research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 11| Part 6| November 2024| Pages 977-990
ISSN: 2052-2525

Synthesis, structural and spectroscopic characterization of defect-rich forsterite as a representative phase of Martian regolith

crossmark logo

aUniversity of Bremen, Institute of Inorganic Chemistry and Crystallography, Leobener Straße 7, D-28359 Bremen, Germany, bUniversity of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany, cBremen Center for Computational Materials Science and Hybrid Materials Interfaces Group, Am Fallturm 1, D-28359 Bremen, Germany, and dUniversity of Copenhagen, Department of Chemistry and Nanoscience Center, Universitetsparken 5, Copenhagen 2100, Denmark
*Correspondence e-mail: murshed@uni-bremen.de

Edited by P. Lightfoot, Formby, Liverpool, United Kingdom (Received 12 August 2024; accepted 3 October 2024; online 28 October 2024)

Regolith draws intensive research attention because of its importance as the basis for fabricating materials for future human space exploration. Martian regolith is predicted to consist of defect-rich crystal structures due to long-term space weathering. The present report focuses on the structural differences between defect-rich and defect-poor forsterite (Mg2SiO4) – one of the major phases in Martian regolith. In this work, forsterites were synthesized using reverse strike co-precipitation and high-energy ball milling (BM). Subsequent post-processing was also carried out using BM to enhance the defects. The crystal structures of the samples were characterized by X-ray powder diffraction and total scattering using Cu and synchrotron radiation followed by Rietveld refinement and pair distribution function (PDF) analysis, respectively. The structural models were deduced by density functional theory assisted PDF refinements, describing both long-range and short-range order caused by defects. The Raman spectral features of the synthetic forsterites complement the ab initio simulation for an in-depth understanding of the associated structural defects.

1. Introduction

In recent years, knowledge about Martian regolith has drastically increased due to the availability of in-situ X-ray diffraction data from the Mars Science Laboratory (MSL) on the Rover Curiosity (Bish et al., 2013[Bish, D. L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W., Treiman, A. H., Sarrazin, P., Morrison, S. M., Downs, R. T., Achilles, C. N., Yen, A. S., Bristow, T. F., Crisp, J. A., Morookian, J. M., Farmer, J. D., Rampe, E. B., Stolper, E. M., Spanovich, N., Achilles, C., Agard, C., Verdasca, J. A. A., Anderson, R., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bell, J., Bender, S., Benna, M., Bentz, J., Berger, G., Berger, J., Berman, D., Bish, D., Blake, D. F., Avalos, J. J. B., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Bristow, T., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Rodríguez, J. C., Carmosino, M., Blázquez, I. C., Charpentier, A., Chipera, S., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Crisp, J., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., Juarez, M. T., DeFlores, L., DeLapp, D., DeMarines, J., DesMarais, D., Dietrich, W., Dingler, R., Donny, C., Downs, B., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edgett, K., Edwards, C., Edwards, L., Ehlmann, B., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Farmer, J., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez, F. G., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Grotzinger, J., Guillemot, P., Guo, J., Gupta, S., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hurowitz, J., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Jiménez, M. M., García, C. M., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., Maurice, S., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McLennan, S., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Milliken, R., Ming, D., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Jurado, A. M., Moores, J., Mora-Sotomayor, L., Morookian, J. M., Morris, R., Morrison, S., Mueller-Mellin, R., Muller, J., Caro, G. M., Nachon, M., López, S. N., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Newsom, H., Nikiforov, S., Niles, P., Nixon, B., Dobrea, E. N., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., Hernández, M. P., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Rampe, E., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Rice, M., Richardson, M., Robert, F., Robertson, K., Manfredi, J. A. R., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Fuentes, S. A. S., Saper, L., Sarrazin, P., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Martinez, E. S., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sánchez, P. S., Spanovich, N., Spray, J., Squyres, S., Stack, K., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Stolper, E., Sucharski, B., Sullivan, R., Summons, R., Sumner, D., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Redondo, J. T., Trainer, M., Treiman, A., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Vaniman, D., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, J., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yen, A., Yingst, A., Zeitlin, C., Zimdar, R. & Mier, M. Z. (2013). Science, 341, 1238932.]; Achilles et al., 2017[Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., Des Marais, D. J., Farmer, J. D., Sarrazin, P. C. & Morookian, J. M. (2017). JGR Planets, 122, 2344-2361.]; Vaniman et al., 2014[Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F. I., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., Spanovich, N., Agard, C., Alves Verdasca, J. A., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bender, S., Benna, M., Bentz, J., Berger, J., Berman, D., Blanco Avalos, J. J., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Caride Rodríguez, J., Carmosino, M., Carrasco Blázquez, I., Charpentier, A., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., de la Torre Juarez, M., DeFlores, L., DeLapp, D., DeMarines, J., Dietrich, W., Dingler, R., Donny, C., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edwards, C., Edwards, L., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez Gómez, F., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Guillemot, P., Guo, J., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Marín Jiménez, M., Martín García, C., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Molina Jurado, A., Moores, J., Mora-Sotomayor, L., Mueller-Mellin, R., Muller, J., Muñoz Caro, G., Nachon, M., Navarro López, S., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Nikiforov, S., Niles, P., Nixon, B., Noe Dobrea, E., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., de Pablo Hernández, M., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Richardson, M., Robert, F., Robertson, K., Rodriguez Manfredi, J. A., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Sans Fuentes, S. A., Saper, L., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Sebastian Martinez, E., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sobrón Sánchez, P., Spray, J., Squyres, S., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Sucharski, B., Sullivan, R., Summons, R., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Torres Redondo, J., Trainer, M., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yingst, A., Zeitlin, C., Zimdar, R. & Zorzano Mier, M. (2014). Science, 343, 1243480.]). The analysis of these diffraction data estimated an amorphous fraction of approximately 28 to 45 wt% in the Martian regolith (Certini et al., 2020[Certini, G., Karunatillake, S., Zhao, Y. S., Meslin, P.-Y., Cousin, A., Hood, D. R. & Scalenghe, R. (2020). Planet. Space Sci. 186, 104922.]; Achilles et al., 2017[Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., Des Marais, D. J., Farmer, J. D., Sarrazin, P. C. & Morookian, J. M. (2017). JGR Planets, 122, 2344-2361.]; Vaniman et al., 2014[Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F. I., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., Spanovich, N., Agard, C., Alves Verdasca, J. A., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bender, S., Benna, M., Bentz, J., Berger, J., Berman, D., Blanco Avalos, J. J., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Caride Rodríguez, J., Carmosino, M., Carrasco Blázquez, I., Charpentier, A., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., de la Torre Juarez, M., DeFlores, L., DeLapp, D., DeMarines, J., Dietrich, W., Dingler, R., Donny, C., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edwards, C., Edwards, L., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez Gómez, F., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Guillemot, P., Guo, J., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Marín Jiménez, M., Martín García, C., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Molina Jurado, A., Moores, J., Mora-Sotomayor, L., Mueller-Mellin, R., Muller, J., Muñoz Caro, G., Nachon, M., Navarro López, S., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Nikiforov, S., Niles, P., Nixon, B., Noe Dobrea, E., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., de Pablo Hernández, M., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Richardson, M., Robert, F., Robertson, K., Rodriguez Manfredi, J. A., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Sans Fuentes, S. A., Saper, L., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Sebastian Martinez, E., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sobrón Sánchez, P., Spray, J., Squyres, S., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Sucharski, B., Sullivan, R., Summons, R., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Torres Redondo, J., Trainer, M., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yingst, A., Zeitlin, C., Zimdar, R. & Zorzano Mier, M. (2014). Science, 343, 1243480.]; Demidov et al., 2015[Demidov, N., Bazilevskii, A. & Kuz'min, R. (2015). Sol. Syst. Res. 49, 209-225.]; Bish et al., 2013[Bish, D. L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W., Treiman, A. H., Sarrazin, P., Morrison, S. M., Downs, R. T., Achilles, C. N., Yen, A. S., Bristow, T. F., Crisp, J. A., Morookian, J. M., Farmer, J. D., Rampe, E. B., Stolper, E. M., Spanovich, N., Achilles, C., Agard, C., Verdasca, J. A. A., Anderson, R., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bell, J., Bender, S., Benna, M., Bentz, J., Berger, G., Berger, J., Berman, D., Bish, D., Blake, D. F., Avalos, J. J. B., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Bristow, T., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Rodríguez, J. C., Carmosino, M., Blázquez, I. C., Charpentier, A., Chipera, S., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Crisp, J., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., Juarez, M. T., DeFlores, L., DeLapp, D., DeMarines, J., DesMarais, D., Dietrich, W., Dingler, R., Donny, C., Downs, B., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edgett, K., Edwards, C., Edwards, L., Ehlmann, B., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Farmer, J., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez, F. G., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Grotzinger, J., Guillemot, P., Guo, J., Gupta, S., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hurowitz, J., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Jiménez, M. M., García, C. M., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., Maurice, S., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McLennan, S., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Milliken, R., Ming, D., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Jurado, A. M., Moores, J., Mora-Sotomayor, L., Morookian, J. M., Morris, R., Morrison, S., Mueller-Mellin, R., Muller, J., Caro, G. M., Nachon, M., López, S. N., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Newsom, H., Nikiforov, S., Niles, P., Nixon, B., Dobrea, E. N., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., Hernández, M. P., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Rampe, E., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Rice, M., Richardson, M., Robert, F., Robertson, K., Manfredi, J. A. R., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Fuentes, S. A. S., Saper, L., Sarrazin, P., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Martinez, E. S., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sánchez, P. S., Spanovich, N., Spray, J., Squyres, S., Stack, K., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Stolper, E., Sucharski, B., Sullivan, R., Summons, R., Sumner, D., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Redondo, J. T., Trainer, M., Treiman, A., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Vaniman, D., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, J., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yen, A., Yingst, A., Zeitlin, C., Zimdar, R. & Mier, M. Z. (2013). Science, 341, 1238932.]). A notable amorphous phase content in Martian regolith indicates significant space weathering due to extreme environmental conditions (Certini et al., 2020[Certini, G., Karunatillake, S., Zhao, Y. S., Meslin, P.-Y., Cousin, A., Hood, D. R. & Scalenghe, R. (2020). Planet. Space Sci. 186, 104922.]). Space weathering is the alteration of exposed surfaces via their interaction with the space environment (Bennett et al., 2013[Bennett, C. J., Pirim, C. & Orlando, T. M. (2013). Chem. Rev. 113, 9086-9150.]). It is a combination of mechanical weathering caused, for example, by meteorite impacts as well as radiation weathering from high-energy solar wind radiation. The former process can be simulated by ball milling (BM) of terrestrial materials in the laboratory (Yu et al., 2022[Yu, W., Zeng, X., Li, X., Wei, G. & Fang, J. (2022). Earth Space Science, 9, e2020EA001347.]).

Olivine-type forsterite (Mg2SiO4) is one of the major phases found in the crystalline part of Martian regolith (Bish et al., 2013[Bish, D. L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W., Treiman, A. H., Sarrazin, P., Morrison, S. M., Downs, R. T., Achilles, C. N., Yen, A. S., Bristow, T. F., Crisp, J. A., Morookian, J. M., Farmer, J. D., Rampe, E. B., Stolper, E. M., Spanovich, N., Achilles, C., Agard, C., Verdasca, J. A. A., Anderson, R., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bell, J., Bender, S., Benna, M., Bentz, J., Berger, G., Berger, J., Berman, D., Bish, D., Blake, D. F., Avalos, J. J. B., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Bristow, T., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Rodríguez, J. C., Carmosino, M., Blázquez, I. C., Charpentier, A., Chipera, S., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Crisp, J., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., Juarez, M. T., DeFlores, L., DeLapp, D., DeMarines, J., DesMarais, D., Dietrich, W., Dingler, R., Donny, C., Downs, B., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edgett, K., Edwards, C., Edwards, L., Ehlmann, B., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Farmer, J., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez, F. G., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Grotzinger, J., Guillemot, P., Guo, J., Gupta, S., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hurowitz, J., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Jiménez, M. M., García, C. M., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., Maurice, S., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McLennan, S., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Milliken, R., Ming, D., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Jurado, A. M., Moores, J., Mora-Sotomayor, L., Morookian, J. M., Morris, R., Morrison, S., Mueller-Mellin, R., Muller, J., Caro, G. M., Nachon, M., López, S. N., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Newsom, H., Nikiforov, S., Niles, P., Nixon, B., Dobrea, E. N., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., Hernández, M. P., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Rampe, E., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Rice, M., Richardson, M., Robert, F., Robertson, K., Manfredi, J. A. R., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Fuentes, S. A. S., Saper, L., Sarrazin, P., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Martinez, E. S., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sánchez, P. S., Spanovich, N., Spray, J., Squyres, S., Stack, K., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Stolper, E., Sucharski, B., Sullivan, R., Summons, R., Sumner, D., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Redondo, J. T., Trainer, M., Treiman, A., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Vaniman, D., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, J., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yen, A., Yingst, A., Zeitlin, C., Zimdar, R. & Mier, M. Z. (2013). Science, 341, 1238932.]; Achilles et al., 2017[Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., Des Marais, D. J., Farmer, J. D., Sarrazin, P. C. & Morookian, J. M. (2017). JGR Planets, 122, 2344-2361.]). Bish et al. (2013[Bish, D. L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W., Treiman, A. H., Sarrazin, P., Morrison, S. M., Downs, R. T., Achilles, C. N., Yen, A. S., Bristow, T. F., Crisp, J. A., Morookian, J. M., Farmer, J. D., Rampe, E. B., Stolper, E. M., Spanovich, N., Achilles, C., Agard, C., Verdasca, J. A. A., Anderson, R., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bell, J., Bender, S., Benna, M., Bentz, J., Berger, G., Berger, J., Berman, D., Bish, D., Blake, D. F., Avalos, J. J. B., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Bristow, T., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Rodríguez, J. C., Carmosino, M., Blázquez, I. C., Charpentier, A., Chipera, S., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Crisp, J., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., Juarez, M. T., DeFlores, L., DeLapp, D., DeMarines, J., DesMarais, D., Dietrich, W., Dingler, R., Donny, C., Downs, B., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edgett, K., Edwards, C., Edwards, L., Ehlmann, B., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Farmer, J., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez, F. G., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Grotzinger, J., Guillemot, P., Guo, J., Gupta, S., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hurowitz, J., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Jiménez, M. M., García, C. M., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., Maurice, S., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McLennan, S., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Milliken, R., Ming, D., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Jurado, A. M., Moores, J., Mora-Sotomayor, L., Morookian, J. M., Morris, R., Morrison, S., Mueller-Mellin, R., Muller, J., Caro, G. M., Nachon, M., López, S. N., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Newsom, H., Nikiforov, S., Niles, P., Nixon, B., Dobrea, E. N., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., Hernández, M. P., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Rampe, E., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Rice, M., Richardson, M., Robert, F., Robertson, K., Manfredi, J. A. R., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Fuentes, S. A. S., Saper, L., Sarrazin, P., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Martinez, E. S., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sánchez, P. S., Spanovich, N., Spray, J., Squyres, S., Stack, K., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Stolper, E., Sucharski, B., Sullivan, R., Summons, R., Sumner, D., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Redondo, J. T., Trainer, M., Treiman, A., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Vaniman, D., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, J., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yen, A., Yingst, A., Zeitlin, C., Zimdar, R. & Mier, M. Z. (2013). Science, 341, 1238932.]) reported it to be comprised of approximately 22.4 wt% (Mg0.62Fe0.38)2SiO4, known as forsteritic olivine. The term can be understood from the forsterite–fayalite [(Mg1−xFex)2SiO4] solid solution due to higher Mg content compared with Fe, which was found in Martian soil from the Rocknest Aeolian bedform in the Gale crater. Similarly, Achilles et al. (2017[Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., Des Marais, D. J., Farmer, J. D., Sarrazin, P. C. & Morookian, J. M. (2017). JGR Planets, 122, 2344-2361.]) found approximately 25.8 wt% forsteritic olivine [(Mg0.56Fe0.44)2SiO4] in Martian soil of the Namib dune named Gobabeb.

