research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

ISSN: 2052-2525

Incommensurately modulated structure of Zn4Si2O7(OH)2·H2O at high pressure

crossmark logo

aFaculty of Chemistry, University of Warsaw, Pasteura 1, Warszawa, 02-089, Poland, bEuropean Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000, France, cInstitute of Geochemistry, Mineralogy and Petrology, Department of Geology, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089, Poland, dHawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Bldg, Office 819E, Honolulu, Hawaii 96822, USA, and eDepartment of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089, Poland
*Correspondence e-mail: romanbg@chem.uw.edu.pl, kwozniak@chem.uw.edu.pl

Edited by A. Fitch, ESRF, France (Received 20 August 2024; accepted 14 November 2024)

High-resolution single-crystal X-ray diffraction experiments on Zn4Si2O7(OH)2·H2O hemimorphite were conducted at high pressure using diamond anvil cells at several different synchrotron facilities (ESRF, Elettra, DESY). Experimental data confirmed the existence of a previously reported phase transition and revealed the exact nature of the incommensurate modulation. We report the incommensurately modulated structure described in the (3+1)D space group Pnn2(0, β, 0)000. We have determined the modulation mechanism, which involves the fluctuation of atoms between two main positions, occurring mainly along the [100] direction, perpendicular to the modulation vector. Moreover, our results reveal that the phase transition occurs at lower pressure than previously reported.

1. Introduction

Hemimorphite [Hmp – symbol approved by the International Mineralogical Association, Commission on New Minerals, Nomenclature and Classification (Warr, 2021[Warr, L. N. (2021). MinMag, 85, 291-320.])] is one of the most common minerals in non-sulfide Zn deposits. In 1853 Adolph Kenngott gave the name in allusion to the hemimorphic morphology of the crystal derived from the Greek words hemi (`half') and morph (`shape') because each end of an Hmp crystal has a different shape. Many names were previously assigned to these species, including calamine, which is still sometimes encountered, but hemimorphite was chosen by the International Mineralogical Association, over calamine, in 1962. The mineral often forms very well developed tabular or short prismatic crystals, colourless or white. Botryoidal, stalactitic and mammillary blue masses are also known (see Fig. 1[link]).

[Figure 1]
Figure 1
Specimens of hemimorphite: (left) bluish crystals contain an admixture of copper and (right) colourless crystals without significant admixtures.

`Non-sulfides' is a term which comprises a series of oxidized Zn(Pb)-ore minerals (Boni & Mondillo, 2015[Boni, M. & Mondillo, N. (2015). Ore Geol. Rev. 67, 208-233.]). Hmp forms from the oxidation products of sphalerite and other zinc minerals, especially in arid climates. It is common in the oxidized and supergene zones of hydro­thermal deposits, where it is associated with smithsonite. The supergene deposits are formed by weathering and oxidation at ambient temperatures. The mineral is economically important and is mined in many locations around the world as a component of oxidized zinc ores. An anhydrous variety of zinc silicate is Zn2SiO4 willemite, which crystallizes in a trigonal structure with tetrahedrally coordinated Zn and Si (Klaska et al., 1978[Klaska, K.-H., Eck, J. C. & Pohl, D. (1978). Acta Cryst. B34, 3324-3325.]). Willemite is known to undergo as many as four high-pressure phase transitions on compression to 15 GPa (Marumo & Syono, 1971[Marumo, F. & Syono, Y. (1971). Acta Cryst. B27, 1868-1870.]). Most recently, Hmp studies have been focused on phenomena such as its elastic properties or pyroelectricity (Li & Bass, 2020[Li, Y. & Bass, J. D. (2020). Minerals, 10, 425.]; Wu et al., 2023[Wu, Y., Meng, D., Hao, M., Wang, Q., Chen, F., Sun, T., Chen, X., Meng, F., Li, H., Liu, L., Sun, R. & Zhao, C. (2023). Appl. Phys. Lett. 122, 192904.]). Hmp is also interesting in that it could be considered a biomineral. Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) analysis have revealed that an extracellular product of biomineralization conducted by cyano­bacterium Leptolingbya frigida is a crystalline phase closely resembling Hmp (Medas et al., 2018[Medas, D., Meneghini, C., Podda, F., Floris, C., Casu, M., Casu, M. A., Musu, E. & de Giudici, G. (2018). Am. Mineral. 103, 711-719.]).

The first record in the Inorganic Crystal Structure Database (ICSD; Belsky et al., 2002[Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364-369.]) of the X-ray structure of Hmp refers to a paper published in 1932. In this work, the unit-cell dimensions, space group and atomic positions were determined for the first time (Ito & West, 1932[Ito, T. & West, J. (1932). Z. Kristallogr. Cryst. Mater. 83, 1-8.]). In later studies during the 1960s, the geometry of the SiO4 tetrahedra was re-examined and redetermined (Barclay & Cox, 1960[Barclay, G. A. & Cox, E. G. (1960). Z. Kristallogr. Cryst. Mater. 113, 23-29.]; McDonald & Cruickshank, 1967[McDonald, W. S. & Cruickshank, D. W. J. (1967). Z. Kristallogr. 124, 180-191.]). In the 1970s, Hmp was studied for the first time with the use of neutron diffraction and the hydrogen-bonded system was investigated (Hill et al., 1977[Hill, R., Gibbs, G., Craig, J., Ross, F. & Williams, J. (1977). Z. Kristallogr. 146, 241-259.]; Takéuchi et al., 1978[Takéuchi, Y., Sasaki, S., Joswig, W. & Fuess, H. (1978). Proc. Jpn. Acad. Ser. B, 54, 577-582.]).

The crystal structure of Hmp is relatively simple. Under normal conditions (RT and ambient pressure) it crystallizes in the space group Imm2 (see Fig. 2[link]). The basic building blocks are SiO4 and ZnO3OH tetrahedra (Fig. 2[link]). The oxygen atom of the hydroxyl group is shared between two neighbouring Zn tetrahedra. The water molecule is located in a structural cavity and locked via four hydrogen bonds with four surrounding hydroxyl groups. The mineral formula is Zn4Si2O10H4 and there are two molecules within the unit cell (Z = 2).

[Figure 2]
Figure 2
Unit cell of Hmp. ADPs and labels of atoms (left) and in the polyhedral representation (hydrogen atoms omitted for clarity).

