Table S7). Out of this subset of multicomponent crystals, seven systems: GLYPAC, CYSH2O, BSULH2O, ALAH2O, GLYTAC, PLYPHAC, PIPPAR [respective CSD refcode family names: AWIHOE (Zakharov et al., 2013), CYSTAC (Johnstone et al., 2009), IFIZIG (Johnstone et al., 2009), IMEGIR (Zakharov & Boldyreva, 2013), IQOMIM (Losev et al., 2016), NEPXIR (Losev et al., 2016) and COKCEL (Oswald & Pulham, 2008)] were selected as potential candidates based on their chemical composition, a molecular arrangement enabling proton-transfer reaction, and ΔpKa values falling in the [−6,2] range (Table S8). However, protonation was not reported in either of these cases because it was not the main goal of the study or due to the experimental limitations.
According to our proposed extended ΔpKa rule, in BSULH2O, CYSH2O, ALAH2O and GLYTAC, the compression should have been sufficient to induce transfer of the hydrogen atom from the Brønsted–Lowry acid to the base. Interestingly, for the case of GLYPAC (ΔpKa = −1.94), GLYPHAC (ΔpKa = −0.49) and PIPPAR (ΔpKa = −0.05), we estimate, based on Fig. 6, that pressures between 2–3 GPa, 1–2 GPa and around 0.5–1 GPa, respectively, should produce the proton-transfer reaction.
In very recent work by Ward et al. (2023), where a series of pyridine–dicarboxylic acid systems was investigated under pressure using X-ray and neutron radiation, proton transfer was also not reported. However, in the context of the extended ΔpKa rule, and based on the ΔpKa values and the pressure limits for each of the studied cocrystals (Table S9) it could have been expected only in cocrystals of pyrazine with oxalic acid (PYOX, studied up to 3.5 GPa), succinic acid (PYSUC, studied up to 5.35 GPa) and glutaric acid (PYGLU, studied up to 5.5 GPa), and only for the single proton-transfer reaction. However, if those systems resemble BIPYMA, the first proton transfer might not have been clearly picked up by the diffraction techniques. The expected proton-transfer pressure for PYOX would be approximately 1.5 GPa, whereas for PYSUC and PYGLU pressure in the 4–4.5 GPa range should be sufficient to induce the first proton transfer. In fact, when carbon–oxygen bond lengths for PYSUC are analysed, a trend similar to that for BIPYMA is observed, where the single bond becomes shorter with pressure, while the double bond elongates (Fig. S15). For PYGLU and PYOX such clear trends were not visible (Figs. S16 and S17), but note that in the case of PYOX, most of the reported structures were of low resolution (0.9 Å). Nevertheless, drawing any conclusions on whether proton transfer took place or not based on the reported structural models alone would be biased and further studies with supporting techniques are required.
Although our results are encouraging, we cannot rule out the effect of the crystalline environment in the extended ΔpKa rule. Proton-transfer reactions anticipated under ambient conditions by this rule are not always observed, as explained by the recent results of Cruz-Cabeza et al. (2022). This turned out to be especially pertinent for the amino acids, as it was revealed that, for molecules existing in zwitterion form, the ΔpKa for a 50:50 salt:cocrystal ratio is set at 4.1, significantly higher than 1 observed for the whole population. Such an exceptional situation is explained as due to the particular spatial arrangement of the amino acids. This also suggests that the ΔpKa for preferential salt formation would be higher than expected as well. Therefore, higher pressures might be needed to trigger the reaction than those we suggest for the GLYPAC, GLYPHAC and PIPPAR multicomponent crystals. This would also explain why for BSULH2O, CYSH2O, ALAH2O and GLYTAC (all containing molecules of amino acids in the zwitterion form), proton transfer was not observed.
Unfortunately, the limited available data on pressure-induced proton-transfer reactions between different chemical entities in multicomponent crystals prevents establishing more precise rules about this phenomenon. Moreover, the current literature data hinder formulation of rules, based on the critical donor⋯acceptor distance at which the proton transfer takes place, similar to those expressed for polymerization reactions (Li et al., 2021; Zhang, Tang et al., 2022; Tang et al., 2023). Out of the reported successful pressure-induced proton-transfer reactions in cocrystals, only two cases could be used for such analysis (BIPYMA and OXAAH2O). Other cases where proton transfer was reported were limited to single measurements, the was not determined or the did not show the proton transfer, making analysis impossible. In the case of BIPYMA, the donor⋯acceptor distance established by DFT calculations is approximately 2.55 Å, with the experimental values at 3.33 GPa falling below that limit [2.533 (14) and 2.529 (13) Å]. In OXAAH2O at 5.3 GPa, the donor⋯acceptor distance is 2.42 Å (structure OXACDH38) after proton transfer, compared with 2.43 Å at 3.6 GPa (structure OXACDH37) where molecules remain in neutral form. Note that for BIPYMA and OXAAH2O the chemical nature of the hydrogen bond involved in the proton transfer is different. In both cases the oxygen atom is a hydrogen atom donor, but the role of the acceptor is either taken by the nitrogen atom of BIPY or the oxygen atom of the water molecule, which makes the two systems too different to establish a general donor⋯acceptor distance limit that would determine whether proton transfer takes place or not.
As the coformers in multicomponent crystals where the proton-transfer reaction was confirmed significantly differ in chemical structure and composition, it would be an oversight not to consider the pressure required for the reaction to take place being a result of several factors, including the ΔpKa rule we have shown in this study can serve as a guide.
features, compressibility and chemical nature of the components. Although more research is needed, we believe that the extended4. Conclusions
Extensive high-pressure XRD and Raman spectroscopy experiments, coupled with the DFT calculations, have enabled identification of the relevant details of the expected intricate cocrystal–salt landscape of BIPYMA. Our results show that proton transfer to one of the pyridine rings of BIPY in the BIPYMA structure can occur already in the 0.2–1.3 GPa pressure range, with the mixture of BIPYMA and BIPYH+MA− species present in the structure retaining the C2/c symmetry. BIPYMA and BIPYH+MA− interconversion is possible due to the low-energy barrier (below 0.4 kcal mol−1 at a volume of 1150 Å3) and the low energy difference between both forms. On compression above 3.1 GPa, a double proton transfer occurs which triggers a When nitrogen atoms of BIPY get a formal positive charge, the accompanying repulsion can be released by spreading apart stacked ions, resulting in lowering of the symmetry of the crystal to P21/c. The P21/c phase can be retained on decompression down to 2.4 GPa, with the structure containing monoprotonated BIPY (BIPYH+MA−) in this region, where the P21/c phase is metastable. On further decompression to ambient conditions, the proton transfer (from monoprotonated to neutral BIPY) is reversed, similarly to a previously reported reaction observed in crystals of BIPYSQA.
Although, in light of this study, the P21/c phase containing monoprotonated BIPY and the coexistence of BIPYMA and BIPYH+MA− in the C2/c phase, shows the complexity of the response of multicomponent crystals amenable to proton transfer to high pressure and intricacies of the cocrystal–salt continuum.
in BIPYMA should not be considered as a continuous process from the perspective of the single O—H⋯N hydrogen bond, it can be described as such in regards to the crystal as a whole, meaning the transfer occurs entirely in some regions of the crystal and do not progress in others. The information we provide herein, in particular the metastability of the high-pressureDespite scattered examples of similar cases found in the literature, our comparison has shown a general trend where the value of the proton-transfer pressure is in an inverse relation to ΔpKa. Further exploration of this topic can bring us closer to developing methods for targeted salt formation under high pressure. However, for this to happen it is crucial to be able to predict the required reaction-triggering pressure based on the structural information already available, without the need for cumbersome, time-consuming trial experiments for each individual acid–base pair. This highlights the need for a further thorough study of acid–base systems to fully understand the phenomenon of pressure-induced proton-transfer reactions in multicomponent crystals.
5. Related literature
The following references are cited in the supporting information: Abe et al. (2014); Andrzejewski et al. (2011, 2012); Anioła & Katrusiak (2016, 2017); Anioła et al. (2016); Bąkowicz & Turowska-Tyrk (2016, 2020, 2022); Bedeković et al. (2018); Bezzu et al. (2019); Bogdanov et al. (2020, 2022); Boschmann & Miller (2018); Budzianowski & Katrusiak (2006); Bujak & Angel (2006); Cameron et al. (2014); Carlsson et al. (2013); Chasák et al. (2021); Chia & Trimble (1961); Collings & Hanfland (2019); Connor et al. (2015); Craig et al. (2018); Dey & Lahiri (2010); Ehrenreich et al. (2019); Eikeland et al. (2016, 2017, 2020); Fabbiani et al. (2003, 2004, 2007, 2009, 2010, 2014, 2016); Filhol et al. (1981); Fornasari et al. (2020); Friedrich et al. (2020); Galica et al. (2020); Galica & Turowska-Tyrk (2019); Galiois et al. (1985, 1987, 1986); Galloway et al. (2010); Giordano et al. (2020); Granero–García et al. (2017); Guionneau et al. (1995, 2001); Guranda et al. (2012); Huq & Stephens (2006); Jaroń et al. (2020); Johnstone et al. (2008); Jungen et al. (2020); Katrusiak et al. (2011); Keller et al. (2018a,b); Khalili et al. (2009); Komatsu et al. (2020); Konieczny et al. (2015, 2016, 2017, 2018, 2020, 2021); Kortüm et al. (1960); Kozlenko et al. (2005); Kurnosov et al. (2004); LeBlanc et al. (2018); Le Pevelen et al. (1999); Lugo & Lubes (2007); Madsen et al. (2014); Mailman et al. (2017); Milašinović et al. (2021); Mínguez Espallargas et al. (2008); Moggach et al. (2009); Morency et al. (2021); Nam et al. (2009); Naumov et al. (2013); Nazeeruddin & Kalyanasundaram (1989); Nicholas et al. (2021); Nowicki et al. (2012); Olejniczak & Katrusiak (2010, 2011); Olejniczak et al. (2009, 2010, 2016, 2018, 2020, 2022a,b); Ono et al. (2018); Paliwoda et al. (2018); Parois et al. (2010); Patyk-Kaźmierczak & Kaźmierczak (2021); Patyk-Kaźmierczak et al. (2017); Pfrunder et al. (2020); Podsiadło et al. (2010); Poręba et al. (2019, 2020); Prescimone et al. (2009, 2010a,b); Price et al. (2022); Priola et al. (2022); Raghavendra (2022); Rejnhardt et al. (2021); Richardson et al. (2020); Rodríguez–Velamazán et al. (2014); Roszak & Katrusiak (2021); Saouane & Fabbiani (2015); Satthaphut et al. (2014); Schmitz et al. (2020); Schultz et al. (1986); Shepherd et al. (2012a,b, 2016); Shibaeva et al. (1985); Shimizu et al. (2000); Sobczak et al. (2020); Somayazulu et al. (1996); Starkey et al. (1986); Stevens et al. (2016); Szafrański (2014, 2020); Szafrański & Ståhl (2016); Terlecki et al. (2021); Thiel et al. (2020); Wallenfels & Friedrich (1960); Ward et al. (2023); Ward & Oswald (2019); Woodall et al. (2016); Wu et al. (2015); Yamaura & Kato (2002); Zakharov et al. (2015); Zhang et al. (2022); Zieliński & Katrusiak (2015, 2016).
Supporting information
https://doi.org/10.1107/S2052252524000344/yc5045sup1.cif
contains datablocks BIPYMA, BIPYMA_014, BIPYMA_025, BIPYMA_048, BIPYMA_066, BIPYMA_071, BIPYMA_087, BIPYMA_103, BIPYMA_132, BIPYMA_154, BIPYMA_174, BIPYMA_183, BIPYMA_195, BIPYMA_210, BIPYMA_219, BIPYMA_247, BIPYMA_276, BIPYMA_304_rc, BIPYMA_333. DOI:Structure factors: contains datablock BIPYMA. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMAsup2.hkl
Structure factors: contains datablock BIPYMA_014. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_014sup3.hkl
Structure factors: contains datablock BIPYMA_025. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_025sup4.hkl
Structure factors: contains datablock BIPYMA_048. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_048sup5.hkl
Structure factors: contains datablock BIPYMA_066. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_066sup6.hkl
Structure factors: contains datablock BIPYMA_071. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_071sup7.hkl
Structure factors: contains datablock BIPYMA_087. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_087sup8.hkl
Structure factors: contains datablock BIPYMA_103. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_103sup9.hkl
Structure factors: contains datablock BIPYMA_132. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_132sup10.hkl
Structure factors: contains datablock BIPYMA_154. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_154sup11.hkl
Structure factors: contains datablock BIPYMA_174. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_174sup12.hkl
Structure factors: contains datablock BIPYMA_183. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_183sup13.hkl
Structure factors: contains datablock BIPYMA_195. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_195sup14.hkl
Structure factors: contains datablock BIPYMA_210. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_210sup15.hkl
Structure factors: contains datablock BIPYMA_219. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_219sup16.hkl
Structure factors: contains datablock BIPYMA_247. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_247sup17.hkl
Structure factors: contains datablock BIPYMA_276. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_276sup18.hkl
Structure factors: contains datablock BIPYMA_304_rc. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_304_rcsup19.hkl
Structure factors: contains datablock BIPYMA_333. DOI: https://doi.org/10.1107/S2052252524000344/yc5045BIPYMA_333sup20.hkl
Movie S1: pressure-induced changes in the crystal morphology. DOI: https://doi.org/10.1107/S2052252524000344/yc5045sup21.gif
Movie S1: pressure-induced changes in the crystal morphology. DOI: https://doi.org/10.1107/S2052252524000344/yc5045sup22.mp4
Supporting figures and tables. DOI: https://doi.org/10.1107/S2052252524000344/yc5045sup23.pdf
C3H4O4·C10H8N2 | F(000) = 546.098 |
Mr = 260.25 | Dx = 1.405 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 19.5688 (9) Å | Cell parameters from 2314 reflections |
b = 4.0772 (3) Å | θ = 4.7–75.6° |
c = 15.9523 (8) Å | µ = 0.89 mm−1 |
β = 104.783 (5)° | T = 298 K |
V = 1230.64 (13) Å3 | Plate, colourless |
Z = 4 | 0.23 × 0.14 × 0.06 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1256 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 834 reflections with I ≥ 2u(I) |
Mirror monochromator | Rint = 0.039 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 76.2°, θmin = 4.7° |
ω scans | h = −24→24 |
Absorption correction: analytical CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −4→4 |
Tmin = 0.874, Tmax = 0.956 | l = −20→19 |
6263 measured reflections |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.037 | All H-atom parameters refined |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0336P)2 + 0.8691P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
1256 reflections | Δρmax = 0.23 e Å−3 |
141 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: ORCA 5.0 PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: PBE BASIS SET: cc-pVTZ CHARGE: 0 MULTIPLICITY: 2 DATE: 2022-06-14_11-11-20 |
x | y | z | Uiso*/Ueq | ||
O1 | 0.47312 (8) | 0.0209 (4) | 0.36217 (10) | 0.0587 (5) | |
O2 | 0.39097 (8) | −0.0100 (5) | 0.23857 (10) | 0.0804 (6) | |
N1 | 0.38106 (9) | 0.3587 (5) | 0.41851 (12) | 0.0561 (5) | |
C3 | 0.27737 (10) | 0.6696 (5) | 0.48304 (12) | 0.0462 (5) | |
C6 | 0.44870 (10) | −0.0801 (6) | 0.28274 (13) | 0.0484 (5) | |
C7 | 0.5 | −0.2889 (9) | 0.25 | 0.0506 (8) | |
C2 | 0.26415 (11) | 0.5673 (7) | 0.39728 (14) | 0.0599 (7) | |