For future use of regolith as a basis to fabricate metals or building materials for human space explorations, a precise analysis of the different defects present in forsterites is of crucial importance. The defect-rich forsterite is expected to have lower formation energy, hence may be desirable for more efficient processing of fabrication in space.

Forsterite belongs to planetary and terrestrial rock-forming minerals (Liu et al., 2022[Liu, Y., Tice, M., Schmidt, M., Treiman, A., Kizovski, T., Hurowitz, J., Allwood, A., Henneke, J., Pedersen, D., VanBommel, S., Jones, M. W. M., Knight, A. L., Orenstein, B. J., Clark, B. C., Elam, W. T., Heirwegh, C. M., Barber, T., Beegle, L. W., Benzerara, K., Bernard, S., Beyssac, O., Bosak, T., Brown, A. J., Cardarelli, E. L., Catling, D. C., Christian, J. R., Cloutis, E. A., Cohen, B. A., Davidoff, S., Fairén, A. G., Farley, K. A., Flannery, D. T., Galvin, A., Grotzinger, J. P., Gupta, S., Hall, J., Herd, C. D. K., Hickman-Lewis, K., Hodyss, R. P., Horgan, B. H. N., Johnson, J. R., Jørgensen, J. L., Kah, L. C., Maki, J. N., Mandon, L., Mangold, N., McCubbin, F. M., McLennan, S. M., Moore, K., Nachon, M., Nemere, P., Nothdurft, L. D., Núñez, J. I., O'Neil, L., Quantin-Nataf, C. M., Sautter, V., Shuster, D. L., Siebach, K. L., Simon, J. I., Sinclair, K. P., Stack, K. M., Steele, A., Tarnas, J. D., Tosca, N. J., Uckert, K., Udry, A., Wade, L. A., Weiss, B. P., Wiens, R. C., Williford, K. H. & Zorzano, M. (2022). Science, 377, 1513-1519.]; Váci et al., 2020[Váci, Z., Agee, C. B., Herd, C. D., Walton, E., Tschauner, O., Ziegler, K., Prakapenka, V. B., Greenberg, E. & Monique-Thomas, S. (2020). Meteorit. & Planet. Sci. 55, 1011-1030.]) and is known for its capability of catalyzing reactions in interstellar dust (Campisi et al., 2024[Campisi, D., Tielens, A. G. G. M. & Dononelli, W. (2024). Mon. Not. R. Astron. Soc. 533, 2282-2293.]). Forsterite is the magnesium endmember of the olivine solid solution (Mg1−xFex)2SiO4 (Jundullah Hanafi et al., 2024[Jundullah Hanafi, M. I., Murshed, M. M., Robben, L. & Gesing, T. M. (2024). Z. Kristallogr. Cryst. Mater. 239, 261-271.]; Rösler, 1991[Rösler, H. J. (1991). Lehrbuch der Mineralogie. Spektrum Akademischer Verlag.]) and crystallizes in the orthorhombic space group Pbnm (Fujino et al., 1981[Fujino, K., Sasaki, S., Takéuchi, Y. & Sadanaga, R. (1981). Acta Cryst. B37, 513-518.]; Müller-Sommer et al., 1997[Müller-Sommer, M., Hock, R. & Kirfel, A. (1997). Phys. Chem. Miner. 24, 17-23.]; Lager et al., 1981[Lager, G. A., Ross, F. K., Rotella, F. J. & Jorgensen, J. D. (1981). J. Appl. Cryst. 14, 137-139.]). The structure (Fig. 1[link]) consists of 1D octahedral chains running parallel to the crystallographic c axis, comparable to those found in the mullite-type phase (Angel & Prewitt, 1986[Angel, R. J. & Prewitt, C. T. (1986). Am. Mineral. 71, 1476-1482.]; Bowen et al., 1924[Bowen, N., Greig, J. & Zies, E. (1924). J. Wash. Acad. Sci. 14, 183-191.]; Cong et al., 2010[Cong, R., Yang, T., Li, K., Li, H., You, L., Liao, F., Wang, Y. & Lin, J. (2010). Acta Cryst. B66, 141-150.]; Fischer et al., 2009[Fischer, R. X., Schneider, H. & Gesing, T. M. (2009). Acta Cryst. A65, 232-233.]; Gogolin et al., 2020[Gogolin, M., Murshed, M. M., Ende, M., Miletich, R. & Gesing, T. M. (2020). J. Mater. Sci. 55, 177-190.]). In the mullite-type phase, these octahedral chains are bridged by double tetrahedra or other double units in the ab direction (Murshed et al., 2012[Murshed, M. M., Nénert, G. & Gesing, T. M. (2012). Z. Kristallogr. New Cryst. Struct. 227, 285-286.]; Schneider et al., 2012[Schneider, H., Fischer, R. X., Gesing, T. M., Schreuer, J. & Mühlberg, M. (2012). Int. J. Mater. Res. 103, 422-429.]), whereas in olivine, single (SiO4)4− tetrahedra link the octahedral chains in the a direction, where the tetrahedrally coordinated oxygen atoms are shared by three octahedrally coordinated cations (Zampiva et al., 2017[Zampiva, R. Y. S., Acauan, L. H., dos Santos, L. M., de Castro, R. H. R., Alves, A. K. & Bergmann, C. P. (2017). Ceram. Int. 43, 16225-16231.]). The respective link in the b direction is realized by two non-equivalent Mg octahedral sites: the first site (M1, chain octahedra) has inversion symmetry, while the other site (M2, linking octahedra) possesses mirror symmetry (Yang et al., 2006[Yang, H., Shi, J., Gong, M. & Cheah, K. W. (2006). J. Lumin. 118, 257-264.]). Both sites can be occupied by various cations, forming either rich solid solutions or other endmembers such as fayalite [Fe2SiO4 (Hanke, 1965[Hanke, K. (1965). Beitr. Miner. u Petro. 11, 535-558.]; Kudoh & Takeda, 1986[Kudoh, Y. & Takeda, H. (1986). Phys. B+C. 139-140, 333-336.]; Hazen, 1977[Hazen, R. M. (1977). Am. Mineral. 62, 286-295.])], tephroite [Mn2SiO4 (Fujino et al., 1981[Fujino, K., Sasaki, S., Takéuchi, Y. & Sadanaga, R. (1981). Acta Cryst. B37, 513-518.])], larnite [Ca2SiO4 (Czaya, 1971[Czaya, R. (1971). Acta Cryst. B27, 848-849.])], liebenbergite [Ni2SiO4 (Della Giusta et al., 1990[Della Giusta, A., Ottonello, G. & Secco, L. (1990). Acta Cryst. B46, 160-165.]; Lager et al., 1981[Lager, G. A., Ross, F. K., Rotella, F. J. & Jorgensen, J. D. (1981). J. Appl. Cryst. 14, 137-139.])] and cobalt olivine [Co2SiO4 (Morimoto et al., 1974[Morimoto, N., Tokonami, M., Watanabe, M. & Koto, K. (1974). Am. Mineral. 59, 475-485.]; Müller-Sommer et al., 1997[Müller-Sommer, M., Hock, R. & Kirfel, A. (1997). Phys. Chem. Miner. 24, 17-23.])], which enable a wider spectrum of elements extractable from a regolith matrix.

[Figure 1]
Figure 1
Crystal structure of Mg2SiO4 (forsterite).

Forsterite can be synthesized through a variety of synthesis methods including the solution combustion technique (Naik et al., 2015[Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., Nagabhushana, B. M., Premkumar, H. B. & Girish, K. M. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 140, 516-523.]; Mondal et al., 2016[Mondal, K., Kumari, P. & Manam, J. (2016). Curr. Appl. Phys. 16, 707-719.]; Prashantha et al., 2011[Prashantha, S. C., Lakshminarasappa, B. N. & Nagabhushana, B. M. (2011). J. Alloys Compd. 509, 10185-10189.]), the sol–gel method (Ni et al., 2007[Ni, S., Chou, L. & Chang, J. (2007). Ceram. Int. 33, 83-88.]), mechanical activation followed by heat treatment (Fathi & Kharaziha, 2008[Fathi, M. H. & Kharaziha, M. (2008). Mater. Lett. 62, 4306-4309.], 2009[Fathi, M. H. & Kharaziha, M. (2009). J. Alloys Compd. 472, 540-545.]; Tavangarian & Emadi, 2010[Tavangarian, F. & Emadi, R. (2010). Mater. Res. Bull. 45, 388-391.]) and reverse strike co-precipitation (RSC) (Zampiva et al., 2017[Zampiva, R. Y. S., Acauan, L. H., dos Santos, L. M., de Castro, R. H. R., Alves, A. K. & Bergmann, C. P. (2017). Ceram. Int. 43, 16225-16231.]). Despite many studies on the synthesis yielding pure forsterite, to the best of our knowledge there are no reports on mechanically induced defect-rich forsterites and their associated crystal structures. Defects are commonly defined as a considerable extent of irregularities in the crystal structure (Wagner, 1977[Wagner, C. (1977). Annu. Rev. Mater. Sci. 7, 1-24.]), for example, vacancies or dislocated atoms (see Fig. S1 of the supporting information). In an X-ray diffraction pattern, typical strain broadening and lower absolute intensities are expected for defect-rich crystallites (Ungár, 2004[Ungár, T. (2004). Scr. Mater. 51, 777-781.], Chauhan & Chauhan, 2014[Chauhan, A. & Chauhan, P. (2014). J. Anal. Bioanal. Tech. 5, 212.]), often accompanied by reflection broadening due to crystallite size effects (Scherrer, 1918[Scherrer, P. (1918). Nachr. Ges. Wiss. Göttingen, 2, 98-100.]; Gesing & Robben, 2024[Gesing, T. M. & Robben, L. (2024). J. Appl. Cryst. 57, 1466-1476.]). Similarly, broadening of Raman peaks suggests disordered structures in defect-rich materials (Demtröder, 2008[Demtröder, W. (2008). Laser Spectroscopy: Basic Principles. Vol. 1. Berlin, Heidelberg: Springer.]; Gouadec & Colomban, 2007[Gouadec, G. & Colomban, P. (2007). Prog. Cryst. Growth Charact. Mater. 53, 1-56.]). In addition to Rietveld analysis of reciprocal-space X-ray powder diffraction (XRPD) data, real-space investigations of defects and local structures are widely performed by pair distribution function (PDF) analysis (Bini et al., 2012[Bini, M., Ferrari, S., Capsoni, D., Mustarelli, P., Spina, G., Giallo, F. D., Lantieri, M., Leonelli, C., Rizzuti, A. & Massarotti, V. (2012). RSC Adv. 2, 250-258.]; Malavasi et al., 2011[Malavasi, L., Orera, A., Slater, P. R., Panchmatia, P. M., Islam, M. S. & Siewenie, J. (2011). Chem. Commun. 47, 250-252.]; Proffen et al., 2003[Proffen, T., Billinge, S., Egami, T. & Louca, D. (2003). Z. Kristallogr. Cryst. Mater. 218, 132-143.]).

The present work focuses on the synthesis and characterization of forsterite and its mechanical post-treatment to induce various defect concentrations. The derived defect-structure model can serve as a structural representative for the analysis of Martian regolith. To achieve this objective, Mg2SiO4 samples were first synthesized by two different routes: the RSC method and mechanical activation using high-energy BM with subsequent calcination. In a second step, mechanical post-treatment was performed to obtain defect-rich forsterite. We present a detailed comparison of structural features between the samples using Raman, XRPD and X-ray total scattering techniques. In addition, density functional theory (DFT) is used to optimize defect-rich structures and compare their thermodynamic stability. Finally, the DFT-supported PDF analysis (DFT–PDF) is used to refine the defective structural models.

2. Materials and methods

2.1. Synthesis of defect-poor forsterite

2.1.1. Reverse strike co-precipitation synthesis

Magnesium nitrate hexahydrate [Mg(NO3)2·6H2O, 99.9 %] and tetra­ethyl orthosilicate (TEOS, 98 %) were purchased from VWR Chemicals and used as received. Similar to a typical RSC synthesis (Zampiva et al., 2017[Zampiva, R. Y. S., Acauan, L. H., dos Santos, L. M., de Castro, R. H. R., Alves, A. K. & Bergmann, C. P. (2017). Ceram. Int. 43, 16225-16231.]), stoichiometric amounts of Mg(NO3)2·6H2O and TEOS were dissolved in a solution of 40 ml of ethanol and 3 ml of HNO3 (≥65 %) under magnetic stirring for 1 h. The precursor solution was slowly dripped into 50 ml of 25 % NH4OH under continuous stirring. The base solution formed a colloid while the precursor solution was being dripped, forming a white precipitate. Simultaneously, several drops of concentrated NH4OH were added to maintain pH > 8. Thereafter, the precipitate was centrifuged at 60 Hz for 5 min. The supernatant was removed, and ethanol was used to wash the precipitated powder. The centrifugation was repeated three times. Finally, the precipitated solid was placed in a furnace at 473 K for 16 h. The resulting solid was ground in a mortar and calcined at 1373 K for 1 h after reaching the temperature with heating and cooling rates of 15 and 5 K min−1, respectively. The powder attained is designated RFO (RSC synthesis forsterite).

2.1.2. Ball milling synthesis

MgO and amorphous SiO2 powders were used as starting materials. MgO (>97 %) was purchased from Merck and used as received. Amorphous SiO2 was obtained from hydrolysis of TEOS (De et al., 2000[De, G., Karmakar, B. & Ganguli, D. (2000). J. Mater. Chem. 10, 2289-2293.]). Forsterite was synthesized by mechanical activation with a high-energy ball mill (Emax-type, RETSCH GmbH). Stoichiometric amounts of the binary oxides were mixed together with 60 g tungsten carbide (WC) balls (2 mm diameter) and placed in a WC grinding jar. The ball-to-powder weight ratio was set to 30:1. The powder was milled for 3 h with different rotational frequencies (7, 12.5 and 15 Hz). Finally, the milled powder was collected from the grinding jar and heated in a corundum crucible at 1373 K at a heating rate of 15 K min−1. After a reaction period of 1 h, the powder was cooled to room temperature at a cooling rate of 5 K min−1. The Mg2SiO4 pristine forsterite (PFO) powder attained was ground and further used for characterization.

2.2. Synthesis of defect-rich and healed forsterite

Defect-rich forsterite was prepared by crushing PFO by BM. PFO (1 g) was placed into the grinding jar with 20 g WC balls. The powder was milled at 15 Hz for 1 h. Thereafter, one half of the milled powder was kept separately and labeled as crushed forsterite (CFO). The other half was calcined at 1373 K for 1 h under air to heal the introduced defects, hence labeled healed forsterite (HFO).

2.3. X-ray powder diffraction

XRPD data collection was carried out on a Bruker D8 Discover diffractometer using Cu Kα1,2 radiation [λKα1 = 154.05929(5) pm, λKα2 = 154.4414(2) pm] in Bragg–Brentano geometry. Data were collected under ambient conditions from 5 to 85° 2θ with a step width of 0.0149° 2θ and a measurement time of 0.3 s per step using a multi-strip LynxEye XE-T detector. XRPD data Rietveld refinements were carried out using TOPAS (version 6.0). During the Rietveld refinements, the background, sample displacement, cell metrics, atomic positions and profile parameters were optimized. The amorphous fraction of the samples was quantified from the degree of crystallinity (DC) as implemented in the TOPAS software. For these calculations it is assumed that the average scattering power of the crystalline fraction of the sample is identical to the scattering power of the X-ray amorphous fraction. The latter could either consist of glassy or quantum-crystalline contributions (Gesing et al., 2022[Gesing, T. M., Murshed, M. M., Schuh, S., Thüringer, O., Krämer, K., Neudecker, T., Mendive, C. B. & Robben, L. (2022). J. Mater. Sci. 57, 19280-19299.]). Using the fundamental parameter approach (Cline et al., 2010[Cline, J. P., Black, D. R., Gil, D., Henins, A. & Windover, D. (2010). Mater. Sci. Forum, 651, 201-219.]), the apparent average crystallite size (ACS) was calculated from all observed X-ray reflections, which is described as LVol(IB) by the TOPAS suite. LVol(IB) refers to the volume-weighted mean of the coherently diffracting domain size using the integral breadth for the description of the reflection profile. The respective pseudo-Voigt profile function was deconvoluted into Gaussian and Lorentzian components, describing the ACS and the microstrain (ɛ0), respectively. To validate these data and to receive information about the crystallite size distribution (CSD), an EnvACS analysis (Gesing & Robben, 2024[Gesing, T. M. & Robben, L. (2024). J. Appl. Cryst. 57, 1466-1476.]) was performed. For this, data were collected on a Bruker D8 Advance diffractometer using Cu Kα1 radiation [λKα1 = 154.05929(5) pm] in Bragg–Brentano geometry. Data were collected under ambient conditions from 10 to 135° 2θ with a step width of 0.01449° 2θ and a measurement time of 4.8 s per step using a multi-strip LynxEye XE detector. The information deduced during these (classical) Rietveld refinements are, with the exception of the DC, based on the appearance of the Bragg reflections and an ideal arrangement of atoms in the unit cell only (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]). To distinguish these calculations from those using total scattering data, we use the expression Bragg–Rietveld for the classical method. The Rwp given is the weighted profile R factor (residual) of the Bragg–Rietveld refinement. To distinguish the Rwp of Bragg–Rietveld and the Rwp of PDF refinements, the latter is denoted RPDF.