The mineral was also investigated under non-ambient temperature and pressure. When the sample is heated to 600°C (Cooper et al., 1981[Cooper, B., Gibbs, G. & Ross, F. (1981). Z. Kristallogr. Cryst. Mater. 156, 305-321.]), a contraction of the structure caused by dehydration is observed. Proton disorder in the dehydrated structure of Hmp was also investigated (Libowitzky et al., 1997[Libowitzky, E., Kohler, T., Armbruster, T. & Rossman, G. R. (1997). Eur. J. Mineral. 9, 803-810.]).

When crystals were cooled to 20 K, a phase transition from Imm2 to Abm2 was found (Libowitzky et al., 1997[Libowitzky, E., Kohler, T., Armbruster, T. & Rossman, G. R. (1997). Eur. J. Mineral. 9, 803-810.], 1998[Libowitzky, E., Schultz, A. J. & Young, D. M. (1998). Z. Kristallogr. Cryst. Mater. 213, 659-668.]). This particular phase transition is characterized by a doubling of the c parameter. In our research, we have already observed this phase transition at 110 K. It is accompanied by the appearance of superstructure satellite reflections. The modulated structure after the phase transition is commensurate, q = (0, 0, 0.5), which is why it is possible to solve the structure in the unit cell with doubled lattice parameters and a conventional space group.

High-pressure investigations of Hmp within the pressure range between ambient pressure and 4.2 GPa revealed that the phase transition occurs between 2.44 and 3.17 GPa (Seryotkin & Bakakin, 2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.]). Incommensurate satellite reflections along q = (0, 0.119, 0) were reported, and the average structure of the high-pressure phase was refined at 3.01 GPa in the space group Pnn2, ignoring the modulation (Okamoto et al., 2021[Okamoto, K., Kuribayashi, T. & Nagase, T. (2021). J. Mineral. Petrological Sci. 116, 251-262.]).

Interestingly, the mineral bertrandite, Be4Si2O7(OH)2 (space group Cmc21), which is topologically identical to Hmp, was investigated under pressure up to 4.1 GPa and does not show any phase transition within this pressure range (Hazen & Au, 1986[Hazen, R. & Au, A. (1986). Phys. Chem. Miner. 13, 69-78.]).

Current knowledge about Hmp includes that at room temperature and ambient pressure it occurs in the ortho­rhombic space group Imm2. The low-temperature phase transition leads to a transformation into another ortho­rhombic space group Abm2 with a doubled c lattice parameter [or equally described as a commensurate modulation with modulation vector q = (0, 0, 0.5)], whereas a high-pressure phase transition leads to the space group Pnn2 [incommensurate modulation, q = (0, 0.119, 0) (Okamoto et al., 2021[Okamoto, K., Kuribayashi, T. & Nagase, T. (2021). J. Mineral. Petrological Sci. 116, 251-262.])]. All the transitions between space groups such as Imm2 → Abm2 or Imm2 → Pnn2 are caused by rearrangements of SiO4 and ZnO4 polyhedra and/or subtle changes of hydrogen bonds towards the water molecules. The main goal of this study was to investigate the mechanism of the high-pressure phase transition.

2. Results

2.1. Experimental

Our experiments were conducted, above all, at the ID27 beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to high-pressure measurements (Poręba et al., 2022[Poręba, T., Comboni, D., Mezouar, M., Garbarino, G. & Hanfland, M. (2022). J. Phys. Condens. Matter, 35, 054001.]). For our data collection, we used λ = 0.2229 Å and a small 2 × 2 µm beam. The wavelength has been calibrated using a CeO2 (e.g. NIST SRM 674b) powder standard. Single-crystal data were collected using an Eiger2 X 9M CdTe detector through ±32° ω scans and a step size of 0.5° around one rotation axis. After transformation into the Esperanto format, the CrysAlisPro program suite was used for indexing and data reduction (Rigaku, 2014[Rigaku Oxford Diffraction (2014). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.]). Corrections for X-ray absorption effects [by the diamond anvil cell (DAC) components] were applied using the semi-empirical ABSPACK routine implemented in CrysAlisPro. The structures were refined with ShelXL, as incorporated in Olex2. Three single crystals of Hmp were selected and loaded into a membrane DAC in which helium gas was used as the pressure medium. The experiment was conducted at pressure values between ambient and 4.1 GPa (the pressure was determined by measuring the position of the fluorescence lines of ruby; pressure uncertainty: 0.03 GPa). The main goal was to observe the consequences of a phase transition reported to occur somewhere between 2.5 and 3.0 GPa (Seryotkin & Bakakin, 2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.]). Datasets were collected at ten pressure values, eight below the possible phase transition and two above. At each pressure point, data were collected separately for each of the three single crystals in the DAC. Additionally, at each pressure point, each single-crystal dataset was measured with three different combinations of experimental parameter such as exposure time and slit width. As a result, over 90 individual datasets were collected. The reason for conducting the measurements in this way was that access to the reciprocal space of single crystals in a DAC is significantly restricted. Individual datasets collected as a step scan with rotation about one axis have relatively low completeness, even when the orientation of the crystals in the DAC is optimized. To achieve reliable completeness, merging of datasets is necessary. Also, to reduce the number of unmeasured reflections and oversaturated reflection intensities, it is worth using different parameter settings for data collection.

In addition to measurements conducted at ID27 at ESRF, we also collected X-ray data at other beamlines/synchrotrons, such as the Xpress beamline at the Elettra synchrotron facility at Trieste and the beamline P24 at Petra III Deutsches Elektronen-Synchrotron (DESY) in Hamburg.

On the beamline P24 at Petra III (DESY, Germany), three different single crystals were tested separately in different DACs (Merrill and Bassett design). X-ray diffraction measurements (λ = 0.35424 Å) were performed under pressure on the beamline equipped with a PILATUS 1M CdTe detector. The measurement strategy was a combination of phi scans from −36 to +36° on a four-circle kappa diffractometer (EH1). The whole strategy consisted of runs with different exposure times (2.0, 1.0 or 0.5 s) and different frame widths (1 or 0.5°). For crystal 1 we used pressures of 2.94, 3.26, 3.5 and 3.8 GPa; for crystal 2 we used pressures of 2.49, 3.05 and 3.11 GPa; and for crystal 3 we used pressures of 1.92, 2.8, 3.19 and 4.1 GPa.

