research papers
Incommensurately modulated structure of Zn4Si2O7(OH)2·H2O at high pressure
aFaculty of Chemistry, University of Warsaw, Pasteura 1, Warszawa, 02-089, Poland, bEuropean Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000, France, cInstitute of Geochemistry, Mineralogy and Petrology, Department of Geology, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089, Poland, dHawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Bldg, Office 819E, Honolulu, Hawaii 96822, USA, and eDepartment of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089, Poland
*Correspondence e-mail: romanbg@chem.uw.edu.pl, kwozniak@chem.uw.edu.pl
High-resolution single-crystal X-ray diffraction experiments on Zn4Si2O7(OH)2·H2O hemimorphite were conducted at high pressure using diamond anvil cells at several different synchrotron facilities (ESRF, Elettra, DESY). Experimental data confirmed the existence of a previously reported and revealed the exact nature of the incommensurate modulation. We report the incommensurately modulated structure described in the (3+1)D Pnn2(0, β, 0)000. We have determined the modulation mechanism, which involves the fluctuation of atoms between two main positions, occurring mainly along the [100] direction, perpendicular to the modulation vector. Moreover, our results reveal that the occurs at lower pressure than previously reported.
Keywords: high-pressure phase transitions; modulation; incommensurate structures; hemimorphite; diamond anvil cells.
1. Introduction
Hemimorphite [Hmp – symbol approved by the International Mineralogical Association, Commission on New Minerals, Nomenclature and Classification (Warr, 2021)] is one of the most common minerals in non-sulfide Zn deposits. In 1853 Adolph Kenngott gave the name in allusion to the hemimorphic morphology of the crystal derived from the Greek words hemi (`half') and morph (`shape') because each end of an Hmp crystal has a different shape. Many names were previously assigned to these species, including calamine, which is still sometimes encountered, but hemimorphite was chosen by the International Mineralogical Association, over calamine, in 1962. The mineral often forms very well developed tabular or short prismatic crystals, colourless or white. Botryoidal, stalactitic and mammillary blue masses are also known (see Fig. 1).
`Non-sulfides' is a term which comprises a series of oxidized Zn(Pb)-ore minerals (Boni & Mondillo, 2015). Hmp forms from the oxidation products of sphalerite and other zinc minerals, especially in arid climates. It is common in the oxidized and supergene zones of hydrothermal deposits, where it is associated with smithsonite. The supergene deposits are formed by weathering and oxidation at ambient temperatures. The mineral is economically important and is mined in many locations around the world as a component of oxidized zinc ores. An anhydrous variety of zinc silicate is Zn2SiO4 willemite, which crystallizes in a trigonal structure with tetrahedrally coordinated Zn and Si (Klaska et al., 1978). Willemite is known to undergo as many as four high-pressure phase transitions on compression to 15 GPa (Marumo & Syono, 1971). Most recently, Hmp studies have been focused on phenomena such as its elastic properties or (Li & Bass, 2020; Wu et al., 2023). Hmp is also interesting in that it could be considered a biomineral. Fourier transform infrared spectroscopy (FTIR) and analysis have revealed that an extracellular product of biomineralization conducted by cyanobacterium Leptolingbya frigida is a crystalline phase closely resembling Hmp (Medas et al., 2018).
The first record in the Inorganic et al., 2002) of the X-ray structure of Hmp refers to a paper published in 1932. In this work, the unit-cell dimensions, and atomic positions were determined for the first time (Ito & West, 1932). In later studies during the 1960s, the geometry of the SiO4 tetrahedra was re-examined and redetermined (Barclay & Cox, 1960; McDonald & Cruickshank, 1967). In the 1970s, Hmp was studied for the first time with the use of neutron diffraction and the hydrogen-bonded system was investigated (Hill et al., 1977; Takéuchi et al., 1978).
Database (ICSD; BelskyThe Hmp is relatively simple. Under normal conditions (RT and ambient pressure) it crystallizes in the Imm2 (see Fig. 2). The basic building blocks are SiO4 and ZnO3OH tetrahedra (Fig. 2). The oxygen atom of the hydroxyl group is shared between two neighbouring Zn tetrahedra. The water molecule is located in a structural cavity and locked via four hydrogen bonds with four surrounding hydroxyl groups. The mineral formula is Zn4Si2O10H4 and there are two molecules within the (Z = 2).
ofThe mineral was also investigated under non-ambient temperature and pressure. When the sample is heated to 600°C (Cooper et al., 1981), a contraction of the structure caused by dehydration is observed. Proton disorder in the dehydrated structure of Hmp was also investigated (Libowitzky et al., 1997).
When crystals were cooled to 20 K, a Imm2 to Abm2 was found (Libowitzky et al., 1997, 1998). This particular is characterized by a doubling of the c parameter. In our research, we have already observed this at 110 K. It is accompanied by the appearance of satellite reflections. The modulated structure after the is commensurate, q = (0, 0, 0.5), which is why it is possible to solve the structure in the with doubled lattice parameters and a conventional space group.
fromHigh-pressure investigations of Hmp within the pressure range between ambient pressure and 4.2 GPa revealed that the occurs between 2.44 and 3.17 GPa (Seryotkin & Bakakin, 2011). Incommensurate satellite reflections along q = (0, 0.119, 0) were reported, and the average structure of the high-pressure phase was refined at 3.01 GPa in the Pnn2, ignoring the modulation (Okamoto et al., 2021).
Interestingly, the mineral bertrandite, Be4Si2O7(OH)2 (space group Cmc21), which is topologically identical to Hmp, was investigated under pressure up to 4.1 GPa and does not show any within this pressure range (Hazen & Au, 1986).
Current knowledge about Hmp includes that at room temperature and ambient pressure it occurs in the orthorhombic Imm2. The low-temperature leads to a transformation into another orthorhombic Abm2 with a doubled c lattice parameter [or equally described as a commensurate modulation with modulation vector q = (0, 0, 0.5)], whereas a high-pressure leads to the Pnn2 [incommensurate modulation, q = (0, 0.119, 0) (Okamoto et al., 2021)]. All the transitions between space groups such as Imm2 → Abm2 or Imm2 → Pnn2 are caused by rearrangements of SiO4 and ZnO4 polyhedra and/or subtle changes of hydrogen bonds towards the water molecules. The main goal of this study was to investigate the mechanism of the high-pressure phase transition.
2. Results
2.1. Experimental
Our experiments were conducted, above all, at the ID27 beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to high-pressure measurements (Poręba et al., 2022). For our data collection, we used λ = 0.2229 Å and a small 2 × 2 µm beam. The wavelength has been calibrated using a CeO2 (e.g. NIST SRM 674b) powder standard. Single-crystal data were collected using an Eiger2 X 9M CdTe detector through ±32° ω scans and a step size of 0.5° around one rotation axis. After transformation into the Esperanto format, the CrysAlisPro program suite was used for indexing and data reduction (Rigaku, 2014). Corrections for X-ray absorption effects [by the diamond anvil cell (DAC) components] were applied using the semi-empirical ABSPACK routine implemented in CrysAlisPro. The structures were refined with ShelXL, as incorporated in Olex2. Three single crystals of Hmp were selected and loaded into a membrane DAC in which helium gas was used as the pressure medium. The experiment was conducted at pressure values between ambient and 4.1 GPa (the pressure was determined by measuring the position of the fluorescence lines of ruby; pressure uncertainty: 0.03 GPa). The main goal was to observe the consequences of a reported to occur somewhere between 2.5 and 3.0 GPa (Seryotkin & Bakakin, 2011). Datasets were collected at ten pressure values, eight below the possible and two above. At each pressure point, data were collected separately for each of the three single crystals in the DAC. Additionally, at each pressure point, each single-crystal dataset was measured with three different combinations of experimental parameter such as exposure time and slit width. As a result, over 90 individual datasets were collected. The reason for conducting the measurements in this way was that access to the of single crystals in a DAC is significantly restricted. Individual datasets collected as a step scan with rotation about one axis have relatively low completeness, even when the orientation of the crystals in the DAC is optimized. To achieve reliable completeness, merging of datasets is necessary. Also, to reduce the number of unmeasured reflections and oversaturated reflection intensities, it is worth using different parameter settings for data collection.
In addition to measurements conducted at ID27 at ESRF, we also collected X-ray data at other beamlines/synchrotrons, such as the Xpress beamline at the Elettra synchrotron facility at Trieste and the beamline P24 at Petra III Deutsches Elektronen-Synchrotron (DESY) in Hamburg.
On the beamline P24 at Petra III (DESY, Germany), three different single crystals were tested separately in different DACs (Merrill and Bassett design). X-ray diffraction measurements (λ = 0.35424 Å) were performed under pressure on the beamline equipped with a PILATUS 1M CdTe detector. The measurement strategy was a combination of phi scans from −36 to +36° on a four-circle kappa diffractometer (EH1). The whole strategy consisted of runs with different exposure times (2.0, 1.0 or 0.5 s) and different frame widths (1 or 0.5°). For crystal 1 we used pressures of 2.94, 3.26, 3.5 and 3.8 GPa; for crystal 2 we used pressures of 2.49, 3.05 and 3.11 GPa; and for crystal 3 we used pressures of 1.92, 2.8, 3.19 and 4.1 GPa.
The results obtained for data collected at ESRF were also confirmed at another synchrotron facility, on the Xpress beamline at Elettra in Trieste, Italy. The X-ray diffraction measurements (λ = 0.4956 Å) were performed under pressure with a ca 50 µm beam on the beamline equipped with a PILATUS3 S 6M (DECTRIS). The detector was placed ca 226 mm from the sample crystal. The diffraction data were collected using phi scans from −38 to +38° and a step size of 0.5° around one rotation axis. We used a pressure of 2.57 GPa (the pressure medium was 1-propanol).
Data reduction was performed using the CrysAlisPRO software (Rigaku, 2014). The structure was solved and refined with ShelXS (Sheldrick, 2008) and ShelXL (Sheldrick, 2015), respectively, within the Olex2 suite (Dolomanov et al., 2009). Attempts to solve and refine modulation were undertaken in the Jana2020 software (Petricek et al., 2023).
2.2. Phase transition
Incommensurately modulated (IC) phases occur when the atomic structure of a mineral adopts a periodic modulation that does not align with the underlying lattice periodicity. In nature, it is fairly uncommon to find minerals which have strong and sharp incommensurate Bragg reflections. However, several good examples exist, including natrite, calaverite, melilite, fresnoite, pearceite, polybasite and cylindrite which confirm long-term stability of incommensurate phases (Bindi & Chapuis, 2017). Incommensurate modulation can arise or disappear as a result of changes in thermodynamic conditions. High pressure can induce distortions in the causing atoms to shift from their ideal positions, leading to periodic modulations that are not commensurate with the original lattice periodicity. Different vibrational modes of the lattice can also couple in complex ways under high pressure, creating new periodicities that are incommensurate with the original lattice. Ca2MgSi2O7 akermanite transforms from an IC phase, stable at room pressure, to a commensurate phase at 1.33 GPa (Yang et al., 1997). Brownmillerite-type Ca2Al2O5 transforms to an incommensurately modulated structure above 1000 K (Lazic et al., 2008). Low-temperature commensurate ferrimagnetic α-Mn3O4 undergoes a commensurate–incommensurate at 33 K (Kemei et al., 2014). Incommensurate modulation of atomic positions can also be coupled with magnetic moments as already demonstrated for inorganic CaMn7O12 (Sławiński et al., 2009), where a structural into incommensurate modulation occurs below 250 K and also below 90 K Mn magnetic moments form a helical spin arrangement.
The incommensurate modulation can be an energy-minimizing configuration under high pressure, as the complex arrangement can lower the free energy of the system compared with a commensurate structure. High pressure can also enhance competing interactions within the crystal, such as between different types of bonding or between different sublattices, leading to a compromise structure that is incommensurate. Anharmonic effects, or nonlinearities in the
surface, become more significant at high pressure and can stabilize incommensurate modulations. Changes in electronic structure under high pressure can drive the formation of incommensurate phases, as pressure can alter the distribution of electronic density, leading to new bonding patterns that are incommensurate. Atoms may experience displacive modulations, where they are displaced periodically from their average positions, creating an incommensurate periodicity. Another common type of modulation is occupancy modulation, where two atom types sharing the same crystallographic position modulates its occupancy.On the basis of data retrieved from the ICSD, the values of the unit-cell parameters for the Imm2 Hmp under ambient conditions vary as follows: a: 8.191(1)–8.388(1) Å, b: 10.714(1)–10.824(2) Å and c: 5.088(1)–5.115(3) Å (Ito & West, 1932; Barclay & Cox, 1960; McDonald & Cruickshank, 1967; Hill et al., 1977; Takéuchi et al., 1978; Cooper et al., 1981; Libowitzky et al., 1997). A likely source of the unit-cell variation are admixtures present in natural minerals. Therefore, after averaging, the unit-cell dimensions are as follows: a = 8.289 Å, b = 10.769 Å and c = 5.102 Å. Shrinking of the unit-cell dimensions as a function of pressure is quite subtle. As we know from the literature (Seryotkin & Bakakin, 2011), the unit-cell dimensions under 2.44 GPa (RT, Imm2) are a = 8.2209(9) Å, b = 10.6920(15) Å and c = 5.0614(2) Å. Note that some of the earlier reports used natural samples exhibiting some ion substitution [e.g. the sample studied by Okamoto et al. (2021) had about 1.6 wt.% of P].
The first high-pressure studies of Hmp (Seryotkin & Bakakin, 2011) revealed that the from Imm2 to Pnn2 occurs between 2.44 and 3.17 GPa, but no incommensurate modulation was reported. The accompanying changes of the unit-cell parameters are relatively subtle. The a parameter changes by less than 1%, b by about 1% and c by about 0.3% [difference between 2.44 and 3.17 GPa (Seryotkin & Bakakin, 2011)]. Fortunately, the change of the and the proof of a can be clearly verified by comparing diffraction patterns of specific crystallographic layers. In the case of Imm2, reflections must fulfil the following condition, within the group of hk0 reflections: h + k = 2n. In the case of Pnn2, this condition is no longer valid. As a result, it is sufficient to check hk0 layers if h + k = 2n + 1 reflections are observed or not (see Fig. 3). Although the unit-cell dimensions are almost identical, a simple comparison of the hk0 diffraction patterns tells us if a has already occurred or not, which is quite visible in our data collected at ESRF (see Fig. 3).
During the data collection at ESRF, we measured four pressure points in the vicinity of the previously reported transition pressure: 2.3, 2.6, 3.3 and 4.1 GPa. The hk0 reflections determined for two pressure points, 3.3 and 4.1 GPa, are presented in Fig. 4. Both are well above the In addition to peaks marked with blue circles, which were already observed in the Imm2 new peaks marked with orange circles appeared, indicating the new Pnn2 symmetry.
layers of theThe additional reflections in the Pnn2 appear broader. This is a consequence of the fact that accompanying satellite reflections have a relatively short modulation vector. These satellite reflection appear as a result of the incommensurate modulation. The modulation vector, which describes the modulation direction and position of satellite reflections, is relatively short (the b* component varies between 0.105 and 0.179), which makes three reflections (one Bragg peak and two satellites) appear as one streak. In the high-pressure phase, the satellite reflections are visible along the [010] direction.
In the case of the low-temperature Imm2 → Abm2 the modulation vector was rational (equal to 0.5 b*), therefore it indicated commensurate modulation (a supercell). As a consequence, it was possible to index the data, solve and refine the structure by simply using the doubled lattice parameter along the direction where the satellite reflections appeared. In the case of the high-pressure phase, the modulation vector varies between 0.105 b* and 0.179 b* (depending on the pressure). That is why the same motive could be repeated after between five and nine unit cells, depending on the precise value of the modulation vector.
IC modulated structures cannot be approximated by 3D periodic structures. This is because the atoms are periodically modulated according to a modulation function with a period that is incommensurate to the periodicity of the Hmp is not periodic in 3D but can be described as periodic in (3+1)D space. The displacive type of modulation occurs when atoms deviate from their basic structure positions.
Therefore, the real structure ofEven more interesting are two other pressure points, 2.6 and 2.3 GPa. This is because, so far, only the structures of Hmp above 3 GPa were refined as structures after the from Imm2 to Pnn2. However, in our measurements, the layers of hk0 reflections definitely confirm the existence of the broad diffused reflections which do not fulfil the h + k = 2n rule and are accompanied by satellites. These broad reflections prove that, at 2.6 GPa, the has already occurred and the structure should be solved and refined in the Pnn2 (see Fig. 5). The same is also true for 2.3 GPa, where additional reflections and satellites are much weaker but do also exist. At the onset of the the reflections and their satellites have relatively low intensity and could be easily overlooked.
For the datasets collected on beamline P24 at Petra III (DESY, Germany), the satellite reflections were observed only in one case, for crystal 3 at 2.8 GPa (the pressure medium was 1-propanol; see Fig. 6). The quality of the datasets collected was lower than in the case of ID27 (ESRF).
The satellite reflections from the modulated structure after the . Unfortunately, the datasets collected on Xpress have too-poor completeness to be used to solve and refine the structure.
collected on the Xpress beamline at Elettra in Trieste, Italy, are visible in Fig. 72.2.1. Comparison of results from different beamlines
At the core of this paper are results from measurements on ID27 at ESRF. This is due to the fact that datasets collected on this particular station present the best quality. Because we were looking for satellite reflections, by `best quality' we mean the fact that satellite reflections were observed and they were relatively strong and data completeness was relatively high. The satellite reflections accompanying the high-pressure phase Pnn2 appear very close to the main Bragg's reflections (the value of the modulation vector is small). That is why to detect them a stable and intense beam is required as well as a sensitive detector. Each beamline has different hardware characteristics. The wavelengths of the X-ray beams applied during measurements conducted at ESRF (ID27), Petra III (P24) and Elettra (Xpress) were as follows: 0.2229, 0.3542 and 0.4956 Å, respectively. In the case of ID27 and Xpress, the size of the beam spot was small enough to measure separately 2–3 single crystals closed in a DAC. This is convenient when one wants to merge hkl datasets. In the case of high-pressure experiments with DACs, access to is restricted, hence the type of scans on a particular goniometer that are possible is important. The best option from the point of view of completeness is when the measurement strategy can be combined from phi and omega scans and different detector positions. It seems that at least in the case of Hmp and hunting for satellite reflections with a small q value, the most important factor was the wavelength of the beam.
The changes of the unit cells and cell volume of Hmp as a function of pressure are shown in Fig. 8, where the results collected at ID27 are presented. The charts also indicate where the from Imm2 to Pnn2 occurs. The red dotted line (p = 2.44 GPa) indicates the highest pressure under which the Imm2 phase was determined by Seryotkin & Bakakin (2011). The blue dotted line (p = 3.01 GPa) indicates the lowest pressure under which, as known from the literature, the Pnn2 phase was determined by Okamoto et al. (2021). The area between these two lines was considered as the pressure range within which the should occur. However, because we now know that the from Imm2 to Pnn2 probably occurs slightly earlier, we extended this range, depicted as the pink region. The pressure points where the structure was solved in the Imm2 (before the phase transition) are depicted as red triangles and the pressure points where structure was solved in the Pnn2 (after the phase transition) are depicted as blue circles.