C1 | 0.31706 (11) | 0.4151 (7) | 0.36791 (15) | 0.0623 (7) | |
C4 | 0.34502 (12) | 0.6118 (8) | 0.53454 (16) | 0.0738 (9) | |
C5 | 0.39455 (13) | 0.4574 (8) | 0.50024 (16) | 0.0743 (8) | |
H7 | 0.4722 (12) | −0.445 (5) | 0.1990 (14) | 0.071 (7) | |
H2 | 0.2108 (13) | 0.599 (8) | 0.3538 (15) | 0.117 (12) | |
H4 | 0.3573 (14) | 0.677 (10) | 0.6016 (18) | 0.146 (15) | |
H1 | 0.3082 (13) | 0.327 (8) | 0.2993 (15) | 0.110 (11) | |
H5 | 0.4499 (13) | 0.397 (9) | 0.5405 (17) | 0.132 (14) | |
H1H | 0.4336 (14) | 0.156 (8) | 0.3830 (16) | 0.071 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0456 (9) | 0.0808 (13) | 0.0494 (9) | 0.0101 (8) | 0.0119 (7) | −0.0061 (8) |
O2 | 0.0507 (9) | 0.1295 (18) | 0.0559 (10) | 0.0228 (10) | 0.0040 (7) | −0.0022 (10) |
N1 | 0.0456 (9) | 0.0721 (13) | 0.0540 (10) | 0.0089 (9) | 0.0192 (8) | −0.0045 (10) |
C3 | 0.0395 (9) | 0.0589 (14) | 0.0403 (10) | 0.0033 (9) | 0.0104 (8) | −0.0008 (9) |
C6 | 0.0423 (10) | 0.0597 (14) | 0.0462 (11) | 0.0016 (10) | 0.0164 (9) | 0.0067 (10) |
C7 | 0.0542 (19) | 0.051 (2) | 0.0513 (19) | −0.000000 | 0.0213 (16) | 0.000000 |
C2 | 0.0446 (11) | 0.0927 (19) | 0.0428 (11) | 0.0117 (12) | 0.0119 (10) | −0.0092 (12) |
C1 | 0.0471 (12) | 0.0939 (19) | 0.0480 (13) | 0.0108 (12) | 0.0163 (10) | −0.0104 (13) |
C4 | 0.0448 (12) | 0.125 (2) | 0.0475 (13) | 0.0265 (14) | 0.0048 (10) | −0.0180 (15) |
C5 | 0.0476 (13) | 0.119 (2) | 0.0534 (14) | 0.0248 (15) | 0.0083 (11) | −0.0181 (15) |
H7 | 0.091 (19) | 0.053 (17) | 0.078 (18) | 0.002 (13) | 0.038 (15) | −0.011 (12) |
H2 | 0.062 (15) | 0.21 (3) | 0.058 (16) | 0.04 (2) | −0.021 (13) | −0.03 (2) |
H4 | 0.09 (2) | 0.25 (4) | 0.08 (2) | 0.09 (2) | −0.003 (16) | −0.05 (3) |
H1 | 0.095 (19) | 0.19 (3) | 0.045 (15) | 0.02 (2) | 0.013 (14) | −0.036 (19) |
H5 | 0.061 (16) | 0.24 (4) | 0.083 (19) | 0.06 (2) | 0.006 (15) | −0.04 (2) |
H1H | 0.050 (18) | 0.11 (3) | 0.057 (19) | −0.02 (2) | 0.021 (15) | −0.011 (19) |
O1—C6 | 1.302 (2) | C7—H7ii | 1.07 (2) |
O1—H1H | 1.07 (3) | C7—H7 | 1.07 (2) |
O2—C6 | 1.203 (2) | C2—C1 | 1.387 (3) |
N1—C1 | 1.326 (3) | C2—H2 | 1.10 (2) |
N1—C5 | 1.325 (3) | C1—H1 | 1.12 (2) |
C3—C3i | 1.472 (4) | C4—C5 | 1.381 (3) |
C3—C2 | 1.390 (3) | C4—H4 | 1.07 (3) |
C3—C4 | 1.388 (3) | C5—H5 | 1.14 (2) |
C6—C7ii | 1.508 (3) | ||
H1H—O1—C6 | 110.5 (13) | C1—C2—C3 | 119.9 (2) |
C5—N1—C1 | 117.8 (2) | H2—C2—C3 | 119.4 (13) |
C4—C3—C2 | 116.20 (19) | H2—C2—C1 | 120.6 (13) |
O2—C6—O1 | 123.5 (2) | C2—C1—N1 | 122.9 (2) |
C7ii—C6—O1 | 113.85 (16) | H1—C1—N1 | 115.2 (13) |
C7ii—C6—O2 | 122.67 (18) | H1—C1—C2 | 122.0 (13) |
C6—C7—C6ii | 111.2 (3) | C5—C4—C3 | 120.2 (2) |
H7—C7—C6 | 110.3 (12) | H4—C4—C3 | 119.2 (14) |
H7—C7—C6ii | 109.2 (12) | H4—C4—C5 | 120.5 (13) |
H7ii—C7—C6ii | 110.3 (12) | C4—C5—N1 | 123.0 (2) |
H7ii—C7—C6 | 109.2 (12) | H5—C5—N1 | 114.4 (13) |
H7—C7—H7ii | 107 (2) | H5—C5—C4 | 122.6 (13) |
O1—C6—C7ii—C6ii | −83.3 (2) | N1—C5—C4—C3 | 0.2 (4) |
O2—C6—C7ii—C6ii | 95.6 (2) | C3i—C3—C2—C1 | −179.7 (3) |
N1—C1—C2—C3 | 0.4 (3) | C3i—C3—C4—C5 | 179.4 (3) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H4O4·C10H8N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.429 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.550 (5) Å | Cell parameters from 753 reflections |
b = 4.0396 (3) Å | θ = 2.9–23.2° |
c = 15.854 (5) Å | µ = 0.11 mm−1 |
β = 104.96 (4)° | T = 298 K |
V = 1209.6 (5) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.12 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 804 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 306 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.121 |
Detector resolution: 16.0338 pixels mm-1 | θmax = 28.4°, θmin = 3.0° |
ω and φ scans | h = −22→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.455, Tmax = 0.577 | l = −18→20 |
6263 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.225 | w = 1/[σ2(Fo2) + (0.063P)2 + 3.1475P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
804 reflections | Δρmax = 0.17 e Å−3 |
88 parameters | Δρmin = −0.16 e Å−3 |
18 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4739 (4) | 0.0151 (12) | 0.3634 (5) | 0.061 (4) | |
H1 | 0.4444 | 0.1294 | 0.3783 | 0.091* | |
O2 | 0.3896 (6) | −0.0194 (16) | 0.2362 (8) | 0.077 (5) | |
C7 | 0.4486 (7) | −0.0845 (19) | 0.2846 (10) | 0.039 (5) | |
C8 | 0.5000 | −0.295 (2) | 0.2500 | 0.050 (6) | |
H8A | 0.5266 | −0.4364 | 0.2965 | 0.059* | 0.5 |
H8B | 0.4734 | −0.4364 | 0.2035 | 0.059* | 0.5 |
N1 | 0.3813 (5) | 0.3572 (13) | 0.4189 (7) | 0.047 (3) | |
C2 | 0.3169 (6) | 0.4140 (19) | 0.3656 (9) | 0.055 (4) | |
H2 | 0.3074 | 0.3531 | 0.3071 | 0.067* | |
C3 | 0.2644 (6) | 0.5628 (16) | 0.3970 (7) | 0.058 (3) | |
H3 | 0.2194 | 0.5946 | 0.3601 | 0.070* | |
C4 | 0.2790 (6) | 0.6635 (15) | 0.4830 (8) | 0.042 (3) | |
C5 | 0.3441 (7) | 0.6062 (19) | 0.5340 (9) | 0.063 (4) | |
H5 | 0.3556 | 0.6649 | 0.5927 | 0.076* | |
C6 | 0.3939 (7) | 0.4596 (19) | 0.4985 (8) | 0.070 (4) | |
H6 | 0.4395 | 0.4327 | 0.5342 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.049 (8) | 0.083 (4) | 0.054 (8) | 0.007 (3) | 0.021 (9) | −0.010 (3) |
O2 | 0.051 (10) | 0.120 (5) | 0.054 (13) | 0.019 (5) | 0.006 (12) | 0.003 (5) |
C7 | 0.029 (11) | 0.059 (4) | 0.021 (12) | −0.004 (5) | −0.004 (12) | 0.014 (5) |
C8 | 0.058 (13) | 0.053 (5) | 0.038 (13) | 0.000 | 0.013 (13) | 0.000 |
N1 | 0.039 (7) | 0.064 (3) | 0.038 (8) | 0.005 (4) | 0.006 (8) | −0.003 (4) |
C2 | 0.043 (8) | 0.092 (5) | 0.029 (9) | 0.020 (6) | 0.005 (8) | 0.004 (5) |
C3 | 0.043 (8) | 0.083 (5) | 0.043 (8) | 0.022 (5) | 0.003 (8) | −0.001 (4) |
C4 | 0.032 (7) | 0.053 (4) | 0.040 (9) | 0.010 (4) | 0.009 (8) | 0.003 (4) |
C5 | 0.048 (8) | 0.097 (5) | 0.041 (9) | 0.029 (5) | 0.004 (8) | −0.013 (5) |
C6 | 0.033 (8) | 0.121 (6) | 0.047 (9) | 0.028 (6) | −0.006 (8) | −0.021 (6) |
O1—H1 | 0.8200 | C2—H2 | 0.9300 |
O1—C7 | 1.285 (18) | C2—C3 | 1.388 (10) |
O2—C7 | 1.237 (18) | C3—H3 | 0.9300 |
C7—C8 | 1.523 (10) | C3—C4 | 1.381 (16) |
C8—C7i | 1.523 (10) | C4—C4ii | 1.541 (13) |
C8—H8A | 0.9700 | C4—C5 | 1.340 (19) |
C8—H8B | 0.9700 | C5—H5 | 0.9300 |
N1—C2 | 1.343 (18) | C5—C6 | 1.378 (10) |
N1—C6 | 1.291 (15) | C6—H6 | 0.9300 |
C7—O1—H1 | 109.5 | C3—C2—H2 | 119.7 |
O1—C7—C8 | 113.7 (12) | C2—C3—H3 | 120.1 |
O2—C7—O1 | 126.9 (10) | C4—C3—C2 | 119.9 (13) |
O2—C7—C8 | 119.4 (14) | C4—C3—H3 | 120.1 |
C7i—C8—C7 | 112.1 (7) | C3—C4—C4ii | 119.7 (16) |
C7—C8—H8A | 109.2 | C5—C4—C3 | 117.8 (8) |
C7i—C8—H8A | 109.2 | C5—C4—C4ii | 122.5 (15) |
C7i—C8—H8B | 109.2 | C4—C5—H5 | 120.3 |
C7—C8—H8B | 109.2 | C4—C5—C6 | 119.4 (13) |
H8A—C8—H8B | 107.9 | C6—C5—H5 | 120.3 |
C6—N1—C2 | 118.2 (8) | N1—C6—C5 | 124.0 (13) |
N1—C2—H2 | 119.7 | N1—C6—H6 | 118.0 |
N1—C2—C3 | 120.6 (12) | C5—C6—H6 | 118.0 |
O1—C7—C8—C7i | −83.3 (7) | C2—C3—C4—C5 | −1.3 (10) |
O2—C7—C8—C7i | 94.9 (7) | C3—C4—C5—C6 | 1.8 (12) |
N1—C2—C3—C4 | 2.1 (11) | C4ii—C4—C5—C6 | −178.0 (7) |
C2—N1—C6—C5 | 4.1 (12) | C4—C5—C6—N1 | −3.3 (12) |
C2—C3—C4—C4ii | 178.4 (7) | C6—N1—C2—C3 | −3.4 (12) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
C3H4O4·C10H8N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.450 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.561 (8) Å | Cell parameters from 645 reflections |
b = 4.0010 (5) Å | θ = 4.4–19.6° |
c = 15.776 (9) Å | µ = 0.11 mm−1 |
β = 105.08 (6)° | T = 298 K |
V = 1192.2 (9) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.20 × 0.02 mm |
Xcalibur, Eos diffractometer | 784 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 253 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.154 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.1°, θmin = 4.5° |
ω and φ scans | h = −25→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→5 |
Tmin = 0.453, Tmax = 0.577 | l = −19→20 |
4852 measured reflections |
Refinement on F2 | 60 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.149 | w = 1/[σ2(Fo2) + (0.0272P)2 + 1.2859P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
784 reflections | Δρmax = 0.17 e Å−3 |
88 parameters | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4736 (4) | 0.0115 (10) | 0.3623 (5) | 0.056 (2) | |
H1 | 0.4458 | 0.1435 | 0.3751 | 0.085* | |
O2 | 0.3896 (4) | −0.0240 (14) | 0.2372 (6) | 0.077 (3) | |
C7 | 0.4478 (7) | −0.0944 (16) | 0.2823 (10) | 0.044 (3) | |
C8 | 0.5000 | −0.3014 (16) | 0.2500 | 0.044 (5) | |
H8A | 0.5257 | −0.4444 | 0.2973 | 0.052* | 0.5 |
H8B | 0.4743 | −0.4443 | 0.2027 | 0.052* | 0.5 |
N1 | 0.3815 (5) | 0.3518 (14) | 0.4191 (8) | 0.047 (3) | |
C2 | 0.3182 (6) | 0.4138 (18) | 0.3678 (9) | 0.053 (4) | |
H2 | 0.3093 | 0.3550 | 0.3089 | 0.063* | |
C3 | 0.2636 (6) | 0.5625 (13) | 0.3965 (7) | 0.056 (3) | |
H3 | 0.2188 | 0.5918 | 0.3586 | 0.067* | |
C4 | 0.2782 (6) | 0.6630 (14) | 0.4817 (9) | 0.041 (3) | |
C5 | 0.3443 (6) | 0.6107 (16) | 0.5347 (9) | 0.060 (4) | |
H5 | 0.3557 | 0.6745 | 0.5934 | 0.072* | |
C6 | 0.3943 (7) | 0.4600 (16) | 0.4990 (8) | 0.067 (3) | |
H6 | 0.4400 | 0.4352 | 0.5347 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.045 (5) | 0.067 (3) | 0.063 (6) | 0.005 (3) | 0.024 (6) | −0.010 (3) |
O2 | 0.055 (6) | 0.111 (4) | 0.066 (8) | 0.022 (5) | 0.017 (6) | 0.008 (5) |
C7 | 0.059 (8) | 0.041 (4) | 0.039 (8) | −0.002 (5) | 0.023 (8) | 0.004 (5) |
C8 | 0.042 (9) | 0.038 (4) | 0.054 (12) | 0.000 | 0.020 (11) | 0.000 |
N1 | 0.041 (6) | 0.063 (3) | 0.033 (9) | −0.001 (4) | 0.004 (8) | −0.002 (4) |
C2 | 0.042 (7) | 0.087 (5) | 0.023 (9) | 0.010 (5) | 0.000 (8) | −0.006 (5) |
C3 | 0.049 (7) | 0.074 (4) | 0.043 (8) | 0.014 (4) | 0.011 (7) | −0.003 (5) |
C4 | 0.033 (6) | 0.047 (4) | 0.043 (9) | 0.004 (4) | 0.011 (8) | 0.001 (4) |
C5 | 0.043 (7) | 0.092 (5) | 0.044 (9) | 0.025 (5) | 0.010 (8) | −0.010 (5) |
C6 | 0.036 (7) | 0.114 (5) | 0.040 (8) | 0.022 (6) | −0.008 (8) | −0.016 (6) |
O1—H1 | 0.8200 | C2—H2 | 0.9300 |
O1—C7 | 1.302 (17) | C2—C3 | 1.397 (9) |
O2—C7 | 1.210 (18) | C3—H3 | 0.9300 |
C7—C8 | 1.503 (8) | C3—C4 | 1.361 (16) |
C8—C7i | 1.503 (8) | C4—C4ii | 1.537 (12) |
C8—H8A | 0.9700 | C4—C5 | 1.362 (19) |
C8—H8B | 0.9700 | C5—H5 | 0.9300 |
N1—C2 | 1.314 (18) | C5—C6 | 1.387 (9) |
N1—C6 | 1.294 (16) | C6—H6 | 0.9300 |
C7—O1—H1 | 109.5 | C3—C2—H2 | 118.0 |
O1—C7—C8 | 112.5 (12) | C2—C3—H3 | 121.2 |
O2—C7—O1 | 124.2 (9) | C4—C3—C2 | 117.7 (12) |
O2—C7—C8 | 123.2 (13) | C4—C3—H3 | 121.2 |
C7i—C8—C7 | 113.1 (6) | C3—C4—C4ii | 121.3 (17) |
C7—C8—H8A | 109.0 | C3—C4—C5 | 118.8 (8) |
C7i—C8—H8A | 109.0 | C5—C4—C4ii | 119.9 (16) |
C7i—C8—H8B | 109.0 | C4—C5—H5 | 120.8 |
C7—C8—H8B | 109.0 | C4—C5—C6 | 118.3 (12) |
H8A—C8—H8B | 107.8 | C6—C5—H5 | 120.8 |
C6—N1—C2 | 116.7 (9) | N1—C6—C5 | 124.3 (13) |
N1—C2—H2 | 118.0 | N1—C6—H6 | 117.9 |
N1—C2—C3 | 124.0 (13) | C5—C6—H6 | 117.9 |
O1—C7—C8—C7i | −81.5 (6) | C2—C3—C4—C5 | −0.8 (9) |
O2—C7—C8—C7i | 95.7 (8) | C3—C4—C5—C6 | 0.7 (10) |
N1—C2—C3—C4 | 3.2 (10) | C4ii—C4—C5—C6 | −178.5 (5) |
C2—N1—C6—C5 | 5.3 (11) | C4—C5—C6—N1 | −3.1 (11) |
C2—C3—C4—C4ii | 178.4 (6) | C6—N1—C2—C3 | −5.4 (12) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
C3H4O4·C10H8N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.491 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.582 (7) Å | Cell parameters from 840 reflections |
b = 3.9289 (4) Å | θ = 3.0–23.7° |
c = 15.625 (6) Å | µ = 0.11 mm−1 |
β = 105.30 (5)° | T = 298 K |
V = 1159.5 (7) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.12 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 755 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 316 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.103 |
Detector resolution: 16.0338 pixels mm-1 | θmax = 28.7°, θmin = 3.0° |
ω and φ scans | h = −23→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.452, Tmax = 0.577 | l = −18→20 |
5802 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.174 | w = 1/[σ2(Fo2) + (0.0719P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
755 reflections | Δρmax = 0.15 e Å−3 |
88 parameters | Δρmin = −0.13 e Å−3 |
19 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4741 (3) | 0.0053 (8) | 0.3642 (4) | 0.043 (2) | |
H1 | 0.4436 | 0.1176 | 0.3785 | 0.065* | |
O2 | 0.3901 (4) | −0.0409 (10) | 0.2371 (5) | 0.060 (4) | |
C7 | 0.4498 (6) | −0.1042 (12) | 0.2846 (8) | 0.036 (3) | |
C8 | 0.5000 | −0.3191 (14) | 0.2500 | 0.035 (3) | |
H8A | 0.5268 | −0.4643 | 0.2973 | 0.042* | 0.5 |
H8B | 0.4732 | −0.4643 | 0.2027 | 0.042* | 0.5 |
N1 | 0.3811 (4) | 0.3520 (9) | 0.4177 (5) | 0.041 (3) | |
C2 | 0.3177 (5) | 0.4093 (13) | 0.3660 (7) | 0.046 (3) | |
H2 | 0.3082 | 0.3453 | 0.3067 | 0.055* | |
C3 | 0.2640 (4) | 0.5610 (11) | 0.3954 (5) | 0.049 (3) | |
H3 | 0.2192 | 0.5899 | 0.3569 | 0.058* | |
C4 | 0.2777 (4) | 0.6675 (10) | 0.4816 (6) | 0.034 (3) | |
C5 | 0.3444 (5) | 0.6148 (13) | 0.5356 (7) | 0.053 (3) | |
H5 | 0.3556 | 0.6825 | 0.5947 | 0.063* | |
C6 | 0.3956 (5) | 0.4579 (12) | 0.5010 (6) | 0.055 (3) | |
H6 | 0.4410 | 0.4273 | 0.5376 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.029 (5) | 0.061 (2) | 0.040 (6) | 0.008 (2) | 0.010 (6) | −0.009 (2) |
O2 | 0.041 (7) | 0.097 (3) | 0.038 (9) | 0.016 (3) | 0.006 (8) | 0.003 (3) |
C7 | 0.034 (7) | 0.040 (3) | 0.030 (8) | −0.004 (3) | 0.003 (8) | 0.005 (3) |
C8 | 0.034 (7) | 0.040 (3) | 0.032 (8) | 0.000 | 0.011 (7) | 0.000 |
N1 | 0.038 (6) | 0.048 (2) | 0.038 (7) | 0.005 (3) | 0.012 (6) | −0.005 (3) |
C2 | 0.032 (6) | 0.075 (3) | 0.027 (7) | 0.005 (4) | 0.003 (6) | 0.001 (4) |
C3 | 0.036 (6) | 0.075 (3) | 0.033 (6) | 0.016 (3) | 0.006 (6) | −0.006 (3) |
C4 | 0.030 (5) | 0.039 (2) | 0.035 (7) | 0.007 (3) | 0.012 (6) | 0.004 (3) |
C5 | 0.042 (6) | 0.083 (3) | 0.030 (7) | 0.023 (4) | 0.004 (6) | −0.011 (4) |
C6 | 0.031 (6) | 0.091 (4) | 0.035 (6) | 0.025 (4) | −0.003 (6) | −0.010 (4) |
O1—H1 | 0.8200 | C2—H2 | 0.9300 |
O1—C7 | 1.283 (13) | C2—C3 | 1.389 (7) |
O2—C7 | 1.233 (14) | C3—H3 | 0.9300 |
C7—C8 | 1.501 (7) | C3—C4 | 1.367 (11) |
C8—C7i | 1.501 (7) | C4—C4ii | 1.503 (9) |
C8—H8A | 0.9700 | C4—C5 | 1.371 (14) |
C8—H8B | 0.9700 | C5—H5 | 0.9300 |
N1—C2 | 1.310 (13) | C5—C6 | 1.401 (8) |
N1—C6 | 1.324 (11) | C6—H6 | 0.9300 |
C7—O1—H1 | 109.5 | C3—C2—H2 | 118.4 |
O1—C7—C8 | 115.2 (10) | C2—C3—H3 | 120.4 |
O2—C7—O1 | 124.5 (7) | C4—C3—C2 | 119.2 (9) |
O2—C7—C8 | 120.3 (10) | C4—C3—H3 | 120.4 |
C7i—C8—C7 | 111.5 (5) | C3—C4—C4ii | 122.4 (12) |
C7—C8—H8A | 109.3 | C3—C4—C5 | 117.9 (5) |
C7i—C8—H8A | 109.3 | C5—C4—C4ii | 119.7 (11) |
C7i—C8—H8B | 109.3 | C4—C5—H5 | 120.3 |
C7—C8—H8B | 109.3 | C4—C5—C6 | 119.4 (9) |
H8A—C8—H8B | 108.0 | C6—C5—H5 | 120.3 |
C2—N1—C6 | 118.4 (6) | N1—C6—C5 | 121.9 (10) |
N1—C2—H2 | 118.4 | N1—C6—H6 | 119.1 |
N1—C2—C3 | 123.1 (9) | C5—C6—H6 | 119.1 |
O1—C7—C8—C7i | −82.7 (5) | C2—C3—C4—C5 | −0.8 (7) |
O2—C7—C8—C7i | 96.6 (6) | C3—C4—C5—C6 | 0.4 (8) |
N1—C2—C3—C4 | 2.2 (8) | C4ii—C4—C5—C6 | 179.4 (4) |
C2—N1—C6—C5 | 2.7 (8) | C4—C5—C6—N1 | −1.4 (8) |
C2—C3—C4—C4ii | −179.7 (5) | C6—N1—C2—C3 | −3.2 (8) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
C3H4O4·C10H8N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.487 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.581 (6) Å | Cell parameters from 522 reflections |
b = 3.9351 (5) Å | θ = 4.4–20.3° |
c = 15.640 (7) Å | µ = 0.11 mm−1 |
β = 105.31 (4)° | T = 298 K |
V = 1162.4 (7) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.15 × 0.01 mm |
Xcalibur, Eos diffractometer | 721 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 195 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.136 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.5°, θmin = 4.5° |
ω and φ scans | h = −22→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.454, Tmax = 0.577 | l = −17→16 |
2535 measured reflections |
Refinement on F2 | 42 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.089 | H-atom parameters constrained |
wR(F2) = 0.275 | w = 1/[σ2(Fo2) + (0.0825P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
721 reflections | Δρmax = 0.21 e Å−3 |
88 parameters | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4737 (5) | 0.0073 (16) | 0.3636 (8) | 0.060 (4) | |
H1 | 0.4442 | 0.1314 | 0.3765 | 0.090* | |
O2 | 0.3892 (6) | −0.0382 (18) | 0.2364 (10) | 0.076 (4) | |