The results obtained for data collected at ESRF were also confirmed at another synchrotron facility, on the Xpress beamline at Elettra in Trieste, Italy. The X-ray diffraction measurements (λ = 0.4956 Å) were performed under pressure with a ca 50 µm beam on the beamline equipped with a PILATUS3 S 6M (DECTRIS). The detector was placed ca 226 mm from the sample crystal. The diffraction data were collected using phi scans from −38 to +38° and a step size of 0.5° around one rotation axis. We used a pressure of 2.57 GPa (the pressure medium was 1-propanol).

Data reduction was performed using the CrysAlisPRO software (Rigaku, 2014[Rigaku Oxford Diffraction (2014). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.]). The structure was solved and refined with ShelXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ShelXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), respectively, within the Olex2 suite (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). Attempts to solve and refine modulation were undertaken in the Jana2020 software (Petricek et al., 2023[Petricek, V., Palatinus, L., Plasil, J. & Dusek, M. (2023). Z. Kristallogr. Cryst. Mater. 238, 271-282.]).

2.2. Phase transition

Incommensurately modulated (IC) phases occur when the atomic structure of a mineral adopts a periodic modulation that does not align with the underlying lattice periodicity. In nature, it is fairly uncommon to find minerals which have strong and sharp incommensurate Bragg reflections. However, several good examples exist, including natrite, calaverite, melilite, fresnoite, pearceite, polybasite and cylindrite which confirm long-term stability of incommensurate phases (Bindi & Chapuis, 2017[Bindi, L. & Chapuis, G. (2017). European Mineralogical Union, Notes in Mineralogy, ch. 5, pp. 213-254. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland.]). Incommensurate modulation can arise or disappear as a result of changes in thermodynamic conditions. High pressure can induce distortions in the crystal lattice, causing atoms to shift from their ideal positions, leading to periodic modulations that are not commensurate with the original lattice periodicity. Different vibrational modes of the lattice can also couple in complex ways under high pressure, creating new periodicities that are incommensurate with the original lattice. Ca2MgSi2O7 akermanite transforms from an IC phase, stable at room pressure, to a commensurate phase at 1.33 GPa (Yang et al., 1997[Yang, H., Hazen, R. M., Downs, R. T. & Finger, L. W. (1997). Phys. Chem. Miner. 24, 510-519.]). Brownmillerite-type Ca2Al2O5 transforms to an incommensurately modulated structure above 1000 K (Lazic et al., 2008[Lazic, B., Krüger, H., Kahlenberg, V., Konzett, J. & Kaindl, R. (2008). Acta Cryst. B64, 417-425.]). Low-temperature commensurate ferrimagnetic α-Mn3O4 undergoes a commensurate–incommensurate magnetic transition at 33 K (Kemei et al., 2014[Kemei, M. C., Harada, J. K., Seshadri, R. & Suchomel, M. R. (2014). Phys. Rev. B, 90, 064418.]). Incommensurate modulation of atomic positions can also be coupled with magnetic moments as already demonstrated for inorganic CaMn7O12 (Sławiński et al., 2009[Sławiński, W., Przeniosło, R., Sosnowska, I., Bieringer, M., Margiolaki, I. & Suard, E. (2009). Acta Cryst. B65, 535-542.]), where a structural phase transition into incommensurate modulation occurs below 250 K and also below 90 K Mn magnetic moments form a helical spin arrangement.

The incommensurate modulation can be an energy-minimizing configuration under high pressure, as the complex arrangement can lower the free energy of the system compared with a commensurate structure. High pressure can also enhance competing interactions within the crystal, such as between different types of bonding or between different sublattices, leading to a compromise structure that is incommensurate. Anharmonic effects, or non­linearities in the potential energy surface, become more significant at high pressure and can stabilize incommensurate modulations. Changes in electronic structure under high pressure can drive the formation of incommensurate phases, as pressure can alter the distribution of electronic density, leading to new bonding patterns that are incommensurate. Atoms may experience displacive modulations, where they are displaced periodically from their average positions, creating an incommensurate periodicity. Another common type of modulation is occupancy modulation, where two atom types sharing the same crystallographic position modulates its occupancy.

On the basis of data retrieved from the ICSD, the values of the unit-cell parameters for the Imm2 Hmp under ambient conditions vary as follows: a: 8.191(1)–8.388(1) Å, b: 10.714(1)–10.824(2) Å and c: 5.088(1)–5.115(3) Å (Ito & West, 1932[Ito, T. & West, J. (1932). Z. Kristallogr. Cryst. Mater. 83, 1-8.]; Barclay & Cox, 1960[Barclay, G. A. & Cox, E. G. (1960). Z. Kristallogr. Cryst. Mater. 113, 23-29.]; McDonald & Cruickshank, 1967[McDonald, W. S. & Cruickshank, D. W. J. (1967). Z. Kristallogr. 124, 180-191.]; Hill et al., 1977[Hill, R., Gibbs, G., Craig, J., Ross, F. & Williams, J. (1977). Z. Kristallogr. 146, 241-259.]; Takéuchi et al., 1978[Takéuchi, Y., Sasaki, S., Joswig, W. & Fuess, H. (1978). Proc. Jpn. Acad. Ser. B, 54, 577-582.]; Cooper et al., 1981[Cooper, B., Gibbs, G. & Ross, F. (1981). Z. Kristallogr. Cryst. Mater. 156, 305-321.]; Libowitzky et al., 1997[Libowitzky, E., Kohler, T., Armbruster, T. & Rossman, G. R. (1997). Eur. J. Mineral. 9, 803-810.]). A likely source of the unit-cell variation are admixtures present in natural minerals. Therefore, after averaging, the unit-cell dimensions are as follows: a = 8.289 Å, b = 10.769 Å and c = 5.102 Å. Shrinking of the unit-cell dimensions as a function of pressure is quite subtle. As we know from the literature (Seryotkin & Bakakin, 2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.]), the unit-cell dimensions under 2.44 GPa (RT, Imm2) are a = 8.2209(9) Å, b = 10.6920(15) Å and c = 5.0614(2) Å. Note that some of the earlier reports used natural samples exhibiting some ion substitution [e.g. the sample studied by Okamoto et al. (2021[Okamoto, K., Kuribayashi, T. & Nagase, T. (2021). J. Mineral. Petrological Sci. 116, 251-262.]) had about 1.6 wt.% of P].

