research papers
Synthesis, structural and spectroscopic characterization of defect-rich forsterite as a representative phase of Martian regolith
aUniversity of Bremen, Institute of Inorganic Chemistry and Crystallography, Leobener Straße 7, D-28359 Bremen, Germany, bUniversity of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany, cBremen Center for Computational Materials Science and Hybrid Materials Interfaces Group, Am Fallturm 1, D-28359 Bremen, Germany, and dUniversity of Copenhagen, Department of Chemistry and Nanoscience Center, Universitetsparken 5, Copenhagen 2100, Denmark
*Correspondence e-mail: murshed@uni-bremen.de
Regolith draws intensive research attention because of its importance as the basis for fabricating materials for future human space exploration. Martian regolith is predicted to consist of defect-rich crystal structures due to long-term space weathering. The present report focuses on the structural differences between defect-rich and defect-poor forsterite (Mg2SiO4) – one of the major phases in Martian regolith. In this work, forsterites were synthesized using reverse strike co-precipitation and high-energy ball milling (BM). Subsequent post-processing was also carried out using BM to enhance the defects. The crystal structures of the samples were characterized by X-ray powder diffraction and total scattering using Cu and synchrotron radiation followed by and pair distribution function (PDF) analysis, respectively. The structural models were deduced by density functional theory assisted PDF refinements, describing both long-range and short-range order caused by defects. The Raman spectral features of the synthetic forsterites complement the ab initio simulation for an in-depth understanding of the associated structural defects.
Keywords: Martian forsterite; crystal structures; defects; DFT–PDF; Raman spectroscopy; X-ray powder diffraction; ball milling.
1. Introduction
In recent years, knowledge about Martian regolith has drastically increased due to the availability of in-situ X-ray diffraction data from the Mars Science Laboratory (MSL) on the Rover Curiosity (Bish et al., 2013; Achilles et al., 2017; Vaniman et al., 2014). The analysis of these diffraction data estimated an amorphous fraction of approximately 28 to 45 wt% in the Martian regolith (Certini et al., 2020; Achilles et al., 2017; Vaniman et al., 2014; Demidov et al., 2015; Bish et al., 2013). A notable amorphous phase content in Martian regolith indicates significant space weathering due to extreme environmental conditions (Certini et al., 2020). Space weathering is the alteration of exposed surfaces via their interaction with the space environment (Bennett et al., 2013). It is a combination of mechanical weathering caused, for example, by meteorite impacts as well as radiation weathering from high-energy solar wind radiation. The former process can be simulated by ball milling (BM) of terrestrial materials in the laboratory (Yu et al., 2022).
Olivine-type forsterite (Mg2SiO4) is one of the major phases found in the crystalline part of Martian regolith (Bish et al., 2013; Achilles et al., 2017). Bish et al. (2013) reported it to be comprised of approximately 22.4 wt% (Mg0.62Fe0.38)2SiO4, known as forsteritic olivine. The term can be understood from the forsterite–fayalite [(Mg1−xFex)2SiO4] due to higher Mg content compared with Fe, which was found in Martian soil from the Rocknest Aeolian bedform in the Gale crater. Similarly, Achilles et al. (2017) found approximately 25.8 wt% forsteritic olivine [(Mg0.56Fe0.44)2SiO4] in Martian soil of the Namib dune named Gobabeb.
For future use of regolith as a basis to fabricate metals or building materials for human space explorations, a precise analysis of the different defects present in forsterites is of crucial importance. The defect-rich forsterite is expected to have lower formation energy, hence may be desirable for more efficient processing of fabrication in space.
Forsterite belongs to planetary and terrestrial rock-forming minerals (Liu et al., 2022; Váci et al., 2020) and is known for its capability of catalyzing reactions in interstellar dust (Campisi et al., 2024). Forsterite is the magnesium endmember of the olivine (Mg1−xFex)2SiO4 (Jundullah Hanafi et al., 2024; Rösler, 1991) and crystallizes in the orthorhombic Pbnm (Fujino et al., 1981; Müller-Sommer et al., 1997; Lager et al., 1981). The structure (Fig. 1) consists of 1D octahedral chains running parallel to the crystallographic c axis, comparable to those found in the mullite-type phase (Angel & Prewitt, 1986; Bowen et al., 1924; Cong et al., 2010; Fischer et al., 2009; Gogolin et al., 2020). In the mullite-type phase, these octahedral chains are bridged by double tetrahedra or other double units in the ab direction (Murshed et al., 2012; Schneider et al., 2012), whereas in olivine, single (SiO4)4− tetrahedra link the octahedral chains in the a direction, where the tetrahedrally coordinated oxygen atoms are shared by three octahedrally coordinated cations (Zampiva et al., 2017). The respective link in the b direction is realized by two non-equivalent Mg octahedral sites: the first site (M1, chain octahedra) has inversion symmetry, while the other site (M2, linking octahedra) possesses mirror symmetry (Yang et al., 2006). Both sites can be occupied by various cations, forming either rich solid solutions or other endmembers such as fayalite [Fe2SiO4 (Hanke, 1965; Kudoh & Takeda, 1986; Hazen, 1977)], tephroite [Mn2SiO4 (Fujino et al., 1981)], larnite [Ca2SiO4 (Czaya, 1971)], liebenbergite [Ni2SiO4 (Della Giusta et al., 1990; Lager et al., 1981)] and cobalt olivine [Co2SiO4 (Morimoto et al., 1974; Müller-Sommer et al., 1997)], which enable a wider spectrum of elements extractable from a regolith matrix.
Forsterite can be synthesized through a variety of synthesis methods including the solution combustion technique (Naik et al., 2015; Mondal et al., 2016; Prashantha et al., 2011), the sol–gel method (Ni et al., 2007), mechanical activation followed by heat treatment (Fathi & Kharaziha, 2008, 2009; Tavangarian & Emadi, 2010) and reverse strike co-precipitation (RSC) (Zampiva et al., 2017). Despite many studies on the synthesis yielding pure forsterite, to the best of our knowledge there are no reports on mechanically induced defect-rich forsterites and their associated crystal structures. Defects are commonly defined as a considerable extent of irregularities in the (Wagner, 1977), for example, vacancies or dislocated atoms (see Fig. S1 of the supporting information). In an X-ray diffraction pattern, typical strain broadening and lower absolute intensities are expected for defect-rich crystallites (Ungár, 2004, Chauhan & Chauhan, 2014), often accompanied by reflection broadening due to crystallite size effects (Scherrer, 1918; Gesing & Robben, 2024). Similarly, broadening of Raman peaks suggests disordered structures in defect-rich materials (Demtröder, 2008; Gouadec & Colomban, 2007). In addition to Rietveld analysis of reciprocal-space X-ray powder diffraction (XRPD) data, real-space investigations of defects and local structures are widely performed by pair distribution function (PDF) analysis (Bini et al., 2012; Malavasi et al., 2011; Proffen et al., 2003).
The present work focuses on the synthesis and characterization of forsterite and its mechanical post-treatment to induce various defect concentrations. The derived defect-structure model can serve as a structural representative for the analysis of Martian regolith. To achieve this objective, Mg2SiO4 samples were first synthesized by two different routes: the RSC method and mechanical activation using high-energy BM with subsequent In a second step, mechanical post-treatment was performed to obtain defect-rich forsterite. We present a detailed comparison of structural features between the samples using Raman, XRPD and X-ray total scattering techniques. In addition, density functional theory (DFT) is used to optimize defect-rich structures and compare their thermodynamic stability. Finally, the DFT-supported PDF analysis (DFT–PDF) is used to refine the defective structural models.
2. Materials and methods
2.1. Synthesis of defect-poor forsterite
2.1.1. Reverse strike co-precipitation synthesis
Magnesium nitrate hexahydrate [Mg(NO3)2·6H2O, 99.9 %] and tetraethyl orthosilicate (TEOS, 98 %) were purchased from VWR Chemicals and used as received. Similar to a typical RSC synthesis (Zampiva et al., 2017), stoichiometric amounts of Mg(NO3)2·6H2O and TEOS were dissolved in a solution of 40 ml of ethanol and 3 ml of HNO3 (≥65 %) under magnetic stirring for 1 h. The precursor solution was slowly dripped into 50 ml of 25 % NH4OH under continuous stirring. The base solution formed a while the precursor solution was being dripped, forming a white precipitate. Simultaneously, several drops of concentrated NH4OH were added to maintain pH > 8. Thereafter, the precipitate was centrifuged at 60 Hz for 5 min. The supernatant was removed, and ethanol was used to wash the precipitated powder. The centrifugation was repeated three times. Finally, the precipitated solid was placed in a furnace at 473 K for 16 h. The resulting solid was ground in a mortar and calcined at 1373 K for 1 h after reaching the temperature with heating and cooling rates of 15 and 5 K min−1, respectively. The powder attained is designated RFO (RSC synthesis forsterite).
2.1.2. Ball milling synthesis
MgO and amorphous SiO2 powders were used as starting materials. MgO (>97 %) was purchased from Merck and used as received. Amorphous SiO2 was obtained from hydrolysis of TEOS (De et al., 2000). Forsterite was synthesized by mechanical activation with a high-energy ball mill (Emax-type, RETSCH GmbH). Stoichiometric amounts of the binary oxides were mixed together with 60 g tungsten carbide (WC) balls (2 mm diameter) and placed in a WC grinding jar. The ball-to-powder weight ratio was set to 30:1. The powder was milled for 3 h with different rotational frequencies (7, 12.5 and 15 Hz). Finally, the milled powder was collected from the grinding jar and heated in a corundum crucible at 1373 K at a heating rate of 15 K min−1. After a reaction period of 1 h, the powder was cooled to room temperature at a cooling rate of 5 K min−1. The Mg2SiO4 pristine forsterite (PFO) powder attained was ground and further used for characterization.
2.2. Synthesis of defect-rich and healed forsterite
Defect-rich forsterite was prepared by crushing PFO by BM. PFO (1 g) was placed into the grinding jar with 20 g WC balls. The powder was milled at 15 Hz for 1 h. Thereafter, one half of the milled powder was kept separately and labeled as crushed forsterite (CFO). The other half was calcined at 1373 K for 1 h under air to heal the introduced defects, hence labeled healed forsterite (HFO).
2.3. X-ray powder diffraction
XRPD data collection was carried out on a Bruker D8 Discover diffractometer using Cu Kα1,2 radiation [λKα1 = 154.05929(5) pm, λKα2 = 154.4414(2) pm] in Bragg–Brentano geometry. Data were collected under ambient conditions from 5 to 85° 2θ with a step width of 0.0149° 2θ and a measurement time of 0.3 s per step using a multi-strip LynxEye XE-T detector. XRPD data Rietveld refinements were carried out using TOPAS (version 6.0). During the Rietveld refinements, the background, sample displacement, cell metrics, atomic positions and profile parameters were optimized. The amorphous fraction of the samples was quantified from the (DC) as implemented in the TOPAS software. For these calculations it is assumed that the average scattering power of the crystalline fraction of the sample is identical to the scattering power of the X-ray amorphous fraction. The latter could either consist of glassy or quantum-crystalline contributions (Gesing et al., 2022). Using the fundamental parameter approach (Cline et al., 2010), the apparent average crystallite size (ACS) was calculated from all observed X-ray reflections, which is described as LVol(IB) by the TOPAS suite. LVol(IB) refers to the volume-weighted mean of the coherently diffracting domain size using the integral breadth for the description of the reflection profile. The respective pseudo-Voigt profile function was deconvoluted into Gaussian and Lorentzian components, describing the ACS and the microstrain (ɛ0), respectively. To validate these data and to receive information about the crystallite size distribution (CSD), an EnvACS analysis (Gesing & Robben, 2024) was performed. For this, data were collected on a Bruker D8 Advance diffractometer using Cu Kα1 radiation [λKα1 = 154.05929(5) pm] in Bragg–Brentano geometry. Data were collected under ambient conditions from 10 to 135° 2θ with a step width of 0.01449° 2θ and a measurement time of 4.8 s per step using a multi-strip LynxEye XE detector. The information deduced during these (classical) Rietveld refinements are, with the exception of the DC, based on the appearance of the Bragg reflections and an ideal arrangement of atoms in the only (Rietveld, 1969). To distinguish these calculations from those using total scattering data, we use the expression Bragg–Rietveld for the classical method. The Rwp given is the weighted profile R factor (residual) of the Bragg–Rietveld To distinguish the Rwp of Bragg–Rietveld and the Rwp of PDF refinements, the latter is denoted RPDF.
2.4. Raman spectroscopy
Raman spectra were recorded on a LabRam ARAMIS (Horiba Jobin – Yvon) Micro-Raman spectrometer equipped with a green laser (λex = 532 nm and < 20 mW power). A 50× objective (Olympus) with a numerical aperture of 0.75 provides a focus spot of 865 nm diameter when closing the confocal hole to 200 µm. Each spectrum ranges between 100 and 1200 cm−1 with a spectral resolution of approximately 1.2 cm−1 using a grating of 1800 grooves mm−1 and a thermoelectrically cooled CCD detector (Synapse, 1024 × 256 pixels).
2.5. Theoretical Raman calculations
The theoretical Raman spectra calculations were carried out using the aiida-vibroscopy package (Bastonero & Marzari, 2024) which exploits the finite displacements and finite field approach (Souza et al., 2002; Umari & Pasquarello, 2002), and the AiiDA infrastructure (Huber et al., 2020; Uhrin et al., 2021) to automate the submission of the simulations and the storage of all the data in a reproducible format. The first-order spectrum was calculated in the non-resonant regime using the Placzek approximation. The peak positions associated with the phonon modes were computed in the harmonic approximation via small displacements of the atomic positions (Togo, 2023; Togo et al., 2023), whereas the Raman tensors, required for the intensity calculations, were obtained via numerical differentiation of the forces in the application of small electric fields (Bastonero & Marzari, 2024). Computational details can be found in Section 2.8.
2.6. X-ray synchrotron total scattering
Total scattering data were collected using beamline P02.1 at PETRA-III, DESY, Hamburg (Dippel et al., 2015) with a fixed energy of 60 keV [λ = 20.734(2) pm]. The beamline was equipped with a Varex XRD 4343CT detector (pixel size 150 × 150 µm, 2880 × 2880 pixels). Each sample was measured in 1 mm Kapton capillaries and exposed to radiation for 300 s within a setup particularly optimized for rapid in-situ measurement. PDF data processing was conducted using the PDFGetX3 software (Juhás et al., 2013). For all samples, Qmax was set to 1.95 nm−1. Structure model fitting against PDF data was performed using PDFgui (Farrow et al., 2007). During the process, instrumental parameters Qdamp and Qbroad were refined to the CeO2 standard dataset, and then kept fixed with Qdamp = 0.035693 and Qbroad = 0.001 for all the samples. The scale factor, lattice parameters, atomic displacement parameters (ADPs), atomic motion correlation factor and atomic coordinates were refined. The representative processed data I(Q), S(Q), F(Q) and G(r) of PFO are shown in Fig. S2. Stack plots of I(Q) and S(Q) for all the samples are given in Fig. S3.