N1 | 0.3805 (6) | 0.3520 (19) | 0.4158 (11) | 0.052 (4) | |
C4 | 0.2794 (7) | 0.665 (2) | 0.4836 (13) | 0.044 (4) | |
C3 | 0.2627 (7) | 0.567 (2) | 0.3956 (12) | 0.054 (4) | |
H3 | 0.2181 | 0.6018 | 0.3571 | 0.065* | |
C8 | 0.5000 | −0.317 (3) | 0.2500 | 0.050 (7) | |
H8A | 0.4743 | −0.4626 | 0.2022 | 0.061* | 0.5 |
H8B | 0.5257 | −0.4626 | 0.2978 | 0.061* | 0.5 |
C7 | 0.4484 (9) | −0.108 (3) | 0.2821 (16) | 0.061 (4) | |
C2 | 0.3181 (7) | 0.410 (2) | 0.3687 (13) | 0.061 (4) | |
H2 | 0.3079 | 0.3410 | 0.3098 | 0.073* | |
C5 | 0.3442 (7) | 0.616 (2) | 0.5341 (12) | 0.060 (4) | |
H5 | 0.3562 | 0.6875 | 0.5929 | 0.072* | |
C6 | 0.3950 (9) | 0.456 (3) | 0.4993 (14) | 0.070 (5) | |
H6 | 0.4403 | 0.4210 | 0.5360 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.059 (6) | 0.063 (5) | 0.065 (11) | 0.005 (4) | 0.030 (8) | −0.003 (5) |
O2 | 0.065 (7) | 0.114 (6) | 0.055 (12) | 0.013 (5) | 0.030 (8) | 0.002 (5) |
N1 | 0.054 (6) | 0.058 (4) | 0.050 (12) | −0.001 (5) | 0.025 (9) | −0.004 (7) |
C4 | 0.033 (6) | 0.061 (6) | 0.036 (13) | −0.010 (5) | 0.009 (9) | −0.012 (7) |
C3 | 0.036 (7) | 0.091 (7) | 0.032 (12) | 0.009 (5) | 0.005 (8) | −0.003 (8) |
C8 | 0.071 (11) | 0.043 (7) | 0.04 (2) | 0.000 | 0.024 (16) | 0.000 |
C7 | 0.059 (8) | 0.056 (6) | 0.081 (14) | −0.005 (6) | 0.042 (9) | −0.012 (8) |
C2 | 0.049 (8) | 0.097 (7) | 0.039 (12) | −0.001 (6) | 0.015 (8) | −0.027 (8) |
C5 | 0.052 (8) | 0.090 (7) | 0.035 (12) | 0.013 (6) | 0.007 (8) | −0.013 (8) |
C6 | 0.043 (8) | 0.120 (9) | 0.047 (12) | 0.013 (7) | 0.011 (9) | −0.010 (10) |
O1—H1 | 0.8200 | C3—C2 | 1.406 (12) |
O1—C7 | 1.32 (2) | C8—H8A | 0.9700 |
O2—C7 | 1.22 (2) | C8—H8B | 0.9700 |
N1—C2 | 1.27 (2) | C8—C7 | 1.490 (13) |
N1—C6 | 1.33 (2) | C8—C7ii | 1.490 (13) |
C4—C4i | 1.533 (18) | C2—H2 | 0.9300 |
C4—C3 | 1.38 (2) | C5—H5 | 0.9300 |
C4—C5 | 1.32 (2) | C5—C6 | 1.404 (13) |
C3—H3 | 0.9300 | C6—H6 | 0.9300 |
C7—O1—H1 | 109.5 | C7—C8—C7ii | 112.7 (10) |
C2—N1—C6 | 116.0 (12) | O1—C7—C8 | 113.6 (16) |
C3—C4—C4i | 117 (2) | O2—C7—O1 | 122.9 (12) |
C5—C4—C4i | 124 (2) | O2—C7—C8 | 123.4 (19) |
C5—C4—C3 | 119.6 (11) | N1—C2—C3 | 127.3 (18) |
C4—C3—H3 | 122.6 | N1—C2—H2 | 116.3 |
C4—C3—C2 | 114.9 (17) | C3—C2—H2 | 116.3 |
C2—C3—H3 | 122.6 | C4—C5—H5 | 120.0 |
H8A—C8—H8B | 107.8 | C4—C5—C6 | 120.1 (18) |
C7—C8—H8A | 109.1 | C6—C5—H5 | 120.0 |
C7ii—C8—H8A | 109.1 | N1—C6—C5 | 122.1 (19) |
C7—C8—H8B | 109.1 | N1—C6—H6 | 118.9 |
C7ii—C8—H8B | 109.1 | C5—C6—H6 | 118.9 |
C4i—C4—C3—C2 | −179.7 (9) | C7ii—C8—C7—O1 | −80.9 (8) |
C4i—C4—C5—C6 | 179.6 (9) | C7ii—C8—C7—O2 | 96.7 (14) |
C4—C3—C2—N1 | −0.3 (16) | C2—N1—C6—C5 | 0.8 (17) |
C4—C5—C6—N1 | 0.7 (18) | C5—C4—C3—C2 | 1.8 (15) |
C3—C4—C5—C6 | −2.0 (17) | C6—N1—C2—C3 | −1.0 (18) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H4O4·C10H8N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.520 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.604 (5) Å | Cell parameters from 870 reflections |
b = 3.8747 (3) Å | θ = 3.0–22.1° |
c = 15.531 (4) Å | µ = 0.12 mm−1 |
β = 105.37 (3)° | T = 298 K |
V = 1137.5 (4) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.12 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 738 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 336 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
Detector resolution: 16.0338 pixels mm-1 | θmax = 28.5°, θmin = 3.0° |
ω and φ scans | h = −23→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.451, Tmax = 0.577 | l = −17→19 |
5895 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.0398P)2 + 1.8605P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
738 reflections | Δρmax = 0.21 e Å−3 |
88 parameters | Δρmin = −0.19 e Å−3 |
42 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4742 (3) | 0.0015 (8) | 0.3645 (4) | 0.038 (2) | |
H1 | 0.4441 | 0.1154 | 0.3797 | 0.056* | |
O2 | 0.3893 (4) | −0.0464 (11) | 0.2367 (6) | 0.055 (3) | |
C7 | 0.4480 (5) | −0.1130 (13) | 0.2830 (8) | 0.028 (4) | |
C8 | 0.5000 | −0.3291 (14) | 0.2500 | 0.039 (4) | |
H8A | 0.5258 | −0.4766 | 0.2981 | 0.047* | 0.5 |
H8B | 0.4742 | −0.4766 | 0.2019 | 0.047* | 0.5 |
N1 | 0.3818 (4) | 0.3540 (10) | 0.4181 (5) | 0.035 (2) | |
C2 | 0.3184 (5) | 0.4053 (13) | 0.3657 (6) | 0.039 (3) | |
H2 | 0.3088 | 0.3356 | 0.3064 | 0.046* | |
C3 | 0.2645 (4) | 0.5606 (12) | 0.3953 (5) | 0.042 (2) | |
H3 | 0.2198 | 0.5913 | 0.3566 | 0.051* | |
C4 | 0.2785 (4) | 0.6675 (11) | 0.4826 (6) | 0.027 (2) | |
C5 | 0.3446 (5) | 0.6172 (13) | 0.5356 (6) | 0.045 (3) | |
H5 | 0.3560 | 0.6897 | 0.5948 | 0.054* | |
C6 | 0.3957 (5) | 0.4568 (13) | 0.5018 (6) | 0.046 (3) | |
H6 | 0.4408 | 0.4216 | 0.5393 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.029 (5) | 0.052 (2) | 0.034 (5) | 0.007 (2) | 0.010 (5) | −0.007 (2) |
O2 | 0.042 (7) | 0.081 (3) | 0.039 (9) | 0.017 (3) | 0.009 (8) | 0.003 (3) |
C7 | 0.021 (8) | 0.035 (3) | 0.024 (9) | 0.002 (3) | −0.003 (9) | 0.009 (3) |
C8 | 0.058 (9) | 0.026 (3) | 0.042 (9) | 0.000 | 0.029 (9) | 0.000 |
N1 | 0.029 (5) | 0.044 (2) | 0.030 (6) | 0.003 (3) | 0.007 (6) | −0.001 (3) |
C2 | 0.032 (6) | 0.063 (3) | 0.019 (7) | 0.006 (4) | 0.003 (6) | −0.004 (3) |
C3 | 0.026 (5) | 0.069 (3) | 0.029 (6) | 0.011 (3) | 0.003 (6) | −0.003 (3) |
C4 | 0.022 (5) | 0.037 (2) | 0.024 (6) | 0.002 (3) | 0.006 (6) | 0.001 (3) |
C5 | 0.035 (5) | 0.067 (3) | 0.031 (7) | 0.024 (3) | 0.005 (6) | −0.008 (3) |
C6 | 0.021 (6) | 0.081 (4) | 0.028 (6) | 0.015 (4) | −0.007 (6) | −0.008 (4) |
O1—H1 | 0.8200 | C2—H2 | 0.9300 |
O1—C7 | 1.310 (13) | C2—C3 | 1.396 (7) |
O2—C7 | 1.211 (14) | C3—H3 | 0.9300 |
C7—C8 | 1.510 (7) | C3—C4 | 1.374 (11) |
C8—C7i | 1.510 (7) | C4—C4ii | 1.506 (9) |
C8—H8A | 0.9700 | C4—C5 | 1.352 (14) |
C8—H8B | 0.9700 | C5—H5 | 0.9300 |
N1—C2 | 1.309 (13) | C5—C6 | 1.395 (7) |
N1—C6 | 1.317 (11) | C6—H6 | 0.9300 |
C7—O1—H1 | 109.5 | C3—C2—H2 | 118.7 |
O1—C7—C8 | 112.9 (9) | C2—C3—H3 | 120.5 |
O2—C7—O1 | 124.6 (7) | C4—C3—C2 | 118.9 (9) |
O2—C7—C8 | 122.4 (11) | C4—C3—H3 | 120.5 |
C7i—C8—C7 | 112.7 (5) | C3—C4—C4ii | 120.5 (11) |
C7—C8—H8A | 109.1 | C5—C4—C3 | 117.8 (5) |
C7i—C8—H8A | 109.1 | C5—C4—C4ii | 121.7 (11) |
C7i—C8—H8B | 109.1 | C4—C5—H5 | 119.9 |
C7—C8—H8B | 109.1 | C4—C5—C6 | 120.2 (9) |
H8A—C8—H8B | 107.8 | C6—C5—H5 | 119.9 |
C2—N1—C6 | 118.8 (6) | N1—C6—C5 | 121.7 (10) |
N1—C2—H2 | 118.7 | N1—C6—H6 | 119.2 |
N1—C2—C3 | 122.6 (9) | C5—C6—H6 | 119.2 |
O1—C7—C8—C7i | −80.8 (4) | C2—C3—C4—C5 | 0.3 (7) |
O2—C7—C8—C7i | 96.9 (6) | C3—C4—C5—C6 | −1.0 (8) |
N1—C2—C3—C4 | 0.7 (8) | C4ii—C4—C5—C6 | 178.6 (4) |
C2—N1—C6—C5 | 0.2 (8) | C4—C5—C6—N1 | 0.8 (8) |
C2—C3—C4—C4ii | −179.3 (5) | C6—N1—C2—C3 | −0.9 (8) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
C3H4O4·C10H8N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.540 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.612 (5) Å | Cell parameters from 815 reflections |
b = 3.8444 (3) Å | θ = 3.0–20.9° |
c = 15.462 (4) Å | µ = 0.12 mm−1 |
β = 105.61 (3)° | T = 298 K |
V = 1122.8 (4) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.12 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 730 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 323 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.101 |
Detector resolution: 16.0338 pixels mm-1 | θmax = 28.6°, θmin = 3.0° |
ω and φ scans | h = −23→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.448, Tmax = 0.577 | l = −17→19 |
5440 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.0552P)2 + 1.4274P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
730 reflections | Δρmax = 0.22 e Å−3 |
88 parameters | Δρmin = −0.18 e Å−3 |
36 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4743 (3) | −0.0011 (9) | 0.3652 (4) | 0.043 (3) | |
H1 | 0.4448 | 0.1222 | 0.3792 | 0.065* | |
O2 | 0.3892 (4) | −0.0529 (12) | 0.2363 (6) | 0.045 (3) | |
N1 | 0.3820 (4) | 0.3527 (11) | 0.4185 (6) | 0.032 (3) | |
C2 | 0.3181 (5) | 0.4038 (14) | 0.3648 (7) | 0.038 (3) | |
H2 | 0.3085 | 0.3361 | 0.3050 | 0.046* | |
C3 | 0.2647 (5) | 0.5566 (14) | 0.3955 (6) | 0.040 (3) | |
H3 | 0.2196 | 0.5836 | 0.3567 | 0.048* | |
C4 | 0.2782 (5) | 0.6664 (12) | 0.4819 (6) | 0.023 (2) | |
C5 | 0.3455 (5) | 0.6192 (15) | 0.5373 (7) | 0.044 (3) | |
H5 | 0.3569 | 0.6923 | 0.5968 | 0.052* | |
C6 | 0.3963 (5) | 0.4594 (14) | 0.5023 (6) | 0.045 (3) | |
H6 | 0.4417 | 0.4273 | 0.5395 | 0.054* | |
C7 | 0.4489 (6) | −0.1136 (14) | 0.2847 (9) | 0.029 (4) | |
C8 | 0.5000 | −0.3320 (16) | 0.2500 | 0.035 (5) | |
H8A | 0.4734 | −0.4806 | 0.2020 | 0.042* | 0.5 |
H8B | 0.5266 | −0.4806 | 0.2980 | 0.042* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.040 (6) | 0.052 (2) | 0.044 (6) | 0.008 (3) | 0.022 (6) | −0.007 (3) |
O2 | 0.023 (7) | 0.082 (3) | 0.021 (9) | 0.007 (3) | −0.011 (9) | −0.001 (3) |
N1 | 0.025 (5) | 0.042 (2) | 0.028 (7) | 0.001 (3) | 0.005 (6) | −0.001 (3) |
C2 | 0.033 (6) | 0.063 (4) | 0.015 (7) | 0.009 (4) | 0.001 (6) | −0.002 (4) |
C3 | 0.025 (6) | 0.068 (4) | 0.023 (6) | 0.006 (3) | −0.001 (6) | −0.006 (3) |
C4 | 0.014 (5) | 0.034 (2) | 0.017 (7) | 0.000 (3) | −0.004 (6) | 0.002 (3) |
C5 | 0.026 (6) | 0.072 (4) | 0.028 (7) | 0.015 (4) | −0.002 (6) | −0.012 (4) |
C6 | 0.020 (6) | 0.077 (4) | 0.030 (7) | 0.018 (4) | −0.005 (6) | −0.009 (4) |
C7 | 0.019 (9) | 0.036 (3) | 0.027 (11) | −0.002 (4) | −0.001 (11) | 0.009 (4) |
C8 | 0.040 (10) | 0.034 (4) | 0.036 (11) | 0.000 | 0.018 (11) | 0.000 |
O1—H1 | 0.8200 | C4—C4i | 1.511 (10) |
O1—C7 | 1.285 (14) | C4—C5 | 1.379 (14) |
O2—C7 | 1.230 (15) | C5—H5 | 0.9300 |
N1—C2 | 1.318 (13) | C5—C6 | 1.397 (8) |
N1—C6 | 1.315 (11) | C6—H6 | 0.9300 |
C2—H2 | 0.9300 | C7—C8 | 1.512 (8) |
C2—C3 | 1.391 (8) | C8—C7ii | 1.512 (8) |
C3—H3 | 0.9300 | C8—H8A | 0.9700 |
C3—C4 | 1.357 (12) | C8—H8B | 0.9700 |
C7—O1—H1 | 109.5 | C6—C5—H5 | 120.7 |
C6—N1—C2 | 119.2 (7) | N1—C6—C5 | 122.3 (10) |
N1—C2—H2 | 119.2 | N1—C6—H6 | 118.9 |
N1—C2—C3 | 121.6 (9) | C5—C6—H6 | 118.9 |
C3—C2—H2 | 119.2 | O1—C7—C8 | 114.2 (10) |
C2—C3—H3 | 120.0 | O2—C7—O1 | 125.7 (8) |
C4—C3—C2 | 120.1 (10) | O2—C7—C8 | 120.1 (11) |
C4—C3—H3 | 120.0 | C7—C8—C7ii | 112.6 (5) |
C3—C4—C4i | 121.9 (12) | C7—C8—H8A | 109.1 |
C3—C4—C5 | 118.1 (6) | C7ii—C8—H8A | 109.1 |
C5—C4—C4i | 119.9 (11) | C7—C8—H8B | 109.1 |
C4—C5—H5 | 120.7 | C7ii—C8—H8B | 109.1 |
C4—C5—C6 | 118.7 (10) | H8A—C8—H8B | 107.8 |
O1—C7—C8—C7ii | −81.7 (5) | C2—C3—C4—C5 | −0.5 (8) |
O2—C7—C8—C7ii | 97.1 (6) | C3—C4—C5—C6 | −0.4 (8) |
N1—C2—C3—C4 | 1.9 (8) | C4i—C4—C5—C6 | 179.1 (5) |
C2—N1—C6—C5 | 1.4 (8) | C4—C5—C6—N1 | −0.1 (9) |
C2—C3—C4—C4i | −180.0 (5) | C6—N1—C2—C3 | −2.3 (9) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H4O4·C10H8N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.547 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.598 (9) Å | Cell parameters from 647 reflections |
b = 3.8374 (5) Å | θ = 4.4–20.4° |
c = 15.442 (9) Å | µ = 0.12 mm−1 |
β = 105.76 (7)° | T = 298 K |
V = 1117.7 (9) Å3 | Plate, colourless |
Z = 4 | 0.33 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 714 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 298 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.134 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.2°, θmin = 4.5° |
ω and φ scans | h = −23→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.449, Tmax = 0.576 | l = −17→19 |
5693 measured reflections |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.074 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.038P)2 + 0.1344P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
714 reflections | Δρmax = 0.20 e Å−3 |
88 parameters | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4740 (3) | −0.0012 (9) | 0.3643 (4) | 0.046 (3) | |
H1A | 0.4437 | 0.1145 | 0.3789 | 0.069* | |
O2 | 0.3889 (4) | −0.0528 (11) | 0.2364 (6) | 0.052 (4) | |
N1 | 0.3817 (4) | 0.3509 (10) | 0.4182 (6) | 0.034 (3) | |
C2 | 0.3177 (5) | 0.4037 (13) | 0.3642 (8) | 0.040 (3) | |
H2 | 0.3083 | 0.3372 | 0.3042 | 0.048* | |
C3 | 0.2641 (4) | 0.5561 (12) | 0.3945 (6) | 0.047 (3) | |
H3 | 0.2190 | 0.5819 | 0.3556 | 0.056* | |
C4 | 0.2779 (5) | 0.6674 (12) | 0.4812 (8) | 0.030 (3) | |
C5 | 0.3452 (5) | 0.6197 (13) | 0.5375 (7) | 0.047 (3) | |
H4 | 0.3564 | 0.6912 | 0.5973 | 0.056* | |
C6 | 0.3967 (5) | 0.4597 (13) | 0.5021 (7) | 0.047 (3) | |
H5 | 0.4424 | 0.4304 | 0.5391 | 0.056* | |
C7 | 0.4483 (6) | −0.1188 (13) | 0.2833 (10) | 0.036 (5) | |
C8 | 0.5000 | −0.3343 (14) | 0.2500 | 0.042 (5) | |
H8A | 0.5261 | −0.4834 | 0.2984 | 0.050* | 0.5 |
H8B | 0.4739 | −0.4834 | 0.2016 | 0.050* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.043 (6) | 0.051 (2) | 0.052 (7) | 0.005 (3) | 0.027 (6) | −0.011 (3) |
O2 | 0.038 (7) | 0.079 (3) | 0.038 (10) | 0.018 (3) | 0.007 (9) | 0.002 (3) |
N1 | 0.034 (6) | 0.040 (2) | 0.025 (7) | −0.002 (3) | 0.005 (7) | −0.003 (3) |
C2 | 0.030 (6) | 0.065 (3) | 0.024 (8) | 0.007 (4) | 0.003 (7) | −0.003 (4) |
C3 | 0.041 (6) | 0.063 (3) | 0.039 (7) | 0.010 (3) | 0.017 (6) | −0.008 (4) |
C4 | 0.019 (5) | 0.036 (3) | 0.035 (8) | −0.001 (3) | 0.007 (7) | 0.000 (3) |
C5 | 0.036 (6) | 0.068 (3) | 0.034 (8) | 0.022 (4) | 0.007 (7) | −0.003 (4) |
C6 | 0.025 (6) | 0.075 (4) | 0.030 (7) | 0.014 (4) | −0.009 (7) | −0.010 (4) |
C7 | 0.039 (9) | 0.025 (3) | 0.047 (12) | 0.004 (4) | 0.020 (11) | 0.010 (4) |
C8 | 0.058 (10) | 0.029 (3) | 0.051 (13) | 0.000 | 0.037 (12) | 0.000 |
O1—H1A | 0.8200 | C4—C4i | 1.508 (10) |
O1—C7 | 1.295 (16) | C4—C5 | 1.381 (16) |
O2—C7 | 1.220 (17) | C5—H4 | 0.9300 |
N1—C2 | 1.320 (14) | C5—C6 | 1.412 (7) |
N1—C6 | 1.316 (13) | C6—H5 | 0.9300 |
C2—H2 | 0.9300 | C7—C8 | 1.503 (7) |
C2—C3 | 1.390 (7) | C8—C7ii | 1.503 (7) |
C3—H3 | 0.9300 | C8—H8A | 0.9700 |
C3—C4 | 1.362 (14) | C8—H8B | 0.9700 |
C7—O1—H1A | 109.5 | C6—C5—H4 | 120.8 |
C6—N1—C2 | 119.5 (7) | N1—C6—C5 | 121.9 (11) |
N1—C2—H2 | 119.1 | N1—C6—H5 | 119.1 |
N1—C2—C3 | 121.8 (11) | C5—C6—H5 | 119.1 |
C3—C2—H2 | 119.1 | O1—C7—C8 | 113.6 (11) |
C2—C3—H3 | 120.1 | O2—C7—O1 | 124.0 (8) |
C4—C3—C2 | 119.8 (10) | O2—C7—C8 | 122.3 (13) |
C4—C3—H3 | 120.1 | C7ii—C8—C7 | 113.2 (5) |
C3—C4—C4i | 122.7 (14) | C7ii—C8—H8A | 108.9 |
C3—C4—C5 | 118.5 (6) | C7—C8—H8A | 108.9 |
C5—C4—C4i | 118.8 (14) | C7ii—C8—H8B | 108.9 |
C4—C5—H4 | 120.8 | C7—C8—H8B | 108.9 |
C4—C5—C6 | 118.4 (10) | H8A—C8—H8B | 107.7 |
O1—C7—C8—C7ii | −80.4 (5) | C2—C3—C4—C5 | −1.1 (7) |
O2—C7—C8—C7ii | 97.0 (7) | C3—C4—C5—C6 | 0.4 (8) |
N1—C2—C3—C4 | 2.6 (8) | C4i—C4—C5—C6 | 179.0 (4) |
C2—N1—C6—C5 | 2.7 (8) | C4—C5—C6—N1 | −1.2 (8) |
C2—C3—C4—C4i | −179.6 (5) | C6—N1—C2—C3 | −3.3 (8) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C10H8.353N2·C3H3.647O4 | F(000) = 544 |
Mr = 260.25 | Dx = 1.573 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.631 (5) Å | Cell parameters from 640 reflections |
b = 3.7932 (3) Å | θ = 4.4–21.1° |
c = 15.352 (4) Å | µ = 0.12 mm−1 |
β = 105.95 (3)° | T = 298 K |
V = 1099.2 (4) Å3 | Plate, colourless |
Z = 4 | 0.33 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 718 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 289 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.130 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.3°, θmin = 4.4° |
ω and φ scans | h = −23→25 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.450, Tmax = 0.576 | l = −17→19 |
5808 measured reflections |
Refinement on F2 | 32 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0431P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
718 reflections | Δρmax = 0.18 e Å−3 |
89 parameters | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C2 | 0.3170 (4) | 0.4005 (12) | 0.3633 (7) | 0.034 (3) | |
H2 | 0.3072 | 0.3309 | 0.3030 | 0.041* | |
C3 | 0.2638 (4) | 0.5543 (12) | 0.3940 (5) | 0.039 (3) | |
H3 | 0.2186 | 0.5806 | 0.3550 | 0.047* | |
C4 | 0.2783 (4) | 0.6676 (11) | 0.4820 (7) | 0.027 (3) | |
C5 | 0.3454 (4) | 0.6217 (13) | 0.5376 (7) | 0.043 (3) | |
H5 | 0.3571 | 0.6949 | 0.5977 | 0.051* | |
C6 | 0.3961 (5) | 0.4612 (12) | 0.5014 (6) | 0.042 (3) | |
H6 | 0.4419 | 0.4334 | 0.5387 | 0.051* | |
N1 | 0.3821 (4) | 0.3498 (10) | 0.4184 (6) | 0.030 (3) | |
H1 | 0.4141 | 0.2454 | 0.3991 | 0.037* | 0.18 (6) |
C7 | 0.4491 (6) | −0.1247 (11) | 0.2849 (9) | 0.030 (4) | |
C8 | 0.5000 | −0.3416 (13) | 0.2500 | 0.041 (5) | |