Taking into account measurements in the vicinity of this range, we observe satellites under 2.3 and 2.6 GPa (ID27 ESRF), 2.58 GPa (Xpress, Elettra), and 2.8 GPa (P24, Petra III). This observation confirms that the
occurs below 3.01 GPa (to the left of the blue line) or even below 2.44 GPa (to the left of the red line). There are two datasets, both collected on P24 at DESY, which were collected at pressures of 2.49 and 2.94 GPa for which we do not observe satellite reflections.2.2.2. Average structure refinement
Our experiments confirmed our observation of the earlier reported ). After the the extent of modulation increases with increasing pressure, making it harder and harder to ignore in Earlier reports included average structure refinements, ignoring the modulation, but this simplification resulted in artefacts such as unusual bond lengths and anomalously large and anisotropic atomic displacement parameters. To properly account for modulation, the structure has to be solved in the (3+1)D consistent with the indexing of the satellite reflections and modulation vector q [either Pnn2(0, β, 0)000 or Pnn2(0, β, 0)s00]. Parameters characterizing our results at the level of the independent atom model (on the basis of F2) of the average structure (ignoring modulation) are shown in Table 1. In the case of datasets collected at 2.6 GPa, it was possible to merge data from two separate single crystals. This was done after data reduction in CrysAlisPro using the so-called `profit merge' function.
and the IC modulated nature of the high-pressure phase (Seryotkin & Bakakin, 2011
|
After the ca 50%. In the case of the of the average structure, the effect of modulation increases at higher pressure, as shown by increasing figures of merit. Just above the (2.6 GPa), the average structure approximation looks acceptable (peaks in residual density maps are relatively low). At higher pressures, when atomic movements are more significant, higher Q peaks are observed in residual density maps next to the main average atomic positions. This is a strong indication that point modulation should be taken into account. Because of these significant Q peaks, obtaining satisfactory atomic displacement parameters for selected atoms is no longer possible, which is why, at 4.1 GPa, two oxygen atoms were refined with only isotropic displacement parameters.
individual crystals in the DAC showed slightly different magnitudes of the modulation vector, which made merging of the datasets impossible. In the case of one of the crystals, the associated dataset shows satellite reflections of the second order but completeness of this separate measurement is onlyTable 2 presents the bond lengths and angles that describe the geometry of the average structures of Hmp. The table consists of the results from this study (datasets collected at ID27) as well as from the literature.
2.3. Hydrogen bonds in the structure of hemimorphite
There are two hydrogen atoms in the asymmetric part of the structure of Hmp. One of them belongs to the water molecule, which is placed on the twofold axis, and the second one is part of a hydroxyl group and connected with an oxygen atom that bridges two zinc atoms. However, in the high-pressure experiments, it is not always possible to locate both of these hydrogen atoms due to insufficient quality of the data (low completeness). Among the 22 structures currently deposited in the ICSD, there are more than ten structures without water hydrogens and eight structures without any hydrogen position determined. In our studies, we were able to find and refine positions of the hydrogen atoms for data collected at 2.6 GPa. In this case, the modulation vectors of two single crystals were comparable and it was possible to merge datasets and obtain higher completeness. At higher pressures, due to differences in modulation vector values, data merging was not possible and we refined the structures of the high-pressure phase without hydrogen atoms. The geometry of hydrogen bond type O(4)—H(4)⋯O(4) which forms at 2.6 GPa is as follows: d(O—H) = 1.051 Å, d(H⋯O) = 1.999 Å, ∠DHO = 164.28°, d(O⋯O) = 3.024 Å.
2.4. Modulation vectors
In our experiment, the individual single-crystal samples at the same pressure showed different lengths of the modulation vector. As a result, it was not possible to merge data from several crystals to increase completeness. Crystals measured at 2.57 GPa in silicone oil at the Xpress beamline at Elettra give q = 0.105 b*. Crystals measured at 2.6 GPa in He at the ID27 at ESRF give q = 0.09 b* (in this case it was possible to merge data from two separate crystals, see Table 1). The discrepancy between the lengths of the modulation vectors increased with pressure, suggesting that the effect of nonhydrostatic and deviatoric stress was responsible for the effect. For three single crystals measured simultaneously in one DAC under 3.3 GPa (ID27, ESRF), the lengths of the modulation vectors are 0.166, 0.104 and 0.148, respectively. At 4.1 GPa the modulation vectors for those crystals are as follows: 0.179, 0.107 and 0.152. Because the satellite reflections for this third crystal under 4.1 GPa were the most significant (second-order satellite reflections were observed), this particular measurement served as a data source for the in Jana2020. On the basis of information from Professor Leonid Dubrovinsky and Natalia Dubrovinskaia (private communication), such a phenomenon that particular single crystals supply different values of the modulation vectors can be treated as a new type of which was also found in their studies of other crystals under pressure (Yin et al., 2024).
2.5. of the modulated structure
We solved and refined the structure of the high-pressure phase in the (3+1)D dimensional Pnn2(0, β, 0)000 using Jana2020 (Petricek et al., 2023), taking into account the satellite reflections up to the second order. The structure revealed that the atoms change their position mostly along the X(a) axis. Relatively significant position modulations are observed for Zn1, Zn2, Si1 and O2 (see Fig. 9). The atoms fluctuate/jump between two main positions.
The 2D sections in Fig. 9 illustrate that the electron density contains reliable information about modulation, including variability in the positions of atoms. This type of map is obtained with Jana2020 (Petricek et al., 2023) and is called a de Wolff's section (de Wolff, 1974). Each independent atom in the average structure is modulated by the application of a modulation function. As shown in the sections of the Fourier maps (Fig. 9), they exhibit a sinusoidal behaviour. The shape of this modulation suggests a continuous character. The refined model shows that the amplitudes of the have the main component along the X(a) axis. A summary of the refined amplitude displacements for zinc, silicon and oxygen atoms is presented in Tables 3–5.
|
|
|
As stated above, because the length of the modulation vector varies between 0.105 b* and 0.179 b*, to observe the whole modulation wave, one needs to present between five and nine unit cells, depending on the precise value of the modulation vector. To visualize what it means when atoms change their positions along the X axis, we present a so-called approximate structure in Figs. 9 and 10. This is no longer the averaged structure like in Fig. 1, where on the basis of one the whole atomic configuration is described. This time there are eight neighbouring unit cells reorganizing one by one along the Y axis.
In Fig. 10 (view of the XY plane along the [001] direction), the nature of the modulation is shown in a simplified and schematic way. One can easily observe how the positions of the zinc atoms (and shapes of particular octagons) change between neighbouring unit cells. The additional red arrow indicates how the orientation between two Si atoms within such a quadrangle changes; spaces between these orange octagons (quadrangles containing Zn and Si atoms) are coloured light blue. We simply see this modulation as a wave which goes across approximately eight neighbouring unit cells.
Fig. 11 shows the view along the z axis for the selected phase of the modulation, t. The angle δ between the Si—Si bond and unit-cell axis x (in the xy plane) is shown. The rigid SiO4 tetraherdal unit changes its position with the amplitude of δ from −13 to +11°. In our solution we have treated the SiO4 group as a rigid body.
The positions and orientations of particular tetrahedra change for the neighbouring unit cells. In theory, the superposition of the unit cells depicted should provide us with the averaged structure as is shown in Fig. 12. An animated gif that shows how the atoms move within the due to modulation is given in the supporting information.
3. Conclusions
Single-crystal X-ray diffraction measurements conducted on hemimorphite under pressure confirm the Imm2 to Pnn2. However, at a high pressure the structure is incommensurately modulated. The modulation vector lengths are slightly different for different sample crystals measured under the same pressure conditions but within the range from 0.105 b* to 0.179 b*. The first-order satellite reflections are observed in all cases, along the [010] direction. In one case, even the second-order satellites were observed and used for the structure Structure which takes modulation into account was done in the Pnn2(0, β, 0)000. The mechanism of modulation involves changes in the positions of atoms mainly along the [100] direction. The atoms occupy two positions. The modulation amplitude increases at higher pressure. The first relatively weak satellite reflections appear at 2.3 GPa. At 2.6 GPa, the presence of satellite reflections is already very pronounced, suggesting that the structure previously reported in the literature at 2.44 GPa should be properly described in the Pnn2 (as the structure after the phase transition). The satellite reflections can be distinguished when the measurement is conducted with the use of a relatively intense X-ray beam and a good quality detector. In the case of poorer-quality data, it is possible to overlook the satellite reflections and solve the structure in a wrong The use of a DAC causes restrictions of access to and results in less complete data. Because different single crystals measured at the same pressure within the same DAC can show different lengths of the modulation vector, merging of the data is not possible, which makes accurate challenging.
fromSupporting information
https://doi.org/10.1107/S2052252524011060/fc5081sup1.cif
contains datablocks 3_05GPa_Pnn2_DESY_crystal_2, 0_33GPa_Imm2_ESRF, 3_11GPa_Pnn2_DESY_crystal_2, 4_1GPa_Pnn2_DESY_crystal_3, 3_26GPa_Pnn2_DESY_crystal_1, 2_49GPa_Imm2_DESY_crystal_2, 3_50GPa_Pnn2_DESY_crystal_1, 3_19GPa_Pnn2_DESY_crystal_3, 2_8GPA_Pnn2_DESY_crystal_3, 1_92GPa_Imm2_DESY_crystal_3, 1_5GPa_Imm2_ESRF, global, I, 2_33GPa_Pnn2_ESRF, 3_3GPa_Pnn2_ESRF, 4_1GPa_Pnn2_ESRF, 1_0GPa_Imm2_ESRF, 2_1GPa_Imm2_ESRF, 2_6GPa_Pnn2_ESRF. DOI:The nature of of the incommensurately modulated structure. DOI: https://doi.org/10.1107/S2052252524011060/fc5081sup2.gif
Supporting tables and figure. DOI: https://doi.org/10.1107/S2052252524011060/fc5081sup3.pdf
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.605 Mg m−3 |
Orthorhombic, Pnn2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.1695 (4) Å | Cell parameters from 1893 reflections |
b = 10.658 (3) Å | θ = 2.2–23.1° |
c = 5.0531 (1) Å | T = 293 K |
V = 439.99 (11) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 1183 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.042 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 23.0°, θmin = 2.2° |
Tmin = 0.376, Tmax = 1.000 | h = −14→13 |
4934 measured reflections | k = −7→8 |
1289 independent reflections | l = −8→8 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1089P)2 + 0.8145P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.049 | (Δ/σ)max < 0.001 |
wR(F2) = 0.178 | Δρmax = 0.96 e Å−3 |
S = 1.19 | Δρmin = −1.83 e Å−3 |
1289 reflections | Absolute structure: Flack x determined using 493 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
59 parameters | Absolute structure parameter: 1.06 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.23063 (9) | 0.14926 (16) | 0.61489 (17) | 0.0171 (6) | |
Zn2 | 0.31348 (10) | 0.33384 (16) | 0.11950 (15) | 0.0175 (6) | |
Si1 | 0.51979 (19) | 0.3568 (4) | 0.6088 (6) | 0.0094 (12) | |
O1 | 0.3668 (7) | 0.2800 (14) | 0.4792 (11) | 0.0159 (8)* | |
O2 | 0.6922 (7) | 0.3116 (14) | 0.4849 (10) | 0.020 (4) | |
O3 | 0.5207 (6) | 0.3403 (11) | 0.9258 (10) | 0.0106 (7)* | |
O4 | 0.1812 (10) | 0.4805 (17) | 0.0758 (14) | 0.0240 (14)* | |
O5 | 0.500000 | 0.500000 | 0.509 (2) | 0.042 (11) | |