2.7. DFT–PDF refinement
Combined DFT–PDF refinements of defective forsterite in the spirit of Dononelli (2023) and Kløve et al. (2023) were performed. Instead of globally optimizing the structure with the GOFEE algorithm (Bisbo & Hammer, 2020, 2022; Kløve et al., 2023), several types of defects, namely vacancies and Frenkel and Schottky defects, were introduced to each atom site during the simulations. DFT was used as a tool to optimize every defect-type structure to their local minimum in the surface. The geometry-optimized structures were further optimized with a BFGS algorithm by considering the G(r) data from measurements and minimizing the RPDF. Finally, the structures were refined against the experimental data using PDFgui. The schematic workflow of DFT–PDF refinements is illustrated in Fig. 2.
Local structure optimizations have been performed using the electronic structure code GPAW (Enkovaara et al., 2010) in the framework of the atomistic simulation environment (Larsen et al., 2017). The exchange-correlation interaction was treated by the generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof functional (Perdew et al., 1996) with a 3 × 5 × 3 k-points sampling of Monkhorst & Pack (1976). Note that these calculations were not meant to provide very precise energetics or exact bond lengths. All structures optimized with such settings are later post-processed in PDF–Rietveld refinements to fit to experimentally observed bond lengths.
2.8. Energy calculations
To verify the favorite defective intrinsic candidate, the ab initio formation energy was investigated using DFT calculations. Exploiting the approach, the defect formation energy in a charge state q can be computed as (Zhang & Northrup, 1991; Van de Walle et al., 1993; Alkauskas et al., 2011; Freysoldt et al., 2014):
where E[X, q] is the total energy of the calculation of defect X in the charge state q and E[bulk] is the total energy of the pristine scaled to match the size of the defective Each defect is referenced to a μi corresponding to its species i, while the integer ni indicates the atoms of type i in excess (ni > 0) or removed (ni < 0). For charged states, the for the extra electrons is given by the ɛF with respect to the maximum ɛv of the pristine bulk (Komsa et al., 2012). The can be found by the condition of charge neutrality at a specific temperature when all the relevant defects are considered. In the following we consider ɛF = 0. To understand the defect formation in the diluted limit (very low defect concentrations), an additional correction term needs to be added due to the periodic boundary conditions, which is described in more detail in the supporting information.
Different defect types along with their nominal and neutral charge states, as well as both relaxed and non-relaxed geometries of the supercells, were thoroughly investigated. Four different et al. (2017) was used to find suitable atomic positions; 11 different positions were found for each species as possible candidates. Interestingly, the interstitials proposed by this pure geometric analysis for the magnesium atoms are found to be in tetrahedral coordination, as found in Walker et al. (2009), but here without the explicit energy calculation. The vacancies were instead generated using the space-group symmetries of forsterite, which greatly limits the number of positions.
sizes of 2 × 1 × 2, 3 × 1 × 2, 3 × 2 × 2 and 3 × 3 × 2 were selected, as well as the single For the interstitials, an algorithm introduced by ZimmermannTo carry out the calculations, the Quantum ESPRESSO package (Giannozzi et al., 2009, 2017, 2020) was used and the PBEsol (Terentjev et al., 2018) functional was employed using pseudo-potentials from the precision SSSP library (version 1.1; Prandini et al., 2018). The wavefunction and charge-density expansions were truncated with an energy cutoff of 80 and 960 Ry, respectively. The was sampled using a uniform Monkhorst–Pack grid with a 4 × 2 × 3 k-points mesh. The geometry and atomic positions of forsterite were therefore relaxed until the total energy and forces were below 10−6 Ry atom−1 and 10−5 Ry Bohr−1, respectively. calculations were carried out using a gamma-point sampling, after having verified that the total energy changed by only 2 meV atom−1 for a 2 × 1 × 2 The geometry and the atomic positions of each defective were optimized with lower thresholds for the total energy and forces of 10−4 Ry atom−1 and 10−3 Ry Bohr−1, respectively.
3. Results and discussion
3.1. Synthesis
Impure forsterite was obtained from BM synthesis with 7 (IFO-7) and 12.5 Hz (IFO-12). On the other hand, PFO was successfully obtained by RSC synthesis (Zampiva et al., 2017) (RFO) and BM synthesis at 15 Hz (PFO). Both synthesis techniques yielded white forsterite powder. To introduce defects into the material, the attained PFO powder was mechanically post-processed by BM at 15 Hz for 1 h resulting in CFO. CFO possesses a slightly grayish color, either due to trace amounts of WC abraded from the mill, or suggesting the presence of defects. However, we estimated the amount to be lower than the [0.5(1) wt%] as we cannot observe any WC signal in the XRD (nor Raman) data. Finally, a small amount of CFO was re-calcined at 1373 K and a white powder of HFO with the expected lower defect concentrations was obtained. The synthesized samples and their respective IDs are listed in Table 1. Detailed information about phase quantification for impure forsterites determined from Rietveld refinements is provided in the Section 3.2.
|
3.2. X-ray powder diffraction
XRPD data Bragg–Rietveld refinements confirm that IFO-7 contains impurities of MgO, MgSiO3 and SiO2 in two modifications (α-cristobalite and α-quartz), whereas IFO-12 possesses only MgO as a minor impurity. This indicates that the BM frequencies of 7 and 12.5 Hz are not sufficient to form an intimate mixture of the reactants before the process. On the contrary, pure forsterite was obtained from RSC (RFO) and BM (PFO) synthesis at 15 Hz. All reflections in the diffraction pattern of both samples can be indexed to olivine-type Mg2SiO4 with the Pbnm (Müller-Sommer et al., 1997). The mechanically treated sample (CFO) is also characterized as a pure forsterite. However, broadening of the Bragg reflections along with significantly lower intensity maxima is observed, as shown in Fig. 3. Moreover, CFO exhibits notably lower ACS [25(1) nm] and DC [60(5) %] compared with those of PFO [ACS = 77(1) nm and DC = 98(5) %]. Inversely, the microstrain is increased from 0.031(1) to 0.140(4) upon BM. The re-calcination process of CFO led to re-crystallization, forming a crystalline forsterite with an ACS, ɛ0 and DC of 77(2) nm, 0.140(4) and 90(5) %, respectively, like those of PFO. Comparable values are observed when analyzing the ACS using the EnvACS (Gesing & Robben, 2024) approach. Nevertheless, the CSD provides additional information on the defect formation and the respective defect healing. For the synthesized samples (RFO and PFO) the CSD is narrow whereas a much broader CSD is observed for CFO. This is not surprising, as it is assumed that not only are defects introduced, but during the reduction of the ACS, not all crystallites are homogeneously destroyed due to crystallite cracking. For the heated CFO portion resulting in the HFO sample, it is obvious that the distribution narrows again by a factor of two but did not reach the narrow distribution of the as-synthesized PFO. Interestingly, meaningful results could only be obtained by also refining a scale factor in the EnvACS (Gesing & Robben, 2024) approach, which would represent the distribution of two different phases, namely the crystalline forsterite and the amorphous forsterite, respectively. The scale factors obtained correlate quite well with the DC obtained by the Bragg–Rietveld refinements. A complete list of XRPD characterization results is given in Table 2. The stack plots of XRPD patterns of all samples can be seen in Fig. S4.
|
Refined forsterite crystal data, along with comparative literature (Smyth & Hazen, 1973), are presented in Table S1 of the supporting information. The respective Bragg–Rietveld refinements converged with lower Rwp values for RFO (11 %) and PFO (11 %) compared with CFO (15 %) and HFO (15 %) (see Fig. 3 and Table S1). Moreover, structure refinements indicate that RFO and PFO can be classified as defect-poor forsterites, as their refined atomic positions possess only small changes (Δz ≤ 0.003) compared with pristine forsterite. In contrast, noticeable structural changes are observed in both HFO and CFO. As an example, the O(3) atom in HFO slightly deviates from its initial position (Δz ≤ 0.010) while CFO shows even stronger changes (Δz ≤ 0.018). The strength of these observed structural changes is proportional to the expected defect concentration in the crystal, which is described in more detail in Section 3.3.
3.3. Raman spectroscopy
The 2SiO4 has 84 normal vibrational modes (11 Ag + 11 B1g + 7 B2g + 7 B3g + 10 Au + 10 B1u + 14 B2u + 14 B3u), among which Ag, B1g, B2g and B3g modes are Raman active (Iishi, 1978; Hofmeister, 1987). Raman spectra of different forsterites are shown in Fig. 4. was performed for each experimental spectrum, representatively shown in Fig. S5 for PFO. The peak maxima along with comparative experimental reference data (Kolesov & Geiger, 2004) and theoretical calculations (Stangarone et al., 2017; McKeown et al., 2010) are given in Table S2. The observed band frequencies are in good agreement with those of the reported ones (Kolesov & Geiger, 2004; Stangarone et al., 2017; McKeown et al., 2010) and our own theoretical calculation. Typically, Raman spectra of olivine-type Mg2SiO4 can be classified into three regions: <400 cm−1, 400–700 cm−1 and >700 cm−1. The lower region bands are attributed to the vibrational modes from Mg [M(2) site] and negligible contribution from lighter silicon (Stangarone et al., 2017; Chopelas, 1991). Peaks between 400 and 700 cm−1 are mainly contributed from bending motion of the Mg(2)—O bonds (Stangarone et al., 2017). The high-frequency region (>700 cm−1) can be attributed to the internal Si—O stretching vibrations of the SiO4 tetrahedra (Chopelas, 1991; Stangarone et al., 2017). The most dominant characteristic of the forsterite spectral range lies at around 820 and 860 cm−1 (Chopelas, 1991; Iishi, 1978; Wang et al., 1995, 2004).
analysis predicts that orthorhombic MgSome vibrational features from optical phonons are clearly distinguishable between the defect-poor samples (RFO and PFO) and the defect-containing samples (CFO and HFO). Global red shifts of ±1 cm−1 along with peak-broadening (ΔFWHM ≤ 2 cm−1) are observed in HFO. Moreover, greater red shifts of approximately 3(1) cm−1 as well as peak broadening (ΔFWHM ≤ 4 cm−1) are observed in CFO. The dominant two intense modes related to Si—O are further shifted to 825(1) and 857(1) cm−1, with FWHMs of 11(1) and 13(1) cm−1, respectively. In general, peak shifting and broadening in Raman spectra can be attributed to crystallite size effects and the degree of disorder in a structure (Swamy et al., 2006; Islam et al., 2005; Gouadec & Colomban, 2007; Demtröder, 2008). Here, the Raman peak broadening and shifts are proportional to the defect concentration in the structure. This finding further indicates that the CFO sample exhibits local structural disorder with the highest concentration.
3.4. PDF analysis
To further investigate the defects and local structures of the samples, total scattering experiments were carried out (beamline P02.1 at PETRA-III, DESY, Hamburg). The analysis of the total scattering data allows the extraction of information from both Bragg and diffuse scattering contributions. The Bragg scattering contribution can be analyzed by the conventional approach in ) yields information regarding the short-range order and local structure deviations. Each measurement was integrated, background corrected and Fourier transformed to obtain the reduced PDF G(r). The G(r) describes the probability of finding two atoms separated by a distance of r (Teck et al., 2017). Although the observed PDFs [G(r)] of RFO, PFO and HFO are very similar, that of CFO shows significant discrepancies (e.g. broadened signals, clear shoulders and lower intensities) as shown in Fig. 5.
and provides information on the average and long-range periodic structure, whereas the diffuse scattering which lies between and beneath the Bragg reflections (Egami & Billinge, 2003Defect-free, symmetry-constrained structural models of Mg2SiO4 were fitted against the experimental PDFs using a small-box modeling approach including symmetry constraints (PDF–Rietveld). Representative PDF–Rietveld refinements of the investigated forsterites are shown in Fig. 6. The refinements of CFO converged with RPDF = 26 %, significantly higher than those of RFO, PFO (RPDF = 16 %) and HFO (RPDF = 18 %). The higher RPDF of CFO indicates that a simple PDF–Rietveld using an ideal average model struggles to describe the defect-rich local nature of the post-milled sample. As such, a more advanced defect-rich structure model based on DFT–PDF refinements is proposed in this work, described in more detail in Section 3.5.
The bond lengths obtained from Bragg–Rietveld and PDF–Rietveld refinements are compared in Table S3 within each of the forsterite samples. Based on Bragg–Rietveld refinements, the average bond lengths [further noted as 〈Mg(1)—O〉, 〈Mg(2)—O〉 and 〈Si—O〉] of RFO and PFO are virtually identical, whereas the bond lengths of HFO only differ by a maximum of 0.1 pm. Interestingly, 〈Mg(1)—O〉 and 〈Mg(2)—O〉 of CFO are slightly longer than those of the defect-poor forsterites [Δ1 pm for 〈Mg(1)—O〉 and Δ0.5 pm for 〈Mg(2)—O〉]. On the contrary, the 〈Si—O〉 of CFO is the shortest among all forsterites (Δ2 pm). As a consequence, the bond valence sum (BVS) (Brese & O'Keeffe, 1991) of Si in the CFO is found to show over bonding [4.19(2) v.u.].
Unlike the Bragg–Rietveld refinements, which suggest shorter 〈Si—O〉 bond lengths for CFO, the 〈Si—O〉 bonds determined through PDF–Rietveld refinements consistently display similar values. This results in an Si BVS of 3.84(3) v.u. across all forsterites. We attribute the different interatomic distances obtained from PDF–Rietveld and Bragg–Rietveld analyses to ACS limitation effects of the short synchrotron wavelength due to maximal observable average crystallite size [MOACS (Gesing & Robben, 2024)] and the repeated observation. Furthermore, Rietveld refinements often describe local distortions, such as atom displacement, with an increase in the Debye–Waller factor (Abeykoon et al., 2009).