H8A | 0.4732 | −0.4924 | 0.2016 | 0.049* | 0.5 |
H8B | 0.5268 | −0.4924 | 0.2984 | 0.049* | 0.5 |
O1 | 0.4741 (3) | −0.0048 (9) | 0.3655 (4) | 0.040 (3) | |
H1A | 0.4437 | 0.1118 | 0.3797 | 0.060* | 0.82 (6) |
O2 | 0.3886 (3) | −0.0613 (10) | 0.2360 (5) | 0.052 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.022 (5) | 0.056 (3) | 0.020 (7) | 0.007 (3) | −0.001 (6) | −0.004 (3) |
C3 | 0.027 (6) | 0.066 (3) | 0.022 (6) | 0.009 (3) | 0.005 (6) | −0.003 (3) |
C4 | 0.023 (5) | 0.028 (2) | 0.029 (7) | −0.001 (3) | 0.008 (6) | 0.000 (3) |
C5 | 0.031 (6) | 0.067 (3) | 0.028 (7) | 0.014 (4) | 0.004 (6) | −0.011 (4) |
C6 | 0.016 (6) | 0.071 (3) | 0.031 (7) | 0.013 (4) | −0.008 (6) | −0.008 (4) |
N1 | 0.029 (5) | 0.038 (2) | 0.025 (7) | 0.000 (3) | 0.006 (6) | −0.001 (3) |
C7 | 0.025 (8) | 0.031 (3) | 0.033 (10) | 0.001 (4) | 0.009 (9) | 0.010 (4) |
C8 | 0.056 (9) | 0.031 (3) | 0.048 (11) | 0.000 | 0.034 (10) | 0.000 |
O1 | 0.034 (6) | 0.053 (2) | 0.038 (6) | 0.006 (2) | 0.016 (6) | −0.007 (3) |
O2 | 0.041 (6) | 0.070 (3) | 0.047 (9) | 0.012 (3) | 0.013 (8) | 0.005 (3) |
C2—H2 | 0.9300 | C6—N1 | 1.298 (12) |
C2—C3 | 1.386 (7) | N1—H1 | 0.8600 |
C2—N1 | 1.339 (13) | C7—C8 | 1.502 (2) |
C3—H3 | 0.9300 | C7—O1 | 1.282 (15) |
C3—C4 | 1.371 (13) | C7—O2 | 1.243 (15) |
C4—C4i | 1.506 (9) | C8—C7ii | 1.502 (2) |
C4—C5 | 1.371 (15) | C8—H8A | 0.9700 |
C5—H5 | 0.9300 | C8—H8B | 0.9700 |
C5—C6 | 1.405 (7) | O1—H1A | 0.8200 |
C6—H6 | 0.9300 | ||
C3—C2—H2 | 119.2 | N1—C6—H6 | 118.4 |
N1—C2—H2 | 119.2 | C2—N1—H1 | 120.6 |
N1—C2—C3 | 121.5 (10) | C6—N1—C2 | 118.8 (6) |
C2—C3—H3 | 120.1 | C6—N1—H1 | 120.6 |
C4—C3—C2 | 119.7 (9) | O1—C7—C8 | 115.0 (10) |
C4—C3—H3 | 120.1 | O2—C7—C8 | 120.7 (11) |
C3—C4—C4i | 121.3 (13) | O2—C7—O1 | 124.3 (4) |
C5—C4—C3 | 118.5 (6) | C7—C8—C7ii | 113.6 (5) |
C5—C4—C4i | 120.2 (12) | C7—C8—H8A | 108.8 |
C4—C5—H5 | 120.9 | C7ii—C8—H8A | 108.8 |
C4—C5—C6 | 118.2 (10) | C7ii—C8—H8B | 108.8 |
C6—C5—H5 | 120.9 | C7—C8—H8B | 108.8 |
C5—C6—H6 | 118.4 | H8A—C8—H8B | 107.7 |
N1—C6—C5 | 123.2 (10) | C7—O1—H1A | 109.5 |
C2—C3—C4—C4i | −179.4 (5) | C4—C5—C6—N1 | −1.1 (8) |
C2—C3—C4—C5 | −0.5 (7) | C5—C6—N1—C2 | 2.4 (7) |
C3—C2—N1—C6 | −2.9 (8) | N1—C2—C3—C4 | 1.9 (7) |
C3—C4—C5—C6 | 0.1 (7) | O1—C7—C8—C7ii | −80.6 (4) |
C4i—C4—C5—C6 | 178.9 (4) | O2—C7—C8—C7ii | 96.8 (6) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H3.559O4·C10H8.441N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.590 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.635 (3) Å | Cell parameters from 825 reflections |
b = 3.7664 (2) Å | θ = 3.0–22.3° |
c = 15.296 (3) Å | µ = 0.12 mm−1 |
β = 106.03 (2)° | T = 298 K |
V = 1087.2 (3) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.12 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 711 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 349 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.100 |
Detector resolution: 16.0338 pixels mm-1 | θmax = 28.6°, θmin = 3.0° |
ω and φ scans | h = −24→23 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→5 |
Tmin = 0.452, Tmax = 0.577 | l = −19→17 |
5433 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + 3.7975P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
711 reflections | Δρmax = 0.25 e Å−3 |
89 parameters | Δρmin = −0.19 e Å−3 |
43 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4745 (3) | −0.0071 (9) | 0.3667 (4) | 0.033 (2) | |
H1A | 0.4432 | 0.0966 | 0.3825 | 0.050* | 0.78 (7) |
O2 | 0.3886 (4) | −0.0664 (10) | 0.2362 (5) | 0.045 (3) | |
N1 | 0.3820 (4) | 0.3490 (10) | 0.4184 (5) | 0.030 (2) | |
H1 | 0.4139 | 0.2426 | 0.3993 | 0.037* | 0.22 (7) |
C2 | 0.3171 (5) | 0.3977 (14) | 0.3627 (7) | 0.036 (2) | |
H2 | 0.3074 | 0.3272 | 0.3023 | 0.043* | |
C3 | 0.2636 (4) | 0.5519 (13) | 0.3935 (5) | 0.036 (2) | |
H3 | 0.2181 | 0.5752 | 0.3547 | 0.043* | |
C4 | 0.2787 (4) | 0.6697 (12) | 0.4820 (6) | 0.024 (2) | |
C5 | 0.3456 (5) | 0.6221 (13) | 0.5380 (6) | 0.036 (2) | |
H5 | 0.3570 | 0.6931 | 0.5985 | 0.043* | |
C6 | 0.3965 (5) | 0.4644 (13) | 0.5022 (6) | 0.041 (2) | |
H6 | 0.4425 | 0.4406 | 0.5394 | 0.050* | |
C7 | 0.4493 (6) | −0.1280 (13) | 0.2859 (8) | 0.029 (3) | |
C8 | 0.5000 | −0.3486 (14) | 0.2500 | 0.031 (3) | |
H8A | 0.5271 | −0.5005 | 0.2984 | 0.037* | 0.5 |
H8B | 0.4729 | −0.5005 | 0.2016 | 0.037* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.023 (5) | 0.051 (2) | 0.028 (5) | 0.006 (2) | 0.009 (6) | −0.007 (2) |
O2 | 0.031 (7) | 0.069 (3) | 0.030 (8) | 0.017 (3) | 0.001 (8) | 0.004 (3) |
N1 | 0.029 (5) | 0.035 (2) | 0.029 (6) | 0.000 (3) | 0.010 (6) | −0.003 (3) |
C2 | 0.031 (5) | 0.056 (3) | 0.022 (6) | 0.001 (3) | 0.008 (5) | −0.006 (3) |
C3 | 0.023 (4) | 0.057 (3) | 0.025 (5) | 0.006 (3) | 0.002 (5) | −0.001 (3) |
C4 | 0.019 (4) | 0.029 (2) | 0.022 (5) | 0.005 (3) | 0.004 (5) | 0.005 (3) |
C5 | 0.024 (4) | 0.057 (3) | 0.023 (5) | 0.014 (3) | 0.000 (5) | −0.007 (3) |
C6 | 0.025 (5) | 0.064 (3) | 0.029 (6) | 0.015 (4) | −0.004 (5) | −0.008 (4) |
C7 | 0.030 (7) | 0.025 (2) | 0.034 (7) | 0.002 (3) | 0.011 (7) | 0.011 (3) |
C8 | 0.037 (7) | 0.020 (3) | 0.038 (8) | 0.000 | 0.018 (7) | 0.000 |
O1—H1A | 0.8200 | C4—C4i | 1.510 (9) |
O1—C7 | 1.280 (13) | C4—C5 | 1.368 (14) |
O2—C7 | 1.246 (14) | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C5—C6 | 1.397 (7) |
N1—C2 | 1.336 (12) | C6—H6 | 0.9300 |
N1—C6 | 1.308 (11) | C7—C8 | 1.512 (7) |
C2—H2 | 0.9300 | C8—C7ii | 1.512 (7) |
C2—C3 | 1.390 (7) | C8—H8A | 0.9700 |
C3—H3 | 0.9300 | C8—H8B | 0.9700 |
C3—C4 | 1.377 (11) | ||
C7—O1—H1A | 109.5 | C4—C5—C6 | 118.6 (9) |
C2—N1—H1 | 120.3 | C6—C5—H5 | 120.7 |
C6—N1—H1 | 120.3 | N1—C6—C5 | 122.6 (10) |
C6—N1—C2 | 119.4 (6) | N1—C6—H6 | 118.7 |
N1—C2—H2 | 119.4 | C5—C6—H6 | 118.7 |
N1—C2—C3 | 121.2 (9) | O1—C7—C8 | 115.3 (9) |
C3—C2—H2 | 119.4 | O2—C7—O1 | 124.9 (7) |
C2—C3—H3 | 120.3 | O2—C7—C8 | 119.7 (10) |
C4—C3—C2 | 119.4 (9) | C7ii—C8—C7 | 113.3 (5) |
C4—C3—H3 | 120.3 | C7—C8—H8A | 108.9 |
C3—C4—C4i | 120.6 (11) | C7ii—C8—H8A | 108.9 |
C5—C4—C3 | 118.8 (5) | C7ii—C8—H8B | 108.9 |
C5—C4—C4i | 120.6 (11) | C7—C8—H8B | 108.9 |
C4—C5—H5 | 120.7 | H8A—C8—H8B | 107.7 |
O1—C7—C8—C7ii | −80.8 (4) | C2—C3—C4—C5 | −1.8 (7) |
O2—C7—C8—C7ii | 96.8 (6) | C3—C4—C5—C6 | 1.7 (8) |
N1—C2—C3—C4 | 2.7 (8) | C4i—C4—C5—C6 | 178.4 (5) |
C2—N1—C6—C5 | 3.4 (8) | C4—C5—C6—N1 | −2.6 (8) |
C2—C3—C4—C4i | −178.5 (5) | C6—N1—C2—C3 | −3.5 (8) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H3.402O4·C10H8.598N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.621 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.647 (4) Å | Cell parameters from 872 reflections |
b = 3.7198 (3) Å | θ = 3.0–22.4° |
c = 15.191 (4) Å | µ = 0.12 mm−1 |
β = 106.21 (3)° | T = 298 K |
V = 1066.1 (4) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.12 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 690 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 329 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.108 |
Detector resolution: 16.0338 pixels mm-1 | θmax = 28.7°, θmin = 3.0° |
ω and φ scans | h = −24→23 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→5 |
Tmin = 0.452, Tmax = 0.577 | l = −19→17 |
5209 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.180 | w = 1/[σ2(Fo2) + (0.0757P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
690 reflections | Δρmax = 0.20 e Å−3 |
89 parameters | Δρmin = −0.19 e Å−3 |
43 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4745 (3) | −0.0125 (8) | 0.3675 (4) | 0.036 (2) | |
H1A | 0.4430 | 0.0877 | 0.3842 | 0.054* | 0.70 (7) |
O2 | 0.3880 (4) | −0.0752 (9) | 0.2352 (5) | 0.043 (3) | |
N1 | 0.3818 (4) | 0.3510 (9) | 0.4180 (5) | 0.028 (2) | |
H1 | 0.4139 | 0.2469 | 0.3984 | 0.034* | 0.30 (7) |
C2 | 0.3174 (5) | 0.3935 (12) | 0.3627 (7) | 0.033 (3) | |
H2 | 0.3080 | 0.3175 | 0.3021 | 0.039* | |
C3 | 0.2634 (4) | 0.5482 (12) | 0.3922 (5) | 0.039 (3) | |
H3 | 0.2180 | 0.5713 | 0.3525 | 0.046* | |
C4 | 0.2784 (4) | 0.6678 (10) | 0.4822 (6) | 0.026 (3) | |
C5 | 0.3457 (5) | 0.6257 (12) | 0.5376 (7) | 0.038 (3) | |
H5 | 0.3572 | 0.7023 | 0.5983 | 0.046* | |
C6 | 0.3972 (5) | 0.4674 (12) | 0.5030 (6) | 0.037 (3) | |
H6 | 0.4432 | 0.4436 | 0.5407 | 0.045* | |
C7 | 0.4491 (5) | −0.1323 (12) | 0.2862 (8) | 0.024 (3) | |
C8 | 0.5000 | −0.3534 (14) | 0.2500 | 0.027 (3) | |
H8A | 0.4729 | −0.5073 | 0.2012 | 0.033* | 0.5 |
H8B | 0.5271 | −0.5073 | 0.2988 | 0.033* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.031 (5) | 0.0425 (18) | 0.039 (6) | 0.002 (2) | 0.017 (6) | −0.008 (2) |
O2 | 0.030 (6) | 0.066 (3) | 0.028 (8) | 0.009 (3) | 0.003 (8) | 0.003 (2) |
N1 | 0.024 (5) | 0.036 (2) | 0.024 (7) | −0.002 (3) | 0.006 (6) | 0.000 (3) |
C2 | 0.027 (6) | 0.056 (3) | 0.013 (7) | 0.004 (3) | 0.003 (6) | −0.004 (3) |
C3 | 0.028 (6) | 0.063 (3) | 0.026 (6) | 0.001 (3) | 0.011 (6) | −0.006 (3) |
C4 | 0.021 (5) | 0.029 (2) | 0.032 (7) | 0.000 (3) | 0.012 (6) | 0.001 (3) |
C5 | 0.037 (6) | 0.052 (3) | 0.025 (7) | 0.014 (3) | 0.007 (6) | −0.003 (3) |
C6 | 0.021 (6) | 0.062 (3) | 0.023 (6) | 0.008 (3) | −0.004 (6) | −0.009 (3) |
C7 | 0.019 (7) | 0.029 (2) | 0.021 (7) | −0.003 (3) | 0.001 (7) | 0.004 (3) |
C8 | 0.030 (7) | 0.033 (3) | 0.018 (8) | 0.000 | 0.005 (7) | 0.000 |
O1—H1A | 0.8200 | C4—C4i | 1.500 (9) |
O1—C7 | 1.276 (13) | C4—C5 | 1.365 (13) |
O2—C7 | 1.252 (13) | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C5—C6 | 1.394 (7) |
N1—C2 | 1.318 (12) | C6—H6 | 0.9300 |
N1—C6 | 1.315 (11) | C7—C8 | 1.512 (6) |
C2—H2 | 0.9300 | C8—C7ii | 1.512 (6) |
C2—C3 | 1.387 (7) | C8—H8A | 0.9700 |
C3—H3 | 0.9300 | C8—H8B | 0.9700 |
C3—C4 | 1.389 (12) | ||
C7—O1—H1A | 109.5 | C4—C5—C6 | 119.7 (9) |
C2—N1—H1 | 119.9 | C6—C5—H5 | 120.1 |
C6—N1—H1 | 119.9 | N1—C6—C5 | 121.2 (10) |
C6—N1—C2 | 120.2 (6) | N1—C6—H6 | 119.4 |
N1—C2—H2 | 119.0 | C5—C6—H6 | 119.4 |
N1—C2—C3 | 122.0 (9) | O1—C7—C8 | 115.0 (9) |
C3—C2—H2 | 119.0 | O2—C7—O1 | 126.0 (6) |
C2—C3—H3 | 120.7 | O2—C7—C8 | 119.0 (9) |
C2—C3—C4 | 118.6 (9) | C7—C8—C7ii | 114.1 (4) |
C4—C3—H3 | 120.7 | C7ii—C8—H8A | 108.7 |
C3—C4—C4i | 120.8 (12) | C7—C8—H8A | 108.7 |
C5—C4—C3 | 118.3 (6) | C7—C8—H8B | 108.7 |
C5—C4—C4i | 121.0 (11) | C7ii—C8—H8B | 108.7 |
C4—C5—H5 | 120.1 | H8A—C8—H8B | 107.6 |
O1—C7—C8—C7ii | −81.0 (4) | C2—C3—C4—C5 | −0.3 (7) |
O2—C7—C8—C7ii | 97.4 (6) | C3—C4—C5—C6 | 0.3 (7) |
N1—C2—C3—C4 | 1.3 (7) | C4i—C4—C5—C6 | 179.1 (4) |
C2—N1—C6—C5 | 2.3 (7) | C4—C5—C6—N1 | −1.3 (7) |
C2—C3—C4—C4i | −179.1 (5) | C6—N1—C2—C3 | −2.3 (8) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H3.414O4·C10H8.586N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.610 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.647 (6) Å | Cell parameters from 576 reflections |
b = 3.7375 (4) Å | θ = 4.4–21.3° |
c = 15.222 (6) Å | µ = 0.12 mm−1 |
β = 106.12 (4)° | T = 298 K |
V = 1073.8 (6) Å3 | Plate, colourless |
Z = 4 | 0.33 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 633 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 247 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.129 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.3°, θmin = 4.4° |
ω and φ scans | h = −22→24 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→4 |
Tmin = 0.449, Tmax = 0.575 | l = −17→17 |
3130 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0248P)2 + 2.6453P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
633 reflections | Δρmax = 0.20 e Å−3 |
89 parameters | Δρmin = −0.24 e Å−3 |
47 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4739 (4) | −0.0105 (13) | 0.3663 (6) | 0.034 (2) | |
H1A | 0.4437 | 0.1134 | 0.3796 | 0.052* | 0.71 (9) |
O2 | 0.3885 (4) | −0.0712 (13) | 0.2362 (7) | 0.045 (3) | |
N1 | 0.3820 (5) | 0.3491 (14) | 0.4183 (7) | 0.030 (3) | |
H1 | 0.4140 | 0.2431 | 0.3991 | 0.036* | 0.29 (9) |
C4 | 0.2773 (6) | 0.6669 (16) | 0.4804 (9) | 0.027 (3) | |
C3 | 0.2638 (6) | 0.5498 (16) | 0.3934 (8) | 0.033 (3) | |
H3 | 0.2185 | 0.5731 | 0.3538 | 0.040* | |
C8 | 0.5000 | −0.3503 (18) | 0.2500 | 0.034 (6) | |
H8A | 0.5270 | −0.5034 | 0.2987 | 0.041* | 0.5 |
H8B | 0.4730 | −0.5035 | 0.2013 | 0.041* | 0.5 |
C7 | 0.4495 (7) | −0.1308 (15) | 0.2856 (12) | 0.027 (3) | |
C6 | 0.3971 (7) | 0.4650 (17) | 0.5021 (9) | 0.039 (3) | |
H6 | 0.4432 | 0.4426 | 0.5395 | 0.047* | |
C5 | 0.3451 (6) | 0.6242 (17) | 0.5376 (9) | 0.034 (3) | |
H5 | 0.3563 | 0.6987 | 0.5982 | 0.041* | |
C2 | 0.3174 (6) | 0.3939 (18) | 0.3623 (10) | 0.034 (3) | |
H2 | 0.3077 | 0.3205 | 0.3017 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.032 (6) | 0.049 (3) | 0.025 (6) | 0.005 (3) | 0.014 (6) | −0.003 (3) |
O2 | 0.032 (5) | 0.068 (3) | 0.030 (8) | 0.015 (4) | 0.001 (6) | 0.007 (4) |
N1 | 0.033 (5) | 0.040 (3) | 0.014 (8) | 0.002 (4) | 0.001 (7) | 0.002 (4) |
C4 | 0.022 (4) | 0.040 (3) | 0.015 (7) | −0.002 (3) | 0.002 (6) | −0.003 (3) |
C3 | 0.028 (4) | 0.055 (3) | 0.015 (7) | 0.003 (3) | 0.001 (6) | −0.004 (3) |
C8 | 0.051 (12) | 0.020 (4) | 0.040 (15) | 0.000 | 0.026 (13) | 0.000 |
C7 | 0.026 (7) | 0.032 (4) | 0.023 (9) | 0.002 (4) | 0.007 (8) | 0.008 (5) |
C6 | 0.027 (5) | 0.062 (4) | 0.021 (7) | 0.009 (4) | −0.004 (6) | −0.007 (4) |
C5 | 0.026 (5) | 0.053 (3) | 0.018 (7) | 0.007 (3) | −0.002 (6) | −0.005 (3) |
C2 | 0.031 (5) | 0.058 (4) | 0.011 (7) | 0.003 (4) | 0.003 (6) | −0.004 (4) |
O1—H1A | 0.8200 | C3—C2 | 1.396 (9) |
O1—C7 | 1.270 (18) | C8—H8A | 0.9700 |
O2—C7 | 1.245 (19) | C8—H8B | 0.9700 |
N1—H1 | 0.8600 | C8—C7ii | 1.501 (2) |
N1—C6 | 1.301 (15) | C8—C7 | 1.501 (2) |
N1—C2 | 1.329 (17) | C6—H6 | 0.9300 |
C4—C4i | 1.498 (13) | C6—C5 | 1.413 (9) |
C4—C3 | 1.350 (16) | C5—H5 | 0.9300 |
C4—C5 | 1.384 (18) | C2—H2 | 0.9300 |
C3—H3 | 0.9300 | ||
C7—O1—H1A | 109.5 | C7ii—C8—H8B | 108.8 |
C6—N1—H1 | 119.9 | C7ii—C8—C7 | 113.7 (6) |
C6—N1—C2 | 120.2 (10) | O1—C7—C8 | 115.6 (13) |
C2—N1—H1 | 119.9 | O2—C7—O1 | 124.2 (6) |
C3—C4—C4i | 123.9 (16) | O2—C7—C8 | 120.1 (13) |
C3—C4—C5 | 118.2 (8) | N1—C6—H6 | 119.2 |
C5—C4—C4i | 117.9 (15) | N1—C6—C5 | 121.5 (13) |
C4—C3—H3 | 119.8 | C5—C6—H6 | 119.2 |
C4—C3—C2 | 120.4 (12) | C4—C5—C6 | 118.7 (12) |
C2—C3—H3 | 119.8 | C4—C5—H5 | 120.6 |
H8A—C8—H8B | 107.7 | C6—C5—H5 | 120.6 |
C7—C8—H8A | 108.8 | N1—C2—C3 | 120.8 (12) |
C7ii—C8—H8A | 108.8 | N1—C2—H2 | 119.6 |
C7—C8—H8B | 108.8 | C3—C2—H2 | 119.6 |
N1—C6—C5—C4 | −2.1 (11) | C7ii—C8—C7—O1 | −81.1 (6) |
C4i—C4—C3—C2 | −179.2 (7) | C7ii—C8—C7—O2 | 97.6 (9) |
C4i—C4—C5—C6 | 179.4 (6) | C6—N1—C2—C3 | −3.1 (11) |
C4—C3—C2—N1 | 1.8 (10) | C5—C4—C3—C2 | −0.7 (10) |
C3—C4—C5—C6 | 0.8 (10) | C2—N1—C6—C5 | 3.2 (11) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H3.599O4·C10H8.401N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.615 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.662 (9) Å | Cell parameters from 563 reflections |
b = 3.7264 (6) Å | θ = 4.4–21.4° |
c = 15.211 (10) Å | µ = 0.12 mm−1 |
β = 106.16 (7)° | T = 298 K |
V = 1070.4 (10) Å3 | Plate, colourless |
Z = 4 | 0.33 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 585 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 226 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.139 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.3°, θmin = 4.4° |
ω and φ scans | h = −21→22 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→4 |
Tmin = 0.451, Tmax = 0.576 | l = −16→17 |
2630 measured reflections |
Refinement on F2 | 44 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.077 | H-atom parameters constrained |
wR(F2) = 0.194 | w = 1/[σ2(Fo2) + (0.0511P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
585 reflections | Δρmax = 0.25 e Å−3 |
89 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4740 (5) | −0.0106 (14) | 0.3663 (7) | 0.045 (5) | |
H1A | 0.4434 | 0.1074 | 0.3803 | 0.068* | 0.80 (11) |
O2 | 0.3879 (5) | −0.0717 (15) | 0.2349 (9) | 0.050 (6) | |
C7 | 0.4491 (8) | −0.1353 (16) | 0.2857 (14) | 0.028 (5) | |
C8 | 0.5000 | −0.3526 (19) | 0.2500 | 0.032 (6) | |
H8A | 0.5269 | −0.5064 | 0.2988 | 0.039* | 0.5 |
H8B | 0.4731 | −0.5064 | 0.2012 | 0.039* | 0.5 |
N1 | 0.3821 (6) | 0.3508 (15) | 0.4190 (9) | 0.033 (4) | |
H1 | 0.4144 | 0.2446 | 0.4004 | 0.040* | 0.20 (11) |