O6 | 0.000000 | 0.500000 | −0.402 (4) | 0.077 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0148 (3) | 0.0268 (19) | 0.0096 (3) | −0.0031 (3) | −0.0004 (2) | 0.0000 (6) |
Zn2 | 0.0154 (3) | 0.0275 (19) | 0.0097 (3) | −0.0033 (3) | −0.0002 (3) | −0.0003 (5) |
Si1 | 0.0116 (7) | 0.009 (4) | 0.0074 (6) | −0.0015 (7) | −0.0005 (5) | −0.0007 (10) |
O2 | 0.019 (2) | 0.031 (13) | 0.0102 (15) | 0.012 (3) | 0.0010 (12) | −0.001 (3) |
O5 | 0.032 (5) | 0.08 (3) | 0.014 (4) | 0.006 (9) | 0.000 | 0.000 |
O6 | 0.045 (6) | 0.16 (5) | 0.021 (6) | −0.018 (12) | 0.000 | 0.000 |
Zn1—O1 | 1.910 (12) | Zn2—O3iv | 1.957 (5) |
Zn1—O2i | 1.941 (6) | Zn2—O4 | 1.913 (16) |
Zn1—O3ii | 1.966 (5) | Si1—O1 | 1.631 (10) |
Zn1—O4iii | 1.947 (17) | Si1—O2 | 1.614 (6) |
Zn2—O1 | 1.955 (7) | Si1—O3 | 1.612 (6) |
Zn2—O2ii | 1.962 (11) | Si1—O5 | 1.617 (5) |
O1—Zn1—O2i | 106.5 (4) | O3—Si1—O2 | 110.4 (3) |
O1—Zn1—O3ii | 107.0 (3) | O3—Si1—O5 | 114.5 (6) |
O1—Zn1—O4iii | 115.0 (5) | O5—Si1—O1 | 105.8 (5) |
O2i—Zn1—O3ii | 108.3 (3) | Zn1—O1—Zn2 | 114.7 (4) |
O2i—Zn1—O4iii | 110.8 (5) | Si1—O1—Zn1 | 131.9 (4) |
O4iii—Zn1—O3ii | 109.0 (4) | Si1—O1—Zn2 | 113.4 (6) |
O1—Zn2—O2ii | 101.7 (4) | Zn1v—O2—Zn2vi | 115.0 (4) |
O1—Zn2—O3iv | 106.4 (2) | Si1—O2—Zn1v | 116.8 (5) |
O3iv—Zn2—O2ii | 106.9 (4) | Si1—O2—Zn2vi | 122.8 (6) |
O4—Zn2—O1 | 118.2 (4) | Zn2vii—O3—Zn1vi | 120.9 (3) |
O4—Zn2—O2ii | 108.7 (5) | Si1—O3—Zn1vi | 118.7 (3) |
O4—Zn2—O3iv | 113.7 (4) | Si1—O3—Zn2vii | 119.8 (3) |
O2—Si1—O1 | 111.3 (6) | Zn2—O4—Zn1viii | 122.3 (4) |
O2—Si1—O5 | 104.3 (5) | Si1ix—O5—Si1 | 143.5 (7) |
O3—Si1—O1 | 110.3 (4) | ||
O1—Si1—O2—Zn1v | 67.5 (10) | O3—Si1—O1—Zn2 | 162.1 (5) |
O1—Si1—O2—Zn2vi | −85.1 (6) | O3—Si1—O2—Zn1v | −169.6 (6) |
O1—Si1—O3—Zn1vi | 151.8 (7) | O3—Si1—O2—Zn2vi | 37.8 (9) |
O1—Si1—O3—Zn2vii | −36.7 (10) | O3—Si1—O5—Si1ix | 0.43 (19) |
O1—Si1—O5—Si1ix | 122.1 (3) | O5—Si1—O1—Zn1 | −141.7 (8) |
O2—Si1—O1—Zn1 | 105.6 (8) | O5—Si1—O1—Zn2 | 37.8 (7) |
O2—Si1—O1—Zn2 | −74.9 (9) | O5—Si1—O2—Zn1v | −46.1 (8) |
O2—Si1—O3—Zn1vi | 28.3 (10) | O5—Si1—O2—Zn2vi | 161.3 (6) |
O2—Si1—O3—Zn2vii | −160.1 (7) | O5—Si1—O3—Zn1vi | −89.0 (6) |
O2—Si1—O5—Si1ix | −120.4 (3) | O5—Si1—O3—Zn2vii | 82.5 (7) |
O3—Si1—O1—Zn1 | −17.3 (11) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, z+1/2; (iv) x, y, z−1; (v) x+1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) x, y, z+1; (viii) −x+1/2, y+1/2, z−1/2; (ix) −x+1, −y+1, z. |
O9Si2Zn4·O | Dx = 3.496 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Imm2 | Cell parameters from 2095 reflections |
a = 8.35707 (12) Å | θ = 2.1–19.2° |
b = 10.714 (2) Å | µ = 0.45 mm−1 |
c = 5.11006 (5) Å | T = 293 K |
V = 457.55 (9) Å3 | Block, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 3085 independent reflections |
Radiation source: synchrotron | 2451 reflections with I > 2σ(I) |
Synchrotron monochromator | Rint = 0.026 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 20.2°, θmin = 1.5° |
ω scans | h = −24→23 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −28→29 |
Tmin = 0.500, Tmax = 1.000 | l = −14→15 |
7666 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1116P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.057 | (Δ/σ)max < 0.001 |
wR(F2) = 0.158 | Δρmax = 6.19 e Å−3 |
S = 1.02 | Δρmin = −1.06 e Å−3 |
3085 reflections | Absolute structure: Flack x determined using 931 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
45 parameters | Absolute structure parameter: 0.47 (14) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.70475 (3) | 0.33921 (3) | 0.53921 (7) | 0.01287 (6) | |
Si1 | 0.500000 | 0.35413 (10) | 0.0320 (2) | 0.00944 (11) | |
O1 | 0.6611 (3) | 0.2945 (3) | −0.0963 (3) | 0.0155 (3) | |
O2 | 0.500000 | 0.3341 (4) | 0.3459 (4) | 0.0142 (4) | |
O3 | 0.8057 (5) | 0.500000 | 0.4984 (12) | 0.0244 (10) | |
O4 | 0.500000 | 0.500000 | −0.0533 (8) | 0.0170 (7) | |
O5 | 0.000000 | 0.500000 | 0.0082 (19) | 0.088 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01446 (10) | 0.01448 (10) | 0.00966 (7) | 0.00223 (10) | 0.00012 (11) | 0.00005 (12) |
Si1 | 0.0109 (2) | 0.0103 (2) | 0.00711 (19) | 0.000 | 0.000 | −0.0001 (4) |
O1 | 0.0177 (7) | 0.0185 (7) | 0.0102 (4) | 0.0063 (9) | 0.0027 (4) | 0.0023 (4) |
O2 | 0.0129 (7) | 0.0222 (12) | 0.0074 (4) | 0.000 | 0.000 | 0.0006 (6) |
O3 | 0.0209 (13) | 0.0140 (10) | 0.038 (3) | 0.000 | 0.0094 (13) | 0.000 |
O4 | 0.026 (2) | 0.0084 (9) | 0.0161 (10) | 0.000 | 0.000 | 0.000 |
O5 | 0.052 (6) | 0.19 (3) | 0.027 (5) | 0.000 | 0.000 | 0.000 |
Zn1—O1i | 1.946 (2) | Si1—O1iii | 1.628 (2) |
Zn1—O1ii | 1.9574 (18) | Si1—O1 | 1.628 (2) |
Zn1—O2 | 1.9766 (11) | Si1—O2 | 1.618 (3) |
Zn1—O3 | 1.9295 (19) | Si1—O4 | 1.6226 (16) |
O1i—Zn1—O1ii | 105.41 (6) | O4—Si1—O1 | 105.66 (13) |
O1i—Zn1—O2 | 107.47 (11) | O4—Si1—O1iii | 105.66 (13) |
O1ii—Zn1—O2 | 107.90 (9) | Zn1iv—O1—Zn1v | 114.30 (10) |
O3—Zn1—O1ii | 113.77 (19) | Si1—O1—Zn1v | 116.19 (13) |
O3—Zn1—O1i | 111.51 (13) | Si1—O1—Zn1iv | 128.44 (12) |
O3—Zn1—O2 | 110.45 (19) | Zn1iii—O2—Zn1 | 119.93 (11) |
O1—Si1—O1iii | 111.55 (19) | Si1—O2—Zn1iii | 119.45 (6) |
O2—Si1—O1 | 110.31 (10) | Si1—O2—Zn1 | 119.45 (6) |
O2—Si1—O1iii | 110.31 (10) | Zn1vi—O3—Zn1 | 126.5 (2) |
O2—Si1—O4 | 113.2 (2) | Si1—O4—Si1vii | 148.8 (3) |
O1iii—Si1—O1—Zn1iv | −98.08 (17) | O2—Si1—O1—Zn1iv | 24.9 (3) |
O1iii—Si1—O1—Zn1v | 69.3 (2) | O2—Si1—O1—Zn1v | −167.75 (16) |
O1iii—Si1—O2—Zn1 | 158.04 (19) | O2—Si1—O4—Si1vii | 0.000 (1) |
O1—Si1—O2—Zn1 | 34.4 (3) | O4—Si1—O1—Zn1v | −45.0 (2) |
O1iii—Si1—O2—Zn1iii | −34.4 (3) | O4—Si1—O1—Zn1iv | 147.6 (2) |
O1—Si1—O2—Zn1iii | −158.04 (19) | O4—Si1—O2—Zn1iii | 83.8 (2) |
O1iii—Si1—O4—Si1vii | 120.83 (10) | O4—Si1—O2—Zn1 | −83.8 (2) |
O1—Si1—O4—Si1vii | −120.83 (10) |
Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x, y, z+1; (iii) −x+1, y, z; (iv) −x+3/2, −y+1/2, z−1/2; (v) x, y, z−1; (vi) x, −y+1, z; (vii) −x+1, −y+1, z. |
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.619 Mg m−3 |
Orthorhombic, Pnn2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.1572 (3) Å | Cell parameters from 2573 reflections |
b = 10.640 (3) Å | θ = 2.2–22.5° |
c = 5.0499 (1) Å | T = 293 K |
V = 438.31 (11) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 1064 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.038 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 22.9°, θmin = 2.2° |
Tmin = 0.699, Tmax = 1.000 | h = −14→13 |
4480 measured reflections | k = −8→7 |
1164 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.070P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.039 | (Δ/σ)max < 0.001 |
wR(F2) = 0.102 | Δρmax = 0.58 e Å−3 |
S = 1.04 | Δρmin = −0.86 e Å−3 |
1164 reflections | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
74 parameters | Absolute structure parameter: −0.08 (10) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.23381 (6) | 0.14772 (11) | 0.61453 (9) | 0.0129 (5) | |
Zn2 | 0.31639 (6) | 0.33290 (11) | 0.11990 (9) | 0.0130 (4) | |
Si1 | 0.52241 (13) | 0.3561 (3) | 0.6076 (4) | 0.0087 (10) | |
O1 | 0.3711 (5) | 0.2795 (10) | 0.4784 (6) | 0.018 (3) | |
O2 | 0.6973 (5) | 0.3118 (9) | 0.4856 (6) | 0.016 (3) | |
O3 | 0.5241 (4) | 0.3403 (8) | 0.9253 (6) | 0.013 (3) | |
O4 | 0.1832 (7) | 0.4807 (14) | 0.0751 (11) | 0.025 (5) | |
O5 | 0.500000 | 0.500000 | 0.5095 (10) | 0.024 (6) | |
O6 | 0.000000 | 0.500000 | −0.403 (2) | 0.083 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0140 (2) | 0.0147 (15) | 0.01001 (18) | −0.0033 (2) | −0.00006 (16) | −0.0001 (3) |
Zn2 | 0.0145 (2) | 0.0145 (14) | 0.00993 (18) | −0.0034 (2) | −0.00032 (16) | 0.0006 (4) |
Si1 | 0.0109 (4) | 0.008 (3) | 0.0070 (4) | 0.0009 (5) | −0.0004 (3) | 0.0004 (7) |
O1 | 0.0221 (15) | 0.022 (10) | 0.0102 (9) | −0.013 (2) | −0.0034 (8) | 0.0029 (17) |
O2 | 0.0177 (12) | 0.021 (9) | 0.0103 (9) | 0.010 (2) | 0.0033 (8) | 0.0046 (18) |
O3 | 0.0127 (13) | 0.018 (10) | 0.0078 (10) | 0.0004 (15) | −0.0001 (5) | 0.0015 (13) |
O4 | 0.0159 (16) | 0.014 (18) | 0.043 (3) | −0.001 (3) | −0.0082 (13) | −0.002 (3) |
O5 | 0.024 (2) | 0.03 (2) | 0.014 (2) | 0.007 (4) | 0.000 | 0.000 |
O6 | 0.043 (4) | 0.19 (4) | 0.020 (4) | −0.035 (9) | 0.000 | 0.000 |
Zn1—O1 | 1.922 (7) | Zn2—O3iv | 1.961 (3) |
Zn1—O2i | 1.946 (4) | Zn2—O4 | 1.925 (12) |
Zn1—O3ii | 1.963 (3) | Si1—O1 | 1.616 (6) |
Zn1—O4iii | 1.912 (14) | Si1—O2 | 1.624 (4) |
Zn2—Si1 | 2.9920 (17) | Si1—O3 | 1.613 (4) |
Zn2—O1 | 1.949 (4) | Si1—O5 | 1.620 (3) |
Zn2—O2ii | 1.943 (8) | ||
O1—Zn1—O2i | 105.8 (3) | O2—Si1—Zn2 | 99.04 (17) |
O1—Zn1—O3ii | 106.6 (2) | O3—Si1—Zn2 | 144.59 (14) |
O2i—Zn1—O3ii | 108.72 (17) | O3—Si1—O1 | 110.8 (3) |
O4iii—Zn1—O1 | 115.8 (3) | O3—Si1—O2 | 109.9 (2) |
O4iii—Zn1—O2i | 111.1 (3) | O3—Si1—O5 | 113.8 (4) |
O4iii—Zn1—O3ii | 108.6 (3) | O5—Si1—Zn2 | 76.27 (15) |
O1—Zn2—Si1 | 29.6 (2) | O5—Si1—O2 | 104.9 (3) |
O1—Zn2—O3iv | 106.21 (16) | Zn1—O1—Zn2 | 114.3 (2) |
O2ii—Zn2—Si1 | 129.3 (2) | Si1—O1—Zn1 | 131.9 (3) |
O2ii—Zn2—O1 | 102.0 (3) | Si1—O1—Zn2 | 113.8 (4) |
O2ii—Zn2—O3iv | 106.8 (2) | Zn2v—O2—Zn1vi | 115.8 (3) |
O3iv—Zn2—Si1 | 85.63 (10) | Si1—O2—Zn1vi | 115.8 (3) |
O4—Zn2—Si1 | 110.3 (2) | Si1—O2—Zn2v | 122.5 (3) |
O4—Zn2—O1 | 118.5 (3) | Zn2vii—O3—Zn1v | 120.77 (17) |
O4—Zn2—O2ii | 108.9 (3) | Si1—O3—Zn1v | 119.01 (19) |
O4—Zn2—O3iv | 113.3 (3) | Si1—O3—Zn2vii | 119.68 (18) |
O1—Si1—Zn2 | 36.6 (2) | Zn1viii—O4—Zn2 | 123.2 (3) |
O1—Si1—O2 | 111.8 (4) | Si1ix—O5—Si1 | 144.4 (4) |
O1—Si1—O5 | 105.5 (3) | ||
Zn2—Si1—O1—Zn1 | −178.9 (10) | O2—Si1—O3—Zn2vii | −160.4 (5) |
Zn2—Si1—O2—Zn1vi | 31.6 (5) | O2—Si1—O5—Si1ix | −119.9 (2) |
Zn2—Si1—O2—Zn2v | −120.2 (4) | O3—Si1—O1—Zn1 | −17.1 (8) |
Zn2—Si1—O3—Zn1v | 170.8 (2) | O3—Si1—O1—Zn2 | 161.8 (4) |
Zn2—Si1—O3—Zn2vii | −17.7 (9) | O3—Si1—O2—Zn1vi | −169.2 (4) |
Zn2—Si1—O5—Si1ix | 144.25 (4) | O3—Si1—O2—Zn2v | 39.0 (6) |
O1—Si1—O2—Zn1vi | 67.3 (7) | O3—Si1—O5—Si1ix | 0.23 (13) |
O1—Si1—O2—Zn2v | −84.4 (4) | O5—Si1—O1—Zn1 | −140.7 (6) |
O1—Si1—O3—Zn1v | 152.0 (5) | O5—Si1—O1—Zn2 | 38.2 (5) |
O1—Si1—O3—Zn2vii | −36.4 (7) | O5—Si1—O2—Zn1vi | −46.5 (5) |
O1—Si1—O5—Si1ix | 121.94 (19) | O5—Si1—O2—Zn2v | 161.7 (4) |
O2—Si1—O1—Zn1 | 105.8 (5) | O5—Si1—O3—Zn1v | −89.3 (4) |
O2—Si1—O1—Zn2 | −75.3 (6) | O5—Si1—O3—Zn2vii | 82.3 (5) |
O2—Si1—O3—Zn1v | 28.0 (7) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, z+1/2; (iv) x, y, z−1; (v) x+1/2, −y+1/2, z+1/2; (vi) x+1/2, −y+1/2, z−1/2; (vii) x, y, z+1; (viii) −x+1/2, y+1/2, z−1/2; (ix) −x+1, −y+1, z. |
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.693 Mg m−3 |
Orthorhombic, Pnn2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.0991 (3) Å | Cell parameters from 1170 reflections |
b = 10.540 (5) Å | θ = 2.4–21.2° |
c = 5.0319 (3) Å | T = 293 K |
V = 429.5 (2) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 1055 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.070 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 22.5°, θmin = 2.4° |
Tmin = 0.460, Tmax = 1.000 | h = −16→16 |
4899 measured reflections | k = −6→6 |
1265 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0621P)2 + 0.1355P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.041 | (Δ/σ)max < 0.001 |
wR(F2) = 0.115 | Δρmax = 1.22 e Å−3 |
S = 1.00 | Δρmin = −0.89 e Å−3 |
1265 reflections | Absolute structure: Flack x determined using 373 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
68 parameters | Absolute structure parameter: 0.05 (10) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.24958 (6) | 0.36016 (15) | 0.5360 (2) | 0.0113 (6) | |
Zn2 | 0.33166 (6) | 0.67209 (15) | 0.54420 (14) | 0.0120 (6) | |
Si1 | 0.46417 (13) | 0.3565 (3) | 0.0300 (5) | 0.0090 (12) | |
O1 | 0.2846 (5) | 0.3220 (11) | −0.0893 (8) | 0.016 (4) | |
O2 | 0.6088 (5) | 0.2708 (14) | −0.1010 (9) | 0.022 (5) | |
O3 | 0.4617 (4) | 0.3432 (10) | 0.3491 (9) | 0.012 (4) | |
O4 | 0.1814 (5) | 0.5327 (16) | 0.5025 (15) | 0.021 (6) | |
O5 | 0.500000 | 0.500000 | −0.0730 (16) | 0.0182 (12)* | |
O6 | 1.000000 | 0.500000 | 0.035 (4) | 0.0342 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0116 (2) | 0.0124 (19) | 0.0099 (2) | −0.0023 (3) | 0.0003 (3) | 0.0005 (7) |
Zn2 | 0.0114 (2) | 0.0147 (19) | 0.0098 (2) | 0.0023 (3) | 0.0000 (3) | −0.0006 (6) |
Si1 | 0.0082 (4) | 0.012 (4) | 0.0064 (5) | −0.0004 (6) | −0.0003 (5) | 0.0002 (13) |
O1 | 0.0112 (13) | 0.027 (13) | 0.0099 (13) | −0.008 (2) | −0.0036 (9) | 0.005 (2) |
O2 | 0.0174 (16) | 0.038 (17) | 0.0114 (16) | 0.014 (3) | 0.0038 (11) | 0.002 (3) |
O3 | 0.0099 (13) | 0.018 (13) | 0.0089 (14) | 0.0019 (19) | −0.0008 (9) | 0.000 (2) |
O4 | 0.0157 (15) | 0.008 (18) | 0.038 (4) | −0.001 (2) | −0.0068 (17) | 0.003 (4) |
Zn1—O1i | 1.948 (5) | Zn2—O3v | 1.947 (4) |
Zn1—O2ii | 1.918 (10) | Zn2—O4 | 1.919 (13) |
Zn1—O3 | 1.967 (4) | Si1—O1 | 1.615 (4) |
Zn1—O4 | 1.908 (16) | Si1—O2 | 1.620 (8) |
Zn2—Si1iii | 2.967 (3) | Si1—O3 | 1.612 (6) |