3.5. DFT–PDF refinement
3.5.1. Single-phase refinement
Small box (single unit cell): in Section 3.4 the fitting results against crystalline Mg2SiO4 for all samples have been given. To receive a better fit of the structure model against the experimental PDF data of CFO, DFT-assisted PDF refinements (DFT–PDF) were implemented. As an initial step, a geometry-optimized structure model of Mg2SiO4 without defects (GOSWD) was selected. Single-phase DFT–PDF refinements using this symmetry-free structure model showed a slightly better fit (RPDF = 23 %) compared with the original (symmetry-constraint) model for defect-free, crystalline Mg2SiO4 (RPDF = 26 %). Then, 17 structure models containing vacancy, Schottky and Frenkel defects (see Fig. S1 of the supporting information) were generated from the DFT–PDF workflow (Section 2.7). Furthermore, each DFT–PDF-generated structure model was individually selected for DFT–PDF Overall, the new defective structure models gave an RPDF in the range 22–28 %, where defects involving oxygen show the lowest values.
Large box (2 × 2 × 2 unit cells): to realize lower concentrations of defects, larger systems (2 × 2 × 2 unit cells) were employed. To begin with, DFT–PDF refinements of a pristine 2 × 2 × 2 structure without further structure variation gave RPDF = 37 %, while its GOSWD converged with RPDF = 27 %. The significant mismatch observed between these refinements offers additional indications that the crystalline structure is unable to accommodate the defect-rich characteristics of the CFO sample. As before, 17 defective 2 × 2 × 2 models containing vacancy, Frenkel and Schottky defects were generated from DFT–PDF optimization. The refinements converged with an RPDF in the range 19–22 %. Nine of them (four different vacancies, two Frenkel and three Schottky defects) have almost identical RPDF values of 19 %.
Point defect (2 × 1 × 2 unit cells): in a third approach, charge defect analysis was in focus. Both charged and neutral defects are considered for this calculation, for which the size of 2 × 1 × 2 unit cells was selected. In total, ten defective 2 × 1 × 2 structure models were investigated: Mg interstitial and vacancy, O interstitial and vacancy, as well as Si interstitial. The refinements converged with RPDF = 25–28 %, showing trends like the values for the single unit cells used. Table S4 summarizes the RPDF values of all defective structure candidates.
3.5.2. Stability of defective structure candidates
The calculated formation energies of the defective structure candidates are reported in Table S4. Positive numbers indicate metastable or unfavorable structures, whereas negative values indicate spontaneous or favorable formation of the structures. It can be observed that most of the structures have positive formation energies. Schottky defects in particular show the highest formation energies (>8 eV) and therefore those structures should be discarded as possible candidates. Table 3 shows selected defective structure candidates (CIFs can be found in the supporting information) with formation energies <5 eV. Note, the formation energies in Table 3 were not corrected to account for the formation of a single defect in the dilute limit, since we expect high defect concentrations in CFO. A complete list of formation energies at different defect concentrations, to extrapolate the dilute limit, can be found in Table S5.
|
The interpretation of formation energies is not straightforward, since they strongly depend on the calculation scheme and the defect concentration/size of the simulation cell. Earlier studies by Walker et al. (2009, 2003) did not consider the possible interaction between the defects (i.e. they performed a `mere' energy difference, hence the interaction of charged defects is long-ranged and sizeable). As an improvement, we extrapolated the free energy of formation to the infinite volume, i.e. to the dilute limit (using the formula shown in the supporting information). Nevertheless, similarly we found that Mg(1) Frenkel defects are energetically stable with a formation energy of 2.98 eV. In addition, we performed vacancy and interstitial calculations with charged point defects and found comparable results to the available literature (Walker et al., 2009, 2003). At high defect concentrations, both Si4+ and Mg2+ interstitials seem to be the most energetically favorable. However, oxygen vacancies are found to be the most favorable defects in the extrapolated dilute limit (very low concentration). This may be due to the usage of a GGA functional, which tends to underestimate the bond strength of the oxygen molecule. Table S5 summarizes the formation energy of charge defect structures computed using different fixed sizes and extrapolated dilute limits.
3.5.3. Multi-phase refinement
Ultimately, all structure motifs with favorable energy (as listed in Table 3) were used in combined multi-phase refinements. In principle, the respective defective structure is treated as a secondary phase alongside the crystalline one (GOSWD). The refined defective phases showing a negative scale factor were removed one at a time from the refinements. The best fit is finally achieved using a combination of a single of GOSWD and Mg(1) Frenkel, along with 2 × 1 × 2 Mg2+ interstitial defect structures which converge to RPDF = 18 %, as illustrated in Fig. 7. This fitting indicates that CFO consists of 67(3) wt% GOSWD, 23(3) wt% Mg Frenkel and 10(3) wt% of Mg2+ interstitial. The optimized defective forsterite structure models are shown in Fig. 8. Note, however, that any defect summarized in Table 3 might be present in defective Mg2SiO4, but not in the CFO sample with defects mechanically induced by BM. Although Si4+ interstitials might be favorable from an energetic point of view, this motif does not improve the PDF fit of CFO. Therefore, the presence of this type of defect is rather unlikely, and is probably prevented by the atmospheric reaction conditions leading to a high concentration of oxygen-rich phases.
4. Conclusions and outlook
Structural differences between defect-poor and defect-rich forsterite (Mg2SiO4) were investigated. Mechanically induced defect-rich forsterite was obtained by BM of defect-poor (pristine) forsterite. Implementing PDF–Rietveld refinements on X-ray synchrotron data indicated a complex disorder structure in the defect-rich forsterite. Raman peak broadening and global red shifts complemented the structural features of the defective phases. The defect-rich structure models were simulated using the DFT–PDF method to better describe the disorder in the local structure. DFT–PDF refinements indicate that post-processed forsterite contains Mg Frenkel-type and Mg2+ interstitial defects with concentrations of 23(3) and 10(3) wt%, respectively. DFT calculations confirmed that the defective structure models are energetically stable. This finding is an important starting point to characterize and quantify defect-rich Martian regolith. Further investigations involving a larger number of phases are necessary as a stepwise strategy to structurally describe multi-phase Martian regolith. Additionally, a comparative study between radiation-induced defects and the mechanically induced defects described here would be of high demand to understand the mechanism of space weathering effects.
Supporting information
https://doi.org/10.1107/S2052252524009722/lt5071sup1.cif
contains datablocks Mg2SiO4_CFO_USI_2121821137_Frenkel_Mg1, Mg2SiO4_CFO_USI_2121821137_GOSWD, Mg2SiO4_CFO_USI_2121821137_Interstitial_Mg_0, Mg2SiO4_CFO_USI_2121821137_Interstitial_Mg_+2, Mg2SiO4_CFO_USI_2121821137_Interstitial_O_0, Mg2SiO4_CFO_USI_2121821137_Interstitial_Si_+4, Mg2SiO4_CFO_USI_2121821137_Vacancy_O_+2, Mg2SiO4_CFO_USI_2121821137, Mg2SiO4_HFO_USI_2121821138, Mg2SiO4_PFO_USI_2121821136, Mg2SiO4_RFO_USI_2121821033. DOI:Supporting figures and tables. DOI: https://doi.org/10.1107/S2052252524009722/lt5071sup2.pdf
Powder diffraction data. DOI: https://doi.org/10.1107/S2052252524009722/lt5071sup3.zip
Mg8O16Si4 | α = 90° |
Mr = 562.76 | β = 90° |
Triclinic, P1 | γ = 90° |
Hall symbol: P 1 | V = 285.47 Å3 |
a = 4.72942 Å | Z = 1 |
b = 10.1528 Å | Melting point: not measured K |
c = 5.94525 Å |
x | y | z | Biso*/Beq | ||
Mg1 | 0.9736 | 0.0074 | 0.0048 | 0.00317 | |
Mg2 | 0.4948 | 0.5077 | 0.0023 | 0.00317 | |
Mg3 | 0.4998 | 0.5063 | 0.4794 | 0.00317 | |
Mg4 | 0.9812 | 0.2870 | 0.2722 | 0.01008 | |
Mg5 | 0.0001 | 0.7247 | 0.7099 | 0.01008 | |
Mg6 | 0.4840 | 0.2167 | 0.7486 | 0.01008 | |
Mg7 | 0.5005 | 0.7802 | 0.2616 | 0.01008 | |
Si1 | 0.3920 | 0.1005 | 0.2616 | 0.00674 | |
Si2 | 0.5701 | 0.9088 | 0.7440 | 0.00674 | |
Si3 | 0.9407 | 0.4046 | 0.7268 | 0.00674 | |
Si4 | 0.0588 | 0.5989 | 0.2153 | 0.00674 | |
O1 | 0.6886 | 0.0677 | 0.2280 | 0.05374 | |
O2 | 0.2875 | 0.9169 | 0.7957 | 0.05374 | |
O3 | 0.2586 | 0.4260 | 0.7642 | 0.05374 | |
O4 | 0.6489 | 0.6069 | 0.2459 | 0.05374 | |
O5 | 0.1860 | 0.4402 | 0.2460 | 0.00892 | |
O6 | 0.7778 | 0.5524 | 0.7205 | 0.00892 | |
O7 | 0.7694 | 0.0576 | 0.7097 | 0.00892 | |
O8 | 0.2584 | 0.9321 | 0.2280 | 0.00892 | |
O9 | 0.2688 | 0.1810 | 0.0108 | 0.00750 | |
O10 | 0.6899 | 0.8259 | 0.9291 | 0.00750 | |
O11 | 0.7392 | 0.3400 | 0.9943 | 0.00750 | |
O12 | 0.1781 | 0.6548 | 0.9925 | 0.00750 | |
O13 | 0.6810 | 0.8250 | 0.4849 | 0.00750 | |
O14 | 0.3136 | 0.1833 | 0.4363 | 0.00750 | |
O15 | 0.2143 | 0.6672 | 0.4531 | 0.00750 | |
O16 | 0.7388 | 0.3363 | 0.5494 | 0.00750 | |
Mg8 | 0.0894 | 0.4563 | 0.4747 | 0.00317 |
Mg8O16Si4 | α = 90° |
Mr = 562.76 | β = 90° |
Triclinic, P1 | γ = 90° |
Hall symbol: P 1 | V = 290.34 Å3 |
a = 4.756 Å | Z = 1 |
b = 10.2035 Å | Melting point: not measured K |
c = 5.983 Å |
x | y | z | Biso*/Beq | ||
Mg1 | 0.99822 | 0.98017 | 0.97427 | 1.0000 | |
Mg2 | 0.49368 | 0.48272 | 0.96067 | 1.0000 | |
Mg3 | 0.01169 | 0.97974 | 0.49665 | 1.0000 | |
Mg4 | 0.49429 | 0.46977 | 0.47276 | 1.0000 | |
Mg5 | 0.99378 | 0.26421 | 0.23456 | 1.0000 | |
Mg6 | 0.99914 | 0.70453 | 0.73384 | 1.0000 | |
Mg7 | 0.47082 | 0.21384 | 0.74895 | 1.0000 | |
Mg8 | 0.51793 | 0.75886 | 0.22990 | 1.0000 | |
Si1 | 0.44111 | 0.07540 | 0.21778 | 1.0000 | |
Si2 | 0.58066 | 0.88395 | 0.74506 | 1.0000 | |
Si3 | 0.90518 | 0.38689 | 0.72683 | 1.0000 | |
Si4 | 0.06964 | 0.57497 | 0.23562 | 1.0000 | |
O1 | 0.78190 | 0.08165 | 0.25000 | 1.0000 | |
O2 | 0.23398 | 0.87440 | 0.75503 | 1.0000 | |
O3 | 0.24389 | 0.39509 | 0.71672 | 1.0000 | |
O4 | 0.72579 | 0.56329 | 0.22887 | 1.0000 | |
O5 | 0.22329 | 0.43161 | 0.20611 | 1.0000 | |
O6 | 0.77945 | 0.53653 | 0.71535 | 1.0000 | |