C2 | 0.3167 (8) | 0.3934 (19) | 0.3601 (12) | 0.039 (4) | |
H2 | 0.3074 | 0.3221 | 0.2993 | 0.047* | |
C3 | 0.2639 (7) | 0.5468 (17) | 0.3928 (10) | 0.038 (4) | |
H3 | 0.2183 | 0.5662 | 0.3538 | 0.046* | |
C4 | 0.2770 (7) | 0.6682 (17) | 0.4796 (11) | 0.028 (4) | |
C5 | 0.3445 (7) | 0.6241 (17) | 0.5373 (11) | 0.036 (4) | |
H5 | 0.3548 | 0.6977 | 0.5980 | 0.044* | |
C6 | 0.3974 (8) | 0.4676 (18) | 0.5041 (11) | 0.041 (4) | |
H6 | 0.4434 | 0.4464 | 0.5421 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.051 (10) | 0.043 (3) | 0.053 (12) | 0.002 (3) | 0.033 (11) | −0.006 (4) |
O2 | 0.039 (11) | 0.073 (4) | 0.034 (15) | 0.011 (5) | 0.005 (13) | 0.006 (4) |
C7 | 0.030 (11) | 0.030 (4) | 0.023 (14) | −0.004 (4) | 0.007 (13) | 0.001 (5) |
C8 | 0.040 (12) | 0.034 (4) | 0.024 (15) | 0.000 | 0.012 (13) | 0.000 |
N1 | 0.046 (8) | 0.036 (3) | 0.016 (11) | 0.004 (4) | 0.005 (9) | 0.007 (4) |
C2 | 0.040 (8) | 0.062 (4) | 0.013 (10) | 0.000 (5) | 0.004 (8) | −0.007 (5) |
C3 | 0.036 (7) | 0.063 (4) | 0.014 (10) | 0.000 (4) | 0.005 (8) | −0.001 (5) |
C4 | 0.032 (7) | 0.037 (3) | 0.013 (10) | 0.002 (4) | 0.003 (9) | 0.000 (4) |
C5 | 0.037 (7) | 0.051 (4) | 0.017 (10) | 0.015 (4) | −0.001 (8) | 0.000 (4) |
C6 | 0.036 (8) | 0.062 (4) | 0.021 (10) | 0.010 (5) | −0.001 (8) | −0.003 (5) |
O1—H1A | 0.8200 | C2—H2 | 0.9300 |
O1—C7 | 1.27 (2) | C2—C3 | 1.394 (11) |
O2—C7 | 1.26 (2) | C3—H3 | 0.9300 |
C7—C8 | 1.501 (2) | C3—C4 | 1.351 (19) |
C8—C7i | 1.501 (2) | C4—C4ii | 1.501 (16) |
C8—H8A | 0.9700 | C4—C5 | 1.38 (2) |
C8—H8B | 0.9700 | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C5—C6 | 1.405 (11) |
N1—C2 | 1.356 (19) | C6—H6 | 0.9300 |
N1—C6 | 1.318 (18) | ||
C7—O1—H1A | 109.5 | N1—C2—C3 | 118.4 (15) |
O1—C7—C8 | 115.4 (15) | C3—C2—H2 | 120.8 |
O2—C7—O1 | 124.5 (6) | C2—C3—H3 | 119.1 |
O2—C7—C8 | 120.0 (17) | C4—C3—C2 | 121.8 (15) |
C7i—C8—C7 | 114.7 (7) | C4—C3—H3 | 119.1 |
C7i—C8—H8A | 108.6 | C3—C4—C4ii | 125.1 (19) |
C7—C8—H8A | 108.6 | C3—C4—C5 | 118.0 (10) |
C7i—C8—H8B | 108.6 | C5—C4—C4ii | 116.8 (18) |
C7—C8—H8B | 108.6 | C4—C5—H5 | 120.1 |
H8A—C8—H8B | 107.6 | C4—C5—C6 | 119.8 (15) |
C2—N1—H1 | 119.1 | C6—C5—H5 | 120.1 |
C6—N1—H1 | 119.1 | N1—C6—C5 | 120.0 (16) |
C6—N1—C2 | 121.8 (11) | N1—C6—H6 | 120.0 |
N1—C2—H2 | 120.8 | C5—C6—H6 | 120.0 |
O1—C7—C8—C7i | −79.9 (7) | C2—C3—C4—C5 | −2.4 (11) |
O2—C7—C8—C7i | 96.4 (10) | C3—C4—C5—C6 | 2.1 (11) |
N1—C2—C3—C4 | 3.2 (11) | C4ii—C4—C5—C6 | 179.1 (6) |
C2—N1—C6—C5 | 3.5 (11) | C4—C5—C6—N1 | −2.6 (11) |
C2—C3—C4—C4ii | −179.2 (7) | C6—N1—C2—C3 | −3.8 (11) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
C3H3.392O4·C10H8.608N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.625 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.648 (17) Å | Cell parameters from 586 reflections |
b = 3.7139 (11) Å | θ = 4.4–21.3° |
c = 15.171 (17) Å | µ = 0.12 mm−1 |
β = 106.08 (12)° | T = 298 K |
V = 1063.7 (17) Å3 | Plate, colourless |
Z = 4 | 0.26 × 0.11 × 0.02 mm |
Xcalibur, Eos diffractometer | 684 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 258 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.139 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 27.9°, θmin = 4.5° |
ω and φ scans | h = −24→23 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→4 |
Tmin = 0.451, Tmax = 0.576 | l = −18→17 |
4521 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.079 | H-atom parameters constrained |
wR(F2) = 0.236 | w = 1/[σ2(Fo2) + (0.0963P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
684 reflections | Δρmax = 0.26 e Å−3 |
89 parameters | Δρmin = −0.25 e Å−3 |
43 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4746 (4) | −0.0116 (12) | 0.3671 (6) | 0.041 (3) | |
H1A | 0.4433 | 0.0856 | 0.3848 | 0.062* | 0.70 (10) |
O2 | 0.3881 (5) | −0.0729 (13) | 0.2360 (8) | 0.054 (5) | |
N1 | 0.3814 (5) | 0.3502 (14) | 0.4177 (8) | 0.030 (3) | |
H1 | 0.4132 | 0.2420 | 0.3983 | 0.036* | 0.30 (10) |
C2 | 0.3174 (7) | 0.3955 (18) | 0.3621 (10) | 0.039 (4) | |
H2 | 0.3078 | 0.3242 | 0.3011 | 0.046* | |
C3 | 0.2645 (6) | 0.5486 (17) | 0.3939 (8) | 0.038 (3) | |
H3 | 0.2191 | 0.5703 | 0.3544 | 0.045* | |
C4 | 0.2775 (6) | 0.6674 (16) | 0.4813 (9) | 0.028 (3) | |
C5 | 0.3458 (6) | 0.6261 (17) | 0.5384 (10) | 0.040 (3) | |
H5 | 0.3573 | 0.7015 | 0.5992 | 0.048* | |
C6 | 0.3970 (7) | 0.4680 (18) | 0.5021 (9) | 0.044 (3) | |
H6 | 0.4433 | 0.4464 | 0.5390 | 0.053* | |
C7 | 0.4480 (8) | −0.1338 (18) | 0.2840 (13) | 0.027 (5) | |
C8 | 0.5000 | −0.3532 (19) | 0.2500 | 0.035 (6) | |
H8A | 0.5262 | −0.5075 | 0.2994 | 0.042* | 0.5 |
H8B | 0.4738 | −0.5075 | 0.2006 | 0.042* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.039 (7) | 0.050 (3) | 0.039 (8) | 0.002 (3) | 0.018 (8) | −0.005 (3) |
O2 | 0.046 (9) | 0.077 (4) | 0.042 (13) | 0.011 (4) | 0.016 (12) | 0.004 (4) |
N1 | 0.033 (6) | 0.039 (3) | 0.016 (9) | 0.005 (4) | 0.001 (8) | 0.005 (4) |
C2 | 0.037 (7) | 0.064 (5) | 0.012 (9) | 0.009 (5) | 0.002 (8) | 0.000 (5) |
C3 | 0.029 (7) | 0.066 (4) | 0.015 (8) | 0.009 (4) | 0.000 (7) | 0.002 (4) |
C4 | 0.028 (6) | 0.038 (3) | 0.017 (9) | 0.001 (4) | 0.005 (8) | −0.001 (4) |
C5 | 0.034 (7) | 0.061 (4) | 0.020 (9) | 0.013 (4) | −0.003 (8) | −0.005 (5) |
C6 | 0.029 (7) | 0.069 (4) | 0.029 (9) | 0.005 (5) | −0.001 (7) | −0.013 (5) |
C7 | 0.030 (10) | 0.034 (4) | 0.010 (13) | −0.003 (5) | −0.004 (12) | 0.002 (5) |
C8 | 0.046 (12) | 0.031 (4) | 0.031 (14) | 0.000 | 0.016 (13) | 0.000 |
O1—H1A | 0.8200 | C4—C4i | 1.486 (13) |
O1—C7 | 1.31 (2) | C4—C5 | 1.389 (19) |
O2—C7 | 1.22 (2) | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C5—C6 | 1.403 (10) |
N1—C2 | 1.315 (18) | C6—H6 | 0.9300 |
N1—C6 | 1.306 (17) | C7—C8 | 1.505 (9) |
C2—H2 | 0.9300 | C8—C7ii | 1.505 (9) |
C2—C3 | 1.383 (10) | C8—H8A | 0.9700 |
C3—H3 | 0.9300 | C8—H8B | 0.9700 |
C3—C4 | 1.353 (16) | ||
C7—O1—H1A | 109.5 | C4—C5—C6 | 118.4 (13) |
C2—N1—H1 | 119.7 | C6—C5—H5 | 120.8 |
C6—N1—H1 | 119.7 | N1—C6—C5 | 121.7 (14) |
C6—N1—C2 | 120.6 (9) | N1—C6—H6 | 119.2 |
N1—C2—H2 | 119.8 | C5—C6—H6 | 119.2 |
N1—C2—C3 | 120.4 (13) | O1—C7—C8 | 113.1 (14) |
C3—C2—H2 | 119.8 | O2—C7—O1 | 124.9 (10) |
C2—C3—H3 | 119.4 | O2—C7—C8 | 122.0 (15) |
C4—C3—C2 | 121.3 (13) | C7ii—C8—C7 | 114.4 (7) |
C4—C3—H3 | 119.4 | C7—C8—H8A | 108.6 |
C3—C4—C4i | 123.3 (16) | C7ii—C8—H8A | 108.6 |
C3—C4—C5 | 117.6 (8) | C7ii—C8—H8B | 108.6 |
C5—C4—C4i | 119.2 (16) | C7—C8—H8B | 108.6 |
C4—C5—H5 | 120.8 | H8A—C8—H8B | 107.6 |
O1—C7—C8—C7ii | −79.9 (6) | C2—C3—C4—C5 | −0.8 (10) |
O2—C7—C8—C7ii | 98.2 (9) | C3—C4—C5—C6 | 0.6 (11) |
N1—C2—C3—C4 | 2.5 (10) | C4i—C4—C5—C6 | 179.7 (6) |
C2—N1—C6—C5 | 4.0 (11) | C4—C5—C6—N1 | −2.2 (11) |
C2—C3—C4—C4i | −179.8 (7) | C6—N1—C2—C3 | −4.1 (11) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
C3H3.209O4·C10H8.791N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.644 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.670 (5) Å | Cell parameters from 550 reflections |
b = 3.6881 (3) Å | θ = 4.4–21.5° |
c = 15.112 (5) Å | µ = 0.12 mm−1 |
β = 106.48 (4)° | T = 298 K |
V = 1051.3 (5) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.20 × 0.02 mm |
Xcalibur, Eos diffractometer | 623 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 231 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.129 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.4°, θmin = 4.4° |
ω and φ scans | h = −22→25 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→4 |
Tmin = 0.450, Tmax = 0.577 | l = −17→17 |
2411 measured reflections |
Refinement on F2 | 25 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.093 | H-atom parameters constrained |
wR(F2) = 0.215 | w = 1/[σ2(Fo2) + (0.0523P)2 + 0.317P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
623 reflections | Δρmax = 0.22 e Å−3 |
89 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4742 (5) | −0.0132 (16) | 0.3677 (7) | 0.040 (4) | |
H1A | 0.4433 | 0.1005 | 0.3824 | 0.061* | 0.60 (11) |
O2 | 0.3875 (5) | −0.0812 (14) | 0.2358 (8) | 0.043 (5) | |
C7 | 0.4491 (9) | −0.1369 (17) | 0.2851 (15) | 0.028 (6) | |
C8 | 0.5000 | −0.358 (2) | 0.2500 | 0.043 (8) | |
H8A | 0.4731 | −0.5134 | 0.2006 | 0.051* | 0.5 |
H8B | 0.5269 | −0.5134 | 0.2994 | 0.051* | 0.5 |
N1 | 0.3824 (7) | 0.3502 (16) | 0.4190 (10) | 0.032 (6) | |
H1 | 0.4147 | 0.2434 | 0.4004 | 0.039* | 0.40 (11) |
C2 | 0.3167 (7) | 0.388 (2) | 0.3604 (12) | 0.033 (4) | |
H2 | 0.3074 | 0.3112 | 0.2995 | 0.040* | |
C3 | 0.2630 (7) | 0.5419 (19) | 0.3914 (10) | 0.036 (4) | |
H3 | 0.2173 | 0.5605 | 0.3518 | 0.043* | |
C4 | 0.2777 (7) | 0.6675 (19) | 0.4813 (11) | 0.026 (4) | |
C5 | 0.3453 (7) | 0.6312 (19) | 0.5380 (12) | 0.036 (4) | |
H5 | 0.3567 | 0.7102 | 0.5989 | 0.044* | |
C6 | 0.3975 (8) | 0.472 (2) | 0.5028 (11) | 0.038 (4) | |
H6 | 0.4438 | 0.4548 | 0.5406 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.047 (9) | 0.048 (4) | 0.031 (11) | 0.000 (4) | 0.020 (10) | −0.006 (4) |
O2 | 0.037 (9) | 0.066 (4) | 0.023 (13) | 0.003 (4) | 0.005 (12) | −0.001 (5) |
C7 | 0.017 (12) | 0.028 (5) | 0.037 (19) | 0.001 (5) | 0.005 (16) | 0.007 (6) |
C8 | 0.064 (17) | 0.036 (6) | 0.04 (2) | 0.000 | 0.03 (2) | 0.000 |
N1 | 0.036 (11) | 0.034 (4) | 0.025 (16) | 0.001 (4) | 0.007 (14) | −0.001 (5) |
C2 | 0.028 (8) | 0.058 (5) | 0.010 (11) | 0.006 (5) | 0.000 (10) | −0.001 (5) |
C3 | 0.028 (7) | 0.059 (4) | 0.016 (10) | 0.002 (4) | −0.002 (9) | −0.002 (5) |
C4 | 0.022 (7) | 0.036 (4) | 0.017 (10) | −0.005 (4) | 0.001 (9) | 0.000 (4) |
C5 | 0.028 (7) | 0.054 (4) | 0.021 (11) | 0.012 (4) | −0.005 (9) | 0.000 (5) |
C6 | 0.021 (8) | 0.055 (5) | 0.030 (12) | 0.010 (5) | −0.008 (10) | −0.006 (6) |
O1—H1A | 0.8200 | C2—H2 | 0.9300 |
O1—C7 | 1.29 (2) | C2—C3 | 1.393 (11) |
O2—C7 | 1.25 (2) | C3—H3 | 0.9300 |
C7—C8 | 1.501 (2) | C3—C4 | 1.386 (19) |
C8—C7i | 1.501 (2) | C4—C4ii | 1.494 (16) |
C8—H8A | 0.9700 | C4—C5 | 1.37 (2) |
C8—H8B | 0.9700 | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C5—C6 | 1.410 (11) |
N1—C2 | 1.350 (19) | C6—H6 | 0.9300 |
N1—C6 | 1.297 (19) | ||
C7—O1—H1A | 109.5 | N1—C2—C3 | 119.8 (15) |
O1—C7—C8 | 115.1 (16) | C3—C2—H2 | 120.1 |
O2—C7—O1 | 124.2 (7) | C2—C3—H3 | 120.1 |
O2—C7—C8 | 120.7 (17) | C4—C3—C2 | 119.9 (15) |
C7—C8—C7i | 114.1 (7) | C4—C3—H3 | 120.1 |
C7—C8—H8A | 108.7 | C3—C4—C4ii | 122.4 (19) |
C7i—C8—H8A | 108.7 | C5—C4—C3 | 118.5 (10) |
C7—C8—H8B | 108.7 | C5—C4—C4ii | 119.1 (19) |
C7i—C8—H8B | 108.7 | C4—C5—H5 | 120.5 |
H8A—C8—H8B | 107.6 | C4—C5—C6 | 119.1 (15) |
C2—N1—H1 | 119.4 | C6—C5—H5 | 120.5 |
C6—N1—H1 | 119.4 | N1—C6—C5 | 121.5 (16) |
C6—N1—C2 | 121.1 (11) | N1—C6—H6 | 119.2 |
N1—C2—H2 | 120.1 | C5—C6—H6 | 119.2 |
O1—C7—C8—C7i | −80.6 (7) | C2—C3—C4—C5 | −0.9 (12) |
O2—C7—C8—C7i | 99.0 (11) | C3—C4—C5—C6 | 0.8 (12) |
N1—C2—C3—C4 | 2.3 (12) | C4ii—C4—C5—C6 | 179.4 (7) |
C2—N1—C6—C5 | 3.6 (12) | C4—C5—C6—N1 | −2.1 (12) |
C2—C3—C4—C4ii | −179.5 (8) | C6—N1—C2—C3 | −3.6 (12) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
C3H3.406O4·C10H8.594N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.663 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.687 (13) Å | Cell parameters from 533 reflections |
b = 3.6609 (7) Å | θ = 4.4–21.6° |
c = 15.043 (13) Å | µ = 0.13 mm−1 |
β = 106.48 (9)° | T = 298 K |
V = 1039.6 (12) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.20 × 0.02 mm |
Xcalibur, Eos diffractometer | 615 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 217 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.137 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.4°, θmin = 4.4° |
ω and φ scans | h = −22→25 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→4 |
Tmin = 0.456, Tmax = 0.576 | l = −17→17 |
2467 measured reflections |
Refinement on F2 | 43 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.074 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0121P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
615 reflections | Δρmax = 0.18 e Å−3 |
89 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4748 (4) | −0.0171 (13) | 0.3674 (7) | 0.034 (4) | |
H1A | 0.4472 | 0.1269 | 0.3804 | 0.051* | 0.70 (8) |
O2 | 0.3871 (4) | −0.0867 (12) | 0.2364 (9) | 0.046 (6) | |
C7 | 0.4479 (9) | −0.1392 (19) | 0.2852 (14) | 0.025 (5) | |
C8 | 0.5000 | −0.3648 (19) | 0.2500 | 0.036 (7) | |
H8A | 0.5265 | −0.5213 | 0.2998 | 0.043* | 0.5 |
H8B | 0.4735 | −0.5213 | 0.2002 | 0.043* | 0.5 |
N1 | 0.3820 (6) | 0.3487 (15) | 0.4185 (9) | 0.028 (3) | |
H1 | 0.4140 | 0.2416 | 0.3991 | 0.034* | 0.30 (8) |
C2 | 0.3163 (6) | 0.3871 (17) | 0.3597 (11) | 0.034 (3) | |
H2 | 0.3067 | 0.3110 | 0.2984 | 0.041* | |
C3 | 0.2627 (6) | 0.5422 (16) | 0.3917 (9) | 0.034 (3) | |
H3 | 0.2168 | 0.5613 | 0.3526 | 0.041* | |
C4 | 0.2784 (6) | 0.6659 (16) | 0.4814 (10) | 0.025 (3) | |
C5 | 0.3471 (6) | 0.6326 (15) | 0.5393 (10) | 0.032 (3) | |
H5 | 0.3587 | 0.7168 | 0.6001 | 0.039* | |
C6 | 0.3985 (7) | 0.4692 (17) | 0.5040 (10) | 0.034 (3) | |
H6 | 0.4448 | 0.4462 | 0.5416 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.033 (8) | 0.040 (3) | 0.036 (10) | 0.004 (3) | 0.019 (9) | −0.003 (4) |
O2 | 0.033 (9) | 0.062 (4) | 0.042 (15) | 0.012 (4) | 0.008 (13) | 0.008 (4) |
C7 | 0.038 (11) | 0.026 (4) | 0.012 (15) | −0.009 (5) | 0.007 (14) | −0.001 (6) |
C8 | 0.037 (12) | 0.039 (5) | 0.036 (18) | 0.000 | 0.017 (15) | 0.000 |
N1 | 0.033 (6) | 0.037 (3) | 0.013 (10) | −0.006 (4) | 0.004 (8) | −0.003 (4) |
C2 | 0.032 (6) | 0.052 (4) | 0.016 (9) | 0.008 (4) | 0.001 (7) | −0.001 (5) |
C3 | 0.022 (5) | 0.056 (4) | 0.022 (9) | 0.004 (4) | 0.001 (7) | −0.003 (4) |
C4 | 0.022 (5) | 0.033 (3) | 0.019 (9) | −0.006 (3) | 0.005 (8) | −0.002 (4) |
C5 | 0.030 (6) | 0.049 (4) | 0.015 (9) | 0.003 (4) | 0.002 (7) | −0.005 (4) |
C6 | 0.027 (6) | 0.049 (4) | 0.021 (9) | 0.001 (4) | −0.003 (7) | −0.010 (5) |
O1—H1A | 0.8200 | C2—H2 | 0.9300 |
O1—C7 | 1.28 (2) | C2—C3 | 1.399 (9) |
O2—C7 | 1.23 (2) | C3—H3 | 0.9300 |
C7—C8 | 1.524 (9) | C3—C4 | 1.372 (18) |
C8—C7i | 1.524 (9) | C4—C4ii | 1.516 (12) |
C8—H8A | 0.9700 | C4—C5 | 1.39 (2) |
C8—H8B | 0.9700 | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C5—C6 | 1.403 (9) |
N1—C2 | 1.351 (18) | C6—H6 | 0.9300 |
N1—C6 | 1.311 (17) | ||
C7—O1—H1A | 109.5 | N1—C2—C3 | 119.5 (14) |
O1—C7—C8 | 112.9 (15) | C3—C2—H2 | 120.3 |
O2—C7—O1 | 126.1 (11) | C2—C3—H3 | 120.3 |
O2—C7—C8 | 121.0 (16) | C4—C3—C2 | 119.4 (13) |
C7i—C8—C7 | 114.4 (7) | C4—C3—H3 | 120.3 |
C7i—C8—H8A | 108.7 | C3—C4—C4ii | 120.8 (17) |
C7—C8—H8A | 108.7 | C3—C4—C5 | 119.6 (8) |
C7i—C8—H8B | 108.7 | C5—C4—C4ii | 119.5 (17) |
C7—C8—H8B | 108.7 | C4—C5—H5 | 120.7 |
H8A—C8—H8B | 107.6 | C4—C5—C6 | 118.6 (13) |
C2—N1—H1 | 118.9 | C6—C5—H5 | 120.7 |
C6—N1—H1 | 118.9 | N1—C6—C5 | 120.6 (14) |
C6—N1—C2 | 122.2 (10) | N1—C6—H6 | 119.7 |
N1—C2—H2 | 120.3 | C5—C6—H6 | 119.7 |
O1—C7—C8—C7i | −79.7 (6) | C2—C3—C4—C5 | −0.5 (11) |
O2—C7—C8—C7i | 99.8 (11) | C3—C4—C5—C6 | −0.5 (11) |
N1—C2—C3—C4 | 2.5 (10) | C4ii—C4—C5—C6 | 178.7 (6) |
C2—N1—C6—C5 | 2.5 (11) | C4—C5—C6—N1 | −0.4 (11) |
C2—C3—C4—C4ii | −179.8 (6) | C6—N1—C2—C3 | −3.6 (11) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
C3H3O4·C10H9N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.702 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.412 (4) Å | Cell parameters from 1058 reflections |
b = 7.9665 (11) Å | θ = 3.2–25.9° |
c = 15.576 (9) Å | µ = 0.13 mm−1 |
β = 103.33 (6)° | T = 298 K |
V = 1015.7 (8) Å3 | Block, colourless |
Z = 4 | 0.34 × 0.17 × 0.08 mm |
Xcalibur, Eos diffractometer | 998 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 409 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.2°, θmin = 2.9° |
ω and φ scans | h = −10→10 |
Absorption correction: analytical CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→10 |
Tmin = 0.987, Tmax = 0.990 | l = −16→15 |
4177 measured reflections |
Refinement on F2 | 83 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
998 reflections | Δρmax = 0.19 e Å−3 |
173 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | −0.0365 (11) | 0.7531 (6) | 0.8729 (7) | 0.047 (5) | |
O2 | 0.2386 (11) | 0.6828 (6) | 0.7512 (6) | 0.040 (4) | |
O4 | −0.2242 (10) | 0.7367 (6) | 0.7466 (6) | 0.038 (4) | |
O1 | 0.0626 (10) | 0.7200 (6) | 0.6235 (7) | 0.038 (4) | |