Zn2—O1iv | 1.958 (9) | Si1—O5 | 1.624 (4) |
Zn2—O2iii | 1.945 (6) | ||
O1i—Zn1—O3 | 108.5 (2) | O2—Si1—Zn2vi | 37.3 (3) |
O2ii—Zn1—O1i | 106.6 (4) | O2—Si1—O5 | 105.1 (5) |
O2ii—Zn1—O3 | 106.4 (3) | O3—Si1—Zn2vi | 144.97 (18) |
O4—Zn1—O1i | 108.9 (4) | O3—Si1—O1 | 109.8 (3) |
O4—Zn1—O2ii | 118.8 (4) | O3—Si1—O2 | 111.5 (4) |
O4—Zn1—O3 | 107.3 (4) | O3—Si1—O5 | 113.7 (5) |
O1iv—Zn2—Si1iii | 129.3 (2) | O5—Si1—Zn2vi | 74.5 (2) |
O2iii—Zn2—Si1iii | 30.3 (3) | Zn1vii—O1—Zn2viii | 115.4 (3) |
O2iii—Zn2—O1iv | 100.6 (4) | Si1—O1—Zn1vii | 116.4 (3) |
O2iii—Zn2—O3v | 106.0 (2) | Si1—O1—Zn2viii | 119.2 (4) |
O3v—Zn2—Si1iii | 85.87 (14) | Zn1ix—O2—Zn2vi | 113.9 (3) |
O3v—Zn2—O1iv | 107.9 (3) | Si1—O2—Zn1ix | 133.2 (3) |
O4—Zn2—Si1iii | 111.5 (3) | Si1—O2—Zn2vi | 112.4 (6) |
O4—Zn2—O1iv | 106.0 (4) | Zn2v—O3—Zn1 | 121.1 (2) |
O4—Zn2—O2iii | 119.6 (4) | Si1—O3—Zn1 | 118.6 (2) |
O4—Zn2—O3v | 115.3 (4) | Si1—O3—Zn2v | 119.9 (2) |
O1—Si1—Zn2vi | 99.9 (2) | Zn1—O4—Zn2 | 122.4 (3) |
O1—Si1—O2 | 112.0 (4) | Si1v—O5—Si1 | 142.8 (6) |
O1—Si1—O5 | 104.6 (4) | ||
Zn2vi—Si1—O1—Zn1vii | −29.0 (6) | O2—Si1—O3—Zn2v | 36.9 (9) |
Zn2vi—Si1—O1—Zn2viii | 116.6 (4) | O2—Si1—O5—Si1v | −122.4 (2) |
Zn2vi—Si1—O2—Zn1ix | 171.1 (13) | O3—Si1—O1—Zn1vii | 169.7 (6) |
Zn2vi—Si1—O3—Zn1 | −171.1 (2) | O3—Si1—O1—Zn2viii | −44.7 (7) |
Zn2vi—Si1—O3—Zn2v | 15.0 (11) | O3—Si1—O2—Zn1ix | 11.8 (10) |
Zn2vi—Si1—O5—Si1v | −143.98 (5) | O3—Si1—O2—Zn2vi | −159.4 (5) |
O1—Si1—O2—Zn1ix | −111.7 (8) | O3—Si1—O5—Si1v | −0.26 (16) |
O1—Si1—O2—Zn2vi | 77.2 (7) | O5—Si1—O1—Zn1vii | 47.4 (7) |
O1—Si1—O3—Zn1 | −24.5 (9) | O5—Si1—O1—Zn2viii | −167.0 (4) |
O1—Si1—O3—Zn2v | 161.6 (6) | O5—Si1—O2—Zn1ix | 135.3 (8) |
O1—Si1—O5—Si1v | 119.5 (3) | O5—Si1—O2—Zn2vi | −35.8 (6) |
O2—Si1—O1—Zn1vii | −65.9 (8) | O5—Si1—O3—Zn1 | 92.3 (5) |
O2—Si1—O1—Zn2viii | 79.7 (6) | O5—Si1—O3—Zn2v | −81.6 (6) |
O2—Si1—O3—Zn1 | −149.2 (6) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, z+1; (iv) −x+1/2, y+1/2, z+1/2; (v) −x+1, −y+1, z; (vi) −x+1, −y+1, z−1; (vii) x, y, z−1; (viii) −x+1/2, y−1/2, z−1/2; (ix) x+1/2, −y+1/2, z−1/2. |
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.601 Mg m−3 |
Orthorhombic, Pnn2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.1701 (4) Å | Cell parameters from 2670 reflections |
b = 10.6651 (3) Å | θ = 2.2–22.9° |
c = 5.0554 (1) Å | T = 293 K |
V = 440.50 (3) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 1764 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.023 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 22.9°, θmin = 2.3° |
Tmin = 0.985, Tmax = 1.000 | h = −11→13 |
4747 measured reflections | k = −18→19 |
1836 independent reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0503P)2 + 0.0842P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.028 | (Δ/σ)max < 0.001 |
wR(F2) = 0.079 | Δρmax = 0.74 e Å−3 |
S = 1.12 | Δρmin = −1.59 e Å−3 |
1836 reflections | Absolute structure: Flack x determined using 633 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
74 parameters | Absolute structure parameter: 0.06 (7) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.22853 (5) | 0.15013 (3) | 0.61516 (7) | 0.01228 (7) | |
Zn2 | 0.31113 (5) | 0.33485 (3) | 0.11940 (6) | 0.01266 (7) | |
Si1 | 0.51794 (9) | 0.35575 (6) | 0.6084 (2) | 0.00874 (12) | |
O1 | 0.3641 (4) | 0.2836 (3) | 0.4790 (4) | 0.0192 (5) | |
O2 | 0.6902 (4) | 0.3089 (2) | 0.4852 (4) | 0.0162 (4) | |
O3 | 0.5187 (4) | 0.3407 (2) | 0.9255 (5) | 0.0134 (4) | |
O4 | 0.1832 (4) | 0.4840 (2) | 0.0734 (8) | 0.0246 (7) | |
O5 | 0.500000 | 0.500000 | 0.5099 (7) | 0.0168 (6) | |
O6 | 0.000000 | 0.500000 | −0.404 (2) | 0.078 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0127 (2) | 0.01349 (14) | 0.01063 (10) | −0.00302 (6) | 0.0002 (2) | −0.00049 (14) |
Zn2 | 0.0134 (2) | 0.01399 (14) | 0.01064 (9) | −0.00366 (6) | 0.0002 (2) | 0.00024 (15) |
Si1 | 0.0095 (4) | 0.0090 (3) | 0.0077 (2) | −0.00001 (13) | 0.0003 (3) | −0.0001 (3) |
O1 | 0.0230 (18) | 0.0226 (12) | 0.0121 (6) | −0.0138 (8) | −0.0032 (8) | 0.0039 (6) |
O2 | 0.0155 (15) | 0.0217 (11) | 0.0115 (6) | 0.0104 (7) | 0.0040 (7) | 0.0033 (6) |
O3 | 0.0111 (17) | 0.0208 (12) | 0.0084 (6) | −0.0007 (5) | −0.0005 (6) | 0.0016 (5) |
O4 | 0.0163 (18) | 0.0171 (11) | 0.041 (2) | −0.0005 (6) | −0.0046 (11) | −0.0008 (9) |
O5 | 0.025 (2) | 0.0095 (15) | 0.0157 (10) | 0.0039 (8) | 0.000 | 0.000 |
O6 | 0.042 (10) | 0.172 (12) | 0.021 (3) | −0.029 (5) | 0.000 | 0.000 |
Zn1—O1 | 1.931 (2) | Zn2—O3iv | 1.960 (3) |
Zn1—O2i | 1.946 (2) | Zn2—O4 | 1.917 (3) |
Zn1—O3ii | 1.967 (3) | Si1—O1 | 1.612 (3) |
Zn1—O4iii | 1.925 (3) | Si1—O2 | 1.618 (3) |
Zn2—O1 | 1.947 (2) | Si1—O3 | 1.611 (3) |
Zn2—O2ii | 1.946 (2) | Si1—O5 | 1.6236 (13) |
O1—Zn1—O2i | 105.61 (10) | O3—Si1—O1 | 111.05 (14) |
O1—Zn1—O3ii | 106.84 (12) | O3—Si1—O2 | 110.41 (14) |
O2i—Zn1—O3ii | 108.50 (11) | O3—Si1—O5 | 113.57 (16) |
O4iii—Zn1—O1 | 115.14 (15) | Zn1—O1—Zn2 | 114.33 (12) |
O4iii—Zn1—O2i | 111.87 (14) | Si1—O1—Zn1 | 130.89 (14) |
O4iii—Zn1—O3ii | 108.60 (13) | Si1—O1—Zn2 | 114.73 (12) |
O1—Zn2—O3iv | 106.48 (12) | Zn2v—O2—Zn1vi | 115.50 (11) |
O2ii—Zn2—O1 | 102.57 (9) | Si1—O2—Zn1vi | 116.13 (13) |
O2ii—Zn2—O3iv | 106.86 (11) | Si1—O2—Zn2v | 123.42 (14) |
O4—Zn2—O1 | 117.85 (16) | Zn2vii—O3—Zn1v | 120.79 (12) |
O4—Zn2—O2ii | 109.53 (14) | Si1—O3—Zn1v | 118.92 (17) |
O4—Zn2—O3iv | 112.62 (13) | Si1—O3—Zn2vii | 119.84 (16) |
O1—Si1—O2 | 112.00 (17) | Zn2—O4—Zn1viii | 123.09 (18) |
O1—Si1—O5 | 104.91 (13) | Si1ix—O5—Si1 | 144.3 (2) |
O2—Si1—O5 | 104.67 (12) | ||
O1—Si1—O2—Zn1vi | 67.23 (19) | O3—Si1—O1—Zn2 | 162.32 (16) |
O1—Si1—O2—Zn2v | −86.7 (2) | O3—Si1—O2—Zn1vi | −168.46 (15) |
O1—Si1—O3—Zn1v | 152.92 (16) | O3—Si1—O2—Zn2v | 37.6 (2) |
O1—Si1—O3—Zn2vii | −34.7 (2) | O3—Si1—O5—Si1ix | 0.35 (12) |
O1—Si1—O5—Si1ix | 121.79 (12) | O5—Si1—O1—Zn1 | −143.6 (2) |
O2—Si1—O1—Zn1 | 103.5 (3) | O5—Si1—O1—Zn2 | 39.2 (2) |
O2—Si1—O1—Zn2 | −73.7 (2) | O5—Si1—O2—Zn1vi | −45.9 (2) |
O2—Si1—O3—Zn1v | 28.07 (19) | O5—Si1—O2—Zn2v | 160.21 (19) |
O2—Si1—O3—Zn2vii | −159.54 (15) | O5—Si1—O3—Zn1v | −89.13 (14) |
O2—Si1—O5—Si1ix | −120.15 (12) | O5—Si1—O3—Zn2vii | 83.26 (14) |
O3—Si1—O1—Zn1 | −20.5 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, z+1/2; (iv) x, y, z−1; (v) x+1/2, −y+1/2, z+1/2; (vi) x+1/2, −y+1/2, z−1/2; (vii) x, y, z+1; (viii) −x+1/2, y+1/2, z−1/2; (ix) −x+1, −y+1, z. |
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.550 Mg m−3 |
Orthorhombic, Imm2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.2334 (7) Å | Cell parameters from 511 reflections |
b = 10.717 (6) Å | θ = 2.2–22.4° |
c = 5.0641 (3) Å | T = 293 K |
V = 446.8 (3) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 528 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.062 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 23.3°, θmin = 2.2° |
Tmin = 0.336, Tmax = 1.000 | h = −14→13 |
1340 measured reflections | k = −8→6 |
677 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0911P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.050 | (Δ/σ)max < 0.001 |
wR(F2) = 0.160 | Δρmax = 1.01 e Å−3 |
S = 1.03 | Δρmin = −1.59 e Å−3 |
677 reflections | Absolute structure: Flack x determined using 192 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
42 parameters | Absolute structure parameter: 0.0 (2) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.70766 (10) | 0.3412 (2) | 0.5392 (3) | 0.0204 (8) | |
Si1 | 0.500000 | 0.3558 (8) | 0.0314 (13) | 0.018 (2) | |
O1 | 0.6631 (10) | 0.295 (2) | −0.0970 (15) | 0.023 (5) | |
O2 | 0.500000 | 0.3407 (19) | 0.3481 (16) | 0.0107 (12)* | |
O3 | 0.814 (2) | 0.500000 | 0.497 (3) | 0.041 (18) | |
O4 | 0.500000 | 0.500000 | −0.063 (3) | 0.07 (3) | |
O5 | 0.000000 | 0.500000 | 0.014 (6) | 0.13 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0153 (4) | 0.036 (2) | 0.0101 (3) | 0.0037 (4) | 0.0002 (5) | −0.0002 (12) |
Si1 | 0.0123 (9) | 0.036 (7) | 0.0064 (10) | 0.000 | 0.000 | −0.001 (3) |
O1 | 0.024 (3) | 0.035 (16) | 0.011 (2) | 0.001 (5) | 0.0033 (19) | 0.002 (4) |
O3 | 0.030 (7) | 0.06 (6) | 0.034 (10) | 0.000 | 0.009 (4) | 0.000 |
O4 | 0.022 (8) | 0.18 (8) | 0.008 (6) | 0.000 | 0.000 | 0.000 |
O5 | 0.046 (14) | 0.32 (14) | 0.023 (15) | 0.000 | 0.000 | 0.000 |
Zn1—O1i | 1.932 (17) | Si1—O1 | 1.629 (12) |
Zn1—O1ii | 1.943 (9) | Si1—O1iii | 1.629 (12) |
Zn1—O2 | 1.965 (4) | Si1—O2 | 1.612 (11) |
Zn1—O3 | 1.926 (8) | Si1—O4 | 1.618 (9) |
O1i—Zn1—O1ii | 104.4 (3) | O4—Si1—O1iii | 105.4 (7) |
O1i—Zn1—O2 | 107.5 (6) | O4—Si1—O1 | 105.4 (7) |
O1ii—Zn1—O2 | 107.6 (4) | Zn1iv—O1—Zn1v | 115.3 (6) |
O3—Zn1—O1ii | 114.7 (7) | Si1—O1—Zn1v | 115.5 (8) |
O3—Zn1—O1i | 112.1 (6) | Si1—O1—Zn1iv | 127.9 (7) |
O3—Zn1—O2 | 110.1 (8) | Zn1iii—O2—Zn1 | 121.0 (4) |
O1iii—Si1—O1 | 111.1 (11) | Si1—O2—Zn1iii | 119.3 (2) |
O2—Si1—O1iii | 110.9 (5) | Si1—O2—Zn1 | 119.3 (2) |
O2—Si1—O1 | 110.9 (5) | Zn1—O3—Zn1vi | 124.1 (9) |
O2—Si1—O4 | 112.9 (10) | Si1vii—O4—Si1 | 145.6 (11) |
O1iii—Si1—O1—Zn1iv | −95.7 (8) | O2—Si1—O1—Zn1iv | 28.1 (16) |
O1iii—Si1—O1—Zn1v | 70.9 (17) | O2—Si1—O1—Zn1v | −165.2 (9) |
O1—Si1—O2—Zn1 | 31.5 (16) | O2—Si1—O4—Si1vii | 0.000 (4) |
O1iii—Si1—O2—Zn1 | 155.4 (11) | O4—Si1—O1—Zn1v | −42.7 (12) |
O1—Si1—O2—Zn1iii | −155.4 (11) | O4—Si1—O1—Zn1iv | 150.7 (10) |
O1iii—Si1—O2—Zn1iii | −31.5 (16) | O4—Si1—O2—Zn1iii | 86.6 (11) |
O1—Si1—O4—Si1vii | −121.2 (5) | O4—Si1—O2—Zn1 | −86.6 (11) |
O1iii—Si1—O4—Si1vii | 121.2 (5) |
Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x, y, z+1; (iii) −x+1, y, z; (iv) −x+3/2, −y+1/2, z−1/2; (v) x, y, z−1; (vi) x, −y+1, z; (vii) −x+1, −y+1, z. |
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.636 Mg m−3 |
Orthorhombic, Pnn2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.1412 (9) Å | Cell parameters from 1048 reflections |
b = 10.6227 (8) Å | θ = 2.3–22.4° |
c = 5.0448 (2) Å | T = 293 K |
V = 436.28 (6) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 1654 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.033 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 22.9°, θmin = 2.3° |
Tmin = 0.519, Tmax = 1.000 | h = −13→11 |
2456 measured reflections | k = −19→18 |
1841 independent reflections | l = −10→10 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0699P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.045 | (Δ/σ)max < 0.001 |
wR(F2) = 0.116 | Δρmax = 0.98 e Å−3 |
S = 0.98 | Δρmin = −1.56 e Å−3 |
1841 reflections | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
74 parameters | Absolute structure parameter: 0.11 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.23556 (8) | 0.14699 (5) | 0.61429 (13) | 0.01130 (12) | |
Zn2 | 0.31788 (8) | 0.33239 (5) | 0.12008 (11) | 0.01166 (12) | |
Si1 | 0.52395 (16) | 0.35601 (11) | 0.6073 (4) | 0.00775 (19) | |
O4 | 0.1824 (8) | 0.4786 (5) | 0.0755 (14) | 0.0249 (14) | |
O3 | 0.5245 (6) | 0.3414 (4) | 0.9250 (7) | 0.0129 (7) | |
O2 | 0.6987 (7) | 0.3133 (4) | 0.4866 (7) | 0.0141 (7) | |
O1 | 0.3729 (7) | 0.2800 (5) | 0.4790 (7) | 0.0180 (9) | |
O5 | 0.500000 | 0.500000 | 0.5110 (12) | 0.0161 (11) | |
O6 | 0.000000 | 0.500000 | −0.396 (4) | 0.072 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0114 (3) | 0.0131 (2) | 0.00939 (16) | −0.00268 (11) | 0.0003 (3) | −0.0005 (3) |
Zn2 | 0.0122 (3) | 0.0134 (2) | 0.00937 (16) | −0.00350 (12) | 0.0000 (4) | 0.0000 (3) |
Si1 | 0.0090 (7) | 0.0084 (5) | 0.0058 (3) | −0.0002 (2) | −0.0004 (6) | 0.0001 (5) |
O4 | 0.017 (3) | 0.017 (2) | 0.041 (4) | 0.0015 (10) | −0.007 (2) | −0.0058 (18) |
O3 | 0.012 (3) | 0.020 (2) | 0.0071 (10) | −0.0015 (10) | −0.0002 (11) | 0.0026 (10) |
O2 | 0.014 (3) | 0.020 (2) | 0.0088 (10) | 0.0084 (11) | 0.0044 (12) | 0.0040 (11) |
O1 | 0.023 (3) | 0.022 (2) | 0.0090 (10) | −0.0136 (14) | −0.0032 (14) | 0.0021 (12) |
O5 | 0.022 (4) | 0.011 (3) | 0.0156 (19) | 0.0023 (15) | 0.000 | 0.000 |
O6 | 0.053 (14) | 0.140 (16) | 0.023 (4) | −0.027 (7) | 0.000 | 0.000 |
Zn1—O4i | 1.919 (5) | Zn2—O2ii | 1.946 (4) |
Zn1—O3ii | 1.970 (5) | Zn2—O1 | 1.946 (4) |
Zn1—O2iii | 1.948 (4) | Si1—O3 | 1.610 (5) |
Zn1—O1 | 1.927 (4) | Si1—O2 | 1.613 (5) |
Zn2—Si1 | 2.986 (2) | Si1—O1 | 1.607 (5) |
Zn2—O4 | 1.918 (5) | Si1—O5 | 1.617 (2) |
Zn2—O3iv | 1.951 (5) | ||
O4i—Zn1—O3ii | 108.2 (2) | O3—Si1—O5 | 113.0 (3) |
O4i—Zn1—O2iii | 110.7 (3) | O2—Si1—Zn2 | 99.29 (18) |
O4i—Zn1—O1 | 116.5 (3) | O2—Si1—O5 | 105.0 (2) |
O2iii—Zn1—O3ii | 108.6 (2) | O1—Si1—Zn2 | 36.53 (14) |
O1—Zn1—O3ii | 106.8 (2) | O1—Si1—O2 | 112.4 (3) |
O1—Zn1—O2iii | 105.78 (17) | O1—Si1—O5 | 105.2 (2) |
O4—Zn2—Si1 | 110.58 (19) | O5—Si1—Zn2 | 76.38 (19) |
O4—Zn2—O3iv | 113.4 (2) | Zn2—O4—Zn1v | 122.9 (3) |
O4—Zn2—O2ii | 108.5 (3) | Zn2vi—O3—Zn1vii | 120.70 (19) |
O4—Zn2—O1 | 118.2 (3) | Si1—O3—Zn1vii | 118.6 (3) |
O3iv—Zn2—Si1 | 85.79 (13) | Si1—O3—Zn2vi | 120.3 (3) |
O2ii—Zn2—Si1 | 129.16 (14) | Zn2vii—O2—Zn1viii | 115.4 (2) |