O7 | 0.69570 | 0.03887 | 0.72470 | 1.0000 | |
O8 | 0.28710 | 0.93374 | 0.24016 | 1.0000 | |
O9 | 0.25267 | 0.13875 | 0.02312 | 1.0000 | |
O10 | 0.75156 | 0.81694 | 0.95708 | 1.0000 | |
O11 | 0.78189 | 0.32007 | 0.95989 | 1.0000 | |
O12 | 0.22027 | 0.65025 | 0.02257 | 1.0000 | |
O13 | 0.72174 | 0.81902 | 0.52252 | 1.0000 | |
O14 | 0.39092 | 0.08863 | 0.48436 | 1.0000 | |
O15 | 0.19867 | 0.68165 | 0.41823 | 1.0000 | |
O16 | 0.76081 | 0.30401 | 0.51973 | 1.0000 |
Mg33O64Si16 | α = 90° |
Mr = 2275.36 | β = 90° |
Triclinic, P1 | γ = 90° |
Hall symbol: P 1 | V = 1162.88 Å3 |
a = 9.5166 Å | Z = 1 |
b = 10.2043 Å | Melting point: not measured K |
c = 11.9748 Å |
x | y | z | Biso*/Beq | ||
Mg1 | 0.586960 | 0.441180 | 0.879310 | 0.008640 | |
Mg2 | 0.586950 | 0.441170 | 0.379320 | 0.008640 | |
Mg3 | 0.086960 | 0.441190 | 0.879310 | 0.008640 | |
Mg4 | 0.086960 | 0.441180 | 0.379300 | 0.008640 | |
Mg5 | 0.586960 | 0.441190 | 0.129310 | 0.008640 | |
Mg6 | 0.586960 | 0.441160 | 0.629320 | 0.008640 | |
Mg7 | 0.086960 | 0.441160 | 0.129320 | 0.008640 | |
Mg8 | 0.086960 | 0.441160 | 0.629310 | 0.008640 | |
Mg9 | 0.836950 | 0.941170 | 0.879310 | 0.008640 | |
Mg10 | 0.836960 | 0.941180 | 0.379310 | 0.008640 | |
Mg11 | 0.336960 | 0.941170 | 0.879300 | 0.008640 | |
Mg12 | 0.336960 | 0.941170 | 0.379320 | 0.008640 | |
Mg13 | 0.836960 | 0.941180 | 0.129300 | 0.008640 | |
Mg14 | 0.836960 | 0.941190 | 0.629330 | 0.008640 | |
Mg15 | 0.336960 | 0.941180 | 0.129310 | 0.008640 | |
Mg16 | 0.336940 | 0.941180 | 0.629310 | 0.008640 | |
Mg17 | 0.841160 | 0.217720 | 0.004310 | 0.008640 | |
Mg18 | 0.841150 | 0.217760 | 0.504310 | 0.008640 | |
Mg19 | 0.341150 | 0.217750 | 0.004310 | 0.008640 | |
Mg20 | 0.341150 | 0.217740 | 0.504320 | 0.008640 | |
Mg21 | 0.832750 | 0.664590 | 0.254310 | 0.008640 | |
Mg22 | 0.832770 | 0.664600 | 0.754320 | 0.008640 | |
Mg23 | 0.332750 | 0.664610 | 0.254310 | 0.008640 | |
Mg24 | 0.332770 | 0.664600 | 0.754320 | 0.008640 | |
Mg25 | 0.591150 | 0.164600 | 0.254320 | 0.008640 | |
Mg26 | 0.591170 | 0.164590 | 0.754320 | 0.008640 | |
Mg27 | 0.091160 | 0.164610 | 0.254300 | 0.008640 | |
Mg28 | 0.091160 | 0.164610 | 0.754320 | 0.008640 | |
Mg29 | 0.082750 | 0.717730 | 0.004310 | 0.008640 | |
Mg30 | 0.082760 | 0.717760 | 0.504310 | 0.008640 | |
Mg31 | 0.582760 | 0.717760 | 0.004310 | 0.008640 | |
Mg32 | 0.582760 | 0.717750 | 0.504310 | 0.008640 | |
Si1 | 0.623750 | 0.035030 | 0.004310 | 0.006143 | |
Si2 | 0.623740 | 0.035040 | 0.504310 | 0.006143 | |
Si3 | 0.123750 | 0.035030 | 0.004310 | 0.006143 | |
Si4 | 0.123730 | 0.035040 | 0.504330 | 0.006143 | |
Si5 | 0.050190 | 0.847320 | 0.254320 | 0.006143 | |
Si6 | 0.050170 | 0.847330 | 0.754330 | 0.006143 | |
Si7 | 0.550180 | 0.847320 | 0.254320 | 0.006143 | |
Si8 | 0.550190 | 0.847340 | 0.754340 | 0.006143 | |
Si9 | 0.873720 | 0.347340 | 0.254310 | 0.006143 | |
Si10 | 0.873730 | 0.347310 | 0.754320 | 0.006143 | |
Si11 | 0.373740 | 0.347310 | 0.254310 | 0.006143 | |
Si12 | 0.373740 | 0.347310 | 0.754300 | 0.006143 | |
Si13 | 0.800180 | 0.535030 | 0.004310 | 0.006143 | |
Si14 | 0.800190 | 0.535060 | 0.504300 | 0.006143 | |
Si15 | 0.300190 | 0.535030 | 0.004310 | 0.006143 | |
Si16 | 0.300190 | 0.535040 | 0.504300 | 0.006143 | |
O1 | 0.952870 | 0.032840 | 0.004300 | 0.016726 | |
O2 | 0.952930 | 0.032850 | 0.504310 | 0.016726 | |
O3 | 0.452930 | 0.032850 | 0.004310 | 0.016726 | |
O4 | 0.452930 | 0.032860 | 0.504320 | 0.016726 | |
O5 | 0.720990 | 0.849500 | 0.254310 | 0.016726 | |
O6 | 0.720990 | 0.849490 | 0.754300 | 0.016726 | |
O7 | 0.220990 | 0.849500 | 0.254310 | 0.016726 | |
O8 | 0.220980 | 0.849500 | 0.754310 | 0.016726 | |
O9 | 0.702930 | 0.349510 | 0.254310 | 0.016726 | |
O10 | 0.702920 | 0.349500 | 0.754320 | 0.016726 | |
O11 | 0.202920 | 0.349490 | 0.254310 | 0.016726 | |
O12 | 0.202920 | 0.349490 | 0.754310 | 0.016726 | |
O13 | 0.970980 | 0.532850 | 0.004310 | 0.016726 | |
O14 | 0.970990 | 0.532850 | 0.504320 | 0.016726 | |
O15 | 0.470990 | 0.532850 | 0.004310 | 0.016726 | |
O16 | 0.470990 | 0.532860 | 0.504320 | 0.016726 | |
O17 | 0.697800 | 0.887550 | 0.004280 | 0.016726 | |
O18 | 0.697960 | 0.887170 | 0.504310 | 0.016726 | |
O19 | 0.197970 | 0.887160 | 0.004310 | 0.016726 | |
O20 | 0.197960 | 0.887170 | 0.504320 | 0.016726 | |
O21 | 0.975950 | 0.995180 | 0.254320 | 0.016726 | |
O22 | 0.975960 | 0.995190 | 0.754300 | 0.016726 | |
O23 | 0.475960 | 0.995190 | 0.254310 | 0.016726 | |
O24 | 0.475970 | 0.995190 | 0.754320 | 0.016726 | |
O25 | 0.947950 | 0.495180 | 0.254310 | 0.016726 | |
O26 | 0.947960 | 0.495190 | 0.754320 | 0.016726 | |
O27 | 0.447950 | 0.495190 | 0.254310 | 0.016726 | |
O28 | 0.447960 | 0.495190 | 0.754310 | 0.016726 | |
O29 | 0.725950 | 0.387170 | 0.004310 | 0.016726 | |
O30 | 0.725960 | 0.387170 | 0.504310 | 0.016726 | |
O31 | 0.225960 | 0.387170 | 0.004310 | 0.016726 | |
O32 | 0.225960 | 0.387160 | 0.504320 | 0.016726 | |
O33 | 0.698940 | 0.104530 | 0.113430 | 0.016726 | |
O34 | 0.698940 | 0.104520 | 0.613410 | 0.016726 | |
O35 | 0.198950 | 0.104520 | 0.113410 | 0.016726 | |
O36 | 0.198940 | 0.104520 | 0.613410 | 0.016726 | |
O37 | 0.974970 | 0.777830 | 0.363400 | 0.016726 | |
O38 | 0.974970 | 0.777820 | 0.863400 | 0.016726 | |
O39 | 0.474970 | 0.777830 | 0.363420 | 0.016726 | |
O40 | 0.474980 | 0.777840 | 0.863410 | 0.016726 | |
O41 | 0.948950 | 0.277840 | 0.145220 | 0.016726 | |
O42 | 0.948940 | 0.277840 | 0.645220 | 0.016726 | |
O43 | 0.448940 | 0.277830 | 0.145210 | 0.016726 | |
O44 | 0.448940 | 0.277820 | 0.645210 | 0.016726 | |
O45 | 0.724960 | 0.604520 | 0.895210 | 0.016726 | |
O46 | 0.724970 | 0.604520 | 0.395210 | 0.016726 | |
O47 | 0.224970 | 0.604520 | 0.895210 | 0.016726 | |
O48 | 0.224970 | 0.604520 | 0.395210 | 0.016726 | |
O49 | 0.974960 | 0.777830 | 0.145210 | 0.016726 | |
O50 | 0.974980 | 0.777830 | 0.645210 | 0.016726 | |
O51 | 0.474970 | 0.777830 | 0.145210 | 0.016726 | |
O52 | 0.474960 | 0.777840 | 0.645220 | 0.016726 | |
O53 | 0.698890 | 0.104590 | 0.895180 | 0.016726 | |
O54 | 0.698940 | 0.104520 | 0.395220 | 0.016726 | |
O55 | 0.198960 | 0.104530 | 0.895210 | 0.016726 | |
O56 | 0.198940 | 0.104520 | 0.395210 | 0.016726 | |
O57 | 0.724960 | 0.604510 | 0.113410 | 0.016726 | |
O58 | 0.724970 | 0.604530 | 0.613420 | 0.016726 | |
O59 | 0.224960 | 0.604520 | 0.113410 | 0.016726 | |
O60 | 0.224970 | 0.604520 | 0.613410 | 0.016726 | |
O61 | 0.948950 | 0.277830 | 0.363410 | 0.016726 | |
O62 | 0.948940 | 0.277820 | 0.863410 | 0.016726 | |
O63 | 0.448940 | 0.277840 | 0.363420 | 0.016726 | |
O64 | 0.448940 | 0.277840 | 0.863410 | 0.016726 | |
Mg33 | 0.793440 | 0.999990 | 0.939500 | 0.008640 |
Mg33O64Si16 | α = 90° |
Mr = 2275.36 | β = 90° |
Triclinic, P1 | γ = 90° |
Hall symbol: P 1 | V = 1162.91 Å3 |
a = 9.5167 Å | Z = 1 |
b = 10.2047 Å | Melting point: not measured K |
c = 11.9746 Å |
x | y | z | Biso*/Beq | ||
Mg1 | 0.00001 | 0.00003 | 0.75005 | 0.683371 | |
Mg2 | 0.00005 | 0 | 0.25002 | 0.683371 | |
Mg3 | 0.50004 | 0.0001 | 0.75003 | 0.683371 | |
Mg4 | 0.50004 | 0.00002 | 0.25 | 0.683371 | |
Mg5 | 0.00004 | 0 | 0 | 0.683371 | |
Mg6 | 0.00004 | 0.00003 | 0.5 | 0.683371 | |
Mg7 | 0.50005 | 0 | 0.00004 | 0.683371 | |
Mg8 | 0.50003 | 0.00001 | 0.50003 | 0.683371 | |
Mg9 | 0.25005 | 0.49999 | 0.75001 | 0.683371 | |
Mg10 | 0.25006 | 0.50001 | 0.25001 | 0.683371 | |
Mg11 | 0.75004 | 0.50002 | 0.75001 | 0.683371 | |
Mg12 | 0.75003 | 0.5 | 0.25001 | 0.683371 | |
Mg13 | 0.25005 | 0.50002 | 0.00002 | 0.683371 | |
Mg14 | 0.25002 | 0.50003 | 0.50001 | 0.683371 | |
Mg15 | 0.75003 | 0.50002 | 0.00003 | 0.683371 | |
Mg16 | 0.75005 | 0.50002 | 0.50001 | 0.683371 | |
Mg17 | 0.25425 | 0.77655 | 0.87501 | 0.683371 | |
Mg18 | 0.25422 | 0.77657 | 0.37501 | 0.683371 | |
Mg19 | 0.75424 | 0.77656 | 0.87501 | 0.683371 | |
Mg20 | 0.75424 | 0.77656 | 0.37502 | 0.683371 | |
Mg21 | 0.24583 | 0.22348 | 0.12501 | 0.683371 | |
Mg22 | 0.24584 | 0.22348 | 0.62499 | 0.683371 | |
Mg23 | 0.74584 | 0.22348 | 0.12502 | 0.683371 | |
Mg24 | 0.74582 | 0.22348 | 0.62501 | 0.683371 | |
Mg25 | 0.00425 | 0.72349 | 0.12501 | 0.683371 | |
Mg26 | 0.00424 | 0.72349 | 0.62501 | 0.683371 | |
Mg27 | 0.50423 | 0.72346 | 0.125 | 0.683371 | |
Mg28 | 0.50423 | 0.72346 | 0.625 | 0.683371 | |
Mg29 | 0.49584 | 0.27655 | 0.87502 | 0.683371 | |
Mg30 | 0.49584 | 0.27656 | 0.37501 | 0.683371 | |
Mg31 | 0.99584 | 0.27657 | 0.87501 | 0.683371 | |
Mg32 | 0.99584 | 0.27656 | 0.37499 | 0.683371 | |
Mg33 | 0.48905 | 0.2059 | 0.81036 | 0.683371 | |
Si1 | 0.03683 | 0.5939 | 0.87501 | 0.478005 | |
Si2 | 0.03681 | 0.59389 | 0.37503 | 0.478005 | |
Si3 | 0.53683 | 0.59391 | 0.87502 | 0.478005 | |
Si4 | 0.53682 | 0.59389 | 0.375 | 0.478005 | |
Si5 | 0.46326 | 0.40614 | 0.125 | 0.478005 | |
Si6 | 0.46323 | 0.40615 | 0.62499 | 0.478005 | |
Si7 | 0.96326 | 0.40612 | 0.12502 | 0.478005 | |
Si8 | 0.96326 | 0.40616 | 0.62502 | 0.478005 | |
Si9 | 0.28683 | 0.90613 | 0.12501 | 0.478005 | |
Si10 | 0.28683 | 0.90613 | 0.62501 | 0.478005 | |
Si11 | 0.78684 | 0.90616 | 0.125 | 0.478005 | |
Si12 | 0.78684 | 0.90613 | 0.625 | 0.478005 | |
Si13 | 0.21323 | 0.0939 | 0.87501 | 0.478005 | |
Si14 | 0.21324 | 0.09388 | 0.375 | 0.478005 | |
Si15 | 0.71328 | 0.09388 | 0.87502 | 0.478005 | |
Si16 | 0.71325 | 0.09389 | 0.37501 | 0.478005 | |
O1 | 0.36602 | 0.5917 | 0.87501 | 1.33137 | |
O2 | 0.36601 | 0.59169 | 0.37501 | 1.33137 | |
O3 | 0.86601 | 0.59169 | 0.875 | 1.33137 | |
O4 | 0.86602 | 0.59169 | 0.375 | 1.33137 | |
O5 | 0.13407 | 0.40836 | 0.12501 | 1.33137 | |
O6 | 0.13406 | 0.40835 | 0.625 | 1.33137 | |
O7 | 0.63406 | 0.40835 | 0.12501 | 1.33137 | |
O8 | 0.63406 | 0.40834 | 0.62502 | 1.33137 | |
O9 | 0.11601 | 0.90835 | 0.12501 | 1.33137 | |
O10 | 0.11601 | 0.90834 | 0.62501 | 1.33137 | |
O11 | 0.61601 | 0.90835 | 0.12501 | 1.33137 | |
O12 | 0.61601 | 0.90834 | 0.62501 | 1.33137 | |
O13 | 0.38411 | 0.09172 | 0.87499 | 1.33137 | |
O14 | 0.38407 | 0.09169 | 0.37501 | 1.33137 | |
O15 | 0.88409 | 0.09168 | 0.87501 | 1.33137 | |
O16 | 0.88406 | 0.0917 | 0.37501 | 1.33137 | |
O17 | 0.11083 | 0.44648 | 0.87503 | 1.33137 | |
O18 | 0.11102 | 0.44601 | 0.37501 | 1.33137 | |
O19 | 0.61103 | 0.44601 | 0.87501 | 1.33137 | |
O20 | 0.61103 | 0.44601 | 0.37501 | 1.33137 | |
O21 | 0.38905 | 0.55404 | 0.12501 | 1.33137 | |
O22 | 0.38904 | 0.55403 | 0.62502 | 1.33137 | |
O23 | 0.88905 | 0.55402 | 0.12501 | 1.33137 | |
O24 | 0.88905 | 0.55402 | 0.62501 | 1.33137 | |
O25 | 0.36103 | 0.05402 | 0.12501 | 1.33137 | |
O26 | 0.36103 | 0.05402 | 0.625 | 1.33137 | |
O27 | 0.86103 | 0.05403 | 0.12501 | 1.33137 | |
O28 | 0.86104 | 0.05402 | 0.62501 | 1.33137 | |
O29 | 0.13906 | 0.946 | 0.87501 | 1.33137 | |