2.4. Raman spectroscopy

Raman spectra were recorded on a LabRam ARAMIS (Horiba Jobin – Yvon) Micro-Raman spectrometer equipped with a green laser (λex = 532 nm and < 20 mW power). A 50× objective (Olympus) with a numerical aperture of 0.75 provides a focus spot of 865 nm diameter when closing the confocal hole to 200 µm. Each spectrum ranges between 100 and 1200 cm−1 with a spectral resolution of approximately 1.2 cm−1 using a grating of 1800 grooves mm−1 and a thermoelectrically cooled CCD detector (Synapse, 1024 × 256 pixels).

2.5. Theoretical Raman calculations

The theoretical Raman spectra calculations were carried out using the aiida-vibroscopy package (Bastonero & Marzari, 2024[Bastonero, L. & Marzari, N. (2024). npj Comput. Mater. 10, 55.]) which exploits the finite displacements and finite field approach (Souza et al., 2002[Souza, I., Íñiguez, J. & Vanderbilt, D. (2002). Phys. Rev. Lett. 89, 117602.]; Umari & Pasquarello, 2002[Umari, P. & Pasquarello, A. (2002). Phys. Rev. Lett. 89, 157602.]), and the AiiDA infrastructure (Huber et al., 2020[Huber, S. P., Zoupanos, S., Uhrin, M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller, T., Yakutovich, A. V. & Andersen, C. W. (2020). Scientific data, 7, 300.]; Uhrin et al., 2021[Uhrin, M., Huber, S. P., Yu, J., Marzari, N. & Pizzi, G. (2021). Comput. Mater. Sci. 187, 110086.]) to automate the submission of the simulations and the storage of all the data in a reproducible format. The first-order spectrum was calculated in the non-resonant regime using the Placzek approximation. The peak positions associated with the phonon modes were computed in the harmonic approximation via small displacements of the atomic positions (Togo, 2023[Togo, A. (2023). J. Phys. Soc. Jpn, 92, 012001.]; Togo et al., 2023[Togo, A., Chaput, L., Tadano, T. & Tanaka, I. (2023). J. Phys. Condens. Matter, 35, 353001.]), whereas the Raman tensors, required for the intensity calculations, were obtained via numerical differentiation of the forces in the application of small electric fields (Bastonero & Marzari, 2024[Bastonero, L. & Marzari, N. (2024). npj Comput. Mater. 10, 55.]). Computational details can be found in Section 2.8[link].

2.6. X-ray synchrotron total scattering

Total scattering data were collected using beamline P02.1 at PETRA-III, DESY, Hamburg (Dippel et al., 2015[Dippel, A.-C., Liermann, H.-P., Delitz, J. T., Walter, P., Schulte-Schrepping, H., Seeck, O. H. & Franz, H. (2015). J. Synchrotron Rad. 22, 675-687.]) with a fixed energy of 60 keV [λ = 20.734(2) pm]. The beamline was equipped with a Varex XRD 4343CT detector (pixel size 150 × 150 µm, 2880 × 2880 pixels). Each sample was measured in 1 mm Kapton capillaries and exposed to radiation for 300 s within a setup particularly optimized for rapid in-situ measurement. PDF data processing was conducted using the PDFGetX3 software (Juhás et al., 2013[Juhás, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. (2013). J. Appl. Cryst. 46, 560-566.]). For all samples, Qmax was set to 1.95 nm−1. Structure model fitting against PDF data was performed using PDFgui (Farrow et al., 2007[Farrow, C., Juhas, P., Liu, J., Bryndin, D., Božin, E., Bloch, J., Proffen, T. & Billinge, S. (2007). J. Phys. Condens. Matter, 19, 335219.]). During the refinement process, instrumental parameters Qdamp and Qbroad were refined to the CeO2 standard dataset, and then kept fixed with Qdamp = 0.035693 and Qbroad = 0.001 for all the samples. The scale factor, lattice parameters, atomic displacement parameters (ADPs), atomic motion correlation factor and atomic coordinates were refined. The representative processed data I(Q), S(Q), F(Q) and G(r) of PFO are shown in Fig. S2. Stack plots of I(Q) and S(Q) for all the samples are given in Fig. S3.

2.7. DFT–PDF refinement

Combined DFT–PDF refinements of defective forsterite in the spirit of Dononelli (2023[Dononelli, W. (2023). Bunsen-Magazin, 6, 204-207.]) and Kløve et al. (2023[Kløve, M., Sommer, S., Iversen, B. B., Hammer, B. & Dononelli, W. (2023). Adv. Mater. 35, 2208220.]) were performed. Instead of globally optimizing the structure with the GOFEE algorithm (Bisbo & Hammer, 2020[Bisbo, M. K. & Hammer, B. (2020). Phys. Rev. Lett. 124, 086102.], 2022[Bisbo, M. K. & Hammer, B. (2022). Phys. Rev. B, 105, 245404.]; Kløve et al., 2023[Kløve, M., Sommer, S., Iversen, B. B., Hammer, B. & Dononelli, W. (2023). Adv. Mater. 35, 2208220.]), several types of defects, namely vacancies and Frenkel and Schottky defects, were introduced to each atom site during the simulations. DFT was used as a tool to optimize every defect-type structure to their local minimum in the potential energy surface. The geometry-optimized structures were further optimized with a BFGS algorithm by considering the G(r) data from measurements and minimizing the RPDF. Finally, the structures were refined against the experimental data using PDFgui. The schematic workflow of DFT–PDF refinements is illustrated in Fig. 2[link].

[Figure 2]
Figure 2
Schematic workflow maintained during the DFT–PDF refinement for different forsterite structures.

Local structure optimizations have been performed using the electronic structure code GPAW (Enkovaara et al., 2010[Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H., Kristoffersen, H. H., Kuisma, M., Larsen, A. H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P. G., Ojanen, J., Olsen, T., Petzold, V., Romero, N. A., Stausholm-Møller, J., Strange, M., Tritsaris, G. A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M., Rantala, T. T., Schiøtz, J., Thygesen, K. S. & Jacobsen, K. W. (2010). J. Phys. Condens. Matter, 22, 253202.]) in the framework of the atomistic simulation environment (Larsen et al., 2017[Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P., Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z. & Jacobsen, K. W. (2017). J. Phys. Condens. Matter, 29, 273002.]). The exchange-correlation interaction was treated by the generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof functional (Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]) with a 3 × 5 × 3 k-points sampling of Monkhorst & Pack (1976[Monkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188-5192.]). Note that these calculations were not meant to provide very precise energetics or exact bond lengths. All structures optimized with such settings are later post-processed in PDF–Rietveld refinements to fit to experimentally observed bond lengths.

2.8. Energy calculations

To verify the favorite defective intrinsic candidate, the ab initio formation energy was investigated using DFT calculations. Exploiting the supercell approach, the defect formation energy in a charge state q can be computed as (Zhang & Northrup, 1991[Zhang, S. & Northrup, J. E. (1991). Phys. Rev. Lett. 67, 2339-2342. ]; Van de Walle et al., 1993[Van de Walle, C. G., Laks, D., Neumark, G. & Pantelides, S. (1993). Phys. Rev. B, 47, 9425-9434.]; Alkauskas et al., 2011[Alkauskas, A., Deák, P., Neugebauer, J., Pasquarello, A. & Van de Walle, C. G. (2011). Advanced Calculations for Defects in Materials: Electronic Structure Methods. John Wiley & Sons.]; Freysoldt et al., 2014[Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A. & Van de Walle, C. G. (2014). Rev. Mod. Phys. 86, 253-305.]):

[E^f[X;q] = E[X,q] - E[{\rm bulk}] - \textstyle \sum_i {n_i}{\mu _i} + q\left(\varepsilon_{\rm v} + \varepsilon_{\rm F} \right),]

where E[X, q] is the total energy of the supercell calculation of defect X in the charge state q and E[bulk] is the total energy of the pristine crystal structure scaled to match the size of the defective supercell. Each defect is referenced to a chemical potential μi corresponding to its species i, while the integer ni indicates the atoms of type i in excess (ni > 0) or removed (ni < 0). For charged states, the chemical potential for the extra electrons is given by the Fermi energy ɛF with respect to the valence band maximum ɛv of the pristine bulk supercell (Komsa et al., 2012[Komsa, H.-P., Rantala, T. T. & Pasquarello, A. (2012). Phys. Rev. B, 86, 045112.]). The Fermi energy can be found by the condition of charge neutrality at a specific temperature when all the relevant defects are considered. In the following we consider ɛF = 0. To understand the defect formation in the diluted limit (very low defect concentrations), an additional correction term needs to be added due to the periodic boundary conditions, which is described in more detail in the supporting information.

Different defect types along with their nominal and neutral charge states, as well as both relaxed and non-relaxed geometries of the supercells, were thoroughly investigated. Four different supercell sizes of 2 × 1 × 2, 3 × 1 × 2, 3 × 2 × 2 and 3 × 3 × 2 were selected, as well as the single unit cell. For the interstitials, an algorithm introduced by Zimmermann et al. (2017[Zimmermann, N. E., Horton, M. K., Jain, A. & Haranczyk, M. (2017). Front. Mater. 4, 34.]) was used to find suitable atomic positions; 11 different positions were found for each species as possible candidates. Interestingly, the interstitials proposed by this pure geometric analysis for the magnesium atoms are found to be in tetrahedral coordination, as found in Walker et al. (2009[Walker, A. M., Woodley, S. M., Slater, B. & Wright, K. (2009). Phys. Earth Planet. Inter. 172, 20-27.]), but here without the explicit energy calculation. The vacancies were instead generated using the space-group symmetries of forsterite, which greatly limits the number of positions.

To carry out the calculations, the Quantum ESPRESSO package (Giannozzi et al., 2009[Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502.], 2017[Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A. Jr, Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901.], 2020[Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., de Gironcoli, S., Delugas, P., Ferrari Ruffino, F., Ferretti, A., Marzari, N., Timrov, I., Urru, A. & Baroni, S. (2020). J. Chem. Phys. 152, 154105.]) was used and the PBEsol (Terentjev et al., 2018[Terentjev, A. V., Constantin, L. A. & Pitarke, J. M. (2018). Phys. Rev. B, 98, 214108.]) functional was employed using pseudo-potentials from the precision SSSP library (version 1.1; Prandini et al., 2018[Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. (2018). npj Comput. Mater. 4, 72.]). The wavefunction and charge-density expansions were truncated with an energy cutoff of 80 and 960 Ry, respectively. The Brillouin zone was sampled using a uniform Monkhorst–Pack grid with a 4 × 2 × 3 k-points mesh. The geometry and atomic positions of forsterite were therefore relaxed until the total energy and forces were below 10−6 Ry atom−1 and 10−5 Ry Bohr−1, respectively. Supercell calculations were carried out using a gamma-point sampling, after having verified that the total energy changed by only 2 meV atom−1 for a 2 × 1 × 2 supercell. The geometry and the atomic positions of each defective supercell were optimized with lower thresholds for the total energy and forces of 10−4 Ry atom−1 and 10−3 Ry Bohr−1, respectively.

3. Results and discussion

3.1. Synthesis

Impure forsterite was obtained from BM synthesis with 7 (IFO-7) and 12.5 Hz (IFO-12). On the other hand, PFO was successfully obtained by RSC synthesis (Zampiva et al., 2017[Zampiva, R. Y. S., Acauan, L. H., dos Santos, L. M., de Castro, R. H. R., Alves, A. K. & Bergmann, C. P. (2017). Ceram. Int. 43, 16225-16231.]) (RFO) and BM synthesis at 15 Hz (PFO). Both synthesis techniques yielded white forsterite powder. To introduce defects into the material, the attained PFO powder was mechanically post-processed by BM at 15 Hz for 1 h resulting in CFO. CFO possesses a slightly grayish color, either due to trace amounts of WC abraded from the mill, or suggesting the presence of defects. However, we estimated the amount to be lower than the detection limit [0.5(1) wt%] as we cannot observe any WC signal in the XRD (nor Raman) data. Finally, a small amount of CFO was re-calcined at 1373 K and a white powder of HFO with the expected lower defect concentrations was obtained. The synthesized samples and their respective IDs are listed in Table 1[link]. Detailed information about phase quantification for impure forsterites determined from Rietveld refinements is provided in the Section 3.2[link].

Table 1
List of synthesized samples and their abbreviations

Sample ID Material
RFO RSC synthesis forsterite
IFO-7 Impure forsterite from 7 Hz BM
IFO-12 Impure forsterite from 12.5 Hz BM
PFO Pristine forsterite from 15 Hz BM
CFO Crushed forsterite (post-processed PFO)
HFO Healed forsterite (re-calcined CFO)

3.2. X-ray powder diffraction

XRPD data Bragg–Rietveld refinements confirm that IFO-7 contains impurities of MgO, MgSiO3 and SiO2 in two modifications (α-cristobalite and α-quartz), whereas IFO-12 possesses only MgO as a minor impurity. This indicates that the BM frequencies of 7 and 12.5 Hz are not sufficient to form an intimate mixture of the reactants before the calcination process. On the contrary, pure forsterite was obtained from RSC (RFO) and BM (PFO) synthesis at 15 Hz. All reflections in the diffraction pattern of both samples can be indexed to olivine-type Mg2SiO4 with the space group Pbnm (Müller-Sommer et al., 1997[Müller-Sommer, M., Hock, R. & Kirfel, A. (1997). Phys. Chem. Miner. 24, 17-23.]). The mechanically treated sample (CFO) is also characterized as a pure forsterite. However, broadening of the Bragg reflections along with significantly lower intensity maxima is observed, as shown in Fig. 3[link]. Moreover, CFO exhibits notably lower ACS [25(1) nm] and DC [60(5) %] compared with those of PFO [ACS = 77(1) nm and DC = 98(5) %]. Inversely, the microstrain is increased from 0.031(1) to 0.140(4) upon BM. The re-calcination process of CFO led to re-crystallization, forming a crystalline forsterite with an ACS, ɛ0 and DC of 77(2) nm, 0.140(4) and 90(5) %, respectively, like those of PFO. Comparable values are observed when analyzing the ACS using the EnvACS (Gesing & Robben, 2024[Gesing, T. M. & Robben, L. (2024). J. Appl. Cryst. 57, 1466-1476.]) approach. Nevertheless, the CSD provides additional information on the defect formation and the respective defect healing. For the synthesized samples (RFO and PFO) the CSD is narrow whereas a much broader CSD is observed for CFO. This is not surprising, as it is assumed that not only are defects introduced, but during the reduction of the ACS, not all crystallites are homogeneously destroyed due to crystallite cracking. For the heated CFO portion resulting in the HFO sample, it is obvious that the distribution narrows again by a factor of two but did not reach the narrow distribution of the as-synthesized PFO. Interestingly, meaningful results could only be obtained by also refining a scale factor in the EnvACS (Gesing & Robben, 2024[Gesing, T. M. & Robben, L. (2024). J. Appl. Cryst. 57, 1466-1476.]) approach, which would represent the distribution of two different phases, namely the crystalline forsterite and the amorphous forsterite, respectively. The scale factors obtained correlate quite well with the DC obtained by the Bragg–Rietveld refinements. A complete list of XRPD characterization results is given in Table 2[link]. The stack plots of XRPD patterns of all samples can be seen in Fig. S4.

Table 2
ACS and microstrain (ɛ0) of forsterites, and the DC of the synthesized samples obtained from Bragg–Rietveld refinements of XRPD data

Additionally, the ACS and the CSD factor, correlating the smallest (0.01) and broadest (1) distribution of spherical crystallites, are given. Both values were refined with a fixed to 1 and a variable scale factor, considering perfect and reduced DC, respectively.