The first high-pressure studies of Hmp (Seryotkin & Bakakin, 2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.]) revealed that the phase transition from Imm2 to Pnn2 occurs between 2.44 and 3.17 GPa, but no incommensurate modulation was reported. The accompanying changes of the unit-cell parameters are relatively subtle. The a parameter changes by less than 1%, b by about 1% and c by about 0.3% [difference between 2.44 and 3.17 GPa (Seryotkin & Bakakin, 2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.])]. Fortunately, the change of the space group and the proof of a phase transition can be clearly verified by comparing diffraction patterns of specific crystallographic layers. In the case of Imm2, reflections must fulfil the following condition, within the group of hk0 reflections: h + k = 2n. In the case of Pnn2, this condition is no longer valid. As a result, it is sufficient to check hk0 layers if h + k = 2n + 1 reflections are observed or not (see Fig. 3[link]). Although the unit-cell dimensions are almost identical, a simple comparison of the hk0 diffraction patterns tells us if a phase transition has already occurred or not, which is quite visible in our data collected at ESRF (see Fig. 3[link]).

[Figure 3]
Figure 3
Comparison of the hk0 reciprocal lattice layers for the structure of Hmp in the space groups Imm2 (left; 1.0 GPa) and Pnn2 (right: 3.3 GPa). Additional reflections that were forbidden in Imm2 are observed in Pnm2. Data collected on beamline ID27, ESRF.

During the data collection at ESRF, we measured four pressure points in the vicinity of the previously reported transition pressure: 2.3, 2.6, 3.3 and 4.1 GPa. The reciprocal lattice layers of the hk0 reflections determined for two pressure points, 3.3 and 4.1 GPa, are presented in Fig. 4[link]. Both are well above the phase transition. In addition to peaks marked with blue circles, which were already observed in the Imm2 space group, new peaks marked with orange circles appeared, indicating the new Pnn2 symmetry.

[Figure 4]
Figure 4
Combined reciprocal layers of the hk0 reflections for the pressure points 3.3 and 4.1 GPa measured for Hmp. Selected reflections already visible for the space group Imm2 are marked in navy blue. Reflections which appear as a consequence of the phase transition to the space group Pnn2 are marked in orange.

The additional reflections in the Pnn2 space group appear broader. This is a consequence of the fact that accompanying satellite reflections have a relatively short modulation vector. These satellite reflection appear as a result of the incommensurate modulation. The modulation vector, which describes the modulation direction and position of satellite reflections, is relatively short (the b* component varies between 0.105 and 0.179), which makes three reflections (one Bragg peak and two satellites) appear as one streak. In the high-pressure phase, the satellite reflections are visible along the [010] direction.

In the case of the low-temperature Imm2 → Abm2 phase transition, the modulation vector was rational (equal to 0.5 b*), therefore it indicated commensurate modulation (a supercell). As a consequence, it was possible to index the data, solve and refine the structure by simply using the doubled lattice parameter along the direction where the satellite reflections appeared. In the case of the high-pressure phase, the modulation vector varies between 0.105 b* and 0.179 b* (depending on the pressure). That is why the same motive could be repeated after between five and nine unit cells, depending on the precise value of the modulation vector.

IC modulated structures cannot be approximated by 3D periodic structures. This is because the atoms are periodically modulated according to a modulation function with a period that is incommensurate to the periodicity of the crystal lattice. Therefore, the real structure of Hmp is not periodic in 3D but can be described as periodic in (3+1)D space. The displacive type of modulation occurs when atoms deviate from their basic structure positions.

Even more interesting are two other pressure points, 2.6 and 2.3 GPa. This is because, so far, only the structures of Hmp above 3 GPa were refined as structures after the phase transition from Imm2 to Pnn2. However, in our measurements, the layers of hk0 reflections definitely confirm the existence of the broad diffused reflections which do not fulfil the h + k = 2n rule and are accompanied by satellites. These broad reflections prove that, at 2.6 GPa, the phase transition has already occurred and the structure should be solved and refined in the space group Pnn2 (see Fig. 5[link]). The same is also true for 2.3 GPa, where additional reflections and satellites are much weaker but do also exist. At the onset of the phase transition the reflections and their satellites have relatively low intensity and could be easily overlooked.

[Figure 5]
Figure 5
Combined reciprocal layers of hk0-type reflections for pressure points 2.6 and 2.3 GPa. Within navy blue boundaries the selected reflections are already visible in the space group Imm2. Within orange boundaries the reflections appear as a consequence of the phase transition to the space group Pnn2.

For the datasets collected on beamline P24 at Petra III (DESY, Germany), the satellite reflections were observed only in one case, for crystal 3 at 2.8 GPa (the pressure medium was 1-propanol; see Fig. 6[link]). The quality of the datasets collected was lower than in the case of ID27 (ESRF).

[Figure 6]
Figure 6
Reciprocal lattice layers of reflections hk0, hk1, hk2 and hk3 for Hmp under 2.8 GPa pressure – P24 dataset (Petra III, DESY).

The satellite reflections from the modulated structure after the phase transition, collected on the Xpress beamline at Elettra in Trieste, Italy, are visible in Fig. 7[link]. Unfortunately, the datasets collected on Xpress have too-poor completeness to be used to solve and refine the structure.

[Figure 7]
Figure 7
Reciprocal lattice layers of the reflections hk0, hk1, hk2, hk3 and hk4 for Hmp under 2.57 GPa pressure – Xpress dataset (Elettra).
2.2.1. Comparison of results from different beamlines

At the core of this paper are results from measurements on ID27 at ESRF. This is due to the fact that datasets collected on this particular station present the best quality. Because we were looking for satellite reflections, by `best quality' we mean the fact that satellite reflections were observed and they were relatively strong and data completeness was relatively high. The satellite reflections accompanying the high-pressure phase Pnn2 appear very close to the main Bragg's reflections (the value of the modulation vector is small). That is why to detect them a stable and intense beam is required as well as a sensitive detector. Each beamline has different hardware characteristics. The wavelengths of the X-ray beams applied during measurements conducted at ESRF (ID27), Petra III (P24) and Elettra (Xpress) were as follows: 0.2229, 0.3542 and 0.4956 Å, respectively. In the case of ID27 and Xpress, the size of the beam spot was small enough to measure separately 2–3 single crystals closed in a DAC. This is convenient when one wants to merge hkl datasets. In the case of high-pressure experiments with DACs, access to reciprocal space is restricted, hence the type of scans on a particular goniometer that are possible is important. The best option from the point of view of completeness is when the measurement strategy can be combined from phi and omega scans and different detector positions. It seems that at least in the case of Hmp and hunting for satellite reflections with a small q value, the most important factor was the wavelength of the beam.