H1 | 0.1133 | 0.6426 | 0.6075 | 0.057* | |
C12 | 0.122 (2) | 0.7499 (10) | 0.7064 (13) | 0.037 (7) | |
C14 | −0.0897 (18) | 0.7840 (9) | 0.7908 (12) | 0.030 (6) | |
C13 | 0.0271 (10) | 0.8763 (7) | 0.7456 (6) | 0.032 (5) | |
H13A | −0.0339 | 0.9489 | 0.6997 | 0.038* | |
H13B | 0.1014 | 0.9453 | 0.7882 | 0.038* | |
N2 | 0.7720 (12) | −0.0427 (6) | 0.4219 (8) | 0.040 (3) | |
H2 | 0.8358 | −0.1115 | 0.4036 | 0.048* | |
N1 | 0.2536 (13) | 0.5119 (7) | 0.5728 (9) | 0.041 (4) | |
C5 | 0.3217 (12) | 0.3566 (7) | 0.4562 (8) | 0.039 (3) | |
H5 | 0.2977 | 0.3255 | 0.3971 | 0.047* | |
C9 | 0.8047 (13) | 0.0003 (7) | 0.5064 (9) | 0.042 (3) | |
H9 | 0.8948 | −0.0446 | 0.5458 | 0.050* | |
C2 | 0.3845 (13) | 0.4514 (8) | 0.6279 (9) | 0.042 (3) | |
H2A | 0.4064 | 0.4815 | 0.6871 | 0.051* | |
C3 | 0.4892 (12) | 0.3439 (7) | 0.5982 (9) | 0.041 (3) | |
H3 | 0.5817 | 0.3049 | 0.6381 | 0.050* | |
C4 | 0.4612 (13) | 0.2933 (7) | 0.5126 (9) | 0.038 (3) | |
C10 | 0.6438 (14) | 0.0179 (8) | 0.3656 (9) | 0.042 (4) | |
H10 | 0.6237 | −0.0156 | 0.3068 | 0.051* | |
C6 | 0.2160 (13) | 0.4666 (7) | 0.4867 (9) | 0.037 (3) | |
H6 | 0.1224 | 0.5075 | 0.4485 | 0.044* | |
C11 | 0.5381 (13) | 0.1300 (7) | 0.3911 (8) | 0.043 (3) | |
H11 | 0.4474 | 0.1708 | 0.3506 | 0.052* | |
C8 | 0.7043 (12) | 0.1111 (7) | 0.5349 (8) | 0.039 (3) | |
H8 | 0.7279 | 0.1404 | 0.5943 | 0.047* | |
C7 | 0.5710 (14) | 0.1807 (7) | 0.4798 (10) | 0.039 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.052 (9) | 0.047 (3) | 0.051 (12) | 0.007 (3) | 0.031 (10) | 0.007 (3) |
O2 | 0.049 (8) | 0.060 (3) | 0.009 (11) | 0.004 (3) | 0.005 (9) | −0.002 (3) |
O4 | 0.034 (7) | 0.060 (3) | 0.017 (12) | −0.002 (3) | 0.000 (9) | −0.005 (3) |
O1 | 0.037 (8) | 0.052 (3) | 0.026 (11) | 0.009 (3) | 0.009 (9) | −0.004 (4) |
C12 | 0.041 (13) | 0.047 (5) | 0.029 (19) | −0.003 (5) | 0.024 (15) | 0.010 (6) |
C14 | 0.025 (11) | 0.035 (4) | 0.027 (17) | 0.004 (4) | 0.002 (14) | −0.005 (5) |
C13 | 0.039 (9) | 0.039 (3) | 0.018 (12) | 0.005 (3) | 0.007 (10) | 0.005 (3) |
N2 | 0.042 (7) | 0.035 (3) | 0.053 (10) | 0.003 (3) | 0.029 (8) | 0.000 (4) |
N1 | 0.058 (8) | 0.039 (3) | 0.037 (10) | −0.006 (3) | 0.032 (8) | 0.004 (4) |
C5 | 0.049 (7) | 0.039 (3) | 0.040 (9) | −0.002 (3) | 0.031 (7) | −0.005 (4) |
C9 | 0.052 (8) | 0.042 (3) | 0.039 (10) | −0.008 (3) | 0.029 (7) | −0.006 (4) |
C2 | 0.054 (8) | 0.043 (4) | 0.038 (9) | −0.006 (4) | 0.027 (7) | 0.003 (5) |
C3 | 0.048 (7) | 0.040 (3) | 0.045 (9) | 0.004 (3) | 0.028 (7) | 0.008 (4) |
C4 | 0.049 (6) | 0.028 (3) | 0.050 (9) | −0.004 (3) | 0.035 (7) | 0.005 (4) |
C10 | 0.056 (8) | 0.041 (4) | 0.039 (10) | 0.005 (4) | 0.031 (8) | 0.006 (4) |
C6 | 0.038 (7) | 0.040 (3) | 0.036 (9) | −0.002 (3) | 0.018 (7) | 0.005 (4) |
C11 | 0.050 (7) | 0.044 (3) | 0.043 (9) | 0.004 (3) | 0.025 (7) | 0.004 (4) |
C8 | 0.042 (7) | 0.045 (4) | 0.041 (9) | −0.005 (3) | 0.030 (7) | 0.001 (4) |
C7 | 0.046 (7) | 0.036 (3) | 0.046 (9) | −0.004 (3) | 0.032 (7) | 0.004 (4) |
O3—C14 | 1.279 (19) | C5—C6 | 1.407 (9) |
O2—C12 | 1.19 (2) | C9—H9 | 0.9300 |
O4—C14 | 1.240 (19) | C9—C8 | 1.364 (9) |
O1—H1 | 0.8200 | C2—H2A | 0.9300 |
O1—C12 | 1.30 (2) | C2—C3 | 1.381 (10) |
C12—C13 | 1.498 (11) | C3—H3 | 0.9300 |
C14—C13 | 1.523 (10) | C3—C4 | 1.361 (16) |
C13—H13A | 0.9700 | C4—C7 | 1.462 (10) |
C13—H13B | 0.9700 | C10—H10 | 0.9300 |
N2—H2 | 0.8600 | C10—C11 | 1.381 (9) |
N2—C9 | 1.327 (17) | C6—H6 | 0.9300 |
N2—C10 | 1.316 (18) | C11—H11 | 0.9300 |
N1—C2 | 1.321 (18) | C11—C7 | 1.405 (17) |
N1—C6 | 1.355 (17) | C8—H8 | 0.9300 |
C5—H5 | 0.9300 | C8—C7 | 1.363 (18) |
C5—C4 | 1.388 (17) | ||
C12—O1—H1 | 109.5 | N1—C2—C3 | 120.7 (13) |
O2—C12—O1 | 125.2 (11) | C3—C2—H2A | 119.7 |
O2—C12—C13 | 120.5 (16) | C2—C3—H3 | 118.9 |
O1—C12—C13 | 114.3 (15) | C4—C3—C2 | 122.1 (13) |
O3—C14—C13 | 116.2 (14) | C4—C3—H3 | 118.9 |
O4—C14—O3 | 124.1 (11) | C5—C4—C7 | 120.8 (13) |
O4—C14—C13 | 119.6 (15) | C3—C4—C5 | 116.3 (8) |
C12—C13—C14 | 108.9 (5) | C3—C4—C7 | 123.0 (13) |
C12—C13—H13A | 109.9 | N2—C10—H10 | 119.0 |
C12—C13—H13B | 109.9 | N2—C10—C11 | 121.9 (13) |
C14—C13—H13A | 109.9 | C11—C10—H10 | 119.0 |
C14—C13—H13B | 109.9 | N1—C6—C5 | 118.6 (12) |
H13A—C13—H13B | 108.3 | N1—C6—H6 | 120.7 |
C9—N2—H2 | 119.4 | C5—C6—H6 | 120.7 |
C10—N2—H2 | 119.4 | C10—C11—H11 | 120.8 |
C10—N2—C9 | 121.2 (8) | C10—C11—C7 | 118.4 (13) |
C2—N1—C6 | 121.0 (8) | C7—C11—H11 | 120.8 |
C4—C5—H5 | 119.3 | C9—C8—H8 | 118.7 |
C4—C5—C6 | 121.3 (12) | C7—C8—C9 | 122.7 (12) |
C6—C5—H5 | 119.3 | C7—C8—H8 | 118.7 |
N2—C9—H9 | 120.4 | C11—C7—C4 | 121.6 (13) |
N2—C9—C8 | 119.2 (13) | C8—C7—C4 | 121.6 (13) |
C8—C9—H9 | 120.4 | C8—C7—C11 | 116.7 (8) |
N1—C2—H2A | 119.7 | ||
O3—C14—C13—C12 | 92.7 (12) | C2—N1—C6—C5 | −1.5 (10) |
O2—C12—C13—C14 | −81.7 (13) | C2—C3—C4—C5 | 0.4 (9) |
O4—C14—C13—C12 | −83.9 (12) | C2—C3—C4—C7 | 179.5 (5) |
O1—C12—C13—C14 | 96.5 (11) | C3—C4—C7—C11 | 179.6 (6) |
N2—C9—C8—C7 | −0.2 (9) | C3—C4—C7—C8 | 4.0 (9) |
N2—C10—C11—C7 | 0.6 (10) | C4—C5—C6—N1 | 0.6 (9) |
N1—C2—C3—C4 | −1.3 (10) | C10—N2—C9—C8 | −0.9 (9) |
C5—C4—C7—C11 | −1.3 (9) | C10—C11—C7—C4 | −177.4 (5) |
C5—C4—C7—C8 | −176.9 (7) | C10—C11—C7—C8 | −1.6 (9) |
C9—N2—C10—C11 | 0.6 (11) | C6—N1—C2—C3 | 1.9 (11) |
C9—C8—C7—C4 | 177.2 (5) | C6—C5—C4—C3 | 0.0 (9) |
C9—C8—C7—C11 | 1.4 (10) | C6—C5—C4—C7 | −179.2 (4) |
C3H3O4·C10H9N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.726 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.438 (6) Å | Cell parameters from 723 reflections |
b = 7.9032 (14) Å | θ = 3.2–26.4° |
c = 15.425 (10) Å | µ = 0.13 mm−1 |
β = 103.18 (8)° | T = 298 K |
V = 1001.5 (10) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.12 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 947 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.145 |
Detector resolution: 16.0338 pixels mm-1 | θmax = 28.1°, θmin = 3.2° |
ω and φ scans | h = −10→10 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −10→9 |
Tmin = 0.452, Tmax = 0.578 | l = −17→18 |
2932 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.030P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.91 | (Δ/σ)max < 0.001 |
947 reflections | Δρmax = 0.21 e Å−3 |
173 parameters | Δρmin = −0.20 e Å−3 |
91 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0594 (14) | 0.7176 (9) | 0.6207 (9) | 0.037 (3) | |
O2 | 0.2380 (13) | 0.6832 (9) | 0.7501 (9) | 0.039 (3) | |
O3 | −0.0319 (13) | 0.7615 (8) | 0.8725 (8) | 0.033 (3) | |
H3A | −0.0943 | 0.7015 | 0.8926 | 0.049* | |
O4 | −0.2262 (13) | 0.7458 (9) | 0.7443 (9) | 0.044 (4) | |
N1 | 0.2593 (17) | 0.5096 (10) | 0.5736 (10) | 0.030 (4) | |
H1 | 0.1989 | 0.5807 | 0.5933 | 0.035* | |
N2 | 0.7730 (16) | −0.0524 (10) | 0.4188 (11) | 0.028 (4) | |
C2 | 0.3850 (18) | 0.4483 (11) | 0.6271 (12) | 0.028 (3) | |
H2 | 0.4049 | 0.4775 | 0.6870 | 0.034* | |
C3 | 0.4908 (17) | 0.3417 (10) | 0.5993 (11) | 0.033 (3) | |
H3 | 0.5828 | 0.3027 | 0.6397 | 0.039* | |
C4 | 0.4618 (18) | 0.2927 (11) | 0.5127 (12) | 0.027 (3) | |
C5 | 0.3229 (17) | 0.3550 (11) | 0.4552 (12) | 0.029 (3) | |
H5 | 0.2987 | 0.3235 | 0.3955 | 0.035* | |
C6 | 0.2198 (17) | 0.4648 (10) | 0.4869 (11) | 0.026 (3) | |
H6 | 0.1258 | 0.5063 | 0.4492 | 0.031* | |
C7 | 0.5783 (19) | 0.1799 (12) | 0.4823 (13) | 0.030 (3) | |
C8 | 0.7042 (17) | 0.1079 (11) | 0.5343 (11) | 0.026 (3) | |
H8 | 0.7268 | 0.1326 | 0.5949 | 0.032* | |
C9 | 0.8045 (17) | −0.0026 (11) | 0.5037 (11) | 0.030 (4) | |
H9 | 0.8967 | −0.0438 | 0.5431 | 0.036* | |
C10 | 0.6515 (18) | 0.0161 (13) | 0.3682 (13) | 0.036 (4) | |
H10 | 0.6352 | −0.0112 | 0.3082 | 0.043* | |
C11 | 0.5370 (17) | 0.1281 (10) | 0.3900 (11) | 0.032 (4) | |
H11 | 0.4445 | 0.1651 | 0.3492 | 0.039* | |
C12 | 0.120 (2) | 0.7493 (15) | 0.7010 (14) | 0.027 (4) | |
C13 | 0.0284 (15) | 0.8807 (10) | 0.7441 (10) | 0.031 (3) | |
H13A | 0.1053 | 0.9445 | 0.7884 | 0.037* | |
H13B | −0.0277 | 0.9592 | 0.6991 | 0.037* | |
C14 | −0.095 (2) | 0.7931 (14) | 0.7881 (14) | 0.027 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.024 (9) | 0.068 (5) | 0.015 (8) | −0.001 (4) | −0.004 (8) | −0.009 (5) |
O2 | 0.041 (8) | 0.069 (5) | 0.005 (8) | 0.004 (5) | −0.001 (7) | 0.009 (5) |
O3 | 0.017 (8) | 0.058 (5) | 0.022 (9) | 0.005 (4) | 0.002 (8) | 0.012 (5) |
O4 | 0.034 (8) | 0.071 (5) | 0.028 (10) | −0.008 (5) | 0.008 (8) | −0.011 (5) |
N1 | 0.037 (9) | 0.044 (5) | 0.007 (10) | 0.014 (5) | 0.006 (9) | 0.001 (5) |
N2 | 0.020 (9) | 0.044 (5) | 0.017 (10) | 0.003 (5) | −0.002 (9) | −0.002 (6) |
C2 | 0.026 (8) | 0.034 (5) | 0.021 (9) | −0.001 (5) | −0.001 (7) | 0.003 (6) |
C3 | 0.028 (7) | 0.039 (5) | 0.026 (8) | 0.006 (4) | −0.004 (7) | −0.002 (5) |
C4 | 0.024 (7) | 0.036 (4) | 0.019 (8) | 0.002 (4) | 0.001 (7) | 0.003 (5) |
C5 | 0.023 (7) | 0.046 (5) | 0.017 (8) | −0.002 (4) | 0.003 (7) | −0.004 (5) |
C6 | 0.021 (8) | 0.035 (5) | 0.017 (9) | 0.004 (4) | −0.005 (7) | 0.003 (5) |
C7 | 0.024 (7) | 0.045 (5) | 0.020 (8) | 0.003 (4) | 0.002 (7) | 0.000 (5) |
C8 | 0.023 (8) | 0.040 (5) | 0.015 (9) | −0.008 (4) | 0.003 (7) | −0.001 (5) |
C9 | 0.023 (9) | 0.048 (5) | 0.018 (9) | −0.007 (5) | 0.003 (8) | −0.004 (6) |
C10 | 0.026 (9) | 0.055 (6) | 0.022 (10) | 0.002 (5) | −0.004 (8) | −0.004 (6) |
C11 | 0.026 (8) | 0.046 (5) | 0.021 (9) | 0.005 (4) | −0.002 (7) | 0.000 (6) |
C12 | 0.036 (9) | 0.038 (6) | 0.008 (8) | 0.000 (5) | 0.004 (8) | 0.009 (6) |
C13 | 0.039 (8) | 0.035 (5) | 0.017 (9) | 0.007 (4) | 0.002 (7) | 0.011 (5) |
C14 | 0.036 (9) | 0.029 (5) | 0.014 (9) | 0.014 (5) | 0.001 (8) | 0.005 (6) |
O1—C12 | 1.25 (2) | C5—H5 | 0.9300 |
O2—C12 | 1.22 (2) | C5—C6 | 1.395 (11) |
O3—H3A | 0.8200 | C6—H6 | 0.9300 |
O3—C14 | 1.31 (2) | C7—C8 | 1.31 (3) |
O4—C14 | 1.22 (2) | C7—C11 | 1.45 (2) |
N1—H1 | 0.8600 | C8—H8 | 0.9300 |
N1—C2 | 1.28 (2) | C8—C9 | 1.373 (12) |
N1—C6 | 1.35 (2) | C9—H9 | 0.9300 |
N2—C9 | 1.34 (2) | C10—H10 | 0.9300 |
N2—C10 | 1.26 (2) | C10—C11 | 1.406 (12) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
C2—C3 | 1.366 (12) | C12—C13 | 1.534 (14) |
C3—H3 | 0.9300 | C13—H13A | 0.9700 |
C3—C4 | 1.36 (2) | C13—H13B | 0.9700 |
C4—C5 | 1.39 (2) | C13—C14 | 1.533 (14) |
C4—C7 | 1.480 (13) | ||
C14—O3—H3A | 109.5 | C7—C8—C9 | 123.0 (18) |
C2—N1—H1 | 119.3 | C9—C8—H8 | 118.5 |
C2—N1—C6 | 121.4 (11) | N2—C9—C8 | 121.7 (16) |
C6—N1—H1 | 119.3 | N2—C9—H9 | 119.2 |
C10—N2—C9 | 115.6 (11) | C8—C9—H9 | 119.2 |
N1—C2—H2 | 118.8 | N2—C10—H10 | 115.5 |
N1—C2—C3 | 122.3 (16) | N2—C10—C11 | 129.0 (18) |
C3—C2—H2 | 118.8 | C11—C10—H10 | 115.5 |
C2—C3—H3 | 120.0 | C7—C11—H11 | 123.6 |
C4—C3—C2 | 120.0 (16) | C10—C11—C7 | 112.9 (15) |
C4—C3—H3 | 120.0 | C10—C11—H11 | 123.6 |
C3—C4—C5 | 117.6 (10) | O1—C12—C13 | 115.5 (17) |
C3—C4—C7 | 120.0 (16) | O2—C12—O1 | 128.2 (15) |
C5—C4—C7 | 122.4 (16) | O2—C12—C13 | 116.1 (18) |
C4—C5—H5 | 120.0 | C12—C13—H13A | 109.6 |
C4—C5—C6 | 119.9 (15) | C12—C13—H13B | 109.6 |
C6—C5—H5 | 120.0 | H13A—C13—H13B | 108.1 |
N1—C6—C5 | 118.6 (15) | C14—C13—C12 | 110.3 (7) |
N1—C6—H6 | 120.7 | C14—C13—H13A | 109.6 |
C5—C6—H6 | 120.7 | C14—C13—H13B | 109.6 |
C8—C7—C4 | 124.9 (18) | O3—C14—C13 | 111.1 (17) |
C8—C7—C11 | 117.5 (11) | O4—C14—O3 | 127.2 (15) |
C11—C7—C4 | 117.0 (16) | O4—C14—C13 | 121.2 (18) |
C7—C8—H8 | 118.5 | ||
O1—C12—C13—C14 | 92.2 (15) | C4—C7—C11—C10 | −177.6 (7) |
O2—C12—C13—C14 | −84.5 (18) | C5—C4—C7—C8 | −174.8 (11) |
N1—C2—C3—C4 | −2.1 (15) | C5—C4—C7—C11 | −3.5 (14) |
N2—C10—C11—C7 | 6.2 (16) | C6—N1—C2—C3 | 3.5 (17) |
C2—N1—C6—C5 | −2.7 (16) | C7—C4—C5—C6 | −178.1 (7) |
C2—C3—C4—C5 | 0.1 (14) | C7—C8—C9—N2 | −4.5 (15) |
C2—C3—C4—C7 | 178.8 (8) | C8—C7—C11—C10 | −5.7 (14) |
C3—C4—C5—C6 | 0.5 (14) | C9—N2—C10—C11 | −5.4 (18) |
C3—C4—C7—C8 | 6.7 (17) | C10—N2—C9—C8 | 4.0 (14) |
C3—C4—C7—C11 | 178.0 (9) | C11—C7—C8—C9 | 5.4 (17) |
C4—C5—C6—N1 | 0.7 (14) | C12—C13—C14—O3 | 92.9 (15) |
C4—C7—C8—C9 | 176.7 (8) | C12—C13—C14—O4 | −79.7 (18) |
C3H2O4·C10H10N2 | F(000) = 544 |
Mr = 260.25 | Dx = 1.747 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.40 (1) Å | Cell parameters from 793 reflections |
b = 7.886 (3) Å | θ = 3.2–25.3° |
c = 15.389 (19) Å | µ = 0.13 mm−1 |
β = 103.93 (14)° | T = 298 K |
V = 989.5 (18) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.19 × 0.09 mm |
New Xcalibur, EosS2 diffractometer | 888 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 335 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
Detector resolution: 8.0169 pixels mm-1 | θmax = 28.2°, θmin = 2.9° |
ω and φ scans | h = −10→10 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −10→10 |
Tmin = 0.636, Tmax = 0.732 | l = −15→14 |
2861 measured reflections |
Refinement on F2 | 86 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.095 | H-atom parameters constrained |
wR(F2) = 0.216 | w = 1/[σ2(Fo2) + (0.0286P)2 + 5.1029P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
888 reflections | Δρmax = 0.28 e Å−3 |
172 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | −0.0294 (17) | 0.7604 (10) | 0.8775 (13) | 0.040 (6) | |
O2 | 0.2384 (17) | 0.6814 (11) | 0.7511 (12) | 0.040 (7) | |
O4 | −0.2246 (16) | 0.7494 (10) | 0.7447 (12) | 0.039 (6) | |
O1 | 0.0660 (19) | 0.7179 (11) | 0.6204 (13) | 0.044 (7) | |
C12 | 0.118 (3) | 0.7517 (15) | 0.700 (2) | 0.045 (9) | |
C14 | −0.082 (3) | 0.7922 (15) | 0.794 (2) | 0.047 (8) | |
C13 | 0.0303 (19) | 0.8845 (12) | 0.7447 (13) | 0.044 (7) | |
H13A | 0.1103 | 0.9518 | 0.7866 | 0.053* | |
H13B | −0.0339 | 0.9598 | 0.6998 | 0.053* | |
N2 | 0.772 (2) | −0.0506 (12) | 0.4175 (15) | 0.031 (5) | |
H2 | 0.8328 | −0.1218 | 0.3981 | 0.037* | |
N1 | 0.259 (2) | 0.5093 (11) | 0.5736 (15) | 0.036 (5) | |
H1 | 0.1975 | 0.5777 | 0.5945 | 0.044* | |
C5 | 0.3231 (19) | 0.3543 (12) | 0.4544 (15) | 0.033 (5) | |
H5 | 0.2986 | 0.3236 | 0.3943 | 0.040* | |
C9 | 0.806 (2) | −0.0057 (12) | 0.5031 (15) | 0.028 (5) | |
H9 | 0.8982 | −0.0510 | 0.5424 | 0.034* | |
C2 | 0.387 (2) | 0.4498 (14) | 0.6252 (17) | 0.041 (5) | |
H2A | 0.4099 | 0.4816 | 0.6851 | 0.049* | |
C3 | 0.493 (2) | 0.3422 (13) | 0.5989 (15) | 0.040 (4) | |
H3 | 0.5865 | 0.3045 | 0.6401 | 0.048* | |
C4 | 0.462 (2) | 0.2903 (12) | 0.5122 (16) | 0.033 (4) | |
C10 | 0.648 (2) | 0.0139 (13) | 0.3656 (17) | 0.031 (5) | |
H10 | 0.6248 | −0.0176 | 0.3056 | 0.037* | |
C6 | 0.217 (2) | 0.4668 (10) | 0.4859 (14) | 0.029 (5) | |
H6 | 0.1228 | 0.5095 | 0.4476 | 0.035* | |
C11 | 0.543 (2) | 0.1290 (13) | 0.3916 (15) | 0.038 (5) | |
H11 | 0.4528 | 0.1726 | 0.3502 | 0.046* | |
C8 | 0.708 (2) | 0.1070 (12) | 0.5350 (15) | 0.031 (4) | |
H8 | 0.7328 | 0.1354 | 0.5955 | 0.037* | |
C7 | 0.575 (2) | 0.1759 (14) | 0.4785 (17) | 0.035 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.033 (13) | 0.046 (6) | 0.051 (19) | −0.005 (4) | 0.031 (15) | −0.002 (6) |
O2 | 0.050 (15) | 0.058 (6) | 0.009 (17) | 0.004 (5) | 0.002 (16) | 0.009 (6) |
O4 | 0.040 (14) | 0.050 (5) | 0.026 (17) | −0.006 (5) | 0.006 (15) | −0.007 (5) |
O1 | 0.058 (14) | 0.049 (6) | 0.036 (19) | 0.005 (5) | 0.035 (16) | −0.006 (6) |
C12 | 0.051 (16) | 0.021 (6) | 0.08 (3) | 0.003 (7) | 0.053 (18) | 0.015 (9) |
C14 | 0.050 (17) | 0.019 (6) | 0.09 (2) | −0.004 (6) | 0.052 (18) | −0.006 (9) |
C13 | 0.061 (14) | 0.027 (6) | 0.059 (18) | 0.006 (5) | 0.041 (14) | 0.013 (6) |
N2 | 0.025 (11) | 0.039 (6) | 0.034 (13) | 0.005 (5) | 0.018 (11) | 0.001 (6) |
N1 | 0.042 (11) | 0.028 (5) | 0.049 (14) | −0.006 (5) | 0.031 (11) | −0.004 (6) |
C5 | 0.016 (9) | 0.036 (6) | 0.054 (14) | −0.005 (5) | 0.019 (9) | −0.013 (7) |
C9 | 0.027 (11) | 0.032 (6) | 0.029 (14) | −0.003 (5) | 0.011 (11) | 0.000 (6) |
C2 | 0.059 (13) | 0.033 (6) | 0.037 (13) | −0.003 (6) | 0.025 (11) | 0.008 (7) |
C3 | 0.039 (11) | 0.032 (6) | 0.051 (13) | −0.013 (5) | 0.015 (10) | −0.014 (7) |
C4 | 0.026 (9) | 0.019 (5) | 0.055 (13) | −0.009 (4) | 0.012 (10) | −0.011 (6) |
C10 | 0.035 (12) | 0.036 (6) | 0.025 (14) | −0.002 (6) | 0.013 (11) | 0.008 (6) |
C6 | 0.027 (10) | 0.014 (5) | 0.048 (14) | 0.003 (4) | 0.015 (10) | 0.009 (6) |
C11 | 0.041 (12) | 0.040 (6) | 0.038 (13) | 0.010 (6) | 0.017 (11) | 0.012 (7) |
C8 | 0.025 (10) | 0.039 (6) | 0.035 (13) | −0.007 (5) | 0.021 (10) | 0.001 (7) |
C7 | 0.031 (10) | 0.040 (6) | 0.044 (13) | 0.003 (5) | 0.027 (11) | 0.007 (7) |