O30 | 0.13904 | 0.946 | 0.37501 | 1.33137 | |
O31 | 0.63906 | 0.94599 | 0.87501 | 1.33137 | |
O32 | 0.63905 | 0.94601 | 0.37501 | 1.33137 | |
O33 | 0.11203 | 0.66335 | 0.98411 | 1.33137 | |
O34 | 0.11204 | 0.66336 | 0.48412 | 1.33137 | |
O35 | 0.61204 | 0.66336 | 0.98412 | 1.33137 | |
O36 | 0.61203 | 0.66336 | 0.48411 | 1.33137 | |
O37 | 0.38805 | 0.33667 | 0.23412 | 1.33137 | |
O38 | 0.38803 | 0.33669 | 0.73411 | 1.33137 | |
O39 | 0.88805 | 0.33667 | 0.2341 | 1.33137 | |
O40 | 0.88805 | 0.33668 | 0.73412 | 1.33137 | |
O41 | 0.36203 | 0.83666 | 0.0159 | 1.33137 | |
O42 | 0.36202 | 0.83667 | 0.5159 | 1.33137 | |
O43 | 0.86202 | 0.83667 | 0.0159 | 1.33137 | |
O44 | 0.86204 | 0.83668 | 0.51591 | 1.33137 | |
O45 | 0.13805 | 0.16336 | 0.7659 | 1.33137 | |
O46 | 0.13804 | 0.16336 | 0.26589 | 1.33137 | |
O47 | 0.63809 | 0.16334 | 0.76588 | 1.33137 | |
O48 | 0.63805 | 0.16337 | 0.26589 | 1.33137 | |
O49 | 0.38804 | 0.33668 | 0.01591 | 1.33137 | |
O50 | 0.38804 | 0.33667 | 0.51591 | 1.33137 | |
O51 | 0.88806 | 0.33667 | 0.0159 | 1.33137 | |
O52 | 0.88804 | 0.33667 | 0.5159 | 1.33137 | |
O53 | 0.11204 | 0.66336 | 0.7659 | 1.33137 | |
O54 | 0.11203 | 0.66336 | 0.2659 | 1.33137 | |
O55 | 0.61204 | 0.66336 | 0.7659 | 1.33137 | |
O56 | 0.61203 | 0.66337 | 0.26589 | 1.33137 | |
O57 | 0.13803 | 0.16337 | 0.98411 | 1.33137 | |
O58 | 0.13805 | 0.16337 | 0.48412 | 1.33137 | |
O59 | 0.63806 | 0.16336 | 0.98414 | 1.33137 | |
O60 | 0.63804 | 0.16336 | 0.48412 | 1.33137 | |
O61 | 0.36203 | 0.83667 | 0.23412 | 1.33137 | |
O62 | 0.36204 | 0.83666 | 0.73412 | 1.33137 | |
O63 | 0.86203 | 0.83668 | 0.23411 | 1.33137 | |
O64 | 0.86205 | 0.83668 | 0.73412 | 1.33137 |
Mg32O65Si16 | α = 90° |
Mr = 2267.05 | β = 90° |
Triclinic, P1 | γ = 90° |
Hall symbol: P 1 | V = 1162.82 Å3 |
a = 9.5170 Å | Z = 1 |
b = 10.2042 Å | Melting point: not measured K |
c = 11.9739 Å |
x | y | z | Biso*/Beq | ||
Mg1 | 0.586950 | 0.323520 | 0.741370 | 0.008622 | |
Mg2 | 0.586960 | 0.323530 | 0.241380 | 0.008622 | |
Mg3 | 0.086970 | 0.323530 | 0.741380 | 0.008622 | |
Mg4 | 0.086960 | 0.323520 | 0.241380 | 0.008622 | |
Mg5 | 0.586950 | 0.323530 | 0.991380 | 0.008622 | |
Mg6 | 0.586960 | 0.323530 | 0.491380 | 0.008622 | |
Mg7 | 0.086970 | 0.323530 | 0.991380 | 0.008622 | |
Mg8 | 0.086960 | 0.323530 | 0.491380 | 0.008622 | |
Mg9 | 0.836960 | 0.823530 | 0.741380 | 0.008622 | |
Mg10 | 0.836950 | 0.823520 | 0.241390 | 0.008622 | |
Mg11 | 0.336950 | 0.823530 | 0.741380 | 0.008622 | |
Mg12 | 0.336960 | 0.823530 | 0.241380 | 0.008622 | |
Mg13 | 0.836950 | 0.823550 | 0.991370 | 0.008622 | |
Mg14 | 0.836950 | 0.823520 | 0.491380 | 0.008622 | |
Mg15 | 0.336950 | 0.823530 | 0.991380 | 0.008622 | |
Mg16 | 0.336960 | 0.823530 | 0.491380 | 0.008622 | |
Mg17 | 0.841160 | 0.100130 | 0.866380 | 0.008622 | |
Mg18 | 0.841160 | 0.100120 | 0.366380 | 0.008622 | |
Mg19 | 0.341160 | 0.100120 | 0.866380 | 0.008622 | |
Mg20 | 0.341150 | 0.100120 | 0.366380 | 0.008622 | |
Mg21 | 0.832760 | 0.546930 | 0.116380 | 0.008622 | |
Mg22 | 0.832760 | 0.546930 | 0.616380 | 0.008622 | |
Mg23 | 0.332770 | 0.546930 | 0.116380 | 0.008622 | |
Mg24 | 0.332770 | 0.546930 | 0.616380 | 0.008622 | |
Mg25 | 0.591160 | 0.046930 | 0.116370 | 0.008622 | |
Mg26 | 0.591150 | 0.046930 | 0.616390 | 0.008622 | |
Mg27 | 0.091150 | 0.046930 | 0.116380 | 0.008622 | |
Mg28 | 0.091150 | 0.046930 | 0.616380 | 0.008622 | |
Mg29 | 0.082760 | 0.600130 | 0.866380 | 0.008622 | |
Mg30 | 0.082770 | 0.600130 | 0.366380 | 0.008622 | |
Mg31 | 0.582760 | 0.600110 | 0.866380 | 0.008622 | |
Mg32 | 0.582750 | 0.600130 | 0.366380 | 0.008622 | |
Si1 | 0.623740 | 0.917390 | 0.866380 | 0.006169 | |
Si2 | 0.623730 | 0.917390 | 0.366380 | 0.006169 | |
Si3 | 0.123730 | 0.917380 | 0.866380 | 0.006169 | |
Si4 | 0.123730 | 0.917390 | 0.366380 | 0.006169 | |
Si5 | 0.050190 | 0.729660 | 0.116380 | 0.006169 | |
Si6 | 0.050190 | 0.729670 | 0.616380 | 0.006169 | |
Si7 | 0.550190 | 0.729660 | 0.116380 | 0.006169 | |
Si8 | 0.550190 | 0.729670 | 0.616390 | 0.006169 | |
Si9 | 0.873710 | 0.229660 | 0.116370 | 0.006169 | |
Si10 | 0.873720 | 0.229660 | 0.616380 | 0.006169 | |
Si11 | 0.373720 | 0.229670 | 0.116380 | 0.006169 | |
Si12 | 0.373720 | 0.229670 | 0.616370 | 0.006169 | |
Si13 | 0.800190 | 0.417390 | 0.866380 | 0.006169 | |
Si14 | 0.800190 | 0.417390 | 0.366370 | 0.006169 | |
Si15 | 0.300180 | 0.417390 | 0.866380 | 0.006169 | |
Si16 | 0.300190 | 0.417400 | 0.366380 | 0.006169 | |
O1 | 0.952900 | 0.915220 | 0.866380 | 0.016973 | |
O2 | 0.952920 | 0.915210 | 0.366380 | 0.016973 | |
O3 | 0.452930 | 0.915200 | 0.866380 | 0.016973 | |
O4 | 0.452920 | 0.915210 | 0.366380 | 0.016973 | |
O5 | 0.720990 | 0.731850 | 0.116380 | 0.016973 | |
O6 | 0.720990 | 0.731850 | 0.616380 | 0.016973 | |
O7 | 0.220990 | 0.731850 | 0.116380 | 0.016973 | |
O8 | 0.220990 | 0.731850 | 0.616380 | 0.016973 | |
O9 | 0.702930 | 0.231850 | 0.116380 | 0.016973 | |
O10 | 0.702930 | 0.231850 | 0.616380 | 0.016973 | |
O11 | 0.202930 | 0.231850 | 0.116380 | 0.016973 | |
O12 | 0.202920 | 0.231850 | 0.616380 | 0.016973 | |
O13 | 0.970990 | 0.415210 | 0.866380 | 0.016973 | |
O14 | 0.970990 | 0.415210 | 0.366380 | 0.016973 | |
O15 | 0.470980 | 0.415210 | 0.866380 | 0.016973 | |
O16 | 0.470980 | 0.415200 | 0.366380 | 0.016973 | |
O17 | 0.697920 | 0.769570 | 0.866380 | 0.016973 | |
O18 | 0.697960 | 0.769520 | 0.366380 | 0.016973 | |
O19 | 0.197970 | 0.769520 | 0.866380 | 0.016973 | |
O20 | 0.197960 | 0.769520 | 0.366380 | 0.016973 | |
O21 | 0.975940 | 0.877540 | 0.116370 | 0.016973 | |
O22 | 0.975940 | 0.877540 | 0.616390 | 0.016973 | |
O23 | 0.475950 | 0.877530 | 0.116380 | 0.016973 | |
O24 | 0.475950 | 0.877530 | 0.616380 | 0.016973 | |
O25 | 0.947960 | 0.377540 | 0.116380 | 0.016973 | |
O26 | 0.947960 | 0.377540 | 0.616370 | 0.016973 | |
O27 | 0.447960 | 0.377540 | 0.116380 | 0.016973 | |
O28 | 0.447960 | 0.377540 | 0.616380 | 0.016973 | |
O29 | 0.725950 | 0.269520 | 0.866380 | 0.016973 | |
O30 | 0.725950 | 0.269530 | 0.366380 | 0.016973 | |
O31 | 0.225950 | 0.269520 | 0.866380 | 0.016973 | |
O32 | 0.225950 | 0.269530 | 0.366380 | 0.016973 | |
O33 | 0.698910 | 0.986870 | 0.975500 | 0.016973 | |
O34 | 0.698940 | 0.986880 | 0.475470 | 0.016973 | |
O35 | 0.198940 | 0.986880 | 0.975480 | 0.016973 | |
O36 | 0.198930 | 0.986880 | 0.475470 | 0.016973 | |
O37 | 0.974980 | 0.660190 | 0.225470 | 0.016973 | |
O38 | 0.974980 | 0.660180 | 0.725470 | 0.016973 | |
O39 | 0.474980 | 0.660190 | 0.225470 | 0.016973 | |
O40 | 0.474980 | 0.660180 | 0.725470 | 0.016973 | |
O41 | 0.948950 | 0.160190 | 0.007290 | 0.016973 | |
O42 | 0.948940 | 0.160190 | 0.507290 | 0.016973 | |
O43 | 0.448940 | 0.160190 | 0.007290 | 0.016973 | |
O44 | 0.448930 | 0.160180 | 0.507280 | 0.016973 | |
O45 | 0.724980 | 0.486880 | 0.757280 | 0.016973 | |
O46 | 0.724970 | 0.486880 | 0.257290 | 0.016973 | |
O47 | 0.224970 | 0.486870 | 0.757280 | 0.016973 | |
O48 | 0.224970 | 0.486880 | 0.257280 | 0.016973 | |
O49 | 0.974970 | 0.660180 | 0.007290 | 0.016973 | |
O50 | 0.974980 | 0.660180 | 0.507290 | 0.016973 | |
O51 | 0.474980 | 0.660180 | 0.007280 | 0.016973 | |
O52 | 0.474980 | 0.660190 | 0.507290 | 0.016973 | |
O53 | 0.698940 | 0.986880 | 0.757280 | 0.016973 | |
O54 | 0.698930 | 0.986880 | 0.257280 | 0.016973 | |
O55 | 0.198940 | 0.986880 | 0.757290 | 0.016973 | |
O56 | 0.198940 | 0.986880 | 0.257290 | 0.016973 | |
O57 | 0.724980 | 0.486880 | 0.975480 | 0.016973 | |
O58 | 0.724970 | 0.486880 | 0.475470 | 0.016973 | |
O59 | 0.224970 | 0.486870 | 0.975480 | 0.016973 | |
O60 | 0.224970 | 0.486880 | 0.475470 | 0.016973 | |
O61 | 0.948940 | 0.160190 | 0.225470 | 0.016973 | |
O62 | 0.948940 | 0.160180 | 0.725470 | 0.016973 | |
O63 | 0.448930 | 0.160180 | 0.225470 | 0.016973 | |
O64 | 0.448940 | 0.160190 | 0.725470 | 0.016973 | |
O65 | 0.793560 | 0.000070 | 0.870670 | 0.016973 |
Mg32O64Si17 | α = 90° |
Mr = 2279.18 | β = 90° |
Triclinic, P1 | γ = 90° |
Hall symbol: P 1 | V = 1162.88 Å3 |
a = 9.5164 Å | Z = 1 |
b = 10.2043 Å | Melting point: not measured K |
c = 11.9750 Å |
x | y | z | Biso*/Beq | ||
Mg1 | 0.586960 | 0.460790 | 0.844830 | 0.008651 | |
Mg2 | 0.586960 | 0.460810 | 0.344810 | 0.008651 | |
Mg3 | 0.086970 | 0.460790 | 0.844840 | 0.008651 | |
Mg4 | 0.086980 | 0.460780 | 0.344830 | 0.008651 | |
Mg5 | 0.586960 | 0.460790 | 0.094830 | 0.008651 | |
Mg6 | 0.586960 | 0.460760 | 0.594840 | 0.008651 | |
Mg7 | 0.086960 | 0.460800 | 0.094830 | 0.008651 | |
Mg8 | 0.086950 | 0.460780 | 0.594820 | 0.008651 | |
Mg9 | 0.836960 | 0.960780 | 0.844820 | 0.008651 | |
Mg10 | 0.836960 | 0.960790 | 0.344830 | 0.008651 | |
Mg11 | 0.336970 | 0.960770 | 0.844820 | 0.008651 | |
Mg12 | 0.336950 | 0.960780 | 0.344830 | 0.008651 | |
Mg13 | 0.836940 | 0.960800 | 0.094790 | 0.008651 | |
Mg14 | 0.836970 | 0.960780 | 0.594840 | 0.008651 | |
Mg15 | 0.336970 | 0.960790 | 0.094830 | 0.008651 | |
Mg16 | 0.336940 | 0.960800 | 0.594830 | 0.008651 | |
Mg17 | 0.841170 | 0.237390 | 0.969840 | 0.008651 | |
Mg18 | 0.841150 | 0.237330 | 0.469840 | 0.008651 | |
Mg19 | 0.341150 | 0.237340 | 0.969830 | 0.008651 | |
Mg20 | 0.341150 | 0.237330 | 0.469820 | 0.008651 | |
Mg21 | 0.832740 | 0.684230 | 0.219820 | 0.008651 | |
Mg22 | 0.832760 | 0.684250 | 0.719820 | 0.008651 | |
Mg23 | 0.332770 | 0.684250 | 0.219820 | 0.008651 | |
Mg24 | 0.332770 | 0.684250 | 0.719830 | 0.008651 | |
Mg25 | 0.591160 | 0.184240 | 0.219840 | 0.008651 | |
Mg26 | 0.591160 | 0.184220 | 0.719840 | 0.008651 | |
Mg27 | 0.091170 | 0.184230 | 0.219810 | 0.008651 | |
Mg28 | 0.091160 | 0.184240 | 0.719830 | 0.008651 | |
Mg29 | 0.082750 | 0.737360 | 0.969820 | 0.008651 | |
Mg30 | 0.082770 | 0.737330 | 0.469830 | 0.008651 | |
Mg31 | 0.582790 | 0.737330 | 0.969830 | 0.008651 | |
Mg32 | 0.582760 | 0.737340 | 0.469840 | 0.008651 | |
Si1 | 0.623820 | 0.054660 | 0.969820 | 0.006304 | |
Si2 | 0.623750 | 0.054650 | 0.469850 | 0.006304 | |
Si3 | 0.123780 | 0.054650 | 0.969830 | 0.006304 | |
Si4 | 0.123740 | 0.054660 | 0.469850 | 0.006304 | |
Si5 | 0.050160 | 0.866910 | 0.219850 | 0.006304 | |
Si6 | 0.050140 | 0.866930 | 0.719850 | 0.006304 | |
Si7 | 0.550180 | 0.866910 | 0.219840 | 0.006304 | |
Si8 | 0.550170 | 0.866940 | 0.719860 | 0.006304 | |
Si9 | 0.873730 | 0.366900 | 0.219840 | 0.006304 | |
Si10 | 0.873760 | 0.366920 | 0.719820 | 0.006304 | |
Si11 | 0.373760 | 0.366910 | 0.219820 | 0.006304 | |
Si12 | 0.373740 | 0.366900 | 0.719830 | 0.006304 | |
Si13 | 0.800170 | 0.554630 | 0.969830 | 0.006304 | |
Si14 | 0.800170 | 0.554660 | 0.469840 | 0.006304 | |
Si15 | 0.300180 | 0.554690 | 0.969830 | 0.006304 | |
Si16 | 0.300170 | 0.554660 | 0.469820 | 0.006304 | |
O1 | 0.952870 | 0.052450 | 0.969810 | 0.017238 | |