The changes of the unit cells and cell volume of Hmp as a function of pressure are shown in Fig. 8[link], where the results collected at ID27 are presented. The charts also indicate where the phase transition from Imm2 to Pnn2 occurs. The red dotted line (p = 2.44 GPa) indicates the highest pressure under which the Imm2 phase was determined by Seryotkin & Bakakin (2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.]). The blue dotted line (p = 3.01 GPa) indicates the lowest pressure under which, as known from the literature, the Pnn2 phase was determined by Okamoto et al. (2021[Okamoto, K., Kuribayashi, T. & Nagase, T. (2021). J. Mineral. Petrological Sci. 116, 251-262.]). The area between these two lines was considered as the pressure range within which the phase transition should occur. However, because we now know that the phase transition from Imm2 to Pnn2 probably occurs slightly earlier, we extended this range, depicted as the pink region. The pressure points where the structure was solved in the space group Imm2 (before the phase transition) are depicted as red triangles and the pressure points where structure was solved in the space group Pnn2 (after the phase transition) are depicted as blue circles.

[Figure 8]
Figure 8
Unit cells and cell volumes as a function of pressure. Description of the symbols in the main text.

Taking into account measurements in the vicinity of this range, we observe satellites under 2.3 and 2.6 GPa (ID27 ESRF), 2.58 GPa (Xpress, Elettra), and 2.8 GPa (P24, Petra III). This observation confirms that the phase transition occurs below 3.01 GPa (to the left of the blue line) or even below 2.44 GPa (to the left of the red line). There are two datasets, both collected on P24 at DESY, which were collected at pressures of 2.49 and 2.94 GPa for which we do not observe satellite reflections.

2.2.2. Average structure refinement

Our experiments confirmed our observation of the earlier reported phase transition and the IC modulated nature of the high-pressure phase (Seryotkin & Bakakin, 2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.]). After the phase transition, the extent of modulation increases with increasing pressure, making it harder and harder to ignore in structure determination. Earlier reports included average structure refinements, ignoring the modulation, but this simplification resulted in artefacts such as unusual bond lengths and anomalously large and anisotropic atomic displacement parameters. To properly account for modulation, the structure has to be solved in the (3+1)D space group consistent with the indexing of the satellite reflections and modulation vector q [either Pnn2(0, β, 0)000 or Pnn2(0, β, 0)s00]. Parameters characterizing our results at the level of the independent atom model refinement (on the basis of F2) of the average structure (ignoring modulation) are shown in Table 1[link]. In the case of datasets collected at 2.6 GPa, it was possible to merge data from two separate single crystals. This was done after data reduction in CrysAlisPro using the so-called `profit merge' function.

Table 1
Basic refinement parameters and data collection details for measurements at the ID27 (ESRF) beamline

Structures after phase transition to space group Pnn2.

  2.3 GPa 2.6 GPa 3.3 GPa 4.1 GPa
Mr 481.69 481.69 481.69 481.69
a (Å) 8.2199(6) 8.2161(2) 8.1356(8) 8.0899(13)
b (Å) 10.6921(2) 10.673(3) 10.6329(3) 10.5425(5)
c (Å) 5.0603(1) 5.0579(1) 5.0386(1) 5.0237(1)
V3) 444.74(3) 443.54(13) 435.86(5) 428.46(7)
F(000) 464 464 464 464
Dx (Mg m−3) 3.597 3.607 3.670 3.734
μ (mm−1) 0.46 0.46 0.47 0.48
Measured reflections 5555 10608 4410 5096
Independent reflections 3878 5952 3231 3654
Observed [I > 2σ(I)] reflections 2167 3345 2475 2601
Rint 0.018 0.022 0.016 0.019
θ (°) θmax = 19.9, θmin = 1.6 θmax = 19.9, θmin = 1.6 θmax = 19.9, θmin = 1.6 θmax = 20.0, θmin = 1.6
(sin θ/λ)max−1) 1.524 1.526 1.528 1.537
Range of h, k, l h = −13 → 10 k = −31 → 29 l = −15 → 15 h = −23 → 23 k = −31 → 29 l = −15 → 15 h = −13 → 10 k = −30 → 29 l = −15 → 15 h = −10 → 13 k = −29 → 31 l = −15 → 15
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.124, 1.00 0.056, 0.196, 1.08 0.063, 0.210, 1.20 0.198, 0.562, 2.43
No. of reflections 3878 5952 3231 3654
No. of parameters 74 82 74 66
(Δ/σ)max 0.001 0.021 0.001 0.001
Highest peak, deepest hole (e Å−3) 1.21, −0.88 5.40, −1.83 3.28, −3.13 20.59, −7.77
†Data are merged for two separate single crystals.

After the phase transition, individual crystals in the DAC showed slightly different magnitudes of the modulation vector, which made merging of the datasets impossible. In the case of one of the crystals, the associated dataset shows satellite reflections of the second order but completeness of this separate measurement is only ca 50%. In the case of the refinement of the average structure, the effect of modulation increases at higher pressure, as shown by increasing refinement figures of merit. Just above the phase transition (2.6 GPa), the average structure approximation looks acceptable (peaks in residual density maps are relatively low). At higher pressures, when atomic movements are more significant, higher Q peaks are observed in residual density maps next to the main average atomic positions. This is a strong indication that point modulation should be taken into account. Because of these significant Q peaks, obtaining satisfactory atomic displacement parameters for selected atoms is no longer possible, which is why, at 4.1 GPa, two oxygen atoms were refined with only isotropic displacement parameters.

Table 2[link] presents the bond lengths and angles that describe the geometry of the average structures of Hmp. The table consists of the results from this study (datasets collected at ID27) as well as from the literature.