O2ii—Zn2—O3iv | 107.12 (18) | Si1—O2—Zn1viii | 116.0 (2) |
O2ii—Zn2—O1 | 102.08 (17) | Si1—O2—Zn2vii | 122.2 (2) |
O1—Zn2—Si1 | 29.44 (13) | Zn1—O1—Zn2 | 113.9 (2) |
O1—Zn2—O3iv | 106.6 (2) | Si1—O1—Zn1 | 132.0 (2) |
O3—Si1—Zn2 | 144.36 (19) | Si1—O1—Zn2 | 114.0 (2) |
O3—Si1—O2 | 110.3 (2) | Si1—O5—Si1ix | 145.0 (5) |
O3—Si1—O1 | 110.8 (2) | ||
Zn2—Si1—O3—Zn1vii | 170.90 (9) | O2—Si1—O1—Zn2 | −74.7 (4) |
Zn2—Si1—O3—Zn2vi | −16.2 (5) | O2—Si1—O5—Si1ix | −119.6 (2) |
Zn2—Si1—O2—Zn1viii | 31.1 (3) | O1—Si1—O3—Zn1vii | 151.9 (3) |
Zn2—Si1—O2—Zn2vii | −119.6 (3) | O1—Si1—O3—Zn2vi | −35.1 (4) |
Zn2—Si1—O1—Zn1 | −179.8 (8) | O1—Si1—O2—Zn1viii | 66.7 (3) |
Zn2—Si1—O5—Si1ix | 144.24 (5) | O1—Si1—O2—Zn2vii | −84.0 (4) |
O3—Si1—O2—Zn1viii | −169.2 (2) | O1—Si1—O5—Si1ix | 121.5 (2) |
O3—Si1—O2—Zn2vii | 40.2 (4) | O5—Si1—O3—Zn1vii | −90.3 (3) |
O3—Si1—O1—Zn1 | −18.4 (6) | O5—Si1—O3—Zn2vi | 82.6 (3) |
O3—Si1—O1—Zn2 | 161.5 (3) | O5—Si1—O2—Zn1viii | −47.2 (4) |
O3—Si1—O5—Si1ix | 0.6 (2) | O5—Si1—O2—Zn2vii | 162.2 (3) |
O2—Si1—O3—Zn1vii | 26.8 (4) | O5—Si1—O1—Zn1 | −140.7 (5) |
O2—Si1—O3—Zn2vi | −160.2 (3) | O5—Si1—O1—Zn2 | 39.1 (4) |
O2—Si1—O1—Zn1 | 105.5 (5) |
Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) x, y, z−1; (v) −x+1/2, y+1/2, z−1/2; (vi) x, y, z+1; (vii) x+1/2, −y+1/2, z+1/2; (viii) x+1/2, −y+1/2, z−1/2; (ix) −x+1, −y+1, z. |
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.623 Mg m−3 |
Orthorhombic, Pnn2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.1559 (2) Å | Cell parameters from 2172 reflections |
b = 10.636 (3) Å | θ = 1.6–22.8° |
c = 5.0475 (1) Å | T = 293 K |
V = 437.85 (11) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 1281 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.038 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 22.8°, θmin = 1.6° |
Tmin = 0.578, Tmax = 1.000 | h = −16→16 |
5254 measured reflections | k = −7→7 |
1406 independent reflections | l = −9→9 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0626P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.034 | (Δ/σ)max < 0.001 |
wR(F2) = 0.096 | Δρmax = 0.75 e Å−3 |
S = 1.04 | Δρmin = −0.70 e Å−3 |
1406 reflections | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
74 parameters | Absolute structure parameter: −0.05 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.23405 (4) | 0.14767 (8) | 0.61465 (8) | 0.0123 (3) | |
Zn2 | 0.31663 (4) | 0.33293 (8) | 0.11982 (8) | 0.0129 (3) | |
Si1 | 0.52270 (7) | 0.3560 (2) | 0.6082 (3) | 0.0088 (7) | |
O1 | 0.3714 (3) | 0.2795 (8) | 0.4782 (5) | 0.019 (3) | |
O2 | 0.6967 (3) | 0.3122 (7) | 0.4857 (5) | 0.017 (2) | |
O3 | 0.5240 (2) | 0.3399 (6) | 0.9250 (5) | 0.011 (2) | |
O4 | 0.1834 (3) | 0.4802 (9) | 0.0746 (10) | 0.029 (3) | |
O5 | 0.500000 | 0.500000 | 0.5084 (9) | 0.021 (4) | |
O6 | 0.000000 | 0.500000 | −0.402 (2) | 0.071 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01217 (13) | 0.0146 (11) | 0.01006 (14) | −0.00276 (15) | 0.00001 (13) | 0.0001 (3) |
Zn2 | 0.01277 (13) | 0.0160 (10) | 0.01001 (13) | −0.00336 (14) | −0.00012 (14) | 0.0005 (3) |
Si1 | 0.0091 (3) | 0.010 (2) | 0.0070 (3) | −0.0001 (3) | 0.0002 (3) | −0.0005 (5) |
O1 | 0.0211 (10) | 0.026 (8) | 0.0095 (8) | −0.0107 (15) | −0.0039 (7) | 0.0026 (13) |
O2 | 0.0151 (8) | 0.027 (7) | 0.0100 (8) | 0.0098 (13) | 0.0033 (6) | 0.0021 (14) |
O3 | 0.0122 (8) | 0.012 (8) | 0.0074 (8) | −0.0009 (9) | −0.0006 (4) | 0.0025 (10) |
O4 | 0.0169 (9) | 0.033 (10) | 0.038 (3) | −0.0029 (17) | −0.0056 (10) | 0.001 (3) |
O5 | 0.0239 (14) | 0.026 (13) | 0.0130 (15) | 0.005 (3) | 0.000 | 0.000 |
O6 | 0.045 (3) | 0.15 (3) | 0.022 (3) | −0.041 (6) | 0.000 | 0.000 |
Zn1—O1 | 1.922 (6) | Zn2—O3iv | 1.958 (2) |
Zn1—O2i | 1.945 (3) | Zn2—O4 | 1.920 (8) |
Zn1—O3ii | 1.967 (2) | Si1—O1 | 1.617 (5) |
Zn1—O4iii | 1.915 (10) | Si1—O2 | 1.617 (3) |
Zn2—Si1 | 2.9938 (13) | Si1—O3 | 1.608 (3) |
Zn2—O1 | 1.948 (3) | Si1—O5 | 1.623 (2) |
Zn2—O2ii | 1.949 (6) | ||
O1—Zn1—O2i | 106.0 (2) | O2—Si1—O1 | 111.7 (3) |
O1—Zn1—O3ii | 106.51 (19) | O2—Si1—O5 | 104.7 (3) |
O2i—Zn1—O3ii | 108.52 (12) | O3—Si1—Zn2 | 144.47 (10) |
O4iii—Zn1—O1 | 115.8 (2) | O3—Si1—O1 | 110.8 (2) |
O4iii—Zn1—O2i | 111.1 (3) | O3—Si1—O2 | 110.10 (17) |
O4iii—Zn1—O3ii | 108.5 (2) | O3—Si1—O5 | 114.2 (3) |
O1—Zn2—Si1 | 29.60 (17) | O5—Si1—Zn2 | 75.98 (14) |
O1—Zn2—O2ii | 101.9 (2) | Zn1—O1—Zn2 | 114.32 (19) |
O1—Zn2—O3iv | 106.22 (12) | Si1—O1—Zn1 | 131.8 (2) |
O2ii—Zn2—Si1 | 129.25 (14) | Si1—O1—Zn2 | 113.9 (3) |
O2ii—Zn2—O3iv | 106.81 (17) | Zn1v—O2—Zn2vi | 115.5 (2) |
O3iv—Zn2—Si1 | 85.72 (8) | Si1—O2—Zn1v | 116.3 (2) |
O4—Zn2—Si1 | 110.41 (18) | Si1—O2—Zn2vi | 122.4 (3) |
O4—Zn2—O1 | 118.6 (3) | Zn2vii—O3—Zn1vi | 120.71 (14) |
O4—Zn2—O2ii | 108.7 (2) | Si1—O3—Zn1vi | 118.85 (13) |
O4—Zn2—O3iv | 113.5 (2) | Si1—O3—Zn2vii | 119.84 (12) |
O1—Si1—Zn2 | 36.50 (18) | Zn1viii—O4—Zn2 | 123.17 (16) |
O1—Si1—O5 | 105.2 (3) | Si1ix—O5—Si1 | 143.8 (3) |
O2—Si1—Zn2 | 98.87 (12) | ||
Zn2—Si1—O1—Zn1 | −178.9 (8) | O2—Si1—O3—Zn2vii | −160.6 (4) |
Zn2—Si1—O2—Zn1v | 31.5 (4) | O2—Si1—O5—Si1ix | −120.10 (16) |
Zn2—Si1—O2—Zn2vi | −120.2 (2) | O3—Si1—O1—Zn1 | −17.0 (6) |
Zn2—Si1—O3—Zn1vi | 170.84 (14) | O3—Si1—O1—Zn2 | 161.8 (3) |
Zn2—Si1—O3—Zn2vii | −18.0 (7) | O3—Si1—O2—Zn1v | −169.4 (3) |
Zn2—Si1—O5—Si1ix | 144.23 (3) | O3—Si1—O2—Zn2vi | 38.9 (5) |
O1—Si1—O2—Zn1v | 67.1 (5) | O3—Si1—O5—Si1ix | 0.39 (9) |
O1—Si1—O2—Zn2vi | −84.7 (3) | O5—Si1—O1—Zn1 | −140.9 (5) |
O1—Si1—O3—Zn1vi | 152.2 (4) | O5—Si1—O1—Zn2 | 38.0 (4) |
O1—Si1—O3—Zn2vii | −36.6 (5) | O5—Si1—O2—Zn1v | −46.2 (4) |
O1—Si1—O5—Si1ix | 122.07 (14) | O5—Si1—O2—Zn2vi | 162.0 (3) |
O2—Si1—O1—Zn1 | 106.1 (4) | O5—Si1—O3—Zn1vi | −89.2 (3) |
O2—Si1—O1—Zn2 | −75.0 (5) | O5—Si1—O3—Zn2vii | 81.9 (4) |
O2—Si1—O3—Zn1vi | 28.2 (5) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, z+1/2; (iv) x, y, z−1; (v) x+1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) x, y, z+1; (viii) −x+1/2, y+1/2, z−1/2; (ix) −x+1, −y+1, z. |
O9Si2Zn4·O | F(000) = 456 |
Mr = 477.66 | Dx = 3.598 Mg m−3 |
Orthorhombic, Pnn2 | Synchrotron radiation, λ = 0.35424 Å |
a = 8.1865 (4) Å | Cell parameters from 1089 reflections |
b = 10.670 (5) Å | θ = 2.4–21.3° |
c = 5.0479 (2) Å | T = 293 K |
V = 440.93 (19) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 671 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.046 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 22.9°, θmin = 1.6° |
Tmin = 0.488, Tmax = 1.000 | h = −16→16 |
2790 measured reflections | k = −7→7 |
758 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0904P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.045 | (Δ/σ)max = 0.241 |
wR(F2) = 0.130 | Δρmax = 0.84 e Å−3 |
S = 1.05 | Δρmin = −0.91 e Å−3 |
758 reflections | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
58 parameters | Absolute structure parameter: −0.32 (18) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.2196 (7) | 0.1568 (15) | 0.6115 (18) | 0.0127 (11) | |
Zn2 | 0.3024 (7) | 0.3407 (12) | 0.1218 (15) | 0.0114 (11) | |
Si1 | 0.507 (6) | 0.3553 (6) | 0.6064 (8) | 0.011 (3) | |
O1 | 0.3528 (13) | 0.282 (3) | 0.476 (2) | 0.012 (2)* | |
O2 | 0.6762 (14) | 0.306 (2) | 0.485 (2) | 0.013 (6) | |
O3 | 0.494 (7) | 0.3387 (18) | 0.9259 (14) | 0.020 (5) | |
O5 | 0.500000 | 0.500000 | 0.509 (2) | 0.0221 (17)* | |
O6 | 0.000000 | 0.500000 | −0.404 (5) | 0.044 (4)* | |
O4 | 0.3171 (9) | 0.01 (4) | 0.5710 (15) | 0.0240 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0093 (15) | 0.015 (3) | 0.0142 (11) | −0.0042 (15) | 0.0060 (15) | −0.0003 (9) |
Zn2 | 0.0090 (16) | 0.017 (3) | 0.0080 (13) | −0.0049 (18) | 0.0007 (9) | 0.0003 (11) |
Si1 | 0.010 (7) | 0.015 (5) | 0.0073 (6) | 0.000 (2) | 0.002 (3) | 0.0006 (11) |
O2 | 0.009 (3) | 0.017 (18) | 0.012 (3) | −0.004 (5) | 0.002 (2) | −0.003 (4) |
O3 | 0.012 (8) | 0.036 (17) | 0.011 (2) | 0.002 (8) | −0.006 (7) | −0.001 (3) |
Zn1—O1 | 1.86 (3) | Zn2—O3iii | 1.85 (5) |
Zn1—O2i | 1.960 (14) | Zn2—O4iv | 2.0 (4) |
Zn1—O3ii | 2.07 (5) | Si1—O1 | 1.63 (4) |
Zn1—O4 | 1.8 (4) | Si1—O2 | 1.60 (5) |
Zn2—Si1 | 2.97 (3) | Si1—O3 | 1.626 (12) |
Zn2—O1 | 1.937 (15) | Si1—O5 | 1.622 (7) |
Zn2—O2ii | 2.00 (2) | ||
O1—Zn1—O2i | 108.5 (11) | O1—Si1—O5 | 108 (2) |
O1—Zn1—O3ii | 109.9 (10) | O2—Si1—Zn2 | 99.0 (5) |
O1—Zn1—O4 | 110 (7) | O2—Si1—O3 | 114 (3) |
O2i—Zn1—O3ii | 105.6 (10) | O2—Si1—O5 | 103 (2) |
O2i—Zn1—O4 | 112 (2) | O3—Si1—Zn2 | 141 (3) |
O3ii—Zn1—O4 | 111 (5) | O5—Si1—Zn2 | 77.2 (10) |
O1—Zn2—Si1 | 30.3 (9) | O5—Si1—O3 | 113.7 (9) |
O1—Zn2—O2ii | 100.1 (11) | Zn1—O1—Zn2 | 116.6 (9) |
O2ii—Zn2—Si1 | 128.0 (7) | Si1—O1—Zn1 | 130.7 (9) |
O3iii—Zn2—Si1 | 87.8 (12) | Si1—O1—Zn2 | 112.7 (13) |
O3iii—Zn2—O1 | 107.9 (10) | Zn1v—O2—Zn2vi | 113.3 (9) |
O3iii—Zn2—O2ii | 104.1 (10) | Si1—O2—Zn1v | 117.3 (11) |
O4iv—Zn2—Si1 | 109 (5) | Si1—O2—Zn2vi | 124.8 (9) |
O4iv—Zn2—O1 | 119.9 (19) | Zn2vii—O3—Zn1vi | 120.8 (4) |
O4iv—Zn2—O2ii | 113 (6) | Si1—O3—Zn1vi | 113 (4) |
O4iv—Zn2—O3iii | 110 (4) | Si1—O3—Zn2vii | 126 (4) |
O1—Si1—Zn2 | 37.0 (8) | Si1viii—O5—Si1 | 144.7 (9) |
O1—Si1—O2 | 111.1 (9) | Zn2ix—O4—Zn1 | 123.0 (6) |
O1—Si1—O3 | 107 (3) | ||
Zn2—Si1—O1—Zn1 | −179 (3) | O2—Si1—O3—Zn2vii | −161.3 (17) |
Zn2—Si1—O2—Zn1v | 31.1 (15) | O2—Si1—O5—Si1viii | −119.1 (17) |
Zn2—Si1—O2—Zn2vi | −123.3 (10) | O3ii—Zn1—O1—Zn2 | −24.2 (17) |
Zn2—Si1—O3—Zn1vi | 171.6 (10) | O3ii—Zn1—O1—Si1 | 155 (2) |
Zn2—Si1—O3—Zn2vii | −18 (2) | O3ii—Zn1—O4—Zn2ix | −45 (2) |
Zn2—Si1—O5—Si1viii | 144.5 (11) | O3—Si1—O1—Zn1 | −20 (3) |
O1—Zn1—O4—Zn2ix | −167.2 (9) | O3—Si1—O1—Zn2 | 158.6 (18) |
O1—Si1—O2—Zn1v | 67.4 (14) | O3—Si1—O2—Zn1v | −171.4 (17) |
O1—Si1—O2—Zn2vi | −87.0 (14) | O3—Si1—O2—Zn2vi | 34 (3) |
O1—Si1—O3—Zn1vi | 151.4 (18) | O3—Si1—O5—Si1viii | 5 (3) |
O1—Si1—O3—Zn2vii | −38 (2) | O5—Si1—O1—Zn1 | −143.1 (15) |
O1—Si1—O5—Si1viii | 123 (2) | O5—Si1—O1—Zn2 | 36 (2) |
O2i—Zn1—O1—Zn2 | −139.3 (11) | O5—Si1—O2—Zn1v | −47.8 (19) |
O2i—Zn1—O1—Si1 | 40 (2) | O5—Si1—O2—Zn2vi | 157.8 (10) |
O2i—Zn1—O4—Zn2ix | 73 (3) | O5—Si1—O3—Zn1vi | −90 (3) |
O2—Si1—O1—Zn1 | 104.6 (18) | O5—Si1—O3—Zn2vii | 81 (3) |
O2—Si1—O1—Zn2 | −76.4 (15) | O4—Zn1—O1—Zn2 | 98.6 (19) |
O2—Si1—O3—Zn1vi | 28.1 (18) | O4—Zn1—O1—Si1 | −82 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x, y, z−1; (iv) −x+1/2, y+1/2, z−1/2; (v) x+1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) x, y, z+1; (viii) −x+1, −y+1, z; (ix) −x+1/2, y−1/2, z+1/2. |
O9Si2Zn4·O | Dx = 3.548 Mg m−3 |
Mr = 477.66 | Synchrotron radiation, λ = 0.35424 Å |
Orthorhombic, Imm2 | Cell parameters from 1616 reflections |
a = 8.2501 (2) Å | θ = 1.6–22.3° |
b = 10.694 (3) Å | µ = 1.62 mm−1 |
c = 5.06794 (16) Å | T = 293 K |
V = 447.12 (12) Å3 | Block, colourless |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
F(000) = 456 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 737 independent reflections |
Radiation source: synchrotron | 678 reflections with I > 2σ(I) |
Synchrotron monochromator | Rint = 0.123 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 23.6°, θmin = 2.4° |
φ scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −7→7 |
Tmin = 0.048, Tmax = 1.000 | l = −10→9 |
2462 measured reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.099 | (Δ/σ)max < 0.001 |
wR(F2) = 0.252 | Δρmax = 2.49 e Å−3 |
S = 1.03 | Δρmin = −2.18 e Å−3 |
737 reflections | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
43 parameters | Absolute structure parameter: 0.6 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.70714 (8) | 0.3407 (2) | 0.53930 (2) | 0.0159 (10) | |
Si1 | 0.500000 | 0.3550 (6) | 0.0309 (11) | 0.013 (2) | |
O1 | 0.6617 (8) | 0.2936 (18) | −0.0964 (16) | 0.017 (5) | |
O2 | 0.500000 | 0.3370 (16) | 0.3462 (18) | 0.015 (7) | |
O3 | 0.8141 (14) | 0.500000 | 0.500 (4) | 0.033 (11) | |
O4 | 0.500000 | 0.500000 | −0.060 (3) | 0.047 (18) | |
O5 | 0.000000 | 0.500000 | 0.028 (13) | 0.063 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0127 (4) | 0.025 (3) | 0.0102 (4) | 0.0028 (3) | −0.0001 (3) | −0.0002 (11) |
Si1 | 0.0101 (8) | 0.020 (8) | 0.0072 (9) | 0.000 | 0.000 | −0.0012 (17) |
O1 | 0.018 (2) | 0.020 (17) | 0.0135 (19) | 0.011 (3) | 0.0027 (14) | 0.008 (4) |
O2 | 0.010 (2) | 0.03 (2) | 0.009 (2) | 0.000 | 0.000 | −0.002 (3) |
O3 | 0.015 (3) | 0.03 (3) | 0.051 (11) | 0.000 | 0.004 (4) | 0.000 |
O4 | 0.024 (6) | 0.11 (6) | 0.011 (6) | 0.000 | 0.000 | 0.000 |
Zn1—O1i | 1.926 (14) | Si1—O1 | 1.620 (9) |
Zn1—O1ii | 1.950 (9) | Si1—O1iii | 1.620 (9) |
Zn1—O2 | 1.970 (5) | Si1—O2 | 1.609 (12) |
Zn1—O3 | 1.929 (6) | Si1—O4 | 1.618 (8) |
O1i—Zn1—O1ii | 104.7 (3) | O2—Si1—O1iii | 110.3 (5) |
O1i—Zn1—O2 | 107.1 (5) | O2—Si1—O4 | 113.4 (9) |
O1ii—Zn1—O2 | 107.3 (3) | Zn1iv—O1—Zn1v | 115.0 (5) |
O1i—Zn1—O3 | 111.4 (5) | Si1—O1—Zn1v | 115.5 (7) |
O3—Zn1—O1ii | 114.5 (8) | Si1—O1—Zn1iv | 128.5 (7) |