O2 | 0.952930 | 0.052450 | 0.469840 | 0.017238 | |
O3 | 0.452930 | 0.052450 | 0.969820 | 0.017238 | |
O4 | 0.452930 | 0.052460 | 0.469840 | 0.017238 | |
O5 | 0.720980 | 0.869110 | 0.219810 | 0.017238 | |
O6 | 0.720990 | 0.869110 | 0.719820 | 0.017238 | |
O7 | 0.220990 | 0.869100 | 0.219820 | 0.017238 | |
O8 | 0.220980 | 0.869120 | 0.719830 | 0.017238 | |
O9 | 0.702940 | 0.369100 | 0.219840 | 0.017238 | |
O10 | 0.702920 | 0.369120 | 0.719820 | 0.017238 | |
O11 | 0.202930 | 0.369110 | 0.219820 | 0.017238 | |
O12 | 0.202940 | 0.369110 | 0.719830 | 0.017238 | |
O13 | 0.970980 | 0.552460 | 0.969830 | 0.017238 | |
O14 | 0.970980 | 0.552460 | 0.469830 | 0.017238 | |
O15 | 0.470980 | 0.552450 | 0.969830 | 0.017238 | |
O16 | 0.470990 | 0.552460 | 0.469850 | 0.017238 | |
O17 | 0.697900 | 0.906740 | 0.969850 | 0.017238 | |
O18 | 0.697950 | 0.906780 | 0.469820 | 0.017238 | |
O19 | 0.197970 | 0.906770 | 0.969830 | 0.017238 | |
O20 | 0.197950 | 0.906770 | 0.469830 | 0.017238 | |
O21 | 0.975970 | 0.014800 | 0.219820 | 0.017238 | |
O22 | 0.975960 | 0.014800 | 0.719820 | 0.017238 | |
O23 | 0.475970 | 0.014800 | 0.219830 | 0.017238 | |
O24 | 0.475970 | 0.014790 | 0.719830 | 0.017238 | |
O25 | 0.947940 | 0.514800 | 0.219830 | 0.017238 | |
O26 | 0.947950 | 0.514790 | 0.719830 | 0.017238 | |
O27 | 0.447930 | 0.514790 | 0.219830 | 0.017238 | |
O28 | 0.447950 | 0.514800 | 0.719830 | 0.017238 | |
O29 | 0.725960 | 0.406780 | 0.969830 | 0.017238 | |
O30 | 0.725960 | 0.406780 | 0.469820 | 0.017238 | |
O31 | 0.225960 | 0.406780 | 0.969830 | 0.017238 | |
O32 | 0.225970 | 0.406780 | 0.469830 | 0.017238 | |
O33 | 0.698960 | 0.124130 | 0.078930 | 0.017238 | |
O34 | 0.698940 | 0.124140 | 0.578940 | 0.017238 | |
O35 | 0.198960 | 0.124140 | 0.078940 | 0.017238 | |
O36 | 0.198950 | 0.124140 | 0.578930 | 0.017238 | |
O37 | 0.974950 | 0.797430 | 0.328930 | 0.017238 | |
O38 | 0.974960 | 0.797430 | 0.828940 | 0.017238 | |
O39 | 0.474950 | 0.797430 | 0.328930 | 0.017238 | |
O40 | 0.474980 | 0.797440 | 0.828940 | 0.017238 | |
O41 | 0.948970 | 0.297450 | 0.110720 | 0.017238 | |
O42 | 0.948940 | 0.297440 | 0.610720 | 0.017238 | |
O43 | 0.448950 | 0.297450 | 0.110720 | 0.017238 | |
O44 | 0.448960 | 0.297430 | 0.610720 | 0.017238 | |
O45 | 0.724950 | 0.624130 | 0.860710 | 0.017238 | |
O46 | 0.724960 | 0.624140 | 0.360720 | 0.017238 | |
O47 | 0.224960 | 0.624140 | 0.860720 | 0.017238 | |
O48 | 0.224960 | 0.624140 | 0.360710 | 0.017238 | |
O49 | 0.974960 | 0.797450 | 0.110710 | 0.017238 | |
O50 | 0.974970 | 0.797440 | 0.610710 | 0.017238 | |
O51 | 0.474960 | 0.797440 | 0.110720 | 0.017238 | |
O52 | 0.474940 | 0.797440 | 0.610720 | 0.017238 | |
O53 | 0.698990 | 0.124080 | 0.860740 | 0.017238 | |
O54 | 0.698960 | 0.124130 | 0.360720 | 0.017238 | |
O55 | 0.198970 | 0.124140 | 0.860720 | 0.017238 | |
O56 | 0.198960 | 0.124120 | 0.360720 | 0.017238 | |
O57 | 0.724950 | 0.624140 | 0.078940 | 0.017238 | |
O58 | 0.724960 | 0.624140 | 0.578950 | 0.017238 | |
O59 | 0.224950 | 0.624120 | 0.078940 | 0.017238 | |
O60 | 0.224960 | 0.624140 | 0.578940 | 0.017238 | |
O61 | 0.948960 | 0.297430 | 0.328930 | 0.017238 | |
O62 | 0.948950 | 0.297420 | 0.828930 | 0.017238 | |
O63 | 0.448950 | 0.297430 | 0.328940 | 0.017238 | |
O64 | 0.448950 | 0.297440 | 0.828930 | 0.017238 | |
Si17 | 0.793280 | 0.999990 | 0.922290 | 0.006304 |
Mg32O63Si16 | α = 90° |
Mr = 2235.09 | β = 90° |
Triclinic, P1 | γ = 90° |
Hall symbol: P 1 | V = 1162.85 Å3 |
a = 9.5166 Å | Z = 1 |
b = 10.2044 Å | Melting point: not measured K |
c = 11.9744 Å |
x | y | z | Biso*/Beq | ||
Mg1 | 0.776230 | 0.336670 | 0.531960 | 0.008665 | |
Mg2 | 0.776230 | 0.336660 | 0.031950 | 0.008665 | |
Mg3 | 0.276240 | 0.336660 | 0.531950 | 0.008665 | |
Mg4 | 0.276240 | 0.336650 | 0.031950 | 0.008665 | |
Mg5 | 0.776220 | 0.336670 | 0.781960 | 0.008665 | |
Mg6 | 0.776240 | 0.336660 | 0.281960 | 0.008665 | |
Mg7 | 0.276240 | 0.336650 | 0.781960 | 0.008665 | |
Mg8 | 0.276230 | 0.336650 | 0.281940 | 0.008665 | |
Mg9 | 0.026230 | 0.836650 | 0.531940 | 0.008665 | |
Mg10 | 0.026230 | 0.836650 | 0.031960 | 0.008665 | |
Mg11 | 0.526230 | 0.836670 | 0.531960 | 0.008665 | |
Mg12 | 0.526230 | 0.836670 | 0.031950 | 0.008665 | |
Mg13 | 0.026240 | 0.836630 | 0.781950 | 0.008665 | |
Mg14 | 0.026230 | 0.836650 | 0.281960 | 0.008665 | |
Mg15 | 0.526220 | 0.836650 | 0.781950 | 0.008665 | |
Mg16 | 0.526230 | 0.836660 | 0.281960 | 0.008665 | |
Mg17 | 0.030460 | 0.113270 | 0.656930 | 0.008665 | |
Mg18 | 0.030420 | 0.113230 | 0.156960 | 0.008665 | |
Mg19 | 0.530420 | 0.113230 | 0.656940 | 0.008665 | |
Mg20 | 0.530440 | 0.113230 | 0.156960 | 0.008665 | |
Mg21 | 0.022030 | 0.560080 | 0.906950 | 0.008665 | |
Mg22 | 0.022040 | 0.560090 | 0.406950 | 0.008665 | |
Mg23 | 0.522040 | 0.560080 | 0.906950 | 0.008665 | |
Mg24 | 0.522030 | 0.560070 | 0.406950 | 0.008665 | |
Mg25 | 0.780440 | 0.060080 | 0.906950 | 0.008665 | |
Mg26 | 0.780430 | 0.060090 | 0.406960 | 0.008665 | |
Mg27 | 0.280430 | 0.060090 | 0.906950 | 0.008665 | |
Mg28 | 0.280430 | 0.060090 | 0.406950 | 0.008665 | |
Mg29 | 0.272030 | 0.613230 | 0.656950 | 0.008665 | |
Mg30 | 0.272040 | 0.613230 | 0.156960 | 0.008665 | |
Mg31 | 0.772030 | 0.613240 | 0.656950 | 0.008665 | |
Mg32 | 0.772030 | 0.613240 | 0.156950 | 0.008665 | |
Si1 | 0.813000 | 0.930530 | 0.656940 | 0.006257 | |
Si2 | 0.813000 | 0.930530 | 0.156950 | 0.006257 | |
Si3 | 0.312990 | 0.930530 | 0.656950 | 0.006257 | |
Si4 | 0.313000 | 0.930530 | 0.156950 | 0.006257 | |
Si5 | 0.239470 | 0.742800 | 0.906950 | 0.006257 | |
Si6 | 0.239480 | 0.742790 | 0.406950 | 0.006257 | |
Si7 | 0.739450 | 0.742770 | 0.906960 | 0.006257 | |
Si8 | 0.739460 | 0.742790 | 0.406960 | 0.006257 | |
Si9 | 0.063010 | 0.242810 | 0.906960 | 0.006257 | |
Si10 | 0.063000 | 0.242790 | 0.406960 | 0.006257 | |
Si11 | 0.562990 | 0.242790 | 0.906950 | 0.006257 | |
Si12 | 0.562990 | 0.242780 | 0.406950 | 0.006257 | |
Si13 | 0.989460 | 0.430530 | 0.656950 | 0.006257 | |
Si14 | 0.989460 | 0.430540 | 0.156960 | 0.006257 | |
Si15 | 0.489460 | 0.430520 | 0.656950 | 0.006257 | |
Si16 | 0.489460 | 0.430510 | 0.156950 | 0.006257 | |
O1 | 0.142200 | 0.928340 | 0.656950 | 0.016280 | |
O2 | 0.142210 | 0.928340 | 0.156950 | 0.016280 | |
O3 | 0.642210 | 0.928340 | 0.656960 | 0.016280 | |
O4 | 0.642200 | 0.928340 | 0.156950 | 0.016280 | |
O5 | 0.910250 | 0.745000 | 0.906950 | 0.016280 | |
O6 | 0.910260 | 0.744990 | 0.406950 | 0.016280 | |
O7 | 0.410260 | 0.744980 | 0.906950 | 0.016280 | |
O8 | 0.410260 | 0.744990 | 0.406950 | 0.016280 | |
O9 | 0.892200 | 0.244980 | 0.906950 | 0.016280 | |
O10 | 0.892200 | 0.244980 | 0.406950 | 0.016280 | |
O11 | 0.392200 | 0.244990 | 0.906950 | 0.016280 | |
O12 | 0.392200 | 0.244980 | 0.406950 | 0.016280 | |
O13 | 0.160250 | 0.428330 | 0.656950 | 0.016280 | |
O14 | 0.160260 | 0.428330 | 0.156940 | 0.016280 | |
O15 | 0.660250 | 0.428330 | 0.656950 | 0.016280 | |
O16 | 0.660260 | 0.428330 | 0.156950 | 0.016280 | |
O17 | 0.887090 | 0.782840 | 0.656980 | 0.016280 | |
O18 | 0.887230 | 0.782650 | 0.156950 | 0.016280 | |
O19 | 0.387230 | 0.782650 | 0.656950 | 0.016280 | |
O20 | 0.387230 | 0.782650 | 0.156950 | 0.016280 | |
O21 | 0.165230 | 0.890670 | 0.906960 | 0.016280 | |
O22 | 0.165230 | 0.890660 | 0.406950 | 0.016280 | |
O23 | 0.665240 | 0.890670 | 0.906950 | 0.016280 | |
O24 | 0.665230 | 0.890670 | 0.406950 | 0.016280 | |
O25 | 0.137220 | 0.390680 | 0.906950 | 0.016280 | |
O26 | 0.137230 | 0.390670 | 0.406950 | 0.016280 | |
O27 | 0.637240 | 0.390680 | 0.906950 | 0.016280 | |
O28 | 0.637220 | 0.390670 | 0.406950 | 0.016280 | |
O29 | 0.915220 | 0.282640 | 0.656960 | 0.016280 | |
O30 | 0.915230 | 0.282650 | 0.156950 | 0.016280 | |
O31 | 0.415230 | 0.282650 | 0.656950 | 0.016280 | |
O32 | 0.415230 | 0.282640 | 0.156950 | 0.016280 | |
O33 | 0.888220 | 0.000010 | 0.266060 | 0.016280 | |
O34 | 0.388220 | 0.000010 | 0.766060 | 0.016280 | |
O35 | 0.388220 | 0.000010 | 0.266060 | 0.016280 | |
O36 | 0.164240 | 0.673300 | 0.016060 | 0.016280 | |
O37 | 0.164240 | 0.673300 | 0.516060 | 0.016280 | |
O38 | 0.664230 | 0.673310 | 0.016060 | 0.016280 | |
O39 | 0.664230 | 0.673310 | 0.516060 | 0.016280 | |
O40 | 0.138220 | 0.173300 | 0.797840 | 0.016280 | |
O41 | 0.138220 | 0.173310 | 0.297850 | 0.016280 | |
O42 | 0.638220 | 0.173300 | 0.797840 | 0.016280 | |
O43 | 0.638220 | 0.173310 | 0.297850 | 0.016280 | |
O44 | 0.914240 | 0.500010 | 0.547850 | 0.016280 | |
O45 | 0.914250 | 0.500010 | 0.047850 | 0.016280 | |
O46 | 0.414250 | 0.500010 | 0.547850 | 0.016280 | |
O47 | 0.414240 | 0.500010 | 0.047850 | 0.016280 | |
O48 | 0.164230 | 0.673310 | 0.797850 | 0.016280 | |
O49 | 0.164240 | 0.673310 | 0.297860 | 0.016280 | |
O50 | 0.664240 | 0.673310 | 0.797850 | 0.016280 | |
O51 | 0.664240 | 0.673320 | 0.297850 | 0.016280 | |
O52 | 0.888220 | 0.000010 | 0.547860 | 0.016280 | |
O53 | 0.888220 | 0.000010 | 0.047860 | 0.016280 | |
O54 | 0.388220 | 0.000010 | 0.547850 | 0.016280 | |
O55 | 0.388220 | 0.000010 | 0.047850 | 0.016280 | |
O56 | 0.914240 | 0.500010 | 0.766060 | 0.016280 | |
O57 | 0.914250 | 0.500010 | 0.266060 | 0.016280 | |
O58 | 0.414250 | 0.500010 | 0.766060 | 0.016280 | |
O59 | 0.414240 | 0.500010 | 0.266060 | 0.016280 | |
O60 | 0.138220 | 0.173310 | 0.016060 | 0.016280 | |
O61 | 0.138220 | 0.173310 | 0.516060 | 0.016280 | |
O62 | 0.638220 | 0.173310 | 0.016060 | 0.016280 | |
O63 | 0.638220 | 0.173310 | 0.516060 | 0.016280 |
Mg2O4Si | V = 290.31 (6) Å3 |
Mr = 140.69 | Z = 4 |
Orthorhombic, Pbnm | Dx = 3.219 Mg m−3 |
Hall symbol: -P 2c 2ab | Melting point: not measured K |
a = 4.7542 (5) Å | Cu Kα radiation |
b = 10.2048 (13) Å | T = 295 K |
c = 5.9839 (7) Å |
Bruker D8 Discover diffractometer | LynxEye-XET monochromator |
Radiation source: fine-focus sealed tube | 2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015° |
x | y | z | Biso*/Beq | ||
Mg1 | 0 | 0 | 0 | 0.90 (11) | |
Mg2 | 0.0147 (13) | 0.2768 (4) | 0.75 | 0.90 (11) | |
Si1 | 0.0701 (9) | 0.4010 (4) | 0.25 | 0.80 (11) | |
O1 | 0.2461 (15) | 0.0854 (9) | 0.75 | 1.00 (15) | |
O2 | 0.2809 (15) | 0.0488 (11) | 0.25 | 1.00 (15) | |
O3 | 0.2222 (11) | 0.3459 (6) | 0.4440 (10) | 1.00 (15) |
Mg2O4Si | V = 290.05 (2) Å3 |
Mr = 140.69 | Z = 4 |
Orthorhombic, Pbnm | Dx = 3.222 Mg m−3 |
Hall symbol: -P 2c 2ab | Melting point: not measured K |
a = 4.7523 (2) Å | Cu Kα radiation |
b = 10.2027 (4) Å | T = 295 K |
c = 5.9821 (2) Å |
Bruker D8 Discover diffractometer | LynxEye-XET monochromator |
Radiation source: fine-focus sealed tube | 2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015° |
x | y | z | Biso*/Beq | ||
Mg1 | 0 | 0 | 0 | 1.10 (8) | |
Mg2 | 0.0079 (7) | 0.2770 (3) | 0.75 | 1.10 (9) | |