O3—C14 | 1.28 (3) | C5—C6 | 1.421 (14) |
O2—C12 | 1.25 (4) | C9—H9 | 0.9300 |
O4—C14 | 1.30 (3) | C9—C8 | 1.382 (15) |
O1—C12 | 1.22 (4) | C2—H2A | 0.9300 |
C12—C13 | 1.537 (19) | C2—C3 | 1.362 (17) |
C14—C13 | 1.533 (18) | C3—H3 | 0.9300 |
C13—H13A | 0.9700 | C3—C4 | 1.36 (3) |
C13—H13B | 0.9700 | C4—C7 | 1.490 (17) |
N2—H2 | 0.8600 | C10—H10 | 0.9300 |
N2—C9 | 1.33 (3) | C10—C11 | 1.390 (15) |
N2—C10 | 1.26 (3) | C6—H6 | 0.9300 |
N1—H1 | 0.8600 | C11—H11 | 0.9300 |
N1—C2 | 1.26 (3) | C11—C7 | 1.35 (3) |
N1—C6 | 1.35 (3) | C8—H8 | 0.9300 |
C5—H5 | 0.9300 | C8—C7 | 1.35 (3) |
C5—C4 | 1.38 (3) | ||
O2—C12—C13 | 115 (3) | N1—C2—H2A | 117.8 |
O1—C12—O2 | 124.9 (18) | N1—C2—C3 | 124 (2) |
O1—C12—C13 | 120 (3) | C3—C2—H2A | 117.8 |
O3—C14—O4 | 125.9 (16) | C2—C3—H3 | 120.2 |
O3—C14—C13 | 119 (2) | C4—C3—C2 | 120 (2) |
O4—C14—C13 | 115 (3) | C4—C3—H3 | 120.2 |
C12—C13—H13A | 110.0 | C5—C4—C7 | 120 (2) |
C12—C13—H13B | 110.0 | C3—C4—C5 | 117.0 (13) |
C14—C13—C12 | 108.6 (9) | C3—C4—C7 | 122 (2) |
C14—C13—H13A | 110.0 | N2—C10—H10 | 117.7 |
C14—C13—H13B | 110.0 | N2—C10—C11 | 125 (2) |
H13A—C13—H13B | 108.3 | C11—C10—H10 | 117.7 |
C9—N2—H2 | 120.9 | N1—C6—C5 | 117.6 (18) |
C10—N2—H2 | 120.9 | N1—C6—H6 | 121.2 |
C10—N2—C9 | 118.1 (14) | C5—C6—H6 | 121.2 |
C2—N1—H1 | 119.6 | C10—C11—H11 | 120.8 |
C2—N1—C6 | 120.8 (15) | C7—C11—C10 | 118 (2) |
C6—N1—H1 | 119.6 | C7—C11—H11 | 120.8 |
C4—C5—H5 | 119.7 | C9—C8—H8 | 120.0 |
C4—C5—C6 | 121 (2) | C7—C8—C9 | 120 (2) |
C6—C5—H5 | 119.7 | C7—C8—H8 | 120.0 |
N2—C9—H9 | 119.4 | C11—C7—C4 | 121 (2) |
N2—C9—C8 | 121 (2) | C11—C7—C8 | 117.6 (14) |
C8—C9—H9 | 119.4 | C8—C7—C4 | 121 (2) |
O3—C14—C13—C12 | 95 (2) | C2—N1—C6—C5 | −0.4 (18) |
O2—C12—C13—C14 | −80 (2) | C2—C3—C4—C5 | 1.4 (16) |
O4—C14—C13—C12 | −83 (2) | C2—C3—C4—C7 | 178.6 (10) |
O1—C12—C13—C14 | 98 (2) | C3—C4—C7—C11 | −178.6 (12) |
N2—C9—C8—C7 | −1.1 (17) | C3—C4—C7—C8 | 5.6 (18) |
N2—C10—C11—C7 | 0.0 (19) | C4—C5—C6—N1 | 0.7 (15) |
N1—C2—C3—C4 | −1.2 (19) | C10—N2—C9—C8 | 0.8 (18) |
C5—C4—C7—C11 | −1.5 (17) | C10—C11—C7—C4 | −176.2 (9) |
C5—C4—C7—C8 | −177.3 (12) | C10—C11—C7—C8 | −0.2 (18) |
C9—N2—C10—C11 | 0 (2) | C6—N1—C2—C3 | 1 (2) |
C9—C8—C7—C4 | 176.7 (9) | C6—C5—C4—C3 | −1.2 (15) |
C9—C8—C7—C11 | 0.7 (18) | C6—C5—C4—C7 | −178.5 (9) |
Acknowledgements
Author contributions. EPK: conceptualization, formal analysis, investigation (XRD, Raman), resources, writing – original draft, writing – review and editing, visualization, supervision, project administration, funding acquisition; FI: conceptualization, formal analysis, investigation (DFT), writing – review and editing, visualization; AL: conceptualization, formal analysis, investigation (DFT), writing – review and editing, visualization; MK: formal analysis, writing – review and editing; AO: investigation (XRD), visualization; IM: investigation (XRD, Raman); JMR: conceptualization, formal analysis, writing – review and editing, supervision (DFT), project administration, funding acquisition.
Funding information
The following funding is acknowledged: National Science Centre, Poland (grant No. UMO-2020/39/D/ST4/00260 awarded to EPK, MK, IM and AO); Principado de Asturias-FEDER (grant No. AYUD/2021/51036 awarded to FIR, AL and JMR); Agencia Estatal de Investigación (grant No. PID2021-122585NB-C21-2 awarded to FIR, AL and JMR). X-ray diffraction experiments were carried out in part at the Center for Advanced Technology, Adam Mickiewicz University, via paid access.
References
Abe, H., Imai, Y., Takekiyo, T., Yoshimura, Y. & Hamaya, N. (2014). IOP Conf. Ser. Mater. Sci. Eng. 54, 012003. Google Scholar
Andrzejewski, M., Olejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 4892–4899. Web of Science CSD CrossRef CAS Google Scholar
Andrzejewski, M., Olejniczak, A. & Katrusiak, A. (2012). CrystEngComm, 14, 6374–6434. Web of Science CSD CrossRef CAS Google Scholar
Anioła, M. & Katrusiak, A. (2016). CrystEngComm, 18, 3223–3228. Google Scholar
Anioła, M. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 3134–3141. Google Scholar
Anioła, M., Kwaśna, K., Cai, W. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 6304–6309. Google Scholar
Bąkowicz, J. & Turowska-Tyrk, I. (2016). CrystEngComm, 18, 8898–8905. Google Scholar
Bąkowicz, J. & Turowska-Tyrk, I. (2020). Crystals, 10, 1031. Google Scholar
Bąkowicz, J. & Turowska-Tyrk, I. (2022). Acta Cryst. B78, 223–230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bates, M. & Lunt, R. R. (2017). Sustain. Energy Fuels, 1, 955–968. Web of Science CrossRef CAS Google Scholar
Bedeković, N., Stilinović, V., Friščić, T. & Cinčić, D. (2018). New J. Chem. 42, 10584–10591. Google Scholar
Bezzu, C. G., Burt, L. A., McMonagle, C. J., Moggach, S. A., Kariuki, B. M., Allan, D. R., Warren, M. & McKeown, N. B. (2019). Nat. Mater. 18, 740–745. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bhatt, H., Mishra, A. K., Murli, C., Verma, A. K., Garg, N., Deo, M. N. & Sharma, S. M. (2016). Phys. Chem. Chem. Phys. 18, 8065–8074. Web of Science CrossRef CAS PubMed Google Scholar
Bhunia, M. K., Das, S. K. & Bhaumik, A. (2010). Chem. Phys. Lett. 498, 145–150. Web of Science CSD CrossRef CAS Google Scholar
Blöchl, P. E. (1994). Phys. Rev. B, 50, 17953–17979. CrossRef Web of Science Google Scholar
Bogdanov, N. E., Korabel'nikov, D. V., Fedorov, I. A., Zakharov, B. A. & Boldyreva, E. V. (2022). Acta Cryst. B78, 756–762. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285–291. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boschmann, E. & Miller, R. D. (2018). Tetrahedron, 74, 2617–2619. Web of Science CrossRef CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bryce, M. R. (1991). Chem. Soc. Rev. 20, 355–390. CrossRef CAS Web of Science Google Scholar
Budzianowski, A. & Katrusiak, A. (2006). J. Phys. Chem. B, 110, 9755–9758. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322–10331. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cai, W. & Katrusiak, A. (2012). CrystEngComm, 14, 4420–4424. Web of Science CSD CrossRef CAS Google Scholar
Cameron, C. A., Allan, D. R., Kamenev, K. V., Moggach, S. A., Murrie, M. & Parsons, S. (2014). Z. Kristallogr. Cryst. Mater. 229, 200–209. Web of Science CSD CrossRef CAS Google Scholar
Carlsson, S., Zorina, L., Allan, D. R., Attfield, J. P., Canadell, E. & Batail, P. (2013). Inorg. Chem. 52, 3326–3333. Web of Science CSD CrossRef CAS PubMed Google Scholar
Casati, N., Macchi, P. & Sironi, A. (2009). Chem. Commun. pp. 2679–2681. Web of Science CSD CrossRef Google Scholar
Chasák, J., Šlachtová, V., Urban, M. & Brulíková, L. (2021). Eur. J. Med. Chem. 209, 112872. Web of Science PubMed Google Scholar
Cheney, M. L., Shan, N., Healey, E. R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2010). Cryst. Growth Des. 10, 394–405. Web of Science CSD CrossRef CAS Google Scholar
Chia, A. S. & Trimble, R. F. Jr (1961). J. Phys. Chem. 65, 863–866. CrossRef CAS Web of Science Google Scholar
Collings, I. E. & Hanfland, M. (2019). Molecules, 24, 1759. Web of Science CSD CrossRef PubMed Google Scholar
Connor, L. E., Delori, A., Hutchison, I. B., Nic Daeid, N., Sutcliffe, O. B. & Oswald, I. D. H. (2015). Acta Cryst. B71, 3–9. Web of Science CSD CrossRef IUCr Journals Google Scholar
Craig, G. A., Sarkar, A., Woodall, C. H., Hay, M. A., Marriott, K. E. R., Kamenev, K. V., Moggach, S. A., Brechin, E. K., Parsons, S., Rajaraman, G. & Murrie, M. (2018). Chem. Sci. 9, 1551–1559. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365. CAS Google Scholar
Cruz-Cabeza, A. J., Lusi, M., Wheatcroft, H. P. & Bond, A. D. (2022). Faraday Discuss. 235, 446–466. Web of Science CAS PubMed Google Scholar
Dey, B. P. & Lahiri, S. C. (2010). J. Indian Chem. Soc. 87, 29–41. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ehrenreich, G., Zeng, M., Burger, Z., Warren, S. R., Gaultois, M. W., Tan, M. & Kieslich, G. (2019). Chem. Commun. 55, 3911–3914. Web of Science CSD CrossRef CAS Google Scholar
Eikeland, E., Thomsen, M. K., Madsen, S. R., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2016). Chem. A Eur. J. 22, 4061–4069. Web of Science CSD CrossRef CAS Google Scholar
Eikeland, E., Thomsen, M. K., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2017). Cryst. Growth Des. 17, 3834–3846. Web of Science CSD CrossRef CAS Google Scholar
Eikeland, E. Z., Borup, M., Thomsen, M. K., Roelsgaard, M., Overgaard, J., Spackman, M. A. & Iversen, B. B. (2020). Cryst. Growth Des. 20, 4092–4099. Web of Science CSD CrossRef CAS Google Scholar
Fabbiani, F. P. A., Allan, D. R., David, W. I. F., Davidson, A. J., Lennie, A. R., Parsons, S., Pulham, C. R. & Warren, J. E. (2007). Cryst. Growth Des. 7, 1115–1124. Web of Science CSD CrossRef CAS Google Scholar
Fabbiani, F. P. A., Allan, D. R., David, W. I. F., Moggach, S. A., Parsons, S. & Pulham, C. R. (2004). CrystEngComm, 6, 504–511. Web of Science CSD CrossRef CAS Google Scholar
Fabbiani, F. P. A., Allan, D. R., Dawson, A., David, W. I. F., McGregor, P. A., Oswald, I. D. H., Parsons, S. & Pulham, C. R. (2003). Chem. Commun. pp. 3004–3005. Web of Science CSD CrossRef Google Scholar
Fabbiani, F. P. A., Bergantin, S., Gavezzotti, A., Rizzato, S. & Moret, M. (2016). CrystEngComm, 18, 2173–2181. Web of Science CSD CrossRef CAS Google Scholar
Fabbiani, F. P. A., Buth, G., Levendis, D. C. & Cruz-Cabeza, A. J. (2014). Chem. Commun. 50, 1817–1819. Web of Science CSD CrossRef CAS Google Scholar
Fabbiani, F. P. A., Dittrich, B., Florence, A. J., Gelbrich, T., Hursthouse, M. B., Kuhs, W. F., Shankland, N. & Sowa, H. (2009). CrystEngComm, 11, 1396–1406. Web of Science CSD CrossRef CAS Google Scholar
Fabbiani, F. P. A., Levendis, D. C., Buth, G., Kuhs, W. F., Shankland, N. & Sowa, H. (2010). CrystEngComm, 12, 2354–2360. Web of Science CSD CrossRef CAS Google Scholar
Filhol, A., Bravic, G., Gaultier, J., Chasseau, D. & Vettier, C. (1981). Acta Cryst. B37, 1225–1235. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Fornasari, L., Olejniczak, A., Rossi, F., d'Agostino, S., Chierotti, M. R., Gobetto, R., Katrusiak, A. & Braga, D. (2020). Chem. A Eur. J. 26, 5061–5069. Web of Science CSD CrossRef CAS Google Scholar
Friedrich, A., Collings, I. E., Dziubek, K. F., Fanetti, S., Radacki, K., Ruiz-Fuertes, J., Pellicer-Porres, J., Hanfland, M., Sieh, D., Bini, R., Clark, S. J. & Marder, T. B. (2020). J. Am. Chem. Soc. 142, 18907–18923. Web of Science CSD CrossRef CAS PubMed Google Scholar
Funnell, N. P., Allan, D. R., Maloney, A. G. P., Smith, R. I., Wilson, C. J. G. & Parsons, S. (2021). CrystEngComm, 23, 769–776. Web of Science CSD CrossRef CAS Google Scholar
Galica, T., Konieczny, K. A. & Turowska-Tyrk, I. (2020). J. Photochem. Photobiol. Chem. 386, 112119. Web of Science CSD CrossRef Google Scholar
Galica, T. & Turowska-Tyrk, I. (2019). J. Photochem. Photobiol. Chem. 376, 108–115. Web of Science CSD CrossRef CAS Google Scholar
Galiois, B., Gaultier, J., Hauw, C., Chasseau, D., Meresse, A., Filhol, A. & Bechgaard, K. (1985). Mol. Cryst. Liq. Cryst. 119, 225–232. CSD CrossRef CAS Web of Science Google Scholar
Gallois, B., Gaultier, J., Bechtel, F., Filhol, A. & Vettier, C. (1987). Mol. Cryst. Liq. Cryst. 148, 279–293. CSD CrossRef CAS Web of Science Google Scholar
Gallois, B., Gaultier, J., Hauw, C., Lamcharfi, T. & Filhol, A. (1986). Acta Cryst. B42, 564–575. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Galloway, K. W., Moggach, S. A., Parois, P., Lennie, A. R., Warren, J. E., Brechin, E. K., Peacock, R. D., Valiente, R., González, J., Rodríguez, F., Parsons, S. & Murrie, M. (2010). CrystEngComm, 12, 2516. Web of Science CSD CrossRef Google Scholar
Giordano, N., Beavers, C. M., Kamenev, K. V., Love, J. B., Pankhurst, J. R., Teat, S. J. & Parsons, S. (2020). Chem. Commun. 56, 3449–3452. Web of Science CSD CrossRef CAS Google Scholar
Granero–García, R., Falenty, A. & Fabbiani, F. P. A. (2017). Chem. A Eur. J. 23, 3691–3698. Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104. Web of Science CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243. Web of Science CrossRef CAS Google Scholar
Guionneau, P., Brigouleix, C., Barrans, Y., Goeta, A. E., Létard, J.-F., Howard, J. A. K., Gaultier, J. & Chasseau, D. (2001). C. R. Acad. Sci. Paris Chim. 4, 161–171. CAS Google Scholar
Guionneau, P., Gaultier, J., Rahal, M., Bravic, G. M., Mellado, J., Chasseau, D., Ducasse, L., Kurmoo, M. & Day, P. (1995). J. Mater. Chem. 5, 1639–1645. CSD CrossRef CAS Web of Science Google Scholar
Guranda, D. T., Ushakov, G. A., Yolkin, P. G. & Švedas, V. K. (2012). J. Mol. Catal. B Enzym. 74, 48–53. Web of Science CrossRef CAS Google Scholar
Horiuchi, S., Kumai, R. & Tokura, Y. (2013). J. Am. Chem. Soc. 135, 4492–4500. Web of Science CSD CrossRef CAS PubMed Google Scholar
Huq, A. & Stephens, P. W. (2006). Phys. Rev. B, 74, 075424. Web of Science CrossRef Google Scholar
Isaacs, N. S., Javaid, K. & Rannala, E. (1977). Nature, 268, 372–372. CrossRef CAS Web of Science Google Scholar
Jaroń, T., Starobrat, A., Struzhkin, V. V. & Grochala, W. (2020). Eur. J. Inorg. Chem. 2020, 3846–3851. Google Scholar
Jiang, M., Zhen, C., Li, S., Zhang, X. & Hu, W. (2021). Front. Chem. 9, 764628. Google Scholar
Johnstone, R. D. L., Francis, D., Lennie, A. R., Marshall, W. G., Moggach, S. A., Parsons, S., Pidcock, E. & Warren, J. E. (2008). CrystEngComm, 10, 1758. Web of Science CSD CrossRef Google Scholar
Johnstone, R. D. L., Lennie, A. R., Parsons, S., Pidcock, E. & Warren, J. E. (2009). Acta Cryst. B65, 731–748. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jones, A. O. F., Lemée-Cailleau, M.-H., Martins, D. M. S., McIntyre, G. J., Oswald, I. D. H., Pulham, C. R., Spanswick, C. K., Thomas, L. H. & Wilson, C. C. (2012). Phys. Chem. Chem. Phys. 14, 13273–13283. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jungen, S., Paenurk, E. & Chen, P. (2020). Inorg. Chem. 59, 12322–12336. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kaniwa, N. & Saito, Y. (2013). J. Hum. Genet. 58, 317–326. Web of Science CrossRef CAS PubMed Google Scholar
Karki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905–3909. Web of Science CSD CrossRef CAS Google Scholar
Katrusiak, A., Szafrański, M. & Podsiadło, M. (2011). Chem. Commun. 47, 2107–2109. Web of Science CSD CrossRef CAS Google Scholar
Kaur, G., Kumar, H. & Singla, M. (2022). J. Mol. Liq. 351, 118556. Web of Science CrossRef Google Scholar
Keller, S., Prescimone, A., Bolink, H., Sessolo, M., Longo, G., Martínez-Sarti, L., Junquera-Hernández, J. M., Constable, E. C., Ortí, E. & Housecroft, C. E. (2018a). Dalton Trans. 47, 14263–14276. Web of Science CSD CrossRef CAS PubMed Google Scholar
Keller, S., Prescimone, A., Constable, E. C. & Housecroft, C. E. (2018b). Photochem. Photobiol. Sci. 17, 375–385. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khalil, M. M., Radalla, A. M. & Abd Elnaby, N. M. (2013). J. Solution Chem. 42, 1123–1145. Web of Science CrossRef CAS Google Scholar
Khalili, F., Henni, A. & East, A. L. L. (2009). J. Chem. Eng. Data, 54, 2914–2917. Web of Science CrossRef CAS Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Koifman, N., Cohen, B. & Huppert, D. (2002). J. Phys. Chem. A, 106, 4336–4344. Web of Science CrossRef CAS Google Scholar
Komatsu, K., Machida, S., Noritake, F., Hattori, T., Sano-Furukawa, A., Yamane, R., Yamashita, K. & Kagi, H. (2020). Nat. Commun. 11, 464. Web of Science CSD CrossRef PubMed Google Scholar
Konieczny, K. A., Bąkowicz, J., Paliwoda, D., Warren, M. R., Ciesielski, A., Cyrański, M. K. & Turowska-Tyrk, I. (2021). Acta Cryst. B77, 321–330. Web of Science CSD CrossRef IUCr Journals Google Scholar
Konieczny, K. A., Szczurek, A., Bąkowicz, J., Siedlecka, R., Ciesielski, A., Cyrański, M. K. & Turowska-Tyrk, I. (2020). Cryst. Growth Des. 20, 5061–5071. Web of Science CSD CrossRef CAS Google Scholar
Konieczny, K., Bąkowicz, J., Galica, T., Siedlecka, R. & Turowska-Tyrk, I. (2017). CrystEngComm, 19, 3044–3050. Web of Science CSD CrossRef CAS Google Scholar
Konieczny, K., Bąkowicz, J. & Turowska-Tyrk, I. (2015). CrystEngComm, 17, 7693–7701. Web of Science CSD CrossRef CAS Google Scholar