O3—Zn1—O2 | 111.3 (7) | Zn1iii—O2—Zn1 | 120.4 (5) |
O1iii—Si1—O1 | 110.8 (11) | Si1—O2—Zn1 | 119.4 (3) |
O1iii—Si1—O4 | 105.9 (8) | Si1—O2—Zn1iii | 119.4 (3) |
O1—Si1—O4 | 105.9 (8) | Zn1—O3—Zn1vi | 124.0 (6) |
O2—Si1—O1 | 110.3 (5) | Si1vii—O4—Si1 | 147.0 (12) |
O1iii—Si1—O1—Zn1iv | −96.4 (7) | O2—Si1—O1—Zn1v | −166.0 (9) |
O1iii—Si1—O1—Zn1v | 71.5 (16) | O2—Si1—O1—Zn1iv | 26.0 (14) |
O1—Si1—O2—Zn1 | 33.9 (13) | O2—Si1—O4—Si1vii | 0.000 (4) |
O1iii—Si1—O2—Zn1 | 156.6 (11) | O4—Si1—O1—Zn1v | −42.9 (11) |
O1iii—Si1—O2—Zn1iii | −33.9 (13) | O4—Si1—O1—Zn1iv | 149.1 (11) |
O1—Si1—O2—Zn1iii | −156.6 (11) | O4—Si1—O2—Zn1iii | 84.7 (9) |
O1—Si1—O4—Si1vii | −121.1 (5) | O4—Si1—O2—Zn1 | −84.7 (9) |
O1iii—Si1—O4—Si1vii | 121.1 (5) |
Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x, y, z+1; (iii) −x+1, y, z; (iv) −x+3/2, −y+1/2, z−1/2; (v) x, y, z−1; (vi) x, −y+1, z; (vii) −x+1, −y+1, z. |
O9Si2Zn4·O | Dx = 3.552 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Imm2 | Cell parameters from 1803 reflections |
a = 8.2846 (2) Å | θ = 2.1–18.8° |
b = 10.697 (2) Å | µ = 0.45 mm−1 |
c = 5.0823 (1) Å | T = 293 K |
V = 450.40 (10) Å3 | Block, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 2922 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.027 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 19.9°, θmin = 1.5° |
Tmin = 0.005, Tmax = 1.000 | h = −23→23 |
7797 measured reflections | k = −31→29 |
3625 independent reflections | l = −15→15 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1217P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.059 | (Δ/σ)max = 0.001 |
wR(F2) = 0.171 | Δρmax = 6.23 e Å−3 |
S = 1.05 | Δρmin = −3.10 e Å−3 |
3625 reflections | Absolute structure: Flack x determined using 1083 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
45 parameters | Absolute structure parameter: 0.456 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.70662 (3) | 0.34063 (2) | 0.53928 (6) | 0.01341 (6) | |
Si1 | 0.500000 | 0.35485 (7) | 0.0315 (2) | 0.00951 (10) | |
O1 | 0.6625 (3) | 0.29528 (19) | −0.0961 (3) | 0.0172 (3) | |
O2 | 0.500000 | 0.3369 (3) | 0.3469 (4) | 0.0145 (3) | |
O3 | 0.8098 (5) | 0.500000 | 0.4970 (13) | 0.0267 (10) | |
O4 | 0.500000 | 0.500000 | −0.0596 (8) | 0.0182 (7) | |
O5 | 0.000000 | 0.500000 | 0.011 (2) | 0.089 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01757 (11) | 0.01233 (8) | 0.01032 (7) | 0.00290 (6) | 0.00011 (9) | 0.00010 (9) |
Si1 | 0.0134 (2) | 0.00768 (16) | 0.00747 (16) | 0.000 | 0.000 | 0.0001 (3) |
O1 | 0.0235 (8) | 0.0178 (6) | 0.0102 (3) | 0.0099 (6) | 0.0032 (4) | 0.0031 (4) |
O2 | 0.0159 (8) | 0.0203 (9) | 0.0073 (4) | 0.000 | 0.000 | 0.0008 (4) |
O3 | 0.0220 (12) | 0.0121 (7) | 0.046 (3) | 0.000 | 0.0077 (14) | 0.000 |
O4 | 0.031 (2) | 0.0072 (7) | 0.0168 (10) | 0.000 | 0.000 | 0.000 |
O5 | 0.052 (6) | 0.19 (2) | 0.025 (4) | 0.000 | 0.000 | 0.000 |
Zn1—O1i | 1.9399 (19) | Si1—O1iii | 1.625 (2) |
Zn1—O1ii | 1.9500 (16) | Si1—O1 | 1.625 (2) |
Zn1—O2 | 1.9718 (10) | Si1—O2 | 1.614 (2) |
Zn1—O3 | 1.919 (2) | Si1—O4 | 1.6202 (14) |
O1i—Zn1—O1ii | 104.80 (6) | O4—Si1—O1 | 105.17 (11) |
O1i—Zn1—O2 | 107.11 (10) | O4—Si1—O1iii | 105.17 (11) |
O1ii—Zn1—O2 | 107.67 (9) | Zn1iv—O1—Zn1v | 114.76 (9) |
O3—Zn1—O1ii | 114.3 (2) | Si1—O1—Zn1v | 115.93 (11) |
O3—Zn1—O1i | 112.15 (14) | Si1—O1—Zn1iv | 127.99 (11) |
O3—Zn1—O2 | 110.44 (19) | Zn1iii—O2—Zn1 | 120.48 (10) |
O1—Si1—O1iii | 111.92 (18) | Si1—O2—Zn1iii | 119.34 (5) |
O2—Si1—O1 | 110.48 (8) | Si1—O2—Zn1 | 119.34 (5) |
O2—Si1—O1iii | 110.48 (8) | Zn1—O3—Zn1vi | 125.3 (2) |
O2—Si1—O4 | 113.44 (18) | Si1vii—O4—Si1 | 146.8 (3) |
O1iii—Si1—O1—Zn1iv | −96.37 (17) | O2—Si1—O1—Zn1iv | 27.2 (2) |
O1iii—Si1—O1—Zn1v | 69.67 (19) | O2—Si1—O1—Zn1v | −166.76 (13) |
O1iii—Si1—O2—Zn1 | 157.40 (15) | O2—Si1—O4—Si1vii | 0.000 (1) |
O1—Si1—O2—Zn1 | 33.0 (2) | O4—Si1—O1—Zn1v | −44.00 (19) |
O1iii—Si1—O2—Zn1iii | −33.0 (2) | O4—Si1—O1—Zn1iv | 149.96 (19) |
O1—Si1—O2—Zn1iii | −157.40 (15) | O4—Si1—O2—Zn1iii | 84.80 (15) |
O1iii—Si1—O4—Si1vii | 120.84 (10) | O4—Si1—O2—Zn1 | −84.80 (15) |
O1—Si1—O4—Si1vii | −120.84 (10) |
Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x, y, z+1; (iii) −x+1, y, z; (iv) −x+3/2, −y+1/2, z−1/2; (v) x, y, z−1; (vi) x, −y+1, z; (vii) −x+1, −y+1, z. |
H0O10Si2Zn4 | F(000) = 456 |
Mr = 477.7 | Dx = 3.697 Mg m−3 |
Orthorhombic, Pnn2(0β0)000† | Synchrotron radiation, λ = 0.2229 Å |
q = 0.152000b* | Cell parameters from 9580 reflections |
a = 8.0977 (6) Å | θ = 2.4–19.0° |
b = 10.5415 (10) Å | µ = 0.47 mm−1 |
c = 5.0266 (2) Å | T = 293 K |
V = 429.08 (5) Å3 | Plate, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, −x2, x3, −x4; (3) x1+1/2, −x2+1/2, x3+1/2, −x4; (4) −x1+1/2, x2+1/2, x3+1/2, x4. |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 3955 independent reflections |
Radiation source: synchrotron | 2127 reflections with I > 3σ(I) |
Synchrotron monochromator | Rint = 0.107 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 10.7°, θmin = 1.5° |
ω scans | h = −13→13 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −9→7 |
Tmin = 0.545, Tmax = 1 | l = −8→8 |
7097 measured reflections |
Refinement on F | 1 constraint |
R[F2 > 2σ(F2)] = 0.188 | H-atom parameters constrained |
wR(F2) = 0.239 | Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + (0.01P)2] where P = (Fo + 2Fc)/3 |
S = 7.71 | (Δ/σ)max = 3.394 |
3955 reflections | Δρmax = 4.80 e Å−3 |
74 parameters | Δρmin = −3.29 e Å−3 |
3 restraints | Absolute structure: 0 of Friedel pairs used in the refinement |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.2288 (2) | 0.1465 (3) | −0.0051 (4) | 0.0251 (9) | |
Zn2 | 0.3088 (2) | 0.3364 (4) | 0.4960 (4) | 0.0251 (9) | |
O4 | 0.8186 (10) | 0.501 (2) | 0.5423 (14) | 0.018 (4) | |
Ow | 0.5 | 0 | 0.503 (7) | 0.05 (2) | |
Si1 | 0.5163 (4) | 0.3555 (5) | 0.0026 (10) | 0.010 (2) | |
O1 | 0.6836 (13) | 0.300 (2) | 0.1310 (19) | 0.018 (4) | |
O2 | 0.3626 (14) | 0.2818 (19) | 0.1338 (19) | 0.018 (4) | |
O3 | 0.5161 (15) | 0.341 (2) | −0.3159 (14) | 0.018 (4) | |
O5 | 0.5 | 0.5 | 0.102 (2) | 0.018 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0142 (5) | 0.053 (3) | 0.0084 (4) | −0.0063 (6) | −0.0050 (5) | −0.0009 (10) |
Zn2 | 0.0142 (5) | 0.053 (3) | 0.0084 (4) | −0.0063 (6) | −0.0050 (5) | −0.0009 (10) |
O4 | 0.023 (2) | 0.018 (12) | 0.0116 (15) | −0.006 (3) | −0.0049 (13) | 0.001 (2) |
Ow | 0.036 (6) | 0.05 (6) | 0.052 (10) | 0.021 (12) | 0 | 0 |
Si1 | 0.0107 (12) | 0.013 (7) | 0.0069 (9) | −0.0008 (19) | 0.0007 (14) | 0.005 (2) |
O1 | 0.023 (2) | 0.018 (12) | 0.0116 (15) | −0.006 (3) | −0.0049 (13) | 0.001 (2) |
O2 | 0.023 (2) | 0.018 (12) | 0.0116 (15) | −0.006 (3) | −0.0049 (13) | 0.001 (2) |
O3 | 0.023 (2) | 0.018 (12) | 0.0116 (15) | −0.006 (3) | −0.0049 (13) | 0.001 (2) |
O5 | 0.023 (2) | 0.018 (12) | 0.0116 (15) | −0.006 (3) | −0.0049 (13) | 0.001 (2) |
Average | Minimum | Maximum | |
Zn1—O4i | 1.75 (2) | 1.63 (2) | 2.02 (2) |
Zn1—O1i | 1.962 (12) | 1.851 (15) | 2.120 (15) |
Zn1—O2 | 1.932 (19) | 1.84 (2) | 2.10 (2) |
Zn1—O3ii | 1.973 (17) | 1.900 (18) | 2.062 (18) |
Zn2—O4iii | 2.02 (2) | 1.59 (3) | 2.26 (3) |
Zn2—O1ii | 1.89 (2) | 1.80 (3) | 2.02 (3) |
Zn2—O2 | 1.961 (12) | 1.901 (13) | 2.045 (13) |
Zn2—O3iv | 1.933 (17) | 1.881 (17) | 1.972 (17) |
Si1—O1 | 1.622 (19) | 1.61 (2) | 1.66 (2) |
Si1—O2 | 1.622 (19) | 1.609 (19) | 1.660 (19) |
Si1—O3 | 1.609 (9) | 1.608 (9) | 1.609 (9) |
Si1—O5 | 1.623 (7) | 1.609 (7) | 1.664 (7) |
O4i—Zn1—O1i | 117.3 (8) | 110.2 (8) | 127.4 (7) |
O4i—Zn1—O2 | 112.5 (9) | 106.8 (9) | 119.1 (9) |
O4i—Zn1—O3ii | 110.8 (9) | 102.8 (9) | 123.2 (9) |
O1i—Zn1—O2 | 103.2 (8) | 91.3 (7) | 109.6 (8) |
O1i—Zn1—O3ii | 105.6 (7) | 98.5 (7) | 110.6 (7) |
O2—Zn1—O3ii | 105.6 (8) | 97.7 (8) | 111.1 (8) |
O4iii—Zn2—O1ii | 109.7 (9) | 103.2 (9) | 116.0 (10) |
O4iii—Zn2—O2 | 118.1 (8) | 114.1 (9) | 121.4 (6) |
O4iii—Zn2—O3iv | 111.2 (10) | 107.1 (10) | 114.9 (10) |
O1ii—Zn2—O2 | 103.3 (9) | 99.8 (9) | 106.6 (8) |
O1ii—Zn2—O3iv | 108.2 (9) | 101.7 (8) | 112.2 (9) |
O2—Zn2—O3iv | 105.7 (7) | 102.6 (7) | 109.6 (8) |
Zn1v—O4—Zn2iii | 123.0 (10) | 112.9 (10) | 129.7 (10) |
O1—Si1—O2 | 108.4 (9) | 108.2 (9) | 109.1 (9) |
O1—Si1—O3 | 111.3 (9) | 110.6 (9) | 111.5 (9) |
O1—Si1—O5 | 106.9 (9) | 106.7 (10) | 107.4 (9) |
O2—Si1—O3 | 111.0 (9) | 110.3 (9) | 111.2 (9) |
O2—Si1—O5 | 105.6 (9) | 105.4 (9) | 106.1 (9) |
O3—Si1—O5 | 113.4 (10) | 113.1 (10) | 113.5 (10) |
Zn1v—O1—Zn2vi | 116.6 (9) | 114.1 (9) | 121.3 (8) |
Zn1v—O1—Si1 | 114.4 (10) | 103.1 (11) | 119.0 (10) |
Zn2vi—O1—Si1 | 125.2 (9) | 117.8 (10) | 135.0 (7) |
Zn1—O2—Zn2 | 115.1 (8) | 111.0 (8) | 120.7 (8) |
Zn1—O2—Si1 | 129.1 (7) | 117.4 (9) | 134.9 (6) |
Zn2—O2—Si1 | 113.8 (10) | 110.9 (10) | 116.5 (10) |
Zn1vi—O3—Zn2vii | 121.6 (4) | 120.5 (5) | 122.2 (4) |
Zn1vi—O3—Si1 | 118.2 (10) | 115.7 (9) | 120.4 (10) |
Zn2vii—O3—Si1 | 119.4 (10) | 117.7 (10) | 121.1 (10) |
Si1—O5—Si1iii | 144.1 (8) | 143.8 (8) | 145.0 (8) |
Symmetry codes: (i) x1−1/2, −x2+1/2, x3−1/2, −x4; (ii) x1−1/2, −x2+1/2, x3+1/2, −x4; (iii) −x1+1, −x2+1, x3, −x4; (iv) x1, x2, x3+1, x4; (v) x1+1/2, −x2+1/2, x3+1/2, −x4; (vi) x1+1/2, −x2+1/2, x3−1/2, −x4; (vii) x1, x2, x3−1, x4. |
O9Si2Zn4·O | Dx = 3.597 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Pnn2 | Cell parameters from 2102 reflections |
a = 8.2199 (6) Å | θ = 2.7–19.9° |
b = 10.6921 (2) Å | µ = 0.46 mm−1 |
c = 5.0603 (1) Å | T = 293 K |
V = 444.74 (3) Å3 | Block, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 2167 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.018 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 19.9°, θmin = 1.6° |
Tmin = 0.834, Tmax = 1.000 | h = −13→10 |
5555 measured reflections | k = −31→29 |
3878 independent reflections | l = −15→15 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0701P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.033 | (Δ/σ)max = 0.001 |
wR(F2) = 0.124 | Δρmax = 1.21 e Å−3 |
S = 1.00 | Δρmin = −0.88 e Å−3 |
3878 reflections | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
74 parameters | Absolute structure parameter: −0.05 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.29029 (5) | 0.34218 (2) | 0.53721 (9) | 0.01267 (8) | |
Zn2 | 0.29328 (5) | 0.65884 (2) | 0.53732 (9) | 0.01279 (8) | |
Si1 | 0.49858 (9) | 0.35518 (4) | 0.02866 (12) | 0.00904 (12) | |
O1 | 0.3368 (4) | 0.29611 (17) | −0.0986 (3) | 0.0195 (6) | |
O2 | 0.6598 (4) | 0.29411 (17) | −0.0975 (3) | 0.0178 (6) | |
O3 | 0.4983 (3) | 0.33896 (16) | 0.3449 (3) | 0.0143 (5) | |
O4 | 0.1876 (5) | 0.50088 (14) | 0.4901 (9) | 0.0270 (9) | |
O5 | 0.500000 | 0.500000 | −0.0661 (4) | 0.0166 (6) | |
O6 | 1.000000 | 0.500000 | 0.0108 (14) | 0.070 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0142 (3) | 0.01401 (8) | 0.00982 (6) | −0.00372 (6) | 0.0002 (3) | 0.00008 (19) |
Zn2 | 0.0144 (3) | 0.01396 (8) | 0.01004 (6) | 0.00401 (6) | −0.0002 (3) | −0.00019 (19) |
Si1 | 0.0113 (4) | 0.00887 (11) | 0.00700 (10) | −0.00001 (12) | −0.0002 (6) | 0.00004 (14) |
O1 | 0.026 (2) | 0.0230 (7) | 0.0097 (4) | −0.0145 (7) | −0.0041 (7) | 0.0044 (5) |
O2 | 0.019 (2) | 0.0240 (7) | 0.0109 (5) | 0.0127 (7) | 0.0040 (7) | 0.0031 (5) |
O3 | 0.0127 (18) | 0.0227 (6) | 0.0074 (2) | 0.0003 (5) | −0.0003 (6) | 0.0013 (3) |
O4 | 0.018 (2) | 0.0160 (6) | 0.047 (2) | −0.0004 (5) | −0.0059 (13) | 0.0015 (7) |
O5 | 0.027 (2) | 0.0078 (4) | 0.0153 (5) | −0.0008 (7) | 0.000 | 0.000 |
O6 | 0.01 (2) | 0.172 (12) | 0.027 (2) | 0.008 (4) | 0.000 | 0.000 |
Zn1—O1i | 1.9456 (15) | Zn2—O3v | 1.971 (3) |
Zn1—O2ii | 1.9335 (17) | Zn2—O4 | 1.914 (2) |
Zn1—O3 | 1.967 (3) | Si1—O1 | 1.607 (3) |
Zn1—O4 | 1.910 (2) | Si1—O2 | 1.609 (3) |
Zn2—O1iii | 1.9416 (17) | Si1—O3 | 1.6096 (15) |
Zn2—O2iv | 1.9537 (16) | Si1—O5 | 1.6210 (8) |
O1i—Zn1—O3 | 107.07 (11) | O2—Si1—O3 | 110.60 (12) |
O2ii—Zn1—O1i | 104.60 (7) | O2—Si1—O5 | 105.33 (9) |
O2ii—Zn1—O3 | 107.13 (9) | O3—Si1—O5 | 113.39 (10) |
O4—Zn1—O1i | 115.46 (15) | Zn2vi—O1—Zn1vii | 114.75 (10) |
O4—Zn1—O2ii | 112.35 (14) | Si1—O1—Zn1vii | 116.27 (10) |
O4—Zn1—O3 | 109.75 (14) | Si1—O1—Zn2vi | 127.65 (10) |
O1iii—Zn2—O2iv | 104.42 (7) | Zn1viii—O2—Zn2ix | 114.71 (10) |
O1iii—Zn2—O3v | 107.14 (10) | Si1—O2—Zn1viii | 128.52 (10) |
O2iv—Zn2—O3v | 107.01 (11) | Si1—O2—Zn2ix | 115.67 (10) |
O4—Zn2—O1iii | 111.89 (14) | Zn1—O3—Zn2v | 120.72 (7) |
O4—Zn2—O2iv | 115.78 (15) | Si1—O3—Zn1 | 119.42 (14) |
O4—Zn2—O3v | 110.09 (14) | Si1—O3—Zn2v | 119.24 (15) |
O1—Si1—O2 | 111.29 (16) | Zn1—O4—Zn2 | 124.6 (2) |
O1—Si1—O3 | 110.78 (12) | Si1—O5—Si1v | 145.59 (15) |
O1—Si1—O5 | 105.24 (9) | ||
O1—Si1—O2—Zn1viii | −96.15 (18) | O3—Si1—O1—Zn2vi | −28.4 (2) |
O1—Si1—O2—Zn2ix | 71.12 (17) | O3—Si1—O2—Zn1viii | 27.4 (2) |
O1—Si1—O3—Zn1 | −32.30 (16) | O3—Si1—O2—Zn2ix | −165.29 (13) |
O1—Si1—O3—Zn2v | 156.63 (12) | O3—Si1—O5—Si1v | 0.05 (11) |