Table 2
Bond lengths and angles of the average structures of Hmp in the space group Pnn2

  2.3 GPa (this study) 2.6 GPa (this study) 3.01 GPa (Okamoto et al., 2021[Okamoto, K., Kuribayashi, T. & Nagase, T. (2021). J. Mineral. Petrological Sci. 116, 251-262.]) 3.17 GPa (Seryotkin & Bakakin, 2011[Seryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679-684.]) 3.3 GPa (this study) 4.1 GPa (this study)
M—O distance (Å)
Si1—O1 1.607(3) 1.614(3) 1.592(14) 1.604(5) 1.613(8) 1.61(2)
Si1—O2 1.609(3) 1.622(3) 1.601(16) 1.609(5) 1.596(7) 1.558(15)
Si1—O3 1.6096(15) 1.615(2) 1.614(11) 1.618(5) 1.611(4) 1.625(8)
Si1—O5 1.6210(8) 1.6164(13) 1.623(9) 1.617(3) 1.6130(19) 1.598(4)
Zn1—O1 1.9456(15) 1.949(2) 1.941(12) 1.965(4) 1.933(4) 1.938(10)
Zn1—O2 1.9335(17) 1.937(3) 1.93(2) 1.922(5) 1.930(5) 1.921(10)
Zn1—O3 1.967(3) 1.966(2) 1.969(9) 1.962(5) 1.969(7) 1.968(16)
Zn1—O4 1.910(2) 1.924(4) 1.900(18) 1.922(5) 1.932(9) 1.93(3)
Zn2—O1 1.9416(17) 1.935(2) 1.94(2) 1.936(5) 1.936(4) 1.937(8)
Zn2—O2 1.9537(16) 1.941(2) 1.935(12) 1.953(4) 1.949(5) 1.957(11)
Zn2—O3 1.971(3) 1.968(2) 1.962(9) 1.955(5) 1.951(7) 1.914(16)
Zn2—O4 1.914(2) 1.914(3) 1.912(17) 1.912(5) 1.918(11) 1.85(3)
 
M—O—M angle (°)
Si1—O5—Si1 145.59(15) 144.9(2) 144.1(13) 144.6(4) 143.8(4) 144.2(7)
Zn1—O3—Zn2 120.72(7) 121.00(10) 120.3(5) 119.61(7) 121.00(16) 120.8(4)
Zn1—O4—Zn2 124.6(2) 122.8(2) 124.1(10) 123.1(3) 120.6(9) 123(2)
Si1—O1—Zn1 116.27(10) 115.58(13) 116.4(8) 116.91(12) 115.9(3) 115.7(7)
Si1—O1—Zn2 127.65(10) 127.71(15) 125.1(12) 123.1(3) 124.7(4) 124.2(10)
Si1—O3—Zn1 119.42(14) 119.17(13) 119.2(5) 118.7(3) 118.7(4) 118.9(9)
Si1—O3—Zn2 119.24(15) 119.28(13) 120.0(6) 119.9(3) 119.9(4) 120.0(9)
Si1—O2—Zn2 115.67(10) 115.57(15) 115.2(8) 113.5(3) 115.2(3) 113.4(5)
Zn1—O1—Zn2 114.75(10) 115.13(12) 115.1(9) 115.3(2) 115.7(3) 115.3(6)
Zn1—O2—Zn2 114.71(10) 115.14(13) 114.7(9) 113.7(2) 114.5(3) 113.7(8)

2.3. Hydrogen bonds in the structure of hemimorphite

There are two hydrogen atoms in the asymmetric part of the structure of Hmp. One of them belongs to the water molecule, which is placed on the twofold axis, and the second one is part of a hydroxyl group and connected with an oxygen atom that bridges two zinc atoms. However, in the high-pressure experiments, it is not always possible to locate both of these hydrogen atoms due to insufficient quality of the data (low completeness). Among the 22 structures currently deposited in the ICSD, there are more than ten structures without water hydrogens and eight structures without any hydrogen position determined. In our studies, we were able to find and refine positions of the hydrogen atoms for data collected at 2.6 GPa. In this case, the modulation vectors of two single crystals were comparable and it was possible to merge datasets and obtain higher completeness. At higher pressures, due to differences in modulation vector values, data merging was not possible and we refined the structures of the high-pressure phase without hydrogen atoms. The geometry of hydrogen bond type O(4)—H(4)⋯O(4) which forms at 2.6 GPa is as follows: d(O—H) = 1.051 Å, d(H⋯O) = 1.999 Å, ∠DHO = 164.28°, d(O⋯O) = 3.024 Å.

2.4. Modulation vectors

In our experiment, the individual single-crystal samples at the same pressure showed different lengths of the modulation vector. As a result, it was not possible to merge data from several crystals to increase completeness. Crystals measured at 2.57 GPa in silicone oil at the Xpress beamline at Elettra give q = 0.105 b*. Crystals measured at 2.6 GPa in He at the ID27 at ESRF give q = 0.09 b* (in this case it was possible to merge data from two separate crystals, see Table 1[link]). The discrepancy between the lengths of the modulation vectors increased with pressure, suggesting that the effect of nonhydro­static and deviatoric stress was responsible for the effect. For three single crystals measured simultaneously in one DAC under 3.3 GPa (ID27, ESRF), the lengths of the modulation vectors are 0.166, 0.104 and 0.148, respectively. At 4.1 GPa the modulation vectors for those crystals are as follows: 0.179, 0.107 and 0.152. Because the satellite reflections for this third crystal under 4.1 GPa were the most significant (second-order satellite reflections were observed), this particular measurement served as a data source for the refinement in Jana2020. On the basis of information from Professor Leonid Dubrovinsky and Natalia Dubrovinskaia (private communication), such a phenomenon that particular single crystals supply different values of the modulation vectors can be treated as a new type of polymorphism, which was also found in their studies of other crystals under pressure (Yin et al., 2024[Yin, Y., Aslandukov, A., Bykov, M., Laniel, D., Aslandukova, A., Pakhomova, A., Fedotenko, T., Zhou, W., Akbar, F. I., Hanfland, M., Glazyrin, K., Giacobbe, C., Bright, E. L., Garbarino, G., Jia, Z., Dubrovinskaia, N. & Dubrovinsky, L. (2024). Phys. Rev. B, 110, 104111.]).

2.5. Refinement of the modulated structure

We solved and refined the structure of the high-pressure phase in the (3+1)D dimensional space group Pnn2(0, β, 0)000 using Jana2020 (Petricek et al., 2023[Petricek, V., Palatinus, L., Plasil, J. & Dusek, M. (2023). Z. Kristallogr. Cryst. Mater. 238, 271-282.]), taking into account the satellite reflections up to the second order. The structure refinement revealed that the atoms change their position mostly along the X(a) axis. Relatively significant position modulations are observed for Zn1, Zn2, Si1 and O2 (see Fig. 9[link]). The atoms fluctuate/jump between two main positions.

[Figure 9]
Figure 9
Fourier map, de Wolff's section corresponding to the positions of atoms Zn1, Zn2, Si1 and O1 at 4.1 GPa. In this 2D contour plot x1 corresponds to the X axis and x4 is the phase of modulation. The contour values are as follows: 0.3 for Zn1 and Zn2, 1.5 for Si1, and 0.5 for O1. Dashed lines (green region) depict negative contours and the red region corresponds to the positive contours. Solid coloured lines (green, blue and red) represent the refined modulation function for zinc, silicon and oxygen atoms, respectively.