  Bragg–Rietveld EnvACS
Sample ID Phase fraction /% ACS /nm ɛ0 DC /% ACS /nm CSD factor Scale factor
IFO-7 Mg2SiO4 62(2) 58(1) 0.048(2) 95(5)
MgO 23(2)
MgSiO3 8(2)
SiO2 α-cristobalite 6(2)
SiO2 α-quartz 1(2)
IFO-12 Mg2SiO4 98(2) 61(1) 0.053(5) 93(5)
MgO 2(2)
RFO Mg2SiO4 100(2) 89(1) 0.027(1) 95(5) 85.5(5) 0.01(1) 1
          87.1(5) 0.01(1) 0.98(1)
PFO Mg2SiO4 100(2) 77(1) 0.031(1) 98(5) 88.3(5) 0.01(1) 1
          89.0(5) 0.01(1) 0.99(1)
CFO Mg2SiO4 100(2) 25(1) 0.140(4) 60(5) 33.3(2) 0.01(1) 1
          57.6(3) 0.17(1) 0.68(1)
HFO Mg2SiO4 100(2) 77(2) 0.046(1) 90(5) 74.9(6) 0.01(1) 1
          75.4(4) 0.07(1) 0.95(1)
[Figure 3]
Figure 3
XRPD data Rietveld plots of different forsterites.

Refined forsterite crystal data, along with comparative literature (Smyth & Hazen, 1973[Smyth, J. R. & Hazen, R. M. (1973). Am. Mineral. 58, 588-593.]), are presented in Table S1 of the supporting information. The respective Bragg–Rietveld refinements converged with lower Rwp values for RFO (11 %) and PFO (11 %) compared with CFO (15 %) and HFO (15 %) (see Fig. 3[link] and Table S1). Moreover, structure refinements indicate that RFO and PFO can be classified as defect-poor forsterites, as their refined atomic positions possess only small changes (Δz ≤ 0.003) compared with pristine forsterite. In contrast, noticeable structural changes are observed in both HFO and CFO. As an example, the O(3) atom in HFO slightly deviates from its initial position (Δz ≤ 0.010) while CFO shows even stronger changes (Δz ≤ 0.018). The strength of these observed structural changes is proportional to the expected defect concentration in the crystal, which is described in more detail in Section 3.3[link].

3.3. Raman spectroscopy

The factor group analysis predicts that orthorhombic Mg2SiO4 has 84 normal vibrational modes (11 Ag + 11 B1g + 7 B2g + 7 B3g + 10 Au + 10 B1u + 14 B2u + 14 B3u), among which Ag, B1g, B2g and B3g modes are Raman active (Iishi, 1978[Iishi, K. (1978). Am. Mineral. 63, 1198-1208.]; Hofmeister, 1987[Hofmeister, A. M. (1987). Phys. Chem. Miner. 14, 499-513.]). Raman spectra of different forsterites are shown in Fig. 4[link]. Peak fitting was performed for each experimental spectrum, representatively shown in Fig. S5 for PFO. The peak maxima along with comparative experimental reference data (Kolesov & Geiger, 2004[Kolesov, B. & Geiger, C. (2004). Phys. Chem. Miner. 31, 142-154.]) and theoretical calculations (Stangarone et al., 2017[Stangarone, C., Böttger, U., Bersani, D., Tribaudino, M. & Prencipe, M. (2017). J. Raman Spectrosc. 48, 1528-1535.]; McKeown et al., 2010[McKeown, D. A., Bell, M. I. & Caracas, R. (2010). Am. Mineral. 95, 980-986.]) are given in Table S2. The observed band frequencies are in good agreement with those of the reported ones (Kolesov & Geiger, 2004[Kolesov, B. & Geiger, C. (2004). Phys. Chem. Miner. 31, 142-154.]; Stangarone et al., 2017[Stangarone, C., Böttger, U., Bersani, D., Tribaudino, M. & Prencipe, M. (2017). J. Raman Spectrosc. 48, 1528-1535.]; McKeown et al., 2010[McKeown, D. A., Bell, M. I. & Caracas, R. (2010). Am. Mineral. 95, 980-986.]) and our own theoretical calculation. Typically, Raman spectra of olivine-type Mg2SiO4 can be classified into three regions: <400 cm−1, 400–700 cm−1 and >700 cm−1. The lower region bands are attributed to the vibrational modes from Mg [M(2) site] and negligible contribution from lighter silicon (Stangarone et al., 2017[Stangarone, C., Böttger, U., Bersani, D., Tribaudino, M. & Prencipe, M. (2017). J. Raman Spectrosc. 48, 1528-1535.]; Chopelas, 1991[Chopelas, A. (1991). Am. Mineral. 76, 1101-1109.]). Peaks between 400 and 700 cm−1 are mainly contributed from bending motion of the Mg(2)—O bonds (Stangarone et al., 2017[Stangarone, C., Böttger, U., Bersani, D., Tribaudino, M. & Prencipe, M. (2017). J. Raman Spectrosc. 48, 1528-1535.]). The high-frequency region (>700 cm−1) can be attributed to the internal Si—O stretching vibrations of the SiO4 tetrahedra (Chopelas, 1991[Chopelas, A. (1991). Am. Mineral. 76, 1101-1109.]; Stangarone et al., 2017[Stangarone, C., Böttger, U., Bersani, D., Tribaudino, M. & Prencipe, M. (2017). J. Raman Spectrosc. 48, 1528-1535.]). The most dominant characteristic of the forsterite spectral range lies at around 820 and 860 cm−1 (Chopelas, 1991[Chopelas, A. (1991). Am. Mineral. 76, 1101-1109.]; Iishi, 1978[Iishi, K. (1978). Am. Mineral. 63, 1198-1208.]; Wang et al., 1995[Wang, A., Jolliff, B. L. & Haskin, L. A. (1995). J. Geophys. Res. 100, 21189-21199.], 2004[Wang, A., Kuebler, K., Jolliff, B. & Haskin, L. A. (2004). J. Raman Spectrosc. 35, 504-514.]).

[Figure 4]
Figure 4
Raman spectra of different forsterites collected under ambient conditions and the PBEsol calculation (left). Magnified view of the high-frequency region (right); vertical dashed lines are a guide for the eye.

Some vibrational features from optical phonons are clearly distinguishable between the defect-poor samples (RFO and PFO) and the defect-containing samples (CFO and HFO). Global red shifts of ±1 cm−1 along with peak-broadening (ΔFWHM ≤ 2 cm−1) are observed in HFO. Moreover, greater red shifts of approximately 3(1) cm−1 as well as peak broadening (ΔFWHM ≤ 4 cm−1) are observed in CFO. The dominant two intense modes related to Si—O are further shifted to 825(1) and 857(1) cm−1, with FWHMs of 11(1) and 13(1) cm−1, respectively. In general, peak shifting and broadening in Raman spectra can be attributed to crystallite size effects and the degree of disorder in a structure (Swamy et al., 2006[Swamy, V., Muddle, B. C. & Dai, Q. (2006). Appl. Phys. Lett. 89, 163118.]; Islam et al., 2005[Islam, N., Pradhan, A. & Kumar, S. (2005). J. Appl. Phys. 98, 024309.]; Gouadec & Colomban, 2007[Gouadec, G. & Colomban, P. (2007). Prog. Cryst. Growth Charact. Mater. 53, 1-56.]; Demtröder, 2008[Demtröder, W. (2008). Laser Spectroscopy: Basic Principles. Vol. 1. Berlin, Heidelberg: Springer.]). Here, the Raman peak broadening and shifts are proportional to the defect concentration in the structure. This finding further indicates that the CFO sample exhibits local structural disorder with the highest concentration.

3.4. PDF analysis

To further investigate the defects and local structures of the samples, total scattering experiments were carried out (beamline P02.1 at PETRA-III, DESY, Hamburg). The analysis of the total scattering data allows the extraction of information from both Bragg and diffuse scattering contributions. The Bragg scattering contribution can be analyzed by the conventional approach in reciprocal space and provides information on the average and long-range periodic structure, whereas the diffuse scattering which lies between and beneath the Bragg reflections (Egami & Billinge, 2003[Egami, T. & Billinge, S. J. (2003). Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Elsevier.]) yields information regarding the short-range order and local structure deviations. Each measurement was integrated, background corrected and Fourier transformed to obtain the reduced PDF G(r). The G(r) describes the probability of finding two atoms separated by a distance of r (Teck et al., 2017[Teck, M., Murshed, M. M., Schowalter, M., Lefeld, N., Grossmann, H. K., Grieb, T., Hartmann, T., Robben, L., Rosenauer, A., Mädler, L. & Gesing, T. M. (2017). J. Solid State Chem. 254, 82-89.]). Although the observed PDFs [G(r)] of RFO, PFO and HFO are very similar, that of CFO shows significant discrepancies (e.g. broadened signals, clear shoulders and lower intensities) as shown in Fig. 5[link].

[Figure 5]
Figure 5
Observed G(r) for different forsterites.

Defect-free, symmetry-constrained structural models of Mg2SiO4 were fitted against the experimental PDFs using a small-box modeling approach including symmetry constraints (PDF–Rietveld). Representative PDF–Rietveld refinements of the investigated forsterites are shown in Fig. 6[link]. The refinements of CFO converged with RPDF = 26 %, significantly higher than those of RFO, PFO (RPDF = 16 %) and HFO (RPDF = 18 %). The higher RPDF of CFO indicates that a simple PDF–Rietveld refinement using an ideal average crystal structure model struggles to describe the defect-rich local nature of the post-milled sample. As such, a more advanced defect-rich structure model based on DFT–PDF refinements is proposed in this work, described in more detail in Section 3.5[link].

[Figure 6]
Figure 6
Representative PDF–Rietveld refinement plots of PFO and CFO in the long (left) and short to medium (right) range.

The bond lengths obtained from Bragg–Rietveld and PDF–Rietveld refinements are compared in Table S3 within each of the forsterite samples. Based on Bragg–Rietveld refinements, the average bond lengths [further noted as 〈Mg(1)—O〉, 〈Mg(2)—O〉 and 〈Si—O〉] of RFO and PFO are virtually identical, whereas the bond lengths of HFO only differ by a maximum of 0.1 pm. Interestingly, 〈Mg(1)—O〉 and 〈Mg(2)—O〉 of CFO are slightly longer than those of the defect-poor forsterites [Δ1 pm for 〈Mg(1)—O〉 and Δ0.5 pm for 〈Mg(2)—O〉]. On the contrary, the 〈Si—O〉 of CFO is the shortest among all forsterites (Δ2 pm). As a consequence, the bond valence sum (BVS) (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) of Si in the CFO is found to show over bonding [4.19(2) v.u.].

Unlike the Bragg–Rietveld refinements, which suggest shorter 〈Si—O〉 bond lengths for CFO, the 〈Si—O〉 bonds determined through PDF–Rietveld refinements consistently display similar values. This results in an Si BVS of 3.84(3) v.u. across all forsterites. We attribute the different interatomic distances obtained from PDF–Rietveld and Bragg–Rietveld analyses to ACS limitation effects of the short synchrotron wavelength due to maximal observable average crystallite size [MOACS (Gesing & Robben, 2024[Gesing, T. M. & Robben, L. (2024). J. Appl. Cryst. 57, 1466-1476.])] and the repeated observation. Furthermore, Rietveld refinements often describe local distortions, such as atom displacement, with an increase in the Debye–Waller factor (Abeykoon et al., 2009[Abeykoon, A. M., Donner, W., Brunelli, M., Castro-Colin, M., Jacobson, A. J. & Moss, S. C. (2009). J. Am. Chem. Soc. 131, 13230-13231.]).

3.5. DFT–PDF refinement

3.5.1. Single-phase refinement

Small box (single unit cell): in Section 3.4[link] the fitting results against crystalline Mg2SiO4 for all samples have been given. To receive a better fit of the structure model against the experimental PDF data of CFO, DFT-assisted PDF refinements (DFT–PDF) were implemented. As an initial step, a geometry-optimized structure model of Mg2SiO4 without defects (GOSWD) was selected. Single-phase DFT–PDF refinements using this symmetry-free structure model showed a slightly better fit (RPDF = 23 %) compared with the original (symmetry-constraint) model for defect-free, crystalline Mg2SiO4 (RPDF = 26 %). Then, 17 structure models containing vacancy, Schottky and Frenkel defects (see Fig. S1 of the supporting information) were generated from the DFT–PDF workflow (Section 2.7[link]). Furthermore, each DFT–PDF-generated structure model was individually selected for DFT–PDF refinement. Overall, the new defective structure models gave an RPDF in the range 22–28 %, where defects involving oxygen show the lowest values.

Large box (2 × 2 × 2 unit cells): to realize lower concentrations of defects, larger systems (2 × 2 × 2 unit cells) were employed. To begin with, DFT–PDF refinements of a pristine 2 × 2 × 2 structure without further structure variation gave RPDF = 37 %, while its GOSWD converged with RPDF = 27 %. The significant mismatch observed between these refinements offers additional indications that the crystalline structure is unable to accommodate the defect-rich characteristics of the CFO sample. As before, 17 defective 2 × 2 × 2 models containing vacancy, Frenkel and Schottky defects were generated from DFT–PDF optimization. The refinements converged with an RPDF in the range 19–22 %. Nine of them (four different vacancies, two Frenkel and three Schottky defects) have almost identical RPDF values of 19 %.

Point defect (2 × 1 × 2 unit cells): in a third approach, charge defect analysis was in focus. Both charged and neutral defects are considered for this calculation, for which the size of 2 × 1 × 2 unit cells was selected. In total, ten defective 2 × 1 × 2 structure models were investigated: Mg interstitial and vacancy, O interstitial and vacancy, as well as Si interstitial. The refinements converged with RPDF = 25–28 %, showing trends like the values for the single unit cells used. Table S4 summarizes the RPDF values of all defective structure candidates.

3.5.2. Stability of defective structure candidates

The calculated formation energies of the defective structure candidates are reported in Table S4. Positive numbers indicate metastable or unfavorable structures, whereas negative values indicate spontaneous or favorable formation of the structures. It can be observed that most of the structures have positive formation energies. Schottky defects in particular show the highest formation energies (>8 eV) and therefore those structures should be discarded as possible candidates. Table 3[link] shows selected defective structure candidates (CIFs can be found in the supporting information) with formation energies <5 eV. Note, the formation energies in Table 3[link] were not corrected to account for the formation of a single defect in the dilute limit, since we expect high defect concentrations in CFO. A complete list of formation energies at different defect concentrations, to extrapolate the dilute limit, can be found in Table S5.

Table 3
Selected defective structure candidates along with their symmetry analysis upon cell relaxation, formation energy and RPDF values

GOSWD = geometry-optimized structure without defect, F = Frenkel, I = interstitial, V = vacancy. The structure model marked with * falls back to the pristine structure upon optimization.

Defective structure candidate Unit-cell size Symmetry analysis Formation energy /eV RPDF /%
GOSWD 1 Pbnm (62)* 0.01 23
Mg(1) F 1 P1 (2) 2.98 25
Mg I +0 2 × 1 × 2 P1 (1) 3.73 27
Mg I +2 2 × 1 × 2 P1 (1) −5.25 27
O I +0 2 × 1 × 2 P1 (1) 1.37 27
O V +2 2 × 1 × 2 P1 (1) 1.49 27
Si I +4 2 × 1 × 2 P1 (1) −9.07 28

The interpretation of formation energies is not straightforward, since they strongly depend on the calculation scheme and the defect concentration/size of the simulation cell. Earlier studies by Walker et al. (2009[Walker, A. M., Woodley, S. M., Slater, B. & Wright, K. (2009). Phys. Earth Planet. Inter. 172, 20-27.], 2003[Walker, A. M., Wright, K. & Slater, B. (2003). Phys. Chem. Miner. 30, 536-545.]) did not consider the possible interaction between the defects (i.e. they performed a `mere' energy difference, hence the interaction of charged defects is long-ranged and sizeable). As an improvement, we extrapolated the free energy of formation to the infinite volume, i.e. to the dilute limit (using the formula shown in the supporting information). Nevertheless, similarly we found that Mg(1) Frenkel defects are energetically stable with a formation energy of 2.98 eV. In addition, we performed vacancy and interstitial supercell calculations with charged point defects and found comparable results to the available literature (Walker et al., 2009[Walker, A. M., Woodley, S. M., Slater, B. & Wright, K. (2009). Phys. Earth Planet. Inter. 172, 20-27.], 2003[Walker, A. M., Wright, K. & Slater, B. (2003). Phys. Chem. Miner. 30, 536-545.]). At high defect concentrations, both Si4+ and Mg2+ interstitials seem to be the most energetically favorable. However, oxygen vacancies are found to be the most favorable defects in the extrapolated dilute limit (very low concentration). This may be due to the usage of a GGA functional, which tends to underestimate the bond strength of the oxygen molecule. Table S5 summarizes the formation energy of charge defect structures computed using different fixed supercell sizes and extrapolated dilute limits.