Konieczny, K., Bąkowicz, J. & Turowska-Tyrk, I. (2016). J. Photochem. Photobiol. Chem. 325, 111–115. Web of Science CSD CrossRef CAS Google Scholar
Konieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299. Web of Science CSD CrossRef Google Scholar
Kortüm, G., Vogel, W. & Andrussow, K. (1960). Pure Appl. Chem. 1, 187–536. Google Scholar
Kozlenko, D. P., Wasicki, J. W., Glazkov, V. P., Kichanov, S. E., Nawrocik, W. & Savenko, B. N. (2005). Crystallogr. Rep. 50, 78–84. Web of Science CrossRef CAS Google Scholar
Kresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15–50. CrossRef CAS Web of Science Google Scholar
Krishtalik, L. I. (2000). Biochim. Biophys. Acta, 1458, 6–27. Web of Science CrossRef PubMed CAS Google Scholar
Kumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036–1046. Web of Science CrossRef CAS PubMed Google Scholar
Kurnosov, A. V., Komarov, V. Yu., Voronin, V. I., Teplykh, A. E. & Manakov, A. Yu. (2004). Angew. Chem. Int. Ed. 43, 2922–2924. Web of Science CSD CrossRef CAS Google Scholar
Kurzydłowski, D. (2022). RSC Adv. 12, 11436–11441. Web of Science PubMed Google Scholar
LeBlanc, L. M., Dale, S. G., Taylor, C. R., Becke, A. D., Day, G. M. & Johnson, E. R. (2018). Angew. Chem. Int. Ed. 57, 14906–14910. Web of Science CrossRef CAS Google Scholar
Le Pevelen, D., Barrans, Y., Gaultier, J. & Chasseau, D. (1999). Synth. Met. 102, 1609–1610. Web of Science CSD CrossRef CAS Google Scholar
Li, F., Xu, J., Wang, Y., Zheng, H. & Li, K. (2021). Molecules, 26, 7581. Web of Science CrossRef PubMed Google Scholar
Li, L., Yin, X.-H. & Diao, K.-S. (2020). RSC Adv. 10, 36125–36134. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, L., Wang, J.-R. & Mei, X. (2022). CrystEngComm, 24, 2002–2022. Web of Science CrossRef CAS Google Scholar
Losev, E. A., Zakharov, B. A. & Boldyreva, E. V. (2016). CrystEngComm, 18, 5869–5875. Web of Science CSD CrossRef CAS Google Scholar
Lugo, M. L. & Lubes, V. R. (2007). J. Chem. Eng. Data, 52, 1217–1222. Web of Science CrossRef Google Scholar
Ma, Z., Li, J., Liu, C., Sun, C. & Zhou, M. (2017). Sci. Rep. 7, 4677. Web of Science CrossRef PubMed Google Scholar
Macchi, P., Casati, N., Marshall, W. G. & Sironi, A. (2010). CrystEngComm, 12, 2596–2603. Web of Science CrossRef CAS Google Scholar
Madsen, S. R., Thomsen, M. K., Scheins, S., Chen, Y.-S., Finkelmeier, N., Stalke, D., Overgaard, J. & Iversen, B. B. (2014). Dalton Trans. 43, 1313–1320. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mailman, A., Wong, J. W. L., Winter, S. M., Claridge, R. C. M., Robertson, C. M., Assoud, A., Yong, W., Steven, E., Dube, P. A., Tse, J. S., Desgreniers, S., Secco, R. A. & Oakley, R. T. (2017). J. Am. Chem. Soc. 139, 1625–1635. Web of Science CSD CrossRef CAS PubMed Google Scholar
Martins, D. M. S., Middlemiss, D. S., Pulham, C. R., Wilson, C. C., Weller, M. T., Henry, P. F., Shankland, N., Shankland, K., Marshall, W. G., Ibberson, R. M., Knight, K., Moggach, S., Brunelli, M. & Morrison, C. A. (2009). J. Am. Chem. Soc. 131, 3884–3893. Web of Science CSD CrossRef PubMed CAS Google Scholar
Meier, T., Trybel, F., Khandarkhaeva, S., Laniel, D., Ishii, T., Aslandukova, A., Dubrovinskaia, N. & Dubrovinsky, L. (2022). Nat. Commun. 13, 3042. Web of Science CrossRef PubMed Google Scholar
Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294. CrossRef Web of Science Google Scholar
Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533. Web of Science CrossRef IUCr Journals Google Scholar
Milašinović, V., Molčanov, K., Krawczuk, A., Bogdanov, N. E., Zakharov, B. A., Boldyreva, E. V., Jelsch, C. & Kojić-Prodić, B. (2021). IUCrJ, 8, 644–654. Web of Science CSD CrossRef PubMed IUCr Journals Google Scholar
Mínguez Espallargas, G., Brammer, L., Allan, D. R., Pulham, C. R., Robertson, N. & Warren, J. E. (2008). J. Am. Chem. Soc. 130, 9058–9071. Web of Science PubMed Google Scholar
Mitani, T., Saito, G. & Urayama, H. (1988). Phys. Rev. Lett. 60, 2299–2302. CrossRef PubMed CAS Web of Science Google Scholar
Moggach, S. A., Galloway, K. W., Lennie, A. R., Parois, P., Rowantree, N., Brechin, E. K., Warren, J. E., Murrie, M. & Parsons, S. (2009). CrystEngComm, 11, 2601–2604. Web of Science CSD CrossRef CAS Google Scholar
Moissette, A., Batonneau, Y. & Brémard, C. (2001). J. Am. Chem. Soc. 123, 12325–12334. Web of Science CrossRef PubMed CAS Google Scholar
Morency, M., Néron, S., Iftimie, R. & Wuest, J. D. (2021). J. Org. Chem. 86, 14444–14460. Web of Science CrossRef CAS PubMed Google Scholar
Nam, T., Nara, S. J., Zagol-Ikapitte, I., Cooper, T., Valgimigli, L., Oates, J. A., Porter, N. A., Boutaud, O. & Pratt, D. A. (2009). Org. Biomol. Chem. 7, 5103–5112. Web of Science CrossRef CAS PubMed Google Scholar
Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990–9995. Web of Science CSD CrossRef CAS Google Scholar
Nazeeruddin, M. K. & Kalyanasundaram, K. (1989). Inorg. Chem. 28, 4251–4259. CrossRef CAS Web of Science Google Scholar
Neese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606. Google Scholar
Nicholas, A. D., Zhao, J., Slebodnick, C., Ross, N. L. & Cahill, C. L. (2021). J. Solid State Chem. 300, 122262. Web of Science CSD CrossRef Google Scholar
Nowicki, W., Olejniczak, A., Andrzejewski, M. & Katrusiak, A. (2012). CrystEngComm, 14, 6428–6434. Web of Science CSD CrossRef CAS Google Scholar
US Food and Drug Administration (2023). Generally Recognized as Safe (GRAS), https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras. Google Scholar
Olejniczak, A. & Katrusiak, A. (2010). CrystEngComm, 12, 2528–2532. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 2250–2256. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2020). Acta Cryst. B76, 1136–1142. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022a). Cryst. Growth Des. 22, 5996–6003. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022b). IUCrJ, 9, 49–54. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Olejniczak, A., Katrusiak, A. & Szafrański, M. (2010). Cryst. Growth Des. 10, 3537–3546. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A., Katrusiak, A. & Vij, A. (2009). CrystEngComm, 11, 1240–1244. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A., Krūkle-Bērziņa, K. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 3756–3762. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A., Szafrański, M. & Katrusiak, A. (2018). Cryst. Growth Des. 18, 6488–6496. Web of Science CSD CrossRef CAS Google Scholar
Ono, T., Tsukiyama, Y., Taema, A., Sato, H., Kiyooka, H., Yamaguchi, Y., Nagahashi, A., Nishiyama, M., Akahama, Y., Ozawa, Y., Abe, M. & Hisaeda, Y. (2018). ChemPhotoChem, 2, 416–420. Web of Science CSD CrossRef CAS Google Scholar
Oswald, I. D. H. & Pulham, C. R. (2008). CrystEngComm, 10, 1114–1116. Web of Science CSD CrossRef CAS Google Scholar
Paliwoda, D., Szafrański, M., Hanfland, M. & Katrusiak, A. (2018). J. Mater. Chem. C. 6, 7689–7699. Web of Science CSD CrossRef CAS Google Scholar
Parois, P., Moggach, S. A., Sanchez-Benitez, J., Kamenev, K. V., Lennie, A. R., Warren, J. E., Brechin, E. K., Parsons, S. & Murrie, M. (2010). Chem. Commun. 46, 1881–1883. Web of Science CSD CrossRef CAS Google Scholar
Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2021). Cryst. Growth Des. 21, 6879–6888. Google Scholar
Patyk-Kaźmierczak, E., Warren, M. R., Allan, D. R. & Katrusiak, A. (2017). Phys. Chem. Chem. Phys. 19, 9086–9091. Web of Science PubMed Google Scholar
Pedireddi, V. R., Chatterjee, S., Ranganathan, A. & Rao, C. N. R. (1998). Tetrahedron, 54, 9457–9474. Web of Science CSD CrossRef CAS Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868. CrossRef PubMed CAS Web of Science Google Scholar
Perrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for Organic Acids and Bases. pp. 12–20. Dordrecht: Springer Netherlands. Google Scholar
Pfrunder, M. C., Whittaker, J. J., Parsons, S., Moubaraki, B., Murray, K. S., Moggach, S. A., Sharma, N., Micallef, A. S., Clegg, J. K. & McMurtrie, J. C. (2020). Chem. Mater. 32, 3229–3234. Web of Science CSD CrossRef CAS Google Scholar
Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780. CrossRef CAS Web of Science Google Scholar
Podsiadło, M., Jakóbek, K. & Katrusiak, A. (2010). CrystEngComm, 12, 2561–2567. Google Scholar
Poręba, T., Ernst, M., Zimmer, D., Macchi, P. & Casati, N. (2019). Angew. Chem. Int. Ed. 58, 6625–6629. Google Scholar
Poręba, T., Macchi, P. & Casati, N. (2020). Cryst. Growth Des. 20, 4375–4386. Google Scholar
Prescimone, A., Sanchez-Benitez, J., Kamenev, K. K., Moggach, S. A., Warren, J. E., Lennie, A. R., Murrie, M., Parsons, S. & Brechin, E. K. (2010a). Dalton Trans. 39, 113–123. Web of Science CSD CrossRef CAS Google Scholar
Prescimone, A., Sanchez-Benitez, J., Kamenev, K. V., Moggach, S. A., Lennie, A. R., Warren, J. E., Murrie, M., Parsons, S. & Brechin, E. K. (2009). Dalton Trans. pp. 7390–7395. Web of Science CSD CrossRef Google Scholar
Prescimone, A., Sanchez-Benitez, J., Kamenev, K. V., Warren, J. E., Lennie, A. R., Murrie, M., Parsons, S. & Brechin, E. K. (2010). Z. Naturforschung B, 65, 221–230. Web of Science CrossRef CAS Google Scholar
Price, A. N., Berryman, V., Ochiai, T., Shephard, J. J., Parsons, S., Kaltsoyannis, N. & Arnold, P. L. (2022). Nat. Commun. 13, 3931. Web of Science CSD CrossRef PubMed Google Scholar
Priola, E., Curetti, N., Marabello, D., Andreo, J., Giordana, A., Andreo, L., Benna, P., Freire, P. T. C., Benzi, P., Operti, L. & Diana, E. (2022). CrystEngComm, 24, 2336–2348. Web of Science CSD CrossRef CAS Google Scholar
Putra, O. D. & Uekusa, H. (2020). Vol. Advances in Organic Crystal Chemistry: Comprehensive Reviews 2020, edited by M. Sakamoto & H. Uekusa, pp. 153–184. Singapore: Springer. Google Scholar
Raghavendra, N. (2022). Russ. J. Phys. Chem. 96, 334–339. Web of Science CrossRef CAS Google Scholar
Reetz, M. T., Höger, S. & Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181–183. CSD CrossRef Web of Science Google Scholar
Rejnhardt, P., Drozd, M. & Daszkiewicz, M. (2021). Acta Cryst. B77, 996–1002. Web of Science CSD CrossRef IUCr Journals Google Scholar
Richardson, J. G., Benjamin, H., Moggach, S. A., Warren, L. R., Warren, M. R., Allan, D. R., Saunders, L. K., Morrison, C. A. & Robertson, N. (2020). Phys. Chem. Chem. Phys. 22, 17668–17676. Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK. Google Scholar
Rodríguez–Velamazán, J. A., Fabelo, O., Beavers, C. M., Natividad, E., Evangelisti, M. & Roubeau, O. (2014). Chem. A Eur. J. 20, 7956–7961. Google Scholar
Roszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449–455. Web of Science CSD CrossRef IUCr Journals Google Scholar
Samuelsen, L., Holm, R., Lathuile, A. & Schönbeck, C. (2019). Int. J. Pharm. 560, 357–364. Web of Science CrossRef CAS PubMed Google Scholar
Sanphui, P., Mishra, M. K., Ramamurty, U. & Desiraju, G. R. (2015). Mol. Pharm. 12, 889–897. Web of Science CSD CrossRef CAS PubMed Google Scholar
Saouane, S. & Fabbiani, F. P. A. (2015). Cryst. Growth Des. 15, 3875–3884. Web of Science CSD CrossRef CAS Google Scholar
Satthaphut, , Sutcliffe, & Oswaldiain, (2014). Z. Kristallogr. Cryst. Mater. 229, 101–111. Google Scholar
Schmitz, D., Kalter, M., Dunbar, A. C., Vöst, M., Fischer, A., Batke, K., Eickerling, G., Ruhland, K., Ebad–Allah, J., Kuntscher, C. & Scherer, W. (2020). Eur. J. Inorg. Chem. 2020, 79–83. Web of Science CSD CrossRef CAS Google Scholar
Schultz, A. J., Wang, H. H., Williams, J. M. & Filhol, A. (1986). J. Am. Chem. Soc. 108, 7853–7855. CSD CrossRef CAS PubMed Web of Science Google Scholar
Seliger, J. & Žagar, V. (2014). Phys. Chem. Chem. Phys. 16, 18141–18147. Web of Science CrossRef CAS PubMed Google Scholar
Shang, Y., Shen, C., Stub, T., Zhu, S., Qiao, S., Li, Y., Wang, R., Li, J. & Liu, J. (2022). Front. Pharmacol. 13, 773282. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shepherd, H., Tonge, G., Hatcher, L., Bryant, M., Knichal, J., Raithby, P., Halcrow, M., Kulmaczewski, R., Gagnon, K. & Teat, S. (2016). Magnetochemistry, 2, 9. Google Scholar
Shepherd, H. J., Palamarciuc, T., Rosa, P., Guionneau, P., Molnár, G., Létard, J.-F. & Bousseksou, A. (2012a). Angew. Chem. Int. Ed. 51, 3910–3914. Web of Science CSD CrossRef CAS Google Scholar
Shepherd, H. J., Rosa, P., Vendier, L., Casati, N., Létard, J.-F., Bousseksou, A., Guionneau, P. & Molnár, G. (2012b). Phys. Chem. Chem. Phys. 14, 5265–5271. Web of Science CSD CrossRef CAS PubMed Google Scholar
Shibaeva, R. P., Kaminskii, V. P. & Yagubskii, E. B. (1985). Mol. Cryst. Liq. Cryst. 119, 361–373. CSD CrossRef CAS Web of Science Google Scholar
Shimizu, S., Watanabe, N., Kataoka, T., Shoji, T., Abe, N., Morishita, S. & Ichimura, H. (2000). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley. Google Scholar
Sigfridsson, K., Ulvinge, M.-L., Svensson, L. & Granath, A.-K. (2019). Drug Dev. Ind. Pharm. 45, 202–211. Web of Science CrossRef CAS PubMed Google Scholar
Skelton, J. M., Burton, L. A., Jackson, A. J., Oba, F., Parker, S. C. & Walsh, A. (2017). Phys. Chem. Chem. Phys. 19, 12452–12465. Web of Science CrossRef CAS PubMed Google Scholar
Sobczak, S., Półrolniczak, A., Ratajczyk, P., Cai, W., Gładysiak, A., Nikolayenko, V. I., Castell, D. C., Barbour, L. J. & Katrusiak, A. (2020). Chem. Commun. 56, 4324–4327. Web of Science CSD CrossRef CAS Google Scholar
Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. (1996). Science, 271, 1400–1402. CSD CrossRef CAS Web of Science Google Scholar
Song, X. & McDermott, A. E. (2001). Magn. Reson. Chem. 39, S37–S43. Web of Science CrossRef CAS Google Scholar
Stahl, P. H. & Wermuth, C. G. (2002). Handbook of Pharmaceutical Salts: Properties, Selection and Use. Weinheim, New York: VHCA: Wiley-VCH. Google Scholar
Starkey, R., Norman, J. & Hintze, M. (1986). J. Chem. Educ. 63, 473. CrossRef Web of Science Google Scholar
Stevens, C. J., Prescimone, A., Tuna, F., McInnes, E. J. L., Parsons, S., Morrison, C. A., Arnold, P. L. & Love, J. B. (2016). Inorg. Chem. 55, 214–220. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sun, L., Zhu, W., Yang, F., Li, B., Ren, X., Zhang, X. & Hu, W. (2018). Phys. Chem. Chem. Phys. 20, 6009–6023. Web of Science CrossRef CAS PubMed Google Scholar
Szafrański, M. (2014). CrystEngComm, 16, 6250–6256. Google Scholar
Szafrański, M. (2020). J. Phys. Chem. C, 124, 11631–11638. Google Scholar
Szafrański, M. & Katrusiak, A. (2004). J. Phys. Chem. B, 108, 15709–15713. Google Scholar
Szafrański, M. & Ståhl, K. (2016). Cryst. Growth Des. 16, 2157–2166. Google Scholar
Tadokoro, M., Itoh, M., Nishimura, R., Sekiguchi, K., Hoshino, N., Kamebuchi, H., Miyazaki, J., Kobayashi, F., Mizuno, M. & Akutagawa, T. (2022). Chem. A Eur. J. 28, e202201397. Web of Science CSD CrossRef Google Scholar
Tang, X., Dong, X., Zhang, C., Li, K., Zheng, H. & Mao, H. (2023). Matter Radiat. Extremes 8, 058402. Web of Science CrossRef Google Scholar
Terlecki, M., Sobczak, S., Leszczyński, M. K., Katrusiak, A. & Lewiński, J. (2021). Chem. A Eur. J. 27, 13757–13764. Web of Science CSD CrossRef CAS Google Scholar
Tesfai, A., El-Zahab, B., Kelley, A. T., Li, M., Garno, J. C., Baker, G. A. & Warner, I. M. (2009). ACS Nano, 3, 3244–3250. Web of Science CrossRef PubMed CAS Google Scholar
Thiel, A. M., Damgaard-Møller, E. & Overgaard, J. (2020). Inorg. Chem. 59, 1682–1691. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tiefenthaler, L., Kollotzek, S., Ellis, A. M., Scheier, P. & Echt, O. (2020). Phys. Chem. Chem. Phys. 22, 28165–28172. Web of Science CrossRef CAS PubMed Google Scholar
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. (2023). J. Phys. Condens. Matter, 35, 353001. Web of Science CrossRef Google Scholar
Ulstrup, J. (1969). Acta Chem. Scand. 23, 3091–3109. CrossRef CAS Web of Science Google Scholar
Vardanyan, R. S. & Hruby, V. J. (2014). Future Med. Chem. 6, 385–412. Web of Science CrossRef CAS PubMed Google Scholar
Wallenfels, K. & Friedrich, K. (1960). Chem. Ber. 93, 3070–3082. CrossRef CAS Web of Science Google Scholar
Wang, C., Yan, T., Xing, G., Bailey, S., Lambert, C., Fayon, P., Trewin, A. & Ben, T. (2022). J. Solid State Chem. 308, 122903.