The 2D sections in Fig. 9[link] illustrate that the electron density contains reliable information about modulation, including variability in the positions of atoms. This type of map is obtained with Jana2020 (Petricek et al., 2023[Petricek, V., Palatinus, L., Plasil, J. & Dusek, M. (2023). Z. Kristallogr. Cryst. Mater. 238, 271-282.]) and is called a de Wolff's section (de Wolff, 1974[Wolff, P. M. de (1974). Acta Cryst. A30, 777-785.]). Each independent atom in the average structure is modulated by the application of a modulation function. As shown in the sections of the Fourier maps (Fig. 9[link]), they exhibit a sinusoidal behaviour. The shape of this modulation suggests a continuous character. The refined model shows that the amplitudes of the displacive modulation have the main component along the X(a) axis. A summary of the refined amplitude displacements for zinc, silicon and oxygen atoms is presented in Tables 3[link]–5[link][link].

Table 3
Experimental and crystallographic data measured on a single crystal at 4.1 GPa and refined with Jana2020

Crystal system, space group Orthorhombic, Pnn2(0, β, 0)000
Temperature (K) 293
Pressure (kPa) 4100000
Wavevectors q = 0.152 b*
a, b, c (Å) 8.0977(6), 10.5415(10), 5.0266(2)
V3) 429.08(5)
Z 2
F(000) 456
Dx (Mg m−3) 3.697
Radiation type Synchrotron, λ = 0.2229 Å
No. of reflections 9580
θ range (°) 2.4–19.0
μ (mm−1) 0.47
Crystal shape Plate
Colour Colourless
Crystal size (mm) 0.05 × 0.03 × 0.02
Radiation source Synchrotron
Detector resolution (pixels mm−1) 13.3333
Scan method ω scans
Absorption correction Multi-scan
Tmin, Tmax 0.545, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 7097, 3955, 2127
Rint 0.107
θ values (°) θmax = 10.7, θmin = 1.5
(sin θ/λ)max−1) 0.834
Range of h, k, l h = −13 → 13, k = −9 → 7, l = −8 → 8
Refinement on F
R[F2 > 2σ(F2)], wR(F2), All reflections: 0.188, 0.239; 1st sat. 0.194, 0.233; 2nd sat. 0.438, 0.548
S 7.72
No. of reflections 3955
No. of parameters 71
No. of restraints 3
No. of constraints 1
(Δ/σ)max 0.032
Highest peak, deepest hole (e Å−3) 4.80, −3.29

Table 4
Atomic positions

Atom x y z Uiso
Zn1 0.2288(2) 0.1465(3) −0.0051(3) 0.0251(9)
Zn2 0.3088(2) 0.3364(4) 0.4959(4) 0.0251(9)
Si1 0.5163(4) 0.3555(5) 0.0026(10) 0.010(2)
O1 0.6838(12) 0.300(2) 0.1309(19) 0.017(4)
O2 0.3625(13) 0.2815(17) 0.1337(18) 0.017(4)
O3 0.5162(15) 0.341(2) −0.3171(8) 0.017(4)
O4 0.8186(10) 0.501(2) 0.5423(14) 0.017(4)
O5 0.5 0.5 0.101(2) 0.017(4)
O6 0.5 0 0.505(7) 0.05(2)

Table 5
Refined anisotropic displacement parameters

  U11 U22 U33 U12 U13 U23
Zn1, Zn2 0.0142(5) 0.053(3) 0.0084(4) −0.0063(6) −0.0049(5) −0.0010(10)
Si1 0.0108(12) 0.013(7) 0.0071(8) −0.0008(19) 0.0008(13) 0.005(2)
O1, O2, O3, O4, O5 0.023(2) 0.018(12) 0.0114(15) −0.006(3) −0.0049(13) 0.001(2)
O6 0.036(6) 0.06(6) 0.051(10) 0.021(12) 0 0

As stated above, because the length of the modulation vector varies between 0.105 b* and 0.179 b*, to observe the whole modulation wave, one needs to present between five and nine unit cells, depending on the precise value of the modulation vector. To visualize what it means when atoms change their positions along the X axis, we present a so-called approximate structure in Figs. 9[link] and 10[link]. This is no longer the averaged structure like in Fig. 1[link], where on the basis of one unit cell the whole atomic configuration is described. This time there are eight neighbouring unit cells reorganizing one by one along the Y axis.

[Figure 10]
Figure 10
Modulation wave at 4.1 GPa. The modulation is along the [010] direction. Atoms change positions along the [100] direction. The green circles represent the positions of zinc atoms and the blue circles represent the positions of the silicon atoms. The oxygen and hydrogen atoms are omitted for clarity. The area between zinc atoms within a particular unit cell forms an irregular octagon, shown in orange.

In Fig. 10[link] (view of the XY plane along the [001] direction), the nature of the modulation is shown in a simplified and schematic way. One can easily observe how the positions of the zinc atoms (and shapes of particular octagons) change between neighbouring unit cells. The additional red arrow indicates how the orientation between two Si atoms within such a quadrangle changes; spaces between these orange octagons (quadrangles containing Zn and Si atoms) are coloured light blue. We simply see this modulation as a wave which goes across approximately eight neighbouring unit cells.

Fig. 11[link] shows the unit cell view along the z axis for the selected phase of the modulation, t. The angle δ between the Si—Si bond and unit-cell axis x (in the xy plane) is shown. The rigid SiO4 tetraherdal unit changes its position with the amplitude of δ from −13 to +11°. In our solution we have treated the SiO4 group as a rigid body.

[Figure 11]
Figure 11
Modulation in the Hmp structure. Swinging of the SiO4 groups relative to the [010] direction defined by the angle δ (pressure point 4.1 GPa).

The positions and orientations of particular tetrahedra change for the neighbouring unit cells. In theory, the superposition of the unit cells depicted should provide us with the averaged structure as is shown in Fig. 12[link]. An animated gif that shows how the atoms move within the unit cell due to modulation is given in the supporting information.

[Figure 12]
Figure 12
Atoms change positions as a consequence of displacive modulation. An animated version of the figure as a gif is included in the supporting information.