3.5.3. Multi-phase refinement

Ultimately, all structure motifs with favorable energy (as listed in Table 3[link]) were used in combined multi-phase refinements. In principle, the respective defective structure is treated as a secondary phase alongside the crystalline one (GOSWD). The refined defective phases showing a negative scale factor were removed one at a time from the refinements. The best fit is finally achieved using a combination of a single unit cell of GOSWD and Mg(1) Frenkel, along with 2 × 1 × 2 Mg2+ interstitial defect structures which converge to RPDF = 18 %, as illustrated in Fig. 7[link]. This fitting indicates that CFO consists of 67(3) wt% GOSWD, 23(3) wt% Mg Frenkel and 10(3) wt% of Mg2+ interstitial. The optimized defective forsterite structure models are shown in Fig. 8[link]. Note, however, that any defect summarized in Table 3[link] might be present in defective Mg2SiO4, but not in the CFO sample with defects mechanically induced by BM. Although Si4+ interstitials might be favorable from an energetic point of view, this motif does not improve the PDF fit of CFO. Therefore, the presence of this type of defect is rather unlikely, and is probably prevented by the atmospheric reaction conditions leading to a high concentration of oxygen-rich phases.

[Figure 7]
Figure 7
Multi-phase DFT–PDF refinement plot of CFO in the long and short to medium (inset) range.
[Figure 8]
Figure 8
DFT–PDF optimized crystal structures of (a) 2 × 1 × 2 Mg2+ interstitial and (b) single unit cell Mg(1) Frenkel defects in comparison with the (c) pristine forsterite structure.

4. Conclusions and outlook

Structural differences between defect-poor and defect-rich forsterite (Mg2SiO4) were investigated. Mechanically induced defect-rich forsterite was obtained by BM of defect-poor (pristine) forsterite. Implementing PDF–Rietveld refinements on X-ray synchrotron data indicated a complex disorder structure in the defect-rich forsterite. Raman peak broadening and global red shifts complemented the structural features of the defective phases. The defect-rich structure models were simulated using the DFT–PDF method to better describe the disorder in the local structure. DFT–PDF refinements indicate that post-processed forsterite contains Mg Frenkel-type and Mg2+ interstitial defects with concentrations of 23(3) and 10(3) wt%, respectively. DFT calculations confirmed that the defective structure models are energetically stable. This finding is an important starting point to characterize and quantify defect-rich Martian regolith. Further investigations involving a larger number of phases are necessary as a stepwise strategy to structurally describe multi-phase Martian regolith. Additionally, a comparative study between radiation-induced defects and the mechanically induced defects described here would be of high demand to understand the mechanism of space weathering effects.