Si1 | 0.0724 (5) | 0.4048 (3) | 0.25 | 0.90 (7) | |
O1 | 0.2414 (9) | 0.0897 (5) | 0.75 | 1.30 (17) | |
O2 | 0.2840 (9) | 0.0459 (7) | 0.25 | 1.30 (16) | |
O3 | 0.2167 (7) | 0.3427 (4) | 0.4535 (6) | 1.30 (12) |
Mg2O4Si | V = 290.39 (1) Å3 |
Mr = 140.69 | Z = 4 |
Orthorhombic, Pbnm | Dx = 3.218 Mg m−3 |
Hall symbol: -P 2c 2ab | Melting point: not measured K |
a = 4.7530 (1) Å | Cu Kα radiation |
b = 10.2084 (2) Å | T = 295 K |
c = 5.9848 (1) Å |
Bruker D8 Discover diffractometer | LynxEye-XET monochromator |
Radiation source: fine-focus sealed tube | 2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015° |
x | y | z | Biso*/Beq | ||
Mg1 | 0 | 0 | 0 | 0.95 (4) | |
Mg2 | 0.9929 (4) | 0.27775 (16) | 0.25 | 0.95 (4) | |
Si1 | 0.4268 (3) | 0.09397 (16) | 0.25 | 0.76 (4) | |
O1 | 0.7622 (5) | 0.0923 (3) | 0.25 | 0.54 (5) | |
O2 | 0.2202 (5) | 0.4501 (4) | 0.25 | 0.54 (5) | |
O3 | 0.2803 (4) | 0.1621 (2) | 0.0358 (4) | 0.54 (5) |
Mg2O4Si | V = 290.45 (1) Å3 |
Mr = 140.69 | Z = 4 |
Orthorhombic, Pbnm | Dx = 3.218 Mg m−3 |
Hall symbol: -P 2c 2ab | Melting point: not measured K |
a = 4.7515 (1) Å | Cu Kα radiation |
b = 10.2127 (2) Å | T = 295 K |
c = 5.9854 (1) Å |
Bruker D8 Discover diffractometer | LynxEye-XET monochromator |
Radiation source: fine-focus sealed tube | 2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015° |
x | y | z | Biso*/Beq | ||
Mg1 | 0 | 0 | 0 | 0.86 (4) | |
Mg2 | 0.0081 (4) | 0.27743 (15) | 0.75 | 0.86 (4) | |
Si1 | 0.0730 (3) | 0.40599 (15) | 0.25 | 0.60 (4) | |
O1 | 0.2364 (5) | 0.0920 (3) | 0.75 | 0.80 (5) | |
O2 | 0.2803 (5) | 0.0507 (4) | 0.25 | 0.80 (5) | |
O3 | 0.2203 (4) | 0.3382 (2) | 0.4646 (3) | 0.80 (5) |
Acknowledgements
We acknowledge Professor Dr Lucio Colombi Ciacchi, University of Bremen, and Dr Sokseiha Muy, EPFL Switzerland, for fruitful discussions on the project. Parts of this research were carried out at PETRA III and we would like to thank Dr Alexander Schökel for assistance in using the P02.1 Powder Diffraction and Total Scattering Beamline.
Conflict of interest
The authors hereby state no conflict of interest.
Funding information
We acknowledge support by the state of Bremen within the `Humans on Mars' initiative for APF `Materials on demand' (grant No. S1P3). We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. AK acknowledges the Danish Research Council for covering travel expenses in relation to the synchrotron experiment (DanScatt) and the Deutsche Forschungsgemeinschaft (DFG, German science foundation) for funding of the project (grant Nos. KI2427/1-1 awarded to AK; 429360100). The authors gratefully acknowledge support from the DFG under Germany's Excellence Strategy (EXC 2077 grant No. 390741603, University Allowance, University of Bremen), as well as computing time granted by the Resource Allocation Board and provided on the supercomputers Lise and Emmy at NHR@ZIB and NHR@Göttingen as part of the NHR infrastructure. The calculations for this research were conducted with computing resources under the project hbi00059. NM acknowledges support by the National Center of Competence in Research, Materials' Revolution: Computational Design and Discovery of Novel Materials (MARVEL), funded by the Swiss National Science Foundation (grant No. 205602 awarded to NM).
References
Abeykoon, A. M., Donner, W., Brunelli, M., Castro-Colin, M., Jacobson, A. J. & Moss, S. C. (2009). J. Am. Chem. Soc. 131, 13230–13231. CrossRef ICSD PubMed CAS Google Scholar
Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., Des Marais, D. J., Farmer, J. D., Sarrazin, P. C. & Morookian, J. M. (2017). JGR Planets, 122, 2344–2361. CrossRef CAS Google Scholar
Alkauskas, A., Deák, P., Neugebauer, J., Pasquarello, A. & Van de Walle, C. G. (2011). Advanced Calculations for Defects in Materials: Electronic Structure Methods. John Wiley & Sons. Google Scholar
Angel, R. J. & Prewitt, C. T. (1986). Am. Mineral. 71, 1476–1482. CAS Google Scholar
Bastonero, L. & Marzari, N. (2024). npj Comput. Mater. 10, 55. CrossRef Google Scholar
Bennett, C. J., Pirim, C. & Orlando, T. M. (2013). Chem. Rev. 113, 9086–9150. CrossRef CAS PubMed Google Scholar
Bini, M., Ferrari, S., Capsoni, D., Mustarelli, P., Spina, G., Giallo, F. D., Lantieri, M., Leonelli, C., Rizzuti, A. & Massarotti, V. (2012). RSC Adv. 2, 250–258. CrossRef CAS Google Scholar
Bisbo, M. K. & Hammer, B. (2020). Phys. Rev. Lett. 124, 086102. CrossRef PubMed Google Scholar
Bisbo, M. K. & Hammer, B. (2022). Phys. Rev. B, 105, 245404. CrossRef Google Scholar
Bish, D. L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W., Treiman, A. H., Sarrazin, P., Morrison, S. M., Downs, R. T., Achilles, C. N., Yen, A. S., Bristow, T. F., Crisp, J. A., Morookian, J. M., Farmer, J. D., Rampe, E. B., Stolper, E. M., Spanovich, N., Achilles, C., Agard, C., Verdasca, J. A. A., Anderson, R., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bell, J., Bender, S., Benna, M., Bentz, J., Berger, G., Berger, J., Berman, D., Bish, D., Blake, D. F., Avalos, J. J. B., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Bristow, T., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Rodríguez, J. C., Carmosino, M., Blázquez, I. C., Charpentier, A., Chipera, S., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Crisp, J., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., Juarez, M. T., DeFlores, L., DeLapp, D., DeMarines, J., DesMarais, D., Dietrich, W., Dingler, R., Donny, C., Downs, B., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edgett, K., Edwards, C., Edwards, L., Ehlmann, B., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Farmer, J., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez, F. G., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Grotzinger, J., Guillemot, P., Guo, J., Gupta, S., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hurowitz, J., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Jiménez, M. M., García, C. M., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., Maurice, S., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McLennan, S., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Milliken, R., Ming, D., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Jurado, A. M., Moores, J., Mora-Sotomayor, L., Morookian, J. M., Morris, R., Morrison, S., Mueller-Mellin, R., Muller, J., Caro, G. M., Nachon, M., López, S. N., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Newsom, H., Nikiforov, S., Niles, P., Nixon, B., Dobrea, E. N., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., Hernández, M. P., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Rampe, E., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Rice, M., Richardson, M., Robert, F., Robertson, K., Manfredi, J. A. R., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Fuentes, S. A. S., Saper, L., Sarrazin, P., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Martinez, E. S., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sánchez, P. S., Spanovich, N., Spray, J., Squyres, S., Stack, K., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Stolper, E., Sucharski, B., Sullivan, R., Summons, R., Sumner, D., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Redondo, J. T., Trainer, M., Treiman, A., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Vaniman, D., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, J., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yen, A., Yingst, A., Zeitlin, C., Zimdar, R. & Mier, M. Z. (2013). Science, 341, 1238932. Google Scholar
Bowen, N., Greig, J. & Zies, E. (1924). J. Wash. Acad. Sci. 14, 183–191. CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Campisi, D., Tielens, A. G. G. M. & Dononelli, W. (2024). Mon. Not. R. Astron. Soc. 533, 2282–2293. CrossRef Google Scholar
Certini, G., Karunatillake, S., Zhao, Y. S., Meslin, P.-Y., Cousin, A., Hood, D. R. & Scalenghe, R. (2020). Planet. Space Sci. 186, 104922. CrossRef Google Scholar
Chauhan, A. & Chauhan, P. (2014). J. Anal. Bioanal. Tech. 5, 212. Google Scholar
Chopelas, A. (1991). Am. Mineral. 76, 1101–1109. CAS Google Scholar
Cline, J. P., Black, D. R., Gil, D., Henins, A. & Windover, D. (2010). Mater. Sci. Forum, 651, 201–219. CrossRef CAS Google Scholar
Cong, R., Yang, T., Li, K., Li, H., You, L., Liao, F., Wang, Y. & Lin, J. (2010). Acta Cryst. B66, 141–150. CrossRef ICSD IUCr Journals Google Scholar
Czaya, R. (1971). Acta Cryst. B27, 848–849. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
De, G., Karmakar, B. & Ganguli, D. (2000). J. Mater. Chem. 10, 2289–2293. CrossRef CAS Google Scholar
Della Giusta, A., Ottonello, G. & Secco, L. (1990). Acta Cryst. B46, 160–165. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Demidov, N., Bazilevskii, A. & Kuz'min, R. (2015). Sol. Syst. Res. 49, 209–225. CrossRef Google Scholar
Demtröder, W. (2008). Laser Spectroscopy: Basic Principles. Vol. 1. Berlin, Heidelberg: Springer. Google Scholar
Dippel, A.-C., Liermann, H.-P., Delitz, J. T., Walter, P., Schulte-Schrepping, H., Seeck, O. H. & Franz, H. (2015). J. Synchrotron Rad. 22, 675–687. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dononelli, W. (2023). Bunsen-Magazin, 6, 204–207. Google Scholar
Egami, T. & Billinge, S. J. (2003). Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Elsevier. Google Scholar
Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H., Kristoffersen, H. H., Kuisma, M., Larsen, A. H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P. G., Ojanen, J., Olsen, T., Petzold, V., Romero, N. A., Stausholm-Møller, J., Strange, M., Tritsaris, G. A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M., Rantala, T. T., Schiøtz, J., Thygesen, K. S. & Jacobsen, K. W. (2010). J. Phys. Condens. Matter, 22, 253202. CrossRef PubMed Google Scholar
Farrow, C., Juhas, P., Liu, J., Bryndin, D., Božin, E., Bloch, J., Proffen, T. & Billinge, S. (2007). J. Phys. Condens. Matter, 19, 335219. Web of Science CrossRef PubMed Google Scholar
Fathi, M. H. & Kharaziha, M. (2008). Mater. Lett. 62, 4306–4309. CrossRef CAS Google Scholar
Fathi, M. H. & Kharaziha, M. (2009). J. Alloys Compd. 472, 540–545. CrossRef CAS Google Scholar
Fischer, R. X., Schneider, H. & Gesing, T. M. (2009). Acta Cryst. A65, 232–233. CrossRef IUCr Journals Google Scholar
Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A. & Van de Walle, C. G. (2014). Rev. Mod. Phys. 86, 253–305. Web of Science CrossRef Google Scholar
Fujino, K., Sasaki, S., Takéuchi, Y. & Sadanaga, R. (1981). Acta Cryst. B37, 513–518. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Gesing, T. M., Murshed, M. M., Schuh, S., Thüringer, O., Krämer, K., Neudecker, T., Mendive, C. B. & Robben, L. (2022). J. Mater. Sci. 57, 19280–19299. Web of Science CrossRef CAS Google Scholar