O1—Si1—O5—Si1v | 121.27 (10) | O5—Si1—O1—Zn1vii | 42.59 (18) |
O2—Si1—O1—Zn1vii | −71.00 (18) | O5—Si1—O1—Zn2vi | −151.33 (17) |
O2—Si1—O1—Zn2vi | 95.08 (18) | O5—Si1—O2—Zn1viii | 150.32 (17) |
O2—Si1—O3—Zn1 | −156.19 (12) | O5—Si1—O2—Zn2ix | −42.42 (18) |
O2—Si1—O3—Zn2v | 32.74 (16) | O5—Si1—O3—Zn1 | 85.76 (11) |
O2—Si1—O5—Si1v | −121.02 (10) | O5—Si1—O3—Zn2v | −85.31 (11) |
O3—Si1—O1—Zn1vii | 165.51 (13) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, z+1/2; (iv) −x+1, −y+1, z+1; (v) −x+1, −y+1, z; (vi) −x+1/2, y−1/2, z−1/2; (vii) x, y, z−1; (viii) x+1/2, −y+1/2, z−1/2; (ix) −x+1, −y+1, z−1. |
O9Si2Zn4·O | Dx = 3.670 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Pnn2 | Cell parameters from 2350 reflections |
a = 8.1356 (8) Å | θ = 2.4–19.5° |
b = 10.6329 (3) Å | µ = 0.47 mm−1 |
c = 5.0386 (1) Å | T = 293 K |
V = 435.86 (5) Å3 | Plate, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 2475 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.016 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.36a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 19.9°, θmin = 1.6° |
Tmin = 0.848, Tmax = 1.000 | h = −13→10 |
4410 measured reflections | k = −30→29 |
3231 independent reflections | l = −15→15 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0784P)2 + 1.1597P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.063 | (Δ/σ)max = 0.001 |
wR(F2) = 0.211 | Δρmax = 3.28 e Å−3 |
S = 1.20 | Δρmin = −3.13 e Å−3 |
3231 reflections | Absolute structure: Flack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
74 parameters | Absolute structure parameter: 0.10 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.27841 (15) | 0.34744 (6) | 0.53828 (15) | 0.0237 (2) | |
Zn2 | 0.30232 (15) | 0.66146 (6) | 0.53995 (14) | 0.0253 (3) | |
Si1 | 0.4890 (3) | 0.35608 (11) | 0.0293 (3) | 0.0163 (4) | |
O1 | 0.3192 (13) | 0.3043 (6) | −0.0949 (7) | 0.038 (3) | |
O2 | 0.6457 (14) | 0.2887 (6) | −0.0973 (7) | 0.046 (3) | |
O3 | 0.4895 (9) | 0.3414 (4) | 0.3476 (6) | 0.0204 (14) | |
O4 | 0.177 (2) | 0.5103 (6) | 0.491 (2) | 0.035 (4) | |
O5 | 0.500000 | 0.500000 | −0.0703 (10) | 0.0191 (17) | |
O6 | 1.000000 | 0.500000 | 0.022 (6) | 0.086 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0378 (8) | 0.0225 (2) | 0.01088 (12) | −0.0160 (2) | 0.0014 (7) | −0.0005 (4) |
Zn2 | 0.0421 (8) | 0.0228 (2) | 0.01088 (13) | 0.0181 (3) | 0.0022 (7) | 0.0003 (4) |
Si1 | 0.0312 (14) | 0.0106 (3) | 0.0070 (3) | 0.0002 (3) | −0.0003 (8) | 0.0004 (3) |
O1 | 0.062 (8) | 0.041 (3) | 0.0113 (8) | −0.041 (4) | −0.0067 (18) | 0.0061 (12) |
O2 | 0.075 (9) | 0.050 (3) | 0.0118 (8) | 0.051 (4) | 0.008 (2) | 0.0069 (14) |
O3 | 0.028 (5) | 0.0251 (16) | 0.0081 (6) | 0.0015 (15) | 0.0004 (12) | 0.0018 (7) |
O4 | 0.009 (14) | 0.049 (5) | 0.048 (5) | 0.004 (3) | 0.002 (5) | 0.003 (2) |
O5 | 0.032 (6) | 0.0102 (12) | 0.0151 (12) | −0.0061 (16) | 0.000 | 0.000 |
O6 | 0.01 (5) | 0.21 (3) | 0.038 (8) | 0.021 (13) | 0.000 | 0.000 |
Zn1—O1i | 1.933 (4) | Zn2—O3v | 1.951 (7) |
Zn1—O2ii | 1.930 (5) | Zn2—O4 | 1.918 (11) |
Zn1—O3 | 1.969 (7) | Si1—O1 | 1.613 (8) |
Zn1—O4 | 1.932 (9) | Si1—O2 | 1.596 (7) |
Zn2—O1iii | 1.936 (4) | Si1—O3 | 1.611 (4) |
Zn2—O2iv | 1.949 (5) | Si1—O5 | 1.6130 (19) |
O1i—Zn1—O3 | 108.0 (3) | O2—Si1—O3 | 110.6 (3) |
O2ii—Zn1—O1i | 104.9 (2) | O2—Si1—O5 | 104.9 (3) |
O2ii—Zn1—O3 | 106.9 (3) | O3—Si1—O5 | 113.7 (2) |
O4—Zn1—O1i | 113.8 (4) | Zn2vi—O1—Zn1vii | 115.7 (3) |
O4—Zn1—O2ii | 113.0 (6) | Si1—O1—Zn1vii | 115.9 (3) |
O4—Zn1—O3 | 109.9 (5) | Si1—O1—Zn2vi | 124.7 (4) |
O1iii—Zn2—O2iv | 103.1 (2) | Zn1viii—O2—Zn2ix | 114.5 (3) |
O1iii—Zn2—O3v | 106.3 (3) | Si1—O2—Zn1viii | 130.0 (3) |
O2iv—Zn2—O3v | 106.4 (4) | Si1—O2—Zn2ix | 115.2 (3) |
O4—Zn2—O1iii | 110.0 (5) | Zn1—O3—Zn2v | 121.00 (16) |
O4—Zn2—O2iv | 117.6 (4) | Si1—O3—Zn1 | 118.7 (4) |
O4—Zn2—O3v | 112.6 (4) | Si1—O3—Zn2v | 119.9 (4) |
O1—Si1—O2 | 112.1 (6) | Zn1—O4—Zn2 | 120.6 (9) |
O1—Si1—O3 | 110.8 (3) | Si1—O5—Si1v | 143.8 (4) |
O1—Si1—O5 | 104.5 (3) | ||
O1—Si1—O2—Zn1viii | −99.6 (7) | O3—Si1—O1—Zn2vi | −35.4 (7) |
O1—Si1—O2—Zn2ix | 73.0 (7) | O3—Si1—O2—Zn1viii | 24.6 (9) |
O1—Si1—O3—Zn1 | −29.0 (5) | O3—Si1—O2—Zn2ix | −162.8 (5) |
O1—Si1—O3—Zn2v | 158.4 (4) | O3—Si1—O5—Si1v | −0.5 (3) |
O1—Si1—O5—Si1v | 120.4 (3) | O5—Si1—O1—Zn1vii | 44.4 (6) |
O2—Si1—O1—Zn1vii | −68.7 (6) | O5—Si1—O1—Zn2vi | −158.3 (5) |
O2—Si1—O1—Zn2vi | 88.7 (5) | O5—Si1—O2—Zn1viii | 147.5 (7) |
O2—Si1—O3—Zn1 | −153.9 (5) | O5—Si1—O2—Zn2ix | −39.8 (7) |
O2—Si1—O3—Zn2v | 33.4 (5) | O5—Si1—O3—Zn1 | 88.3 (3) |
O2—Si1—O5—Si1v | −121.5 (3) | O5—Si1—O3—Zn2v | −84.3 (3) |
O3—Si1—O1—Zn1vii | 167.2 (4) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, z+1/2; (iv) −x+1, −y+1, z+1; (v) −x+1, −y+1, z; (vi) −x+1/2, y−1/2, z−1/2; (vii) x, y, z−1; (viii) x+1/2, −y+1/2, z−1/2; (ix) −x+1, −y+1, z−1. |
O9Si2Zn4·O | Dx = 3.734 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Pnn2 | Cell parameters from 2393 reflections |
a = 8.0899 (13) Å | θ = 2.4–19.6° |
b = 10.5425 (5) Å | µ = 0.48 mm−1 |
c = 5.0237 (1) Å | T = 293 K |
V = 428.46 (7) Å3 | Block, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 2601 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.019 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 20.0°, θmin = 1.6° |
Tmin = 0.712, Tmax = 1.000 | h = −10→13 |
5096 measured reflections | k = −29→31 |
3654 independent reflections | l = −15→15 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.198 | (Δ/σ)max < 0.001 |
wR(F2) = 0.562 | Δρmax = 20.59 e Å−3 |
S = 2.43 | Δρmin = −7.77 e Å−3 |
3654 reflections | Absolute structure: Flack x determined using 753 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
66 parameters | Absolute structure parameter: −0.32 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.2686 (4) | 0.35237 (17) | 0.5390 (3) | 0.0336 (8) | |
Zn2 | 0.3148 (4) | 0.66595 (17) | 0.5426 (3) | 0.0294 (8) | |
Si1 | 0.4829 (7) | 0.3564 (2) | 0.0280 (6) | 0.0201 (11) | |
O1 | 0.309 (3) | 0.3098 (15) | −0.0914 (16) | 0.060 (9) | |
O2 | 0.628 (3) | 0.2798 (14) | −0.0963 (16) | 0.044 (7) | |
O3 | 0.481 (2) | 0.3422 (10) | 0.3500 (15) | 0.027 (4) | |
O4 | 0.185 (5) | 0.523 (2) | 0.501 (6) | 0.055 (6)* | |
O5 | 0.500000 | 0.500000 | −0.070 (2) | 0.017 (3) | |
O6 | 1.000000 | 0.500000 | 0.038 (16) | 0.052 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.061 (2) | 0.0290 (6) | 0.0112 (3) | −0.0278 (9) | 0.0035 (11) | −0.0014 (6) |
Zn2 | 0.049 (2) | 0.0277 (6) | 0.0117 (3) | 0.0237 (8) | 0.0032 (10) | 0.0007 (6) |
Si1 | 0.044 (4) | 0.0104 (7) | 0.0058 (5) | −0.0006 (7) | −0.0032 (12) | −0.0012 (6) |
O1 | 0.12 (2) | 0.050 (7) | 0.0118 (17) | −0.069 (12) | −0.008 (5) | 0.007 (3) |
O2 | 0.076 (18) | 0.044 (6) | 0.0130 (17) | 0.048 (9) | 0.006 (4) | 0.007 (3) |
O3 | 0.052 (13) | 0.020 (3) | 0.0089 (15) | 0.002 (3) | 0.002 (3) | 0.0050 (16) |
O5 | 0.032 (10) | 0.0049 (16) | 0.015 (2) | −0.0026 (18) | 0.000 | 0.000 |
Zn1—O1i | 1.938 (10) | Zn2—O3v | 1.914 (16) |
Zn1—O2ii | 1.921 (10) | Zn2—O4 | 1.85 (3) |
Zn1—O3 | 1.968 (16) | Si1—O1 | 1.61 (2) |
Zn1—O4 | 1.93 (3) | Si1—O2 | 1.558 (15) |
Zn2—Si1iii | 2.946 (5) | Si1—O3 | 1.625 (8) |
Zn2—O1iv | 1.937 (8) | Si1—O5 | 1.598 (4) |
Zn2—O2iii | 1.957 (11) | ||
O1i—Zn1—O3 | 107.7 (9) | O2—Si1—O1 | 110.8 (13) |
O2ii—Zn1—O1i | 105.7 (4) | O2—Si1—O3 | 110.9 (7) |
O2ii—Zn1—O3 | 107.8 (8) | O2—Si1—O5 | 107.6 (8) |
O2ii—Zn1—O4 | 115.6 (15) | O3—Si1—Zn2vi | 145.2 (7) |
O4—Zn1—O1i | 111.6 (11) | O5—Si1—Zn2vi | 76.9 (3) |
O4—Zn1—O3 | 108.1 (12) | O5—Si1—O1 | 104.5 (7) |
O1iv—Zn2—Si1iii | 129.5 (6) | O5—Si1—O3 | 113.2 (5) |
O1iv—Zn2—O2iii | 102.4 (5) | Zn2vii—O1—Zn1viii | 115.3 (6) |
O2iii—Zn2—Si1iii | 29.0 (4) | Si1—O1—Zn1viii | 115.7 (7) |
O3v—Zn2—Si1iii | 86.3 (4) | Si1—O1—Zn2vii | 124.2 (10) |
O3v—Zn2—O1iv | 107.7 (7) | Zn1ix—O2—Zn2vi | 113.7 (8) |
O3v—Zn2—O2iii | 106.2 (8) | Si1—O2—Zn1ix | 132.9 (6) |
O4—Zn2—Si1iii | 110.2 (10) | Si1—O2—Zn2vi | 113.4 (5) |
O4—Zn2—O1iv | 107.7 (15) | Zn2v—O3—Zn1 | 120.8 (4) |
O4—Zn2—O2iii | 118.4 (11) | Si1—O3—Zn1 | 118.9 (9) |
O4—Zn2—O3v | 113.4 (12) | Si1—O3—Zn2v | 120.0 (9) |
O1—Si1—Zn2vi | 98.8 (6) | Zn2—O4—Zn1 | 123 (2) |
O1—Si1—O3 | 109.6 (8) | Si1—O5—Si1v | 144.2 (7) |
O2—Si1—Zn2vi | 37.6 (3) | ||
Zn2vi—Si1—O1—Zn1viii | −32.8 (14) | O2—Si1—O3—Zn1 | −150.2 (12) |
Zn2vi—Si1—O1—Zn2vii | 121.3 (13) | O2—Si1—O3—Zn2v | 36.4 (12) |
Zn2vi—Si1—O2—Zn1ix | 177 (3) | O2—Si1—O5—Si1v | −123.0 (8) |
Zn2vi—Si1—O3—Zn1 | −170.6 (3) | O3v—Zn2—O4—Zn1 | 48 (2) |
Zn2vi—Si1—O3—Zn2v | 16.0 (12) | O3—Si1—O1—Zn1viii | 167.5 (10) |
Zn2vi—Si1—O5—Si1v | −144.87 (14) | O3—Si1—O1—Zn2vii | −38.4 (18) |
Si1iii—Zn2—O4—Zn1 | −47 (2) | O3—Si1—O2—Zn1ix | 16 (2) |
O1iv—Zn2—O4—Zn1 | 167.3 (15) | O3—Si1—O2—Zn2vi | −160.9 (11) |
O1—Si1—O2—Zn1ix | −105.8 (19) | O3—Si1—O5—Si1v | 0.0 (7) |
O1—Si1—O2—Zn2vi | 77.1 (15) | O5—Si1—O1—Zn1viii | 45.8 (15) |
O1—Si1—O3—Zn1 | −27.5 (12) | O5—Si1—O1—Zn2vii | −160.0 (13) |
O1—Si1—O3—Zn2v | 159.1 (10) | O5—Si1—O2—Zn1ix | 140.5 (18) |
O1—Si1—O5—Si1v | 119.2 (8) | O5—Si1—O2—Zn2vi | −36.6 (16) |
O2iii—Zn2—O4—Zn1 | −77 (2) | O5—Si1—O3—Zn1 | 88.7 (8) |
O2—Si1—O1—Zn1viii | −69.8 (14) | O5—Si1—O3—Zn2v | −84.7 (7) |
O2—Si1—O1—Zn2vii | 84.4 (14) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, z+1; (iv) −x+1/2, y+1/2, z+1/2; (v) −x+1, −y+1, z; (vi) −x+1, −y+1, z−1; (vii) −x+1/2, y−1/2, z−1/2; (viii) x, y, z−1; (ix) x+1/2, −y+1/2, z−1/2. |
O9Si2Zn4·O | Dx = 3.526 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Imm2 | Cell parameters from 1914 reflections |
a = 8.31709 (17) Å | θ = 2.1–20.3° |
b = 10.706 (3) Å | µ = 0.45 mm−1 |
c = 5.09489 (7) Å | T = 293 K |
V = 453.66 (12) Å3 | Block, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 3585 independent reflections |
Radiation source: synchrotron | 2967 reflections with I > 2σ(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 20.2°, θmin = 1.5° |
ω scans | h = −23→23 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −29→31 |
Tmin = 0.187, Tmax = 1.000 | l = −15→15 |
7678 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.119P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.056 | (Δ/σ)max = 0.001 |
wR(F2) = 0.169 | Δρmax = 6.19 e Å−3 |
S = 1.08 | Δρmin = −3.35 e Å−3 |
3585 reflections | Absolute structure: Flack x determined using 1095 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
45 parameters | Absolute structure parameter: 0.29 (8) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.70587 (3) | 0.34002 (2) | 0.53933 (8) | 0.01247 (6) | |
Si1 | 0.500000 | 0.35451 (7) | 0.0314 (2) | 0.00890 (9) | |
O1 | 0.6614 (3) | 0.29502 (19) | −0.0963 (3) | 0.0158 (3) | |
O2 | 0.500000 | 0.3356 (3) | 0.3465 (4) | 0.0140 (3) | |
O3 | 0.8081 (5) | 0.500000 | 0.4981 (12) | 0.0239 (9) | |
O4 | 0.500000 | 0.500000 | −0.0566 (7) | 0.0166 (6) | |
O5 | 0.000000 | 0.500000 | 0.0111 (18) | 0.079 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01571 (10) | 0.01189 (7) | 0.00980 (6) | 0.00282 (5) | 0.00014 (9) | 0.00018 (9) |
Si1 | 0.0120 (2) | 0.00750 (15) | 0.00717 (16) | 0.000 | 0.000 | −0.0001 (3) |
O1 | 0.0199 (6) | 0.0174 (5) | 0.0102 (3) | 0.0094 (6) | 0.0031 (4) | 0.0031 (4) |
O2 | 0.0151 (7) | 0.0195 (9) | 0.0074 (4) | 0.000 | 0.000 | 0.0014 (4) |
O3 | 0.0194 (10) | 0.0124 (7) | 0.040 (3) | 0.000 | 0.0068 (12) | 0.000 |
O4 | 0.0265 (18) | 0.0072 (6) | 0.0160 (9) | 0.000 | 0.000 | 0.000 |
O5 | 0.054 (7) | 0.16 (2) | 0.024 (4) | 0.000 | 0.000 | 0.000 |
Zn1—O1i | 1.9456 (18) | Si1—O1iii | 1.6222 (19) |
Zn1—O1ii | 1.9535 (16) | Si1—O1 | 1.6222 (19) |
Zn1—O2 | 1.9747 (10) | Si1—O2 | 1.618 (2) |
Zn1—O3 | 1.9238 (18) | Si1—O4 | 1.6209 (13) |
O1i—Zn1—O1ii | 105.16 (6) | O4—Si1—O1 | 105.45 (10) |
O1i—Zn1—O2 | 107.29 (9) | O4—Si1—O1iii | 105.44 (10) |
O1ii—Zn1—O2 | 107.63 (9) | Zn1iv—O1—Zn1v | 114.42 (9) |
O3—Zn1—O1ii | 114.03 (19) | Si1—O1—Zn1v | 116.16 (10) |
O3—Zn1—O1i | 111.83 (13) | Si1—O1—Zn1iv | 128.23 (10) |
O3—Zn1—O2 | 110.52 (17) | Zn1—O2—Zn1iii | 120.24 (10) |
O1—Si1—O1iii | 111.72 (17) | Si1—O2—Zn1 | 119.38 (5) |
O2—Si1—O1 | 110.40 (8) | Si1—O2—Zn1iii | 119.38 (5) |
O2—Si1—O1iii | 110.41 (8) | Zn1—O3—Zn1vi | 125.8 (2) |
O2—Si1—O4 | 113.27 (17) | Si1—O4—Si1vii | 147.9 (3) |
O1iii—Si1—O1—Zn1iv | −97.17 (16) | O2—Si1—O1—Zn1iv | 26.1 (2) |
O1iii—Si1—O1—Zn1v | 69.59 (18) | O2—Si1—O1—Zn1v | −167.14 (13) |
O1iii—Si1—O2—Zn1iii | −33.7 (2) | O2—Si1—O4—Si1vii | 0.000 (1) |
O1—Si1—O2—Zn1iii | −157.70 (14) | O4—Si1—O1—Zn1v | −44.46 (18) |
O1iii—Si1—O2—Zn1 | 157.70 (14) | O4—Si1—O1—Zn1iv | 148.78 (18) |
O1—Si1—O2—Zn1 | 33.7 (2) | O4—Si1—O2—Zn1 | −84.32 (15) |
O1iii—Si1—O4—Si1vii | 120.83 (9) | O4—Si1—O2—Zn1iii | 84.32 (15) |
O1—Si1—O4—Si1vii | −120.83 (9) |
Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x, y, z+1; (iii) −x+1, y, z; (iv) −x+3/2, −y+1/2, z−1/2; (v) x, y, z−1; (vi) x, −y+1, z; (vii) −x+1, −y+1, z. |