Supporting information


Computing details top

magnesium silicate (Mg2SiO4_CFO_USI_2121821137_Frenkel_Mg1) top
Crystal data top
Mg8O16Si4α = 90°
Mr = 562.76β = 90°
Triclinic, P1γ = 90°
Hall symbol: P 1V = 285.47 Å3
a = 4.72942 ÅZ = 1
b = 10.1528 ÅMelting point: not measured K
c = 5.94525 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10.97360.00740.00480.00317
Mg20.49480.50770.00230.00317
Mg30.49980.50630.47940.00317
Mg40.98120.28700.27220.01008
Mg50.00010.72470.70990.01008
Mg60.48400.21670.74860.01008
Mg70.50050.78020.26160.01008
Si10.39200.10050.26160.00674
Si20.57010.90880.74400.00674
Si30.94070.40460.72680.00674
Si40.05880.59890.21530.00674
O10.68860.06770.22800.05374
O20.28750.91690.79570.05374
O30.25860.42600.76420.05374
O40.64890.60690.24590.05374
O50.18600.44020.24600.00892
O60.77780.55240.72050.00892
O70.76940.05760.70970.00892
O80.25840.93210.22800.00892
O90.26880.18100.01080.00750
O100.68990.82590.92910.00750
O110.73920.34000.99430.00750
O120.17810.65480.99250.00750
O130.68100.82500.48490.00750
O140.31360.18330.43630.00750
O150.21430.66720.45310.00750
O160.73880.33630.54940.00750
Mg80.08940.45630.47470.00317
magnesium silicate (Mg2SiO4_CFO_USI_2121821137_GOSWD) top
Crystal data top
Mg8O16Si4α = 90°
Mr = 562.76β = 90°
Triclinic, P1γ = 90°
Hall symbol: P 1V = 290.34 Å3
a = 4.756 ÅZ = 1
b = 10.2035 ÅMelting point: not measured K
c = 5.983 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10.998220.980170.974271.0000
Mg20.493680.482720.960671.0000
Mg30.011690.979740.496651.0000
Mg40.494290.469770.472761.0000
Mg50.993780.264210.234561.0000
Mg60.999140.704530.733841.0000
Mg70.470820.213840.748951.0000
Mg80.517930.758860.229901.0000
Si10.441110.075400.217781.0000
Si20.580660.883950.745061.0000
Si30.905180.386890.726831.0000
Si40.069640.574970.235621.0000
O10.781900.081650.250001.0000
O20.233980.874400.755031.0000
O30.243890.395090.716721.0000
O40.725790.563290.228871.0000
O50.223290.431610.206111.0000
O60.779450.536530.715351.0000
O70.695700.038870.724701.0000
O80.287100.933740.240161.0000
O90.252670.138750.023121.0000
O100.751560.816940.957081.0000
O110.781890.320070.959891.0000
O120.220270.650250.022571.0000
O130.721740.819020.522521.0000
O140.390920.088630.484361.0000
O150.198670.681650.418231.0000
O160.760810.304010.519731.0000
magnesium silicate (Mg2SiO4_CFO_USI_2121821137_Interstitial_Mg_0) top
Crystal data top
Mg33O64Si16α = 90°
Mr = 2275.36β = 90°
Triclinic, P1γ = 90°
Hall symbol: P 1V = 1162.88 Å3
a = 9.5166 ÅZ = 1
b = 10.2043 ÅMelting point: not measured K
c = 11.9748 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10.5869600.4411800.8793100.008640
Mg20.5869500.4411700.3793200.008640
Mg30.0869600.4411900.8793100.008640
Mg40.0869600.4411800.3793000.008640
Mg50.5869600.4411900.1293100.008640
Mg60.5869600.4411600.6293200.008640
Mg70.0869600.4411600.1293200.008640
Mg80.0869600.4411600.6293100.008640
Mg90.8369500.9411700.8793100.008640
Mg100.8369600.9411800.3793100.008640
Mg110.3369600.9411700.8793000.008640
Mg120.3369600.9411700.3793200.008640
Mg130.8369600.9411800.1293000.008640
Mg140.8369600.9411900.6293300.008640
Mg150.3369600.9411800.1293100.008640
Mg160.3369400.9411800.6293100.008640
Mg170.8411600.2177200.0043100.008640
Mg180.8411500.2177600.5043100.008640
Mg190.3411500.2177500.0043100.008640
Mg200.3411500.2177400.5043200.008640
Mg210.8327500.6645900.2543100.008640
Mg220.8327700.6646000.7543200.008640
Mg230.3327500.6646100.2543100.008640
Mg240.3327700.6646000.7543200.008640
Mg250.5911500.1646000.2543200.008640
Mg260.5911700.1645900.7543200.008640
Mg270.0911600.1646100.2543000.008640
Mg280.0911600.1646100.7543200.008640
Mg290.0827500.7177300.0043100.008640
Mg300.0827600.7177600.5043100.008640
Mg310.5827600.7177600.0043100.008640
Mg320.5827600.7177500.5043100.008640
Si10.6237500.0350300.0043100.006143
Si20.6237400.0350400.5043100.006143
Si30.1237500.0350300.0043100.006143
Si40.1237300.0350400.5043300.006143
Si50.0501900.8473200.2543200.006143
Si60.0501700.8473300.7543300.006143
Si70.5501800.8473200.2543200.006143
Si80.5501900.8473400.7543400.006143
Si90.8737200.3473400.2543100.006143
Si100.8737300.3473100.7543200.006143
Si110.3737400.3473100.2543100.006143
Si120.3737400.3473100.7543000.006143
Si130.8001800.5350300.0043100.006143
Si140.8001900.5350600.5043000.006143
Si150.3001900.5350300.0043100.006143
Si160.3001900.5350400.5043000.006143
O10.9528700.0328400.0043000.016726
O20.9529300.0328500.5043100.016726
O30.4529300.0328500.0043100.016726
O40.4529300.0328600.5043200.016726
O50.7209900.8495000.2543100.016726
O60.7209900.8494900.7543000.016726
O70.2209900.8495000.2543100.016726
O80.2209800.8495000.7543100.016726
O90.7029300.3495100.2543100.016726
O100.7029200.3495000.7543200.016726
O110.2029200.3494900.2543100.016726
O120.2029200.3494900.7543100.016726
O130.9709800.5328500.0043100.016726
O140.9709900.5328500.5043200.016726
O150.4709900.5328500.0043100.016726
O160.4709900.5328600.5043200.016726
O170.6978000.8875500.0042800.016726
O180.6979600.8871700.5043100.016726
O190.1979700.8871600.0043100.016726
O200.1979600.8871700.5043200.016726
O210.9759500.9951800.2543200.016726
O220.9759600.9951900.7543000.016726
O230.4759600.9951900.2543100.016726
O240.4759700.9951900.7543200.016726
O250.9479500.4951800.2543100.016726
O260.9479600.4951900.7543200.016726
O270.4479500.4951900.2543100.016726
O280.4479600.4951900.7543100.016726
O290.7259500.3871700.0043100.016726
O300.7259600.3871700.5043100.016726
O310.2259600.3871700.0043100.016726
O320.2259600.3871600.5043200.016726
O330.6989400.1045300.1134300.016726
O340.6989400.1045200.6134100.016726
O350.1989500.1045200.1134100.016726
O360.1989400.1045200.6134100.016726
O370.9749700.7778300.3634000.016726
O380.9749700.7778200.8634000.016726
O390.4749700.7778300.3634200.016726
O400.4749800.7778400.8634100.016726
O410.9489500.2778400.1452200.016726
O420.9489400.2778400.6452200.016726
O430.4489400.2778300.1452100.016726
O440.4489400.2778200.6452100.016726
O450.7249600.6045200.8952100.016726
O460.7249700.6045200.3952100.016726
O470.2249700.6045200.8952100.016726
O480.2249700.6045200.3952100.016726
O490.9749600.7778300.1452100.016726
O500.9749800.7778300.6452100.016726
O510.4749700.7778300.1452100.016726
O520.4749600.7778400.6452200.016726
O530.6988900.1045900.8951800.016726
O540.6989400.1045200.3952200.016726
O550.1989600.1045300.8952100.016726
O560.1989400.1045200.3952100.016726
O570.7249600.6045100.1134100.016726
O580.7249700.6045300.6134200.016726
O590.2249600.6045200.1134100.016726
O600.2249700.6045200.6134100.016726
O610.9489500.2778300.3634100.016726
O620.9489400.2778200.8634100.016726
O630.4489400.2778400.3634200.016726
O640.4489400.2778400.8634100.016726
Mg330.7934400.9999900.9395000.008640
magnesium silicate (Mg2SiO4_CFO_USI_2121821137_Interstitial_Mg_+2) top
Crystal data top
Mg33O64Si16α = 90°
Mr = 2275.36β = 90°
Triclinic, P1γ = 90°
Hall symbol: P 1V = 1162.91 Å3
a = 9.5167 ÅZ = 1
b = 10.2047 ÅMelting point: not measured K
c = 11.9746 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10.000010.000030.750050.683371
Mg20.0000500.250020.683371
Mg30.500040.00010.750030.683371
Mg40.500040.000020.250.683371
Mg50.00004000.683371
Mg60.000040.000030.50.683371
Mg70.5000500.000040.683371
Mg80.500030.000010.500030.683371
Mg90.250050.499990.750010.683371
Mg100.250060.500010.250010.683371
Mg110.750040.500020.750010.683371
Mg120.750030.50.250010.683371
Mg130.250050.500020.000020.683371
Mg140.250020.500030.500010.683371
Mg150.750030.500020.000030.683371
Mg160.750050.500020.500010.683371
Mg170.254250.776550.875010.683371
Mg180.254220.776570.375010.683371
Mg190.754240.776560.875010.683371
Mg200.754240.776560.375020.683371
Mg210.245830.223480.125010.683371
Mg220.245840.223480.624990.683371
Mg230.745840.223480.125020.683371
Mg240.745820.223480.625010.683371
Mg250.004250.723490.125010.683371
Mg260.004240.723490.625010.683371
Mg270.504230.723460.1250.683371
Mg280.504230.723460.6250.683371
Mg290.495840.276550.875020.683371
Mg300.495840.276560.375010.683371
Mg310.995840.276570.875010.683371
Mg320.995840.276560.374990.683371
Mg330.489050.20590.810360.683371
Si10.036830.59390.875010.478005
Si20.036810.593890.375030.478005
Si30.536830.593910.875020.478005
Si40.536820.593890.3750.478005
Si50.463260.406140.1250.478005
Si60.463230.406150.624990.478005
Si70.963260.406120.125020.478005
Si80.963260.406160.625020.478005
Si90.286830.906130.125010.478005
Si100.286830.906130.625010.478005
Si110.786840.906160.1250.478005
Si120.786840.906130.6250.478005
Si130.213230.09390.875010.478005
Si140.213240.093880.3750.478005
Si150.713280.093880.875020.478005
Si160.713250.093890.375010.478005
O10.366020.59170.875011.33137
O20.366010.591690.375011.33137
O30.866010.591690.8751.33137
O40.866020.591690.3751.33137
O50.134070.408360.125011.33137
O60.134060.408350.6251.33137
O70.634060.408350.125011.33137
O80.634060.408340.625021.33137
O90.116010.908350.125011.33137
O100.116010.908340.625011.33137
O110.616010.908350.125011.33137
O120.616010.908340.625011.33137
O130.384110.091720.874991.33137
O140.384070.091690.375011.33137
O150.884090.091680.875011.33137
O160.884060.09170.375011.33137
O170.110830.446480.875031.33137
O180.111020.446010.375011.33137
O190.611030.446010.875011.33137
O200.611030.446010.375011.33137
O210.389050.554040.125011.33137
O220.389040.554030.625021.33137
O230.889050.554020.125011.33137
O240.889050.554020.625011.33137
O250.361030.054020.125011.33137
O260.361030.054020.6251.33137
O270.861030.054030.125011.33137
O280.861040.054020.625011.33137
O290.139060.9460.875011.33137
O300.139040.9460.375011.33137
O310.639060.945990.875011.33137
O320.639050.946010.375011.33137
O330.112030.663350.984111.33137
O340.112040.663360.484121.33137
O350.612040.663360.984121.33137
O360.612030.663360.484111.33137
O370.388050.336670.234121.33137
O380.388030.336690.734111.33137
O390.888050.336670.23411.33137
O400.888050.336680.734121.33137
O410.362030.836660.01591.33137
O420.362020.836670.51591.33137
O430.862020.836670.01591.33137
O440.862040.836680.515911.33137
O450.138050.163360.76591.33137
O460.138040.163360.265891.33137
O470.638090.163340.765881.33137
O480.638050.163370.265891.33137
O490.388040.336680.015911.33137
O500.388040.336670.515911.33137
O510.888060.336670.01591.33137
O520.888040.336670.51591.33137
O530.112040.663360.76591.33137
O540.112030.663360.26591.33137
O550.612040.663360.76591.33137
O560.612030.663370.265891.33137
O570.138030.163370.984111.33137
O580.138050.163370.484121.33137
O590.638060.163360.984141.33137
O600.638040.163360.484121.33137
O610.362030.836670.234121.33137
O620.362040.836660.734121.33137
O630.862030.836680.234111.33137
O640.862050.836680.734121.33137
magnesium silicate (Mg2SiO4_CFO_USI_2121821137_Interstitial_O_0) top
Crystal data top
Mg32O65Si16α = 90°
Mr = 2267.05β = 90°
Triclinic, P1γ = 90°
Hall symbol: P 1V = 1162.82 Å3
a = 9.5170 ÅZ = 1
b = 10.2042 ÅMelting point: not measured K
c = 11.9739 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10.5869500.3235200.7413700.008622
Mg20.5869600.3235300.2413800.008622
Mg30.0869700.3235300.7413800.008622
Mg40.0869600.3235200.2413800.008622
Mg50.5869500.3235300.9913800.008622
Mg60.5869600.3235300.4913800.008622
Mg70.0869700.3235300.9913800.008622
Mg80.0869600.3235300.4913800.008622
Mg90.8369600.8235300.7413800.008622
Mg100.8369500.8235200.2413900.008622
Mg110.3369500.8235300.7413800.008622
Mg120.3369600.8235300.2413800.008622
Mg130.8369500.8235500.9913700.008622
Mg140.8369500.8235200.4913800.008622
Mg150.3369500.8235300.9913800.008622
Mg160.3369600.8235300.4913800.008622
Mg170.8411600.1001300.8663800.008622
Mg180.8411600.1001200.3663800.008622
Mg190.3411600.1001200.8663800.008622
Mg200.3411500.1001200.3663800.008622
Mg210.8327600.5469300.1163800.008622
Mg220.8327600.5469300.6163800.008622
Mg230.3327700.5469300.1163800.008622
Mg240.3327700.5469300.6163800.008622
Mg250.5911600.0469300.1163700.008622
Mg260.5911500.0469300.6163900.008622
Mg270.0911500.0469300.1163800.008622
Mg280.0911500.0469300.6163800.008622
Mg290.0827600.6001300.8663800.008622
Mg300.0827700.6001300.3663800.008622
Mg310.5827600.6001100.8663800.008622
Mg320.5827500.6001300.3663800.008622
Si10.6237400.9173900.8663800.006169
Si20.6237300.9173900.3663800.006169
Si30.1237300.9173800.8663800.006169
Si40.1237300.9173900.3663800.006169
Si50.0501900.7296600.1163800.006169
Si60.0501900.7296700.6163800.006169
Si70.5501900.7296600.1163800.006169
Si80.5501900.7296700.6163900.006169
Si90.8737100.2296600.1163700.006169
Si100.8737200.2296600.6163800.006169
Si110.3737200.2296700.1163800.006169
Si120.3737200.2296700.6163700.006169
Si130.8001900.4173900.8663800.006169
Si140.8001900.4173900.3663700.006169
Si150.3001800.4173900.8663800.006169
Si160.3001900.4174000.3663800.006169
O10.9529000.9152200.8663800.016973
O20.9529200.9152100.3663800.016973
O30.4529300.9152000.8663800.016973
O40.4529200.9152100.3663800.016973
O50.7209900.7318500.1163800.016973
O60.7209900.7318500.6163800.016973
O70.2209900.7318500.1163800.016973
O80.2209900.7318500.6163800.016973
O90.7029300.2318500.1163800.016973
O100.7029300.2318500.6163800.016973
O110.2029300.2318500.1163800.016973
O120.2029200.2318500.6163800.016973
O130.9709900.4152100.8663800.016973
O140.9709900.4152100.3663800.016973
O150.4709800.4152100.8663800.016973
O160.4709800.4152000.3663800.016973
O170.6979200.7695700.8663800.016973
O180.6979600.7695200.3663800.016973
O190.1979700.7695200.8663800.016973
O200.1979600.7695200.3663800.016973
O210.9759400.8775400.1163700.016973
O220.9759400.8775400.6163900.016973
O230.4759500.8775300.1163800.016973
O240.4759500.8775300.6163800.016973
O250.9479600.3775400.1163800.016973
O260.9479600.3775400.6163700.016973
O270.4479600.3775400.1163800.016973
O280.4479600.3775400.6163800.016973
O290.7259500.2695200.8663800.016973
O300.7259500.2695300.3663800.016973
O310.2259500.2695200.8663800.016973
O320.2259500.2695300.3663800.016973
O330.6989100.9868700.9755000.016973
O340.6989400.9868800.4754700.016973
O350.1989400.9868800.9754800.016973
O360.1989300.9868800.4754700.016973
O370.9749800.6601900.2254700.016973
O380.9749800.6601800.7254700.016973
O390.4749800.6601900.2254700.016973
O400.4749800.6601800.7254700.016973
O410.9489500.1601900.0072900.016973
O420.9489400.1601900.5072900.016973
O430.4489400.1601900.0072900.016973
O440.4489300.1601800.5072800.016973
O450.7249800.4868800.7572800.016973
O460.7249700.4868800.2572900.016973
O470.2249700.4868700.7572800.016973
O480.2249700.4868800.2572800.016973
O490.9749700.6601800.0072900.016973
O500.9749800.6601800.5072900.016973
O510.4749800.6601800.0072800.016973
O520.4749800.6601900.5072900.016973
O530.6989400.9868800.7572800.016973
O540.6989300.9868800.2572800.016973
O550.1989400.9868800.7572900.016973
O560.1989400.9868800.2572900.016973
O570.7249800.4868800.9754800.016973
O580.7249700.4868800.4754700.016973
O590.2249700.4868700.9754800.016973
O600.2249700.4868800.4754700.016973
O610.9489400.1601900.2254700.016973
O620.9489400.1601800.7254700.016973
O630.4489300.1601800.2254700.016973
O640.4489400.1601900.7254700.016973
O650.7935600.0000700.8706700.016973
magnesium silicate (Mg2SiO4_CFO_USI_2121821137_Interstitial_Si_+4) top
Crystal data top
Mg32O64Si17α = 90°
Mr = 2279.18β = 90°
Triclinic, P1γ = 90°
Hall symbol: P 1V = 1162.88 Å3
a = 9.5164 ÅZ = 1
b = 10.2043 ÅMelting point: not measured K
c = 11.9750 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10.5869600.4607900.8448300.008651
Mg20.5869600.4608100.3448100.008651
Mg30.0869700.4607900.8448400.008651
Mg40.0869800.4607800.3448300.008651
Mg50.5869600.4607900.0948300.008651
Mg60.5869600.4607600.5948400.008651
Mg70.0869600.4608000.0948300.008651
Mg80.0869500.4607800.5948200.008651
Mg90.8369600.9607800.8448200.008651
Mg100.8369600.9607900.3448300.008651
Mg110.3369700.9607700.8448200.008651
Mg120.3369500.9607800.3448300.008651
Mg130.8369400.9608000.0947900.008651
Mg140.8369700.9607800.5948400.008651
Mg150.3369700.9607900.0948300.008651
Mg160.3369400.9608000.5948300.008651
Mg170.8411700.2373900.9698400.008651
Mg180.8411500.2373300.4698400.008651
Mg190.3411500.2373400.9698300.008651
Mg200.3411500.2373300.4698200.008651
Mg210.8327400.6842300.2198200.008651
Mg220.8327600.6842500.7198200.008651
Mg230.3327700.6842500.2198200.008651
Mg240.3327700.6842500.7198300.008651
Mg250.5911600.1842400.2198400.008651
Mg260.5911600.1842200.7198400.008651
Mg270.0911700.1842300.2198100.008651
Mg280.0911600.1842400.7198300.008651
Mg290.0827500.7373600.9698200.008651
Mg300.0827700.7373300.4698300.008651
Mg310.5827900.7373300.9698300.008651
Mg320.5827600.7373400.4698400.008651
Si10.6238200.0546600.9698200.006304
Si20.6237500.0546500.4698500.006304
Si30.1237800.0546500.9698300.006304
Si40.1237400.0546600.4698500.006304
Si50.0501600.8669100.2198500.006304
Si60.0501400.8669300.7198500.006304
Si70.5501800.8669100.2198400.006304
Si80.5501700.8669400.7198600.006304
Si90.8737300.3669000.2198400.006304
Si100.8737600.3669200.7198200.006304
Si110.3737600.3669100.2198200.006304
Si120.3737400.3669000.7198300.006304
Si130.8001700.5546300.9698300.006304
Si140.8001700.5546600.4698400.006304
Si150.3001800.5546900.9698300.006304
Si160.3001700.5546600.4698200.006304
O10.9528700.0524500.9698100.017238
O20.9529300.0524500.4698400.017238
O30.4529300.0524500.9698200.017238
O40.4529300.0524600.4698400.017238
O50.7209800.8691100.2198100.017238
O60.7209900.8691100.7198200.017238
O70.2209900.8691000.2198200.017238
O80.2209800.8691200.7198300.017238
O90.7029400.3691000.2198400.017238
O100.7029200.3691200.7198200.017238
O110.2029300.3691100.2198200.017238
O120.2029400.3691100.7198300.017238
O130.9709800.5524600.9698300.017238
O140.9709800.5524600.4698300.017238
O150.4709800.5524500.9698300.017238
O160.4709900.5524600.4698500.017238
O170.6979000.9067400.9698500.017238
O180.6979500.9067800.4698200.017238
O190.1979700.9067700.9698300.017238
O200.1979500.9067700.4698300.017238
O210.9759700.0148000.2198200.017238
O220.9759600.0148000.7198200.017238
O230.4759700.0148000.2198300.017238
O240.4759700.0147900.7198300.017238
O250.9479400.5148000.2198300.017238
O260.9479500.5147900.7198300.017238
O270.4479300.5147900.2198300.017238
O280.4479500.5148000.7198300.017238
O290.7259600.4067800.9698300.017238
O300.7259600.4067800.4698200.017238
O310.2259600.4067800.9698300.017238
O320.2259700.4067800.4698300.017238
O330.6989600.1241300.0789300.017238
O340.6989400.1241400.5789400.017238
O350.1989600.1241400.0789400.017238
O360.1989500.1241400.5789300.017238
O370.9749500.7974300.3289300.017238
O380.9749600.7974300.8289400.017238
O390.4749500.7974300.3289300.017238
O400.4749800.7974400.8289400.017238
O410.9489700.2974500.1107200.017238
O420.9489400.2974400.6107200.017238
O430.4489500.2974500.1107200.017238
O440.4489600.2974300.6107200.017238
O450.7249500.6241300.8607100.017238
O460.7249600.6241400.3607200.017238
O470.2249600.6241400.8607200.017238
O480.2249600.6241400.3607100.017238
O490.9749600.7974500.1107100.017238
O500.9749700.7974400.6107100.017238
O510.4749600.7974400.1107200.017238
O520.4749400.7974400.6107200.017238
O530.6989900.1240800.8607400.017238
O540.6989600.1241300.3607200.017238
O550.1989700.1241400.8607200.017238
O560.1989600.1241200.3607200.017238
O570.7249500.6241400.0789400.017238
O580.7249600.6241400.5789500.017238
O590.2249500.6241200.0789400.017238
O600.2249600.6241400.5789400.017238
O610.9489600.2974300.3289300.017238
O620.9489500.2974200.8289300.017238
O630.4489500.2974300.3289400.017238
O640.4489500.2974400.8289300.017238
Si170.7932800.9999900.9222900.006304
magnesium silicate (Mg2SiO4_CFO_USI_2121821137_Vacancy_O_+2) top
Crystal data top
Mg32O63Si16α = 90°
Mr = 2235.09β = 90°
Triclinic, P1γ = 90°
Hall symbol: P 1V = 1162.85 Å3
a = 9.5166 ÅZ = 1
b = 10.2044 ÅMelting point: not measured K
c = 11.9744 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10.7762300.3366700.5319600.008665
Mg20.7762300.3366600.0319500.008665
Mg30.2762400.3366600.5319500.008665
Mg40.2762400.3366500.0319500.008665
Mg50.7762200.3366700.7819600.008665
Mg60.7762400.3366600.2819600.008665
Mg70.2762400.3366500.7819600.008665
Mg80.2762300.3366500.2819400.008665
Mg90.0262300.8366500.5319400.008665
Mg100.0262300.8366500.0319600.008665
Mg110.5262300.8366700.5319600.008665
Mg120.5262300.8366700.0319500.008665
Mg130.0262400.8366300.7819500.008665
Mg140.0262300.8366500.2819600.008665
Mg150.5262200.8366500.7819500.008665
Mg160.5262300.8366600.2819600.008665
Mg170.0304600.1132700.6569300.008665
Mg180.0304200.1132300.1569600.008665
Mg190.5304200.1132300.6569400.008665
Mg200.5304400.1132300.1569600.008665
Mg210.0220300.5600800.9069500.008665
Mg220.0220400.5600900.4069500.008665
Mg230.5220400.5600800.9069500.008665
Mg240.5220300.5600700.4069500.008665
Mg250.7804400.0600800.9069500.008665
Mg260.7804300.0600900.4069600.008665
Mg270.2804300.0600900.9069500.008665
Mg280.2804300.0600900.4069500.008665
Mg290.2720300.6132300.6569500.008665
Mg300.2720400.6132300.1569600.008665
Mg310.7720300.6132400.6569500.008665
Mg320.7720300.6132400.1569500.008665
Si10.8130000.9305300.6569400.006257
Si20.8130000.9305300.1569500.006257
Si30.3129900.9305300.6569500.006257
Si40.3130000.9305300.1569500.006257
Si50.2394700.7428000.9069500.006257
Si60.2394800.7427900.4069500.006257
Si70.7394500.7427700.9069600.006257
Si80.7394600.7427900.4069600.006257
Si90.0630100.2428100.9069600.006257
Si100.0630000.2427900.4069600.006257
Si110.5629900.2427900.9069500.006257
Si120.5629900.2427800.4069500.006257
Si130.9894600.4305300.6569500.006257
Si140.9894600.4305400.1569600.006257
Si150.4894600.4305200.6569500.006257
Si160.4894600.4305100.1569500.006257
O10.1422000.9283400.6569500.016280
O20.1422100.9283400.1569500.016280
O30.6422100.9283400.6569600.016280
O40.6422000.9283400.1569500.016280
O50.9102500.7450000.9069500.016280
O60.9102600.7449900.4069500.016280
O70.4102600.7449800.9069500.016280
O80.4102600.7449900.4069500.016280
O90.8922000.2449800.9069500.016280
O100.8922000.2449800.4069500.016280
O110.3922000.2449900.9069500.016280
O120.3922000.2449800.4069500.016280
O130.1602500.4283300.6569500.016280
O140.1602600.4283300.1569400.016280
O150.6602500.4283300.6569500.016280
O160.6602600.4283300.1569500.016280
O170.8870900.7828400.6569800.016280
O180.8872300.7826500.1569500.016280
O190.3872300.7826500.6569500.016280
O200.3872300.7826500.1569500.016280
O210.1652300.8906700.9069600.016280
O220.1652300.8906600.4069500.016280
O230.6652400.8906700.9069500.016280
O240.6652300.8906700.4069500.016280
O250.1372200.3906800.9069500.016280
O260.1372300.3906700.4069500.016280
O270.6372400.3906800.9069500.016280
O280.6372200.3906700.4069500.016280
O290.9152200.2826400.6569600.016280
O300.9152300.2826500.1569500.016280
O310.4152300.2826500.6569500.016280
O320.4152300.2826400.1569500.016280
O330.8882200.0000100.2660600.016280
O340.3882200.0000100.7660600.016280
O350.3882200.0000100.2660600.016280
O360.1642400.6733000.0160600.016280
O370.1642400.6733000.5160600.016280
O380.6642300.6733100.0160600.016280
O390.6642300.6733100.5160600.016280
O400.1382200.1733000.7978400.016280
O410.1382200.1733100.2978500.016280
O420.6382200.1733000.7978400.016280
O430.6382200.1733100.2978500.016280
O440.9142400.5000100.5478500.016280
O450.9142500.5000100.0478500.016280
O460.4142500.5000100.5478500.016280
O470.4142400.5000100.0478500.016280
O480.1642300.6733100.7978500.016280
O490.1642400.6733100.2978600.016280
O500.6642400.6733100.7978500.016280
O510.6642400.6733200.2978500.016280
O520.8882200.0000100.5478600.016280
O530.8882200.0000100.0478600.016280
O540.3882200.0000100.5478500.016280
O550.3882200.0000100.0478500.016280
O560.9142400.5000100.7660600.016280
O570.9142500.5000100.2660600.016280
O580.4142500.5000100.7660600.016280
O590.4142400.5000100.2660600.016280
O600.1382200.1733100.0160600.016280
O610.1382200.1733100.5160600.016280
O620.6382200.1733100.0160600.016280
O630.6382200.1733100.5160600.016280
magnesium silicate (Mg2SiO4_CFO_USI_2121821137) top
Crystal data top
Mg2O4SiV = 290.31 (6) Å3
Mr = 140.69Z = 4
Orthorhombic, PbnmDx = 3.219 Mg m3
Hall symbol: -P 2c 2abMelting point: not measured K
a = 4.7542 (5) ÅCu Kα radiation
b = 10.2048 (13) ÅT = 295 K
c = 5.9839 (7) Å
Data collection top
Bruker D8 Discover
diffractometer
LynxEye-XET monochromator
Radiation source: fine-focus sealed tube2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015°
Refinement top
Rwp = 0.157586 data points
R(F) = 0.414(Δ/σ)max = 0.0001
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10000.90 (11)
Mg20.0147 (13)0.2768 (4)0.750.90 (11)
Si10.0701 (9)0.4010 (4)0.250.80 (11)
O10.2461 (15)0.0854 (9)0.751.00 (15)
O20.2809 (15)0.0488 (11)0.251.00 (15)
O30.2222 (11)0.3459 (6)0.4440 (10)1.00 (15)
Geometric parameters (Å, º) top
Si1—O31.479 (6)
O3—Si1—O3103.5 (3)
magnesium silicate (Mg2SiO4_HFO_USI_2121821138) top
Crystal data top
Mg2O4SiV = 290.05 (2) Å3
Mr = 140.69Z = 4
Orthorhombic, PbnmDx = 3.222 Mg m3
Hall symbol: -P 2c 2abMelting point: not measured K
a = 4.7523 (2) ÅCu Kα radiation
b = 10.2027 (4) ÅT = 295 K
c = 5.9821 (2) Å
Data collection top
Bruker D8 Discover
diffractometer
LynxEye-XET monochromator
Radiation source: fine-focus sealed tube2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015°
Refinement top
Rwp = 0.1681142 data points
R(F) = 0.546(Δ/σ)max = 0.0001
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10001.10 (8)
Mg20.0079 (7)0.2770 (3)0.751.10 (9)
Si10.0724 (5)0.4048 (3)0.250.90 (7)
O10.2414 (9)0.0897 (5)0.751.30 (17)
O20.2840 (9)0.0459 (7)0.251.30 (16)
O30.2167 (7)0.3427 (4)0.4535 (6)1.30 (12)
Geometric parameters (Å, º) top
Si1—O31.534 (4)
O3—Si1—O3105.03 (19)
magnesium silicate (Mg2SiO4_PFO_USI_2121821136) top
Crystal data top
Mg2O4SiV = 290.39 (1) Å3
Mr = 140.69Z = 4
Orthorhombic, PbnmDx = 3.218 Mg m3
Hall symbol: -P 2c 2abMelting point: not measured K
a = 4.7530 (1) ÅCu Kα radiation
b = 10.2084 (2) ÅT = 295 K
c = 5.9848 (1) Å
Data collection top
Bruker D8 Discover
diffractometer
LynxEye-XET monochromator
Radiation source: fine-focus sealed tube2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015°
Refinement top
Rwp = 0.1142486 data points
R(F) = 0.159(Δ/σ)max = 0.0001
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10000.95 (4)
Mg20.9929 (4)0.27775 (16)0.250.95 (4)
Si10.4268 (3)0.09397 (16)0.250.76 (4)
O10.7622 (5)0.0923 (3)0.250.54 (5)
O20.2202 (5)0.4501 (4)0.250.54 (5)
O30.2803 (4)0.1621 (2)0.0358 (4)0.54 (5)
Geometric parameters (Å, º) top
Si1—O31.616 (2)
O3—Si1—O3104.97 (12)
magnesium silicate (Mg2SiO4_RFO_USI_2121821033) top
Crystal data top
Mg2O4SiV = 290.45 (1) Å3
Mr = 140.69Z = 4
Orthorhombic, PbnmDx = 3.218 Mg m3
Hall symbol: -P 2c 2abMelting point: not measured K
a = 4.7515 (1) ÅCu Kα radiation
b = 10.2127 (2) ÅT = 295 K
c = 5.9854 (1) Å
Data collection top
Bruker D8 Discover
diffractometer
LynxEye-XET monochromator
Radiation source: fine-focus sealed tube2θmin = 5.000°, 2θmax = 85.006°, 2θstep = 0.015°
Refinement top
Rwp = 0.1113022 data points
R(F) = 0.222(Δ/σ)max = 0.0001
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Mg10000.86 (4)
Mg20.0081 (4)0.27743 (15)0.750.86 (4)
Si10.0730 (3)0.40599 (15)0.250.60 (4)
O10.2364 (5)0.0920 (3)0.750.80 (5)
O20.2803 (5)0.0507 (4)0.250.80 (5)
O30.2203 (4)0.3382 (2)0.4646 (3)0.80 (5)
Geometric parameters (Å, º) top
Si1—O31.618 (2)
O3—Si1—O3105.06 (9)
 