Gesing, T. M. & Robben, L. (2024). J. Appl. Cryst. 57, 1466–1476. CrossRef CAS IUCr Journals Google Scholar
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A. Jr, Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901. Web of Science CrossRef PubMed Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502. Web of Science CrossRef PubMed Google Scholar
Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., de Gironcoli, S., Delugas, P., Ferrari Ruffino, F., Ferretti, A., Marzari, N., Timrov, I., Urru, A. & Baroni, S. (2020). J. Chem. Phys. 152, 154105. Web of Science CrossRef PubMed Google Scholar
Gogolin, M., Murshed, M. M., Ende, M., Miletich, R. & Gesing, T. M. (2020). J. Mater. Sci. 55, 177–190. CrossRef CAS Google Scholar
Gouadec, G. & Colomban, P. (2007). Prog. Cryst. Growth Charact. Mater. 53, 1–56. Web of Science CrossRef CAS Google Scholar
Hanke, K. (1965). Beitr. Miner. u Petro. 11, 535–558. CrossRef CAS Google Scholar
Hazen, R. M. (1977). Am. Mineral. 62, 286–295. CAS Google Scholar
Hofmeister, A. M. (1987). Phys. Chem. Miner. 14, 499–513. CrossRef CAS Google Scholar
Huber, S. P., Zoupanos, S., Uhrin, M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller, T., Yakutovich, A. V. & Andersen, C. W. (2020). Scientific data, 7, 300. CrossRef PubMed Google Scholar
Iishi, K. (1978). Am. Mineral. 63, 1198–1208. CAS Google Scholar
Islam, N., Pradhan, A. & Kumar, S. (2005). J. Appl. Phys. 98, 024309. CrossRef Google Scholar
Juhás, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. (2013). J. Appl. Cryst. 46, 560–566. Web of Science CrossRef IUCr Journals Google Scholar
Jundullah Hanafi, M. I., Murshed, M. M., Robben, L. & Gesing, T. M. (2024). Z. Kristallogr. Cryst. Mater. 239, 261–271. CrossRef Google Scholar
Kløve, M., Sommer, S., Iversen, B. B., Hammer, B. & Dononelli, W. (2023). Adv. Mater. 35, 2208220. Google Scholar
Kolesov, B. & Geiger, C. (2004). Phys. Chem. Miner. 31, 142–154. CrossRef CAS Google Scholar
Komsa, H.-P., Rantala, T. T. & Pasquarello, A. (2012). Phys. Rev. B, 86, 045112. CrossRef Google Scholar
Kudoh, Y. & Takeda, H. (1986). Phys. B+C. 139–140, 333–336. CrossRef ICSD CAS Google Scholar
Lager, G. A., Ross, F. K., Rotella, F. J. & Jorgensen, J. D. (1981). J. Appl. Cryst. 14, 137–139. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P., Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z. & Jacobsen, K. W. (2017). J. Phys. Condens. Matter, 29, 273002. Web of Science CrossRef PubMed Google Scholar
Liu, Y., Tice, M., Schmidt, M., Treiman, A., Kizovski, T., Hurowitz, J., Allwood, A., Henneke, J., Pedersen, D., VanBommel, S., Jones, M. W. M., Knight, A. L., Orenstein, B. J., Clark, B. C., Elam, W. T., Heirwegh, C. M., Barber, T., Beegle, L. W., Benzerara, K., Bernard, S., Beyssac, O., Bosak, T., Brown, A. J., Cardarelli, E. L., Catling, D. C., Christian, J. R., Cloutis, E. A., Cohen, B. A., Davidoff, S., Fairén, A. G., Farley, K. A., Flannery, D. T., Galvin, A., Grotzinger, J. P., Gupta, S., Hall, J., Herd, C. D. K., Hickman-Lewis, K., Hodyss, R. P., Horgan, B. H. N., Johnson, J. R., Jørgensen, J. L., Kah, L. C., Maki, J. N., Mandon, L., Mangold, N., McCubbin, F. M., McLennan, S. M., Moore, K., Nachon, M., Nemere, P., Nothdurft, L. D., Núñez, J. I., O'Neil, L., Quantin-Nataf, C. M., Sautter, V., Shuster, D. L., Siebach, K. L., Simon, J. I., Sinclair, K. P., Stack, K. M., Steele, A., Tarnas, J. D., Tosca, N. J., Uckert, K., Udry, A., Wade, L. A., Weiss, B. P., Wiens, R. C., Williford, K. H. & Zorzano, M. (2022). Science, 377, 1513–1519. CrossRef CAS PubMed Google Scholar
Malavasi, L., Orera, A., Slater, P. R., Panchmatia, P. M., Islam, M. S. & Siewenie, J. (2011). Chem. Commun. 47, 250–252. CrossRef CAS Google Scholar
McKeown, D. A., Bell, M. I. & Caracas, R. (2010). Am. Mineral. 95, 980–986. CrossRef ICSD CAS Google Scholar
Mondal, K., Kumari, P. & Manam, J. (2016). Curr. Appl. Phys. 16, 707–719. CrossRef Google Scholar
Monkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188–5192. CrossRef Web of Science Google Scholar
Morimoto, N., Tokonami, M., Watanabe, M. & Koto, K. (1974). Am. Mineral. 59, 475–485. CAS Google Scholar
Müller-Sommer, M., Hock, R. & Kirfel, A. (1997). Phys. Chem. Miner. 24, 17–23. CrossRef ICSD Web of Science Google Scholar
Murshed, M. M., Nénert, G. & Gesing, T. M. (2012). Z. Kristallogr. New Cryst. Struct. 227, 285–286. CrossRef ICSD CAS Google Scholar
Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., Nagabhushana, B. M., Premkumar, H. B. & Girish, K. M. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 140, 516–523. CrossRef CAS PubMed Google Scholar
Ni, S., Chou, L. & Chang, J. (2007). Ceram. Int. 33, 83–88. CrossRef CAS Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868. CrossRef PubMed CAS Web of Science Google Scholar
Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. (2018). npj Comput. Mater. 4, 72. CrossRef Google Scholar
Prashantha, S. C., Lakshminarasappa, B. N. & Nagabhushana, B. M. (2011). J. Alloys Compd. 509, 10185–10189. CrossRef CAS Google Scholar
Proffen, T., Billinge, S., Egami, T. & Louca, D. (2003). Z. Kristallogr. Cryst. Mater. 218, 132–143. CrossRef CAS Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. CrossRef CAS IUCr Journals Web of Science Google Scholar
Rösler, H. J. (1991). Lehrbuch der Mineralogie. Spektrum Akademischer Verlag. Google Scholar
Scherrer, P. (1918). Nachr. Ges. Wiss. Göttingen, 2, 98–100. Google Scholar
Schneider, H., Fischer, R. X., Gesing, T. M., Schreuer, J. & Mühlberg, M. (2012). Int. J. Mater. Res. 103, 422–429. CrossRef CAS Google Scholar
Smyth, J. R. & Hazen, R. M. (1973). Am. Mineral. 58, 588–593. CAS Google Scholar
Souza, I., Íñiguez, J. & Vanderbilt, D. (2002). Phys. Rev. Lett. 89, 117602. CrossRef PubMed Google Scholar
Stangarone, C., Böttger, U., Bersani, D., Tribaudino, M. & Prencipe, M. (2017). J. Raman Spectrosc. 48, 1528–1535. CrossRef CAS Google Scholar
Swamy, V., Muddle, B. C. & Dai, Q. (2006). Appl. Phys. Lett. 89, 163118. CrossRef Google Scholar
Tavangarian, F. & Emadi, R. (2010). Mater. Res. Bull. 45, 388–391. CrossRef CAS Google Scholar
Teck, M., Murshed, M. M., Schowalter, M., Lefeld, N., Grossmann, H. K., Grieb, T., Hartmann, T., Robben, L., Rosenauer, A., Mädler, L. & Gesing, T. M. (2017). J. Solid State Chem. 254, 82–89. Web of Science CrossRef CAS Google Scholar
Terentjev, A. V., Constantin, L. A. & Pitarke, J. M. (2018). Phys. Rev. B, 98, 214108. CrossRef Google Scholar
Togo, A. (2023). J. Phys. Soc. Jpn, 92, 012001. CrossRef Google Scholar
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. (2023). J. Phys. Condens. Matter, 35, 353001. Web of Science CrossRef Google Scholar
Uhrin, M., Huber, S. P., Yu, J., Marzari, N. & Pizzi, G. (2021). Comput. Mater. Sci. 187, 110086. CrossRef Google Scholar
Umari, P. & Pasquarello, A. (2002). Phys. Rev. Lett. 89, 157602. CrossRef PubMed Google Scholar
Ungár, T. (2004). Scr. Mater. 51, 777–781. Web of Science CrossRef CAS Google Scholar
Váci, Z., Agee, C. B., Herd, C. D., Walton, E., Tschauner, O., Ziegler, K., Prakapenka, V. B., Greenberg, E. & Monique–Thomas, S. (2020). Meteorit. & Planet. Sci. 55, 1011–1030. Google Scholar
Van de Walle, C. G., Laks, D., Neumark, G. & Pantelides, S. (1993). Phys. Rev. B, 47, 9425–9434. CrossRef CAS Google Scholar
Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F. I., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., Spanovich, N., Agard, C., Alves Verdasca, J. A., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bender, S., Benna, M., Bentz, J., Berger, J., Berman, D., Blanco Avalos, J. J., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Caride Rodríguez, J., Carmosino, M., Carrasco Blázquez, I., Charpentier, A., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., de la Torre Juarez, M., DeFlores, L., DeLapp, D., DeMarines, J., Dietrich, W., Dingler, R., Donny, C., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edwards, C., Edwards, L., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez Gómez, F., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Guillemot, P., Guo, J., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Marín Jiménez, M., Martín García, C., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Molina Jurado, A., Moores, J., Mora-Sotomayor, L., Mueller-Mellin, R., Muller, J., Muñoz Caro, G., Nachon, M., Navarro López, S., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Nikiforov, S., Niles, P., Nixon, B., Noe Dobrea, E., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., de Pablo Hernández, M., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Richardson, M., Robert, F., Robertson, K., Rodriguez Manfredi, J. A., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Sans Fuentes, S. A., Saper, L., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Sebastian Martinez, E., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sobrón Sánchez, P., Spray, J., Squyres, S., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Sucharski, B., Sullivan, R., Summons, R., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Torres Redondo, J., Trainer, M., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yingst, A., Zeitlin, C., Zimdar, R. & Zorzano Mier, M. (2014). Science, 343, 1243480. Google Scholar
Wagner, C. (1977). Annu. Rev. Mater. Sci. 7, 1–24. CrossRef CAS Google Scholar
Walker, A. M., Woodley, S. M., Slater, B. & Wright, K. (2009). Phys. Earth Planet. Inter. 172, 20–27. CrossRef CAS Google Scholar
Walker, A. M., Wright, K. & Slater, B. (2003). Phys. Chem. Miner. 30, 536–545. CrossRef CAS Google Scholar
Wang, A., Jolliff, B. L. & Haskin, L. A. (1995). J. Geophys. Res. 100, 21189–21199. CrossRef Google Scholar
Wang, A., Kuebler, K., Jolliff, B. & Haskin, L. A. (2004). J. Raman Spectrosc. 35, 504–514. CrossRef CAS Google Scholar
Yang, H., Shi, J., Gong, M. & Cheah, K. W. (2006). J. Lumin. 118, 257–264. CrossRef CAS Google Scholar
Yu, W., Zeng, X., Li, X., Wei, G. & Fang, J. (2022). Earth Space Science, 9, e2020EA001347. CrossRef Google Scholar
Zampiva, R. Y. S., Acauan, L. H., dos Santos, L. M., de Castro, R. H. R., Alves, A. K. & Bergmann, C. P. (2017). Ceram. Int. 43, 16225–16231. CrossRef CAS Google Scholar
Zhang, S. & Northrup, J. E. (1991). Phys. Rev. Lett. 67, 2339–2342. CrossRef PubMed CAS Google Scholar
Zimmermann, N. E., Horton, M. K., Jain, A. & Haranczyk, M. (2017). Front. Mater. 4, 34. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.