O9Si2Zn4·O | Dx = 3.580 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Imm2 | Cell parameters from 1740 reflections |
a = 8.2502 (2) Å | θ = 2.1–19.4° |
b = 10.685 (3) Å | µ = 0.46 mm−1 |
c = 5.0695 (1) Å | T = 293 K |
V = 446.89 (11) Å3 | Block, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 2878 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.025 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 20.4°, θmin = 1.5° |
Tmin = 0.255, Tmax = 1.000 | h = −23→23 |
7661 measured reflections | k = −31→30 |
3598 independent reflections | l = −15→15 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1051P)2 + 0.1189P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.055 | (Δ/σ)max = 0.001 |
wR(F2) = 0.162 | Δρmax = 5.24 e Å−3 |
S = 1.07 | Δρmin = −2.12 e Å−3 |
3598 reflections | Absolute structure: Flack x determined using 1045 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
45 parameters | Absolute structure parameter: 0.52 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.70747 (3) | 0.34134 (2) | 0.53930 (7) | 0.01366 (6) | |
Si1 | 0.500000 | 0.35513 (7) | 0.0316 (2) | 0.00972 (10) | |
O1 | 0.6631 (3) | 0.2956 (2) | −0.0962 (3) | 0.0185 (3) | |
O2 | 0.500000 | 0.3382 (3) | 0.3472 (4) | 0.0147 (4) | |
O3 | 0.8128 (5) | 0.500000 | 0.4946 (13) | 0.0269 (10) | |
O4 | 0.500000 | 0.500000 | −0.0626 (8) | 0.0183 (7) | |
O5 | 0.000000 | 0.500000 | 0.0109 (19) | 0.095 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01750 (11) | 0.01315 (8) | 0.01032 (6) | 0.00328 (6) | 0.00006 (11) | 0.00010 (10) |
Si1 | 0.0132 (3) | 0.00826 (17) | 0.00767 (18) | 0.000 | 0.000 | 0.0001 (3) |
O1 | 0.0246 (9) | 0.0204 (7) | 0.0103 (3) | 0.0120 (7) | 0.0038 (5) | 0.0034 (5) |
O2 | 0.0152 (8) | 0.0216 (10) | 0.0074 (4) | 0.000 | 0.000 | 0.0004 (5) |
O3 | 0.0199 (12) | 0.0138 (8) | 0.047 (3) | 0.000 | 0.0061 (15) | 0.000 |
O4 | 0.031 (2) | 0.0077 (8) | 0.0159 (10) | 0.000 | 0.000 | 0.000 |
O5 | 0.051 (6) | 0.21 (3) | 0.024 (4) | 0.000 | 0.000 | 0.000 |
Zn1—O1i | 1.937 (2) | Si1—O1iii | 1.623 (2) |
Zn1—O1ii | 1.9460 (17) | Si1—O1 | 1.623 (2) |
Zn1—O2 | 1.9697 (11) | Si1—O2 | 1.610 (3) |
Zn1—O3 | 1.918 (2) | Si1—O4 | 1.6198 (14) |
O1i—Zn1—O1ii | 104.52 (6) | O4—Si1—O1 | 104.89 (11) |
O1i—Zn1—O2 | 106.90 (11) | O4—Si1—O1iii | 104.89 (11) |
O1ii—Zn1—O2 | 107.55 (10) | Zn1iv—O1—Zn1v | 115.00 (10) |
O3—Zn1—O1ii | 114.8 (2) | Si1—O1—Zn1v | 115.88 (12) |
O3—Zn1—O1i | 112.08 (15) | Si1—O1—Zn1iv | 127.69 (11) |
O3—Zn1—O2 | 110.52 (18) | Zn1—O2—Zn1iii | 120.69 (11) |
O1—Si1—O1iii | 112.0 (2) | Si1—O2—Zn1 | 119.30 (6) |
O2—Si1—O1 | 110.64 (9) | Si1—O2—Zn1iii | 119.30 (6) |
O2—Si1—O1iii | 110.64 (9) | Zn1vi—O3—Zn1 | 124.2 (2) |
O2—Si1—O4 | 113.60 (18) | Si1vii—O4—Si1 | 145.7 (3) |
O1iii—Si1—O1—Zn1iv | −95.76 (18) | O2—Si1—O1—Zn1iv | 28.2 (2) |
O1iii—Si1—O1—Zn1v | 69.8 (2) | O2—Si1—O1—Zn1v | −166.26 (15) |
O1iii—Si1—O2—Zn1iii | −32.4 (2) | O2—Si1—O4—Si1vii | 0.000 (1) |
O1—Si1—O2—Zn1iii | −157.14 (17) | O4—Si1—O1—Zn1v | −43.4 (2) |
O1iii—Si1—O2—Zn1 | 157.14 (17) | O4—Si1—O1—Zn1iv | 151.0 (2) |
O1—Si1—O2—Zn1 | 32.4 (2) | O4—Si1—O2—Zn1 | −85.21 (16) |
O1iii—Si1—O4—Si1vii | 120.94 (10) | O4—Si1—O2—Zn1iii | 85.21 (16) |
O1—Si1—O4—Si1vii | −120.94 (10) |
Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x, y, z+1; (iii) −x+1, y, z; (iv) −x+3/2, −y+1/2, z−1/2; (v) x, y, z−1; (vi) x, −y+1, z; (vii) −x+1, −y+1, z. |
H2O9Si2Zn4·H2O | Dx = 3.607 Mg m−3 |
Mr = 481.69 | Synchrotron radiation, λ = 0.2229 Å |
Orthorhombic, Pnn2 | Cell parameters from 1830 reflections |
a = 8.2161 (2) Å | θ = 2.1–18.9° |
b = 10.673 (3) Å | µ = 0.46 mm−1 |
c = 5.0579 (1) Å | T = 293 K |
V = 443.54 (13) Å3 | Plate, colourless |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 464 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 3345 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.022 |
Absorption correction: multi-scan CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 19.9°, θmin = 1.6° |
Tmin = 0.779, Tmax = 1.000 | h = −23→23 |
10608 measured reflections | k = −31→29 |
5952 independent reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.056 | w = 1/[σ2(Fo2) + (0.0823P)2 + 0.418P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.196 | (Δ/σ)max = 0.021 |
S = 1.08 | Δρmax = 5.40 e Å−3 |
5952 reflections | Δρmin = −1.83 e Å−3 |
82 parameters | Absolute structure: Flack x determined using 1090 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
1 restraint | Absolute structure parameter: 0.02 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.70897 (5) | 0.65731 (4) | −0.53692 (6) | 0.01520 (7) | |
Zn2 | 0.70774 (5) | 0.34154 (4) | −0.53747 (6) | 0.01485 (7) | |
Si1 | 0.50070 (10) | 0.64440 (7) | −0.0282 (2) | 0.01070 (9) | |
O1 | 0.6641 (4) | 0.7036 (3) | 0.0975 (4) | 0.0217 (5) | |
O2 | 0.3369 (4) | 0.7044 (3) | 0.0983 (4) | 0.0240 (6) | |
O3 | 0.5007 (3) | 0.6602 (3) | −0.3458 (4) | 0.0162 (3) | |
O5 | 0.500000 | 0.500000 | 0.0681 (7) | 0.0200 (7) | |
O4 | 0.8160 (5) | 0.4987 (3) | −0.4885 (13) | 0.0316 (11) | |
H4 | 0.942 (13) | 0.484 (8) | −0.473 (19) | 0.02 (2)* | |
O6 | 0.000000 | 0.500000 | −0.011 (3) | 0.095 (7) | |
H6 | −0.006 (11) | 0.58 (2) | 0.17 (3) | 0.06 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01913 (14) | 0.01553 (12) | 0.01094 (9) | −0.00445 (10) | 0.00110 (11) | −0.00078 (11) |
Zn2 | 0.01948 (14) | 0.01462 (11) | 0.01046 (9) | 0.00611 (9) | −0.00097 (11) | −0.00110 (10) |
Si1 | 0.0154 (2) | 0.00931 (16) | 0.00741 (16) | −0.0010 (2) | 0.0007 (2) | 0.0001 (2) |
O1 | 0.0306 (12) | 0.0239 (10) | 0.0107 (5) | −0.0179 (10) | −0.0028 (6) | 0.0025 (6) |
O2 | 0.0298 (12) | 0.0310 (13) | 0.0113 (5) | 0.0172 (12) | 0.0059 (7) | 0.0067 (7) |
O3 | 0.0176 (7) | 0.0228 (9) | 0.0081 (4) | −0.0004 (9) | 0.0007 (5) | 0.0011 (4) |
O5 | 0.036 (2) | 0.0083 (7) | 0.0159 (9) | −0.0062 (11) | 0.000 | 0.000 |
O4 | 0.0196 (10) | 0.0221 (11) | 0.053 (3) | −0.0027 (11) | −0.0059 (14) | −0.0053 (15) |
O6 | 0.066 (8) | 0.19 (2) | 0.030 (5) | −0.005 (6) | 0.000 | 0.000 |
Zn1—O1i | 1.949 (2) | Zn2—O4 | 1.914 (3) |
Zn1—O2ii | 1.937 (3) | Si1—O1 | 1.614 (3) |
Zn1—O3 | 1.966 (2) | Si1—O2 | 1.622 (3) |
Zn1—O4 | 1.924 (4) | Si1—O3 | 1.615 (2) |
Zn2—O1iii | 1.935 (2) | Si1—O5 | 1.6164 (13) |
Zn2—O2iv | 1.941 (2) | O4—H4 | 1.05 (11) |
Zn2—O3v | 1.968 (2) | O6—H6 | 1.28 (19) |
O1i—Zn1—O3 | 107.32 (12) | O3—Si1—O5 | 113.54 (16) |
O2ii—Zn1—O1i | 104.15 (12) | O5—Si1—O2 | 104.74 (15) |
O2ii—Zn1—O3 | 106.67 (11) | Zn2vi—O1—Zn1vii | 115.13 (12) |
O4—Zn1—O1i | 115.5 (2) | Si1—O1—Zn1vii | 115.58 (13) |
O4—Zn1—O2ii | 112.20 (17) | Si1—O1—Zn2vi | 127.71 (15) |
O4—Zn1—O3 | 110.43 (18) | Zn1viii—O2—Zn2ix | 115.14 (13) |
O1iii—Zn2—O2iv | 104.23 (12) | Si1—O2—Zn1viii | 127.72 (14) |
O1iii—Zn2—O3v | 107.01 (12) | Si1—O2—Zn2ix | 115.57 (15) |
O2iv—Zn2—O3v | 107.50 (12) | Zn1—O3—Zn2v | 121.00 (10) |
O4—Zn2—O1iii | 111.59 (17) | Si1—O3—Zn1 | 119.17 (13) |
O4—Zn2—O2iv | 115.6 (2) | Si1—O3—Zn2v | 119.28 (13) |
O4—Zn2—O3v | 110.41 (18) | Si1—O5—Si1v | 144.9 (2) |
O1—Si1—O2 | 112.3 (2) | Zn1—O4—H4 | 127 (4) |
O1—Si1—O3 | 110.55 (12) | Zn2—O4—Zn1 | 122.8 (2) |
O1—Si1—O5 | 104.93 (14) | Zn2—O4—H4 | 109 (4) |
O3—Si1—O2 | 110.55 (13) | ||
O1—Si1—O2—Zn1viii | 94.7 (3) | O3—Si1—O1—Zn2vi | 29.4 (3) |
O1—Si1—O2—Zn2ix | −70.3 (3) | O3—Si1—O2—Zn1viii | −29.3 (3) |
O1—Si1—O3—Zn1 | 31.8 (2) | O3—Si1—O2—Zn2ix | 165.74 (18) |
O1—Si1—O3—Zn2v | −156.63 (18) | O3—Si1—O5—Si1v | 0.03 (10) |
O1—Si1—O5—Si1v | −120.79 (12) | O5—Si1—O1—Zn1vii | −42.9 (2) |
O2—Si1—O1—Zn1vii | 70.3 (2) | O5—Si1—O1—Zn2vi | 152.2 (2) |
O2—Si1—O1—Zn2vi | −94.6 (2) | O5—Si1—O2—Zn1viii | −152.0 (3) |
O2—Si1—O3—Zn1 | 156.81 (19) | O5—Si1—O2—Zn2ix | 43.1 (3) |
O2—Si1—O3—Zn2v | −31.6 (2) | O5—Si1—O3—Zn1 | −85.83 (16) |
O2—Si1—O5—Si1v | 120.73 (13) | O5—Si1—O3—Zn2v | 85.77 (16) |
O3—Si1—O1—Zn1vii | −165.69 (17) |
Symmetry codes: (i) x, y, z−1; (ii) x+1/2, −y+3/2, z−1/2; (iii) −x+3/2, y−1/2, z−1/2; (iv) −x+1, −y+1, z−1; (v) −x+1, −y+1, z; (vi) −x+3/2, y+1/2, z+1/2; (vii) x, y, z+1; (viii) x−1/2, −y+3/2, z+1/2; (ix) −x+1, −y+1, z+1. |
Data availability
The
may be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany [fax: (+49)7247–808-666; e-mail: crysdata@fiz-karlsruhe.de] on quoting the CCDC deposition Nos. 2378030–2378046.Funding information
Support for this work provided by the National Science Centre, Poland (OPUS grant No. UMO-2019/33/B/ST10/02671 awarded to KW) is gratefully acknowledged. This work was carried out, in part, at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by the European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007–2013. The work was accomplished at the TEAM TECH Core Facility for crystallographic and biophysical research to support the development of medicinal products sponsored by the Foundation for Polish Science (FNP). Research presented in this work was possible thanks to beam time allocation at different synchrotron facilities: proposal Nos. I-20220925 EC (DESY), ES-1296 (ESRF) and 20230281 (Elettra).
References
Barclay, G. A. & Cox, E. G. (1960). Z. Kristallogr. Cryst. Mater. 113, 23–29. CrossRef CAS Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bindi, L. & Chapuis, G. (2017). European Mineralogical Union, Notes in Mineralogy, ch. 5, pp. 213–254. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland. Google Scholar
Boni, M. & Mondillo, N. (2015). Ore Geol. Rev. 67, 208–233. Web of Science CrossRef Google Scholar
Cooper, B., Gibbs, G. & Ross, F. (1981). Z. Kristallogr. Cryst. Mater. 156, 305–321. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hazen, R. & Au, A. (1986). Phys. Chem. Miner. 13, 69–78. CrossRef ICSD CAS Web of Science Google Scholar
Hill, R., Gibbs, G., Craig, J., Ross, F. & Williams, J. (1977). Z. Kristallogr. 146, 241–259. CrossRef ICSD Web of Science Google Scholar
Ito, T. & West, J. (1932). Z. Kristallogr. Cryst. Mater. 83, 1–8. CrossRef CAS Google Scholar
Kemei, M. C., Harada, J. K., Seshadri, R. & Suchomel, M. R. (2014). Phys. Rev. B, 90, 064418. Web of Science CrossRef Google Scholar
Klaska, K.-H., Eck, J. C. & Pohl, D. (1978). Acta Cryst. B34, 3324–3325. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Lazic, B., Krüger, H., Kahlenberg, V., Konzett, J. & Kaindl, R. (2008). Acta Cryst. B64, 417–425. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Y. & Bass, J. D. (2020). Minerals, 10, 425. Web of Science CrossRef Google Scholar
Libowitzky, E., Kohler, T., Armbruster, T. & Rossman, G. R. (1997). Eur. J. Mineral. 9, 803–810. CrossRef ICSD CAS Google Scholar
Libowitzky, E., Schultz, A. J. & Young, D. M. (1998). Z. Kristallogr. Cryst. Mater. 213, 659–668. Web of Science CrossRef ICSD CAS Google Scholar
Marumo, F. & Syono, Y. (1971). Acta Cryst. B27, 1868–1870. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
McDonald, W. S. & Cruickshank, D. W. J. (1967). Z. Kristallogr. 124, 180–191. CrossRef ICSD CAS Web of Science Google Scholar
Medas, D., Meneghini, C., Podda, F., Floris, C., Casu, M., Casu, M. A., Musu, E. & de Giudici, G. (2018). Am. Mineral. 103, 711–719. Web of Science CrossRef Google Scholar
Okamoto, K., Kuribayashi, T. & Nagase, T. (2021). J. Mineral. Petrological Sci. 116, 251–262. Web of Science CrossRef CAS Google Scholar
Petricek, V., Palatinus, L., Plasil, J. & Dusek, M. (2023). Z. Kristallogr. Cryst. Mater. 238, 271–282. CAS Google Scholar
Poręba, T., Comboni, D., Mezouar, M., Garbarino, G. & Hanfland, M. (2022). J. Phys. Condens. Matter, 35, 054001. Google Scholar
Rigaku Oxford Diffraction (2014). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK. Google Scholar
Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679–684. Web of Science CrossRef ICSD CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sławiński, W., Przeniosło, R., Sosnowska, I., Bieringer, M., Margiolaki, I. & Suard, E. (2009). Acta Cryst. B65, 535–542. Web of Science CrossRef IUCr Journals Google Scholar
Takéuchi, Y., Sasaki, S., Joswig, W. & Fuess, H. (1978). Proc. Jpn. Acad. Ser. B, 54, 577–582. Google Scholar
Warr, L. N. (2021). MinMag, 85, 291–320. Web of Science CrossRef CAS Google Scholar
Wolff, P. M. de (1974). Acta Cryst. A30, 777–785. CrossRef Web of Science IUCr Journals Google Scholar
Wu, Y., Meng, D., Hao, M., Wang, Q., Chen, F., Sun, T., Chen, X., Meng, F., Li, H., Liu, L., Sun, R. & Zhao, C. (2023). Appl. Phys. Lett. 122, 192904. Web of Science CrossRef Google Scholar
Yang, H., Hazen, R. M., Downs, R. T. & Finger, L. W. (1997). Phys. Chem. Miner. 24, 510–519. CrossRef ICSD CAS Web of Science Google Scholar
Yin, Y., Aslandukov, A., Bykov, M., Laniel, D., Aslandukova, A., Pakhomova, A., Fedotenko, T., Zhou, W., Akbar, F. I., Hanfland, M., Glazyrin, K., Giacobbe, C., Bright, E. L., Garbarino, G., Jia, Z., Dubrovinskaia, N. & Dubrovinsky, L. (2024). Phys. Rev. B, 110, 104111. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.