Acknowledgements

We acknowledge Professor Dr Lucio Colombi Ciacchi, University of Bremen, and Dr Sokseiha Muy, EPFL Switzerland, for fruitful discussions on the project. Parts of this research were carried out at PETRA III and we would like to thank Dr Alexander Schökel for assistance in using the P02.1 Powder Diffraction and Total Scattering Beamline.

Conflict of interest

The authors hereby state no conflict of interest.

Funding information

We acknowledge support by the state of Bremen within the `Humans on Mars' initiative for APF `Materials on demand' (grant No. S1P3). We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. AK acknowledges the Danish Research Council for covering travel expenses in relation to the synchrotron experiment (DanScatt) and the Deutsche Forschungsgemeinschaft (DFG, German science foundation) for funding of the project (grant Nos. KI2427/1-1 awarded to AK; 429360100). The authors gratefully acknowledge support from the DFG under Germany's Excellence Strategy (EXC 2077 grant No. 390741603, University Allowance, University of Bremen), as well as computing time granted by the Resource Allocation Board and provided on the supercomputers Lise and Emmy at NHR@ZIB and NHR@Göttingen as part of the NHR infrastructure. The calculations for this research were conducted with computing resources under the project hbi00059. NM acknowledges support by the National Center of Competence in Research, Materials' Revolution: Computational Design and Discovery of Novel Materials (MARVEL), funded by the Swiss National Science Foundation (grant No. 205602 awarded to NM).

References

First citationAbeykoon, A. M., Donner, W., Brunelli, M., Castro-Colin, M., Jacobson, A. J. & Moss, S. C. (2009). J. Am. Chem. Soc. 131, 13230–13231.  CrossRef ICSD PubMed CAS Google Scholar
First citationAchilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., Des Marais, D. J., Farmer, J. D., Sarrazin, P. C. & Morookian, J. M. (2017). JGR Planets, 122, 2344–2361.  CrossRef CAS Google Scholar
First citationAlkauskas, A., Deák, P., Neugebauer, J., Pasquarello, A. & Van de Walle, C. G. (2011). Advanced Calculations for Defects in Materials: Electronic Structure Methods. John Wiley & Sons.  Google Scholar
First citationAngel, R. J. & Prewitt, C. T. (1986). Am. Mineral. 71, 1476–1482.  CAS Google Scholar
First citationBastonero, L. & Marzari, N. (2024). npj Comput. Mater. 10, 55.  CrossRef Google Scholar
First citationBennett, C. J., Pirim, C. & Orlando, T. M. (2013). Chem. Rev. 113, 9086–9150.  CrossRef CAS PubMed Google Scholar
First citationBini, M., Ferrari, S., Capsoni, D., Mustarelli, P., Spina, G., Giallo, F. D., Lantieri, M., Leonelli, C., Rizzuti, A. & Massarotti, V. (2012). RSC Adv. 2, 250–258.  CrossRef CAS Google Scholar
First citationBisbo, M. K. & Hammer, B. (2020). Phys. Rev. Lett. 124, 086102.  CrossRef PubMed Google Scholar
First citationBisbo, M. K. & Hammer, B. (2022). Phys. Rev. B, 105, 245404.  CrossRef Google Scholar
First citationBish, D. L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W., Treiman, A. H., Sarrazin, P., Morrison, S. M., Downs, R. T., Achilles, C. N., Yen, A. S., Bristow, T. F., Crisp, J. A., Morookian, J. M., Farmer, J. D., Rampe, E. B., Stolper, E. M., Spanovich, N., Achilles, C., Agard, C., Verdasca, J. A. A., Anderson, R., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bell, J., Bender, S., Benna, M., Bentz, J., Berger, G., Berger, J., Berman, D., Bish, D., Blake, D. F., Avalos, J. J. B., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Bristow, T., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Rodríguez, J. C., Carmosino, M., Blázquez, I. C., Charpentier, A., Chipera, S., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Crisp, J., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., Juarez, M. T., DeFlores, L., DeLapp, D., DeMarines, J., DesMarais, D., Dietrich, W., Dingler, R., Donny, C., Downs, B., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edgett, K., Edwards, C., Edwards, L., Ehlmann, B., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Farmer, J., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez, F. G., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Grotzinger, J., Guillemot, P., Guo, J., Gupta, S., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hurowitz, J., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Jiménez, M. M., García, C. M., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., Maurice, S., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McLennan, S., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Milliken, R., Ming, D., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Jurado, A. M., Moores, J., Mora-Sotomayor, L., Morookian, J. M., Morris, R., Morrison, S., Mueller-Mellin, R., Muller, J., Caro, G. M., Nachon, M., López, S. N., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Newsom, H., Nikiforov, S., Niles, P., Nixon, B., Dobrea, E. N., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., Hernández, M. P., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Rampe, E., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Rice, M., Richardson, M., Robert, F., Robertson, K., Manfredi, J. A. R., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Fuentes, S. A. S., Saper, L., Sarrazin, P., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Martinez, E. S., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sánchez, P. S., Spanovich, N., Spray, J., Squyres, S., Stack, K., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Stolper, E., Sucharski, B., Sullivan, R., Summons, R., Sumner, D., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Redondo, J. T., Trainer, M., Treiman, A., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Vaniman, D., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, J., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yen, A., Yingst, A., Zeitlin, C., Zimdar, R. & Mier, M. Z. (2013). Science, 341, 1238932.  Google Scholar
First citationBowen, N., Greig, J. & Zies, E. (1924). J. Wash. Acad. Sci. 14, 183–191.  CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCampisi, D., Tielens, A. G. G. M. & Dononelli, W. (2024). Mon. Not. R. Astron. Soc. 533, 2282–2293.  CrossRef Google Scholar
First citationCertini, G., Karunatillake, S., Zhao, Y. S., Meslin, P.-Y., Cousin, A., Hood, D. R. & Scalenghe, R. (2020). Planet. Space Sci. 186, 104922.  CrossRef Google Scholar
First citationChauhan, A. & Chauhan, P. (2014). J. Anal. Bioanal. Tech. 5, 212.  Google Scholar
First citationChopelas, A. (1991). Am. Mineral. 76, 1101–1109.  CAS Google Scholar
First citationCline, J. P., Black, D. R., Gil, D., Henins, A. & Windover, D. (2010). Mater. Sci. Forum, 651, 201–219.  CrossRef CAS Google Scholar
First citationCong, R., Yang, T., Li, K., Li, H., You, L., Liao, F., Wang, Y. & Lin, J. (2010). Acta Cryst. B66, 141–150.  CrossRef ICSD IUCr Journals Google Scholar
First citationCzaya, R. (1971). Acta Cryst. B27, 848–849.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationDe, G., Karmakar, B. & Ganguli, D. (2000). J. Mater. Chem. 10, 2289–2293.  CrossRef CAS Google Scholar
First citationDella Giusta, A., Ottonello, G. & Secco, L. (1990). Acta Cryst. B46, 160–165.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationDemidov, N., Bazilevskii, A. & Kuz'min, R. (2015). Sol. Syst. Res. 49, 209–225.  CrossRef Google Scholar
First citationDemtröder, W. (2008). Laser Spectroscopy: Basic Principles. Vol. 1. Berlin, Heidelberg: Springer.  Google Scholar
First citationDippel, A.-C., Liermann, H.-P., Delitz, J. T., Walter, P., Schulte-Schrepping, H., Seeck, O. H. & Franz, H. (2015). J. Synchrotron Rad. 22, 675–687.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDononelli, W. (2023). Bunsen-Magazin, 6, 204–207.  Google Scholar
First citationEgami, T. & Billinge, S. J. (2003). Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Elsevier.  Google Scholar
First citationEnkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H., Kristoffersen, H. H., Kuisma, M., Larsen, A. H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P. G., Ojanen, J., Olsen, T., Petzold, V., Romero, N. A., Stausholm-Møller, J., Strange, M., Tritsaris, G. A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M., Rantala, T. T., Schiøtz, J., Thygesen, K. S. & Jacobsen, K. W. (2010). J. Phys. Condens. Matter, 22, 253202.  CrossRef PubMed Google Scholar
First citationFarrow, C., Juhas, P., Liu, J., Bryndin, D., Božin, E., Bloch, J., Proffen, T. & Billinge, S. (2007). J. Phys. Condens. Matter, 19, 335219.  Web of Science CrossRef PubMed Google Scholar
First citationFathi, M. H. & Kharaziha, M. (2008). Mater. Lett. 62, 4306–4309.  CrossRef CAS Google Scholar
First citationFathi, M. H. & Kharaziha, M. (2009). J. Alloys Compd. 472, 540–545.  CrossRef CAS Google Scholar
First citationFischer, R. X., Schneider, H. & Gesing, T. M. (2009). Acta Cryst. A65, 232–233.  CrossRef IUCr Journals Google Scholar
First citationFreysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A. & Van de Walle, C. G. (2014). Rev. Mod. Phys. 86, 253–305.  Web of Science CrossRef Google Scholar
First citationFujino, K., Sasaki, S., Takéuchi, Y. & Sadanaga, R. (1981). Acta Cryst. B37, 513–518.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGesing, T. M., Murshed, M. M., Schuh, S., Thüringer, O., Krämer, K., Neudecker, T., Mendive, C. B. & Robben, L. (2022). J. Mater. Sci. 57, 19280–19299.  Web of Science CrossRef CAS Google Scholar
First citationGesing, T. M. & Robben, L. (2024). J. Appl. Cryst. 57, 1466–1476.  CrossRef CAS IUCr Journals Google Scholar
First citationGiannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A. Jr, Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901.  Web of Science CrossRef PubMed Google Scholar
First citationGiannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502.  Web of Science CrossRef PubMed Google Scholar
First citationGiannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., de Gironcoli, S., Delugas, P., Ferrari Ruffino, F., Ferretti, A., Marzari, N., Timrov, I., Urru, A. & Baroni, S. (2020). J. Chem. Phys. 152, 154105.  Web of Science CrossRef PubMed Google Scholar
First citationGogolin, M., Murshed, M. M., Ende, M., Miletich, R. & Gesing, T. M. (2020). J. Mater. Sci. 55, 177–190.  CrossRef CAS Google Scholar
First citationGouadec, G. & Colomban, P. (2007). Prog. Cryst. Growth Charact. Mater. 53, 1–56.  Web of Science CrossRef CAS Google Scholar
First citationHanke, K. (1965). Beitr. Miner. u Petro. 11, 535–558.  CrossRef CAS Google Scholar
First citationHazen, R. M. (1977). Am. Mineral. 62, 286–295.  CAS Google Scholar
First citationHofmeister, A. M. (1987). Phys. Chem. Miner. 14, 499–513.  CrossRef CAS Google Scholar
First citationHuber, S. P., Zoupanos, S., Uhrin, M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller, T., Yakutovich, A. V. & Andersen, C. W. (2020). Scientific data, 7, 300.  CrossRef PubMed Google Scholar
First citationIishi, K. (1978). Am. Mineral. 63, 1198–1208.  CAS Google Scholar
First citationIslam, N., Pradhan, A. & Kumar, S. (2005). J. Appl. Phys. 98, 024309.  CrossRef Google Scholar
First citationJuhás, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. (2013). J. Appl. Cryst. 46, 560–566.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJundullah Hanafi, M. I., Murshed, M. M., Robben, L. & Gesing, T. M. (2024). Z. Kristallogr. Cryst. Mater. 239, 261–271.  CrossRef Google Scholar
First citationKløve, M., Sommer, S., Iversen, B. B., Hammer, B. & Dononelli, W. (2023). Adv. Mater. 35, 2208220.  Google Scholar
First citationKolesov, B. & Geiger, C. (2004). Phys. Chem. Miner. 31, 142–154.  CrossRef CAS Google Scholar
First citationKomsa, H.-P., Rantala, T. T. & Pasquarello, A. (2012). Phys. Rev. B, 86, 045112.  CrossRef Google Scholar
First citationKudoh, Y. & Takeda, H. (1986). Phys. B+C. 139–140, 333–336.  CrossRef ICSD CAS Google Scholar
First citationLager, G. A., Ross, F. K., Rotella, F. J. & Jorgensen, J. D. (1981). J. Appl. Cryst. 14, 137–139.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P., Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z. & Jacobsen, K. W. (2017). J. Phys. Condens. Matter, 29, 273002.  Web of Science CrossRef PubMed Google Scholar
First citationLiu, Y., Tice, M., Schmidt, M., Treiman, A., Kizovski, T., Hurowitz, J., Allwood, A., Henneke, J., Pedersen, D., VanBommel, S., Jones, M. W. M., Knight, A. L., Orenstein, B. J., Clark, B. C., Elam, W. T., Heirwegh, C. M., Barber, T., Beegle, L. W., Benzerara, K., Bernard, S., Beyssac, O., Bosak, T., Brown, A. J., Cardarelli, E. L., Catling, D. C., Christian, J. R., Cloutis, E. A., Cohen, B. A., Davidoff, S., Fairén, A. G., Farley, K. A., Flannery, D. T., Galvin, A., Grotzinger, J. P., Gupta, S., Hall, J., Herd, C. D. K., Hickman-Lewis, K., Hodyss, R. P., Horgan, B. H. N., Johnson, J. R., Jørgensen, J. L., Kah, L. C., Maki, J. N., Mandon, L., Mangold, N., McCubbin, F. M., McLennan, S. M., Moore, K., Nachon, M., Nemere, P., Nothdurft, L. D., Núñez, J. I., O'Neil, L., Quantin-Nataf, C. M., Sautter, V., Shuster, D. L., Siebach, K. L., Simon, J. I., Sinclair, K. P., Stack, K. M., Steele, A., Tarnas, J. D., Tosca, N. J., Uckert, K., Udry, A., Wade, L. A., Weiss, B. P., Wiens, R. C., Williford, K. H. & Zorzano, M. (2022). Science, 377, 1513–1519.  CrossRef CAS PubMed Google Scholar
First citationMalavasi, L., Orera, A., Slater, P. R., Panchmatia, P. M., Islam, M. S. & Siewenie, J. (2011). Chem. Commun. 47, 250–252.  CrossRef CAS Google Scholar
First citationMcKeown, D. A., Bell, M. I. & Caracas, R. (2010). Am. Mineral. 95, 980–986.  CrossRef ICSD CAS Google Scholar
First citationMondal, K., Kumari, P. & Manam, J. (2016). Curr. Appl. Phys. 16, 707–719.  CrossRef Google Scholar
First citationMonkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188–5192.  CrossRef Web of Science Google Scholar
First citationMorimoto, N., Tokonami, M., Watanabe, M. & Koto, K. (1974). Am. Mineral. 59, 475–485.  CAS Google Scholar
First citationMüller-Sommer, M., Hock, R. & Kirfel, A. (1997). Phys. Chem. Miner. 24, 17–23.  CrossRef ICSD Web of Science Google Scholar
First citationMurshed, M. M., Nénert, G. & Gesing, T. M. (2012). Z. Kristallogr. New Cryst. Struct. 227, 285–286.  CrossRef ICSD CAS Google Scholar
First citationNaik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., Nagabhushana, B. M., Premkumar, H. B. & Girish, K. M. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 140, 516–523.  CrossRef CAS PubMed Google Scholar
First citationNi, S., Chou, L. & Chang, J. (2007). Ceram. Int. 33, 83–88.  CrossRef CAS Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPrandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. (2018). npj Comput. Mater. 4, 72.  CrossRef Google Scholar
First citationPrashantha, S. C., Lakshminarasappa, B. N. & Nagabhushana, B. M. (2011). J. Alloys Compd. 509, 10185–10189.  CrossRef CAS Google Scholar
First citationProffen, T., Billinge, S., Egami, T. & Louca, D. (2003). Z. Kristallogr. Cryst. Mater. 218, 132–143.  CrossRef CAS Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRösler, H. J. (1991). Lehrbuch der Mineralogie. Spektrum Akademischer Verlag.  Google Scholar
First citationScherrer, P. (1918). Nachr. Ges. Wiss. Göttingen, 2, 98–100.  Google Scholar
First citationSchneider, H., Fischer, R. X., Gesing, T. M., Schreuer, J. & Mühlberg, M. (2012). Int. J. Mater. Res. 103, 422–429.  CrossRef CAS Google Scholar
First citationSmyth, J. R. & Hazen, R. M. (1973). Am. Mineral. 58, 588–593.  CAS Google Scholar
First citationSouza, I., Íñiguez, J. & Vanderbilt, D. (2002). Phys. Rev. Lett. 89, 117602.  CrossRef PubMed Google Scholar
First citationStangarone, C., Böttger, U., Bersani, D., Tribaudino, M. & Prencipe, M. (2017). J. Raman Spectrosc. 48, 1528–1535.  CrossRef CAS Google Scholar
First citationSwamy, V., Muddle, B. C. & Dai, Q. (2006). Appl. Phys. Lett. 89, 163118.  CrossRef Google Scholar
First citationTavangarian, F. & Emadi, R. (2010). Mater. Res. Bull. 45, 388–391.  CrossRef CAS Google Scholar
First citationTeck, M., Murshed, M. M., Schowalter, M., Lefeld, N., Grossmann, H. K., Grieb, T., Hartmann, T., Robben, L., Rosenauer, A., Mädler, L. & Gesing, T. M. (2017). J. Solid State Chem. 254, 82–89.  Web of Science CrossRef CAS Google Scholar
First citationTerentjev, A. V., Constantin, L. A. & Pitarke, J. M. (2018). Phys. Rev. B, 98, 214108.  CrossRef Google Scholar
First citationTogo, A. (2023). J. Phys. Soc. Jpn, 92, 012001.  CrossRef Google Scholar
First citationTogo, A., Chaput, L., Tadano, T. & Tanaka, I. (2023). J. Phys. Condens. Matter, 35, 353001.  Web of Science CrossRef Google Scholar
First citationUhrin, M., Huber, S. P., Yu, J., Marzari, N. & Pizzi, G. (2021). Comput. Mater. Sci. 187, 110086.  CrossRef Google Scholar
First citationUmari, P. & Pasquarello, A. (2002). Phys. Rev. Lett. 89, 157602.  CrossRef PubMed Google Scholar
First citationUngár, T. (2004). Scr. Mater. 51, 777–781.  Web of Science CrossRef CAS Google Scholar
First citationVáci, Z., Agee, C. B., Herd, C. D., Walton, E., Tschauner, O., Ziegler, K., Prakapenka, V. B., Greenberg, E. & Monique–Thomas, S. (2020). Meteorit. & Planet. Sci. 55, 1011–1030.  Google Scholar
First citationVan de Walle, C. G., Laks, D., Neumark, G. & Pantelides, S. (1993). Phys. Rev. B, 47, 9425–9434.  CrossRef CAS Google Scholar
First citationVaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F. I., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., Spanovich, N., Agard, C., Alves Verdasca, J. A., Anderson, R., Archer, D., Armiens-Aparicio, C., Arvidson, R., Atlaskin, E., Atreya, S., Aubrey, A., Baker, B., Baker, M., Balic-Zunic, T., Baratoux, D., Baroukh, J., Barraclough, B., Bean, K., Beegle, L., Behar, A., Bender, S., Benna, M., Bentz, J., Berger, J., Berman, D., Blanco Avalos, J. J., Blaney, D., Blank, J., Blau, H., Bleacher, L., Boehm, E., Botta, O., Böttcher, S., Boucher, T., Bower, H., Boyd, N., Boynton, B., Breves, E., Bridges, J., Bridges, N., Brinckerhoff, W., Brinza, D., Brunet, C., Brunner, A., Brunner, W., Buch, A., Bullock, M., Burmeister, S., Cabane, M., Calef, F., Cameron, J., Campbell, J., Cantor, B., Caplinger, M., Caride Rodríguez, J., Carmosino, M., Carrasco Blázquez, I., Charpentier, A., Choi, D., Clark, B., Clegg, S., Cleghorn, T., Cloutis, E., Cody, G., Coll, P., Conrad, P., Coscia, D., Cousin, A., Cremers, D., Cros, A., Cucinotta, F., d'Uston, C., Davis, S., Day, M., de la Torre Juarez, M., DeFlores, L., DeLapp, D., DeMarines, J., Dietrich, W., Dingler, R., Donny, C., Drake, D., Dromart, G., Dupont, A., Duston, B., Dworkin, J., Dyar, M. D., Edgar, L., Edwards, C., Edwards, L., Ehresmann, B., Eigenbrode, J., Elliott, B., Elliott, H., Ewing, R., Fabre, C., Fairén, A., Farley, K., Fassett, C., Favot, L., Fay, D., Fedosov, F., Feldman, J., Feldman, S., Fisk, M., Fitzgibbon, M., Flesch, G., Floyd, M., Flückiger, L., Forni, O., Fraeman, A., Francis, R., François, P., Franz, H., Freissinet, C., French, K. L., Frydenvang, J., Gaboriaud, A., Gailhanou, M., Garvin, J., Gasnault, O., Geffroy, C., Gellert, R., Genzer, M., Glavin, D., Godber, A., Goesmann, F., Goetz, W., Golovin, D., Gómez Gómez, F., Gómez-Elvira, J., Gondet, B., Gordon, S., Gorevan, S., Grant, J., Griffes, J., Grinspoon, D., Guillemot, P., Guo, J., Guzewich, S., Haberle, R., Halleaux, D., Hallet, B., Hamilton, V., Hardgrove, C., Harker, D., Harpold, D., Harri, A., Harshman, K., Hassler, D., Haukka, H., Hayes, A., Herkenhoff, K., Herrera, P., Hettrich, S., Heydari, E., Hipkin, V., Hoehler, T., Hollingsworth, J., Hudgins, J., Huntress, W., Hviid, S., Iagnemma, K., Indyk, S., Israël, G., Jackson, R., Jacob, S., Jakosky, B., Jensen, E., Jensen, J. K., Johnson, J., Johnson, M., Johnstone, S., Jones, A., Jones, J., Joseph, J., Jun, I., Kah, L., Kahanpää, H., Kahre, M., Karpushkina, N., Kasprzak, W., Kauhanen, J., Keely, L., Kemppinen, O., Keymeulen, D., Kim, M., Kinch, K., King, P., Kirkland, L., Kocurek, G., Koefoed, A., Köhler, J., Kortmann, O., Kozyrev, A., Krezoski, J., Krysak, D., Kuzmin, R., Lacour, J. L., Lafaille, V., Langevin, Y., Lanza, N., Lasue, J., Le Mouélic, S., Lee, E. M., Lee, Q., Lees, D., Lefavor, M., Lemmon, M., Malvitte, A. L., Leshin, L., Léveillé, R., Lewin-Carpintier, , Lewis, K., Li, S., Lipkaman, L., Little, C., Litvak, M., Lorigny, E., Lugmair, G., Lundberg, A., Lyness, E., Madsen, M., Mahaffy, P., Maki, J., Malakhov, A., Malespin, C., Malin, M., Mangold, N., Manhes, G., Manning, H., Marchand, G., Marín Jiménez, M., Martín García, C., Martin, D., Martin, M., Martínez-Frías, J., Martín-Soler, J., Martín-Torres, F. J., Mauchien, P., McAdam, A., McCartney, E., McConnochie, T., McCullough, E., McEwan, I., McKay, C., McNair, S., Melikechi, N., Meslin, P., Meyer, M., Mezzacappa, A., Miller, H., Miller, K., Minitti, M., Mischna, M., Mitrofanov, I., Moersch, J., Mokrousov, M., Molina Jurado, A., Moores, J., Mora-Sotomayor, L., Mueller-Mellin, R., Muller, J., Muñoz Caro, G., Nachon, M., Navarro López, S., Navarro-González, R., Nealson, K., Nefian, A., Nelson, T., Newcombe, M., Newman, C., Nikiforov, S., Niles, P., Nixon, B., Noe Dobrea, E., Nolan, T., Oehler, D., Ollila, A., Olson, T., Owen, T., de Pablo Hernández, M., Paillet, A., Pallier, E., Palucis, M., Parker, T., Parot, Y., Patel, K., Paton, M., Paulsen, G., Pavlov, A., Pavri, B., Peinado-González, V., Pepin, R., Peret, L., Perez, R., Perrett, G., Peterson, J., Pilorget, C., Pinet, P., Pla-García, J., Plante, I., Poitrasson, F., Polkko, J., Popa, R., Posiolova, L., Posner, A., Pradler, I., Prats, B., Prokhorov, V., Purdy, S. W., Raaen, E., Radziemski, L., Rafkin, S., Ramos, M., Raulin, F., Ravine, M., Reitz, G., Rennó, N., Richardson, M., Robert, F., Robertson, K., Rodriguez Manfredi, J. A., Romeral-Planelló, J. J., Rowland, S., Rubin, D., Saccoccio, M., Salamon, A., Sandoval, J., Sanin, A., Sans Fuentes, S. A., Saper, L., Sautter, V., Savijärvi, H., Schieber, J., Schmidt, M., Schmidt, W., Scholes, D., Schoppers, M., Schröder, S., Schwenzer, S., Sebastian Martinez, E., Sengstacken, A., Shterts, R., Siebach, K., Siili, T., Simmonds, J., Sirven, J., Slavney, S., Sletten, R., Smith, M., Sobrón Sánchez, P., Spray, J., Squyres, S., Stalport, F., Steele, A., Stein, T., Stern, J., Stewart, N., Stipp, S. L. S., Stoiber, K., Sucharski, B., Sullivan, R., Summons, R., Sun, V., Supulver, K., Sutter, B., Szopa, C., Tan, F., Tate, C., Teinturier, S., ten Kate, I., Thomas, P., Thompson, L., Tokar, R., Toplis, M., Torres Redondo, J., Trainer, M., Tretyakov, V., Urqui-O'Callaghan, R., Van Beek, J., Van Beek, T., VanBommel, S., Varenikov, A., Vasavada, A., Vasconcelos, P., Vicenzi, E., Vostrukhin, A., Voytek, M., Wadhwa, M., Ward, J., Webster, C., Weigle, E., Wellington, D., Westall, F., Wiens, R. C., Wilhelm, M. B., Williams, A., Williams, R., Williams, R. B., Wilson, M., Wimmer-Schweingruber, R., Wolff, M., Wong, M., Wray, J., Wu, M., Yana, C., Yingst, A., Zeitlin, C., Zimdar, R. & Zorzano Mier, M. (2014). Science, 343, 1243480.  Google Scholar
First citationWagner, C. (1977). Annu. Rev. Mater. Sci. 7, 1–24.  CrossRef CAS Google Scholar
First citationWalker, A. M., Woodley, S. M., Slater, B. & Wright, K. (2009). Phys. Earth Planet. Inter. 172, 20–27.  CrossRef CAS Google Scholar
First citationWalker, A. M., Wright, K. & Slater, B. (2003). Phys. Chem. Miner. 30, 536–545.  CrossRef CAS Google Scholar
First citationWang, A., Jolliff, B. L. & Haskin, L. A. (1995). J. Geophys. Res. 100, 21189–21199.  CrossRef Google Scholar
First citationWang, A., Kuebler, K., Jolliff, B. & Haskin, L. A. (2004). J. Raman Spectrosc. 35, 504–514.  CrossRef CAS Google Scholar
First citationYang, H., Shi, J., Gong, M. & Cheah, K. W. (2006). J. Lumin. 118, 257–264.  CrossRef CAS Google Scholar
First citationYu, W., Zeng, X., Li, X., Wei, G. & Fang, J. (2022). Earth Space Science, 9, e2020EA001347.  CrossRef Google Scholar
First citationZampiva, R. Y. S., Acauan, L. H., dos Santos, L. M., de Castro, R. H. R., Alves, A. K. & Bergmann, C. P. (2017). Ceram. Int. 43, 16225–16231.  CrossRef CAS Google Scholar
First citationZhang, S. & Northrup, J. E. (1991). Phys. Rev. Lett. 67, 2339–2342.   CrossRef PubMed CAS Google Scholar
First citationZimmermann, N. E., Horton, M. K., Jain, A. & Haranczyk, M. (2017). Front. Mater. 4, 34.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 11| Part 6| November 2024| Pages 977-990
ISSN: 2052-2525