3. Conclusions

Single-crystal X-ray diffraction measurements conducted on hemimorphite under pressure confirm the phase transition from Imm2 to Pnn2. However, at a high pressure the structure is incommensurately modulated. The modulation vector lengths are slightly different for different sample crystals measured under the same pressure conditions but within the range from 0.105 b* to 0.179 b*. The first-order satellite reflections are observed in all cases, along the [010] direction. In one case, even the second-order satellites were observed and used for the structure refinement. Structure refinement which takes modulation into account was done in the space group Pnn2(0, β, 0)000. The mechanism of modulation involves changes in the positions of atoms mainly along the [100] direction. The atoms occupy two positions. The modulation amplitude increases at higher pressure. The first relatively weak satellite reflections appear at 2.3 GPa. At 2.6 GPa, the presence of satellite reflections is already very pronounced, suggesting that the structure previously reported in the literature at 2.44 GPa should be properly described in the space group Pnn2 (as the structure after the phase transition). The satellite reflections can be distinguished when the measurement is conducted with the use of a relatively intense X-ray beam and a good quality detector. In the case of poorer-quality data, it is possible to overlook the satellite reflections and solve the structure in a wrong space group. The use of a DAC causes restrictions of access to reciprocal space, and results in less complete data. Because different single crystals measured at the same pressure within the same DAC can show different lengths of the modulation vector, merging of the data is not possible, which makes accurate structure determination challenging.

Supporting information


Computing details top

(3_05GPa_Pnn2_DESY_crystal_2) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.605 Mg m3
Orthorhombic, Pnn2Synchrotron radiation, λ = 0.35424 Å
a = 8.1695 (4) ÅCell parameters from 1893 reflections
b = 10.658 (3) Åθ = 2.2–23.1°
c = 5.0531 (1) ÅT = 293 K
V = 439.99 (11) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1183 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.042
Absorption correction: multi-scan
CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 23.0°, θmin = 2.2°
Tmin = 0.376, Tmax = 1.000h = 1413
4934 measured reflectionsk = 78
1289 independent reflectionsl = 88
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1089P)2 + 0.8145P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.049(Δ/σ)max < 0.001
wR(F2) = 0.178Δρmax = 0.96 e Å3
S = 1.19Δρmin = 1.83 e Å3
1289 reflectionsAbsolute structure: Flack x determined using 493 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
59 parametersAbsolute structure parameter: 1.06 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.23063 (9)0.14926 (16)0.61489 (17)0.0171 (6)
Zn20.31348 (10)0.33384 (16)0.11950 (15)0.0175 (6)
Si10.51979 (19)0.3568 (4)0.6088 (6)0.0094 (12)
O10.3668 (7)0.2800 (14)0.4792 (11)0.0159 (8)*
O20.6922 (7)0.3116 (14)0.4849 (10)0.020 (4)
O30.5207 (6)0.3403 (11)0.9258 (10)0.0106 (7)*
O40.1812 (10)0.4805 (17)0.0758 (14)0.0240 (14)*
O50.5000000.5000000.509 (2)0.042 (11)
O60.0000000.5000000.402 (4)0.077 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0148 (3)0.0268 (19)0.0096 (3)0.0031 (3)0.0004 (2)0.0000 (6)
Zn20.0154 (3)0.0275 (19)0.0097 (3)0.0033 (3)0.0002 (3)0.0003 (5)
Si10.0116 (7)0.009 (4)0.0074 (6)0.0015 (7)0.0005 (5)0.0007 (10)
O20.019 (2)0.031 (13)0.0102 (15)0.012 (3)0.0010 (12)0.001 (3)
O50.032 (5)0.08 (3)0.014 (4)0.006 (9)0.0000.000
O60.045 (6)0.16 (5)0.021 (6)0.018 (12)0.0000.000
Geometric parameters (Å, º) top
Zn1—O11.910 (12)Zn2—O3iv1.957 (5)
Zn1—O2i1.941 (6)Zn2—O41.913 (16)
Zn1—O3ii1.966 (5)Si1—O11.631 (10)
Zn1—O4iii1.947 (17)Si1—O21.614 (6)
Zn2—O11.955 (7)Si1—O31.612 (6)
Zn2—O2ii1.962 (11)Si1—O51.617 (5)
O1—Zn1—O2i106.5 (4)O3—Si1—O2110.4 (3)
O1—Zn1—O3ii107.0 (3)O3—Si1—O5114.5 (6)
O1—Zn1—O4iii115.0 (5)O5—Si1—O1105.8 (5)
O2i—Zn1—O3ii108.3 (3)Zn1—O1—Zn2114.7 (4)
O2i—Zn1—O4iii110.8 (5)Si1—O1—Zn1131.9 (4)
O4iii—Zn1—O3ii109.0 (4)Si1—O1—Zn2113.4 (6)
O1—Zn2—O2ii101.7 (4)Zn1v—O2—Zn2vi115.0 (4)
O1—Zn2—O3iv106.4 (2)Si1—O2—Zn1v116.8 (5)
O3iv—Zn2—O2ii106.9 (4)Si1—O2—Zn2vi122.8 (6)
O4—Zn2—O1118.2 (4)Zn2vii—O3—Zn1vi120.9 (3)
O4—Zn2—O2ii108.7 (5)Si1—O3—Zn1vi118.7 (3)
O4—Zn2—O3iv113.7 (4)Si1—O3—Zn2vii119.8 (3)
O2—Si1—O1111.3 (6)Zn2—O4—Zn1viii122.3 (4)
O2—Si1—O5104.3 (5)Si1ix—O5—Si1143.5 (7)
O3—Si1—O1110.3 (4)
O1—Si1—O2—Zn1v67.5 (10)O3—Si1—O1—Zn2162.1 (5)
O1—Si1—O2—Zn2vi85.1 (6)O3—Si1—O2—Zn1v169.6 (6)
O1—Si1—O3—Zn1vi151.8 (7)O3—Si1—O2—Zn2vi37.8 (9)
O1—Si1—O3—Zn2vii36.7 (10)O3—Si1—O5—Si1ix0.43 (19)
O1—Si1—O5—Si1ix122.1 (3)O5—Si1—O1—Zn1141.7 (8)
O2—Si1—O1—Zn1105.6 (8)O5—Si1—O1—Zn237.8 (7)
O2—Si1—O1—Zn274.9 (9)O5—Si1—O2—Zn1v46.1 (8)
O2—Si1—O3—Zn1vi28.3 (10)O5—Si1—O2—Zn2vi161.3 (6)
O2—Si1—O3—Zn2vii160.1 (7)O5—Si1—O3—Zn1vi89.0 (6)
O2—Si1—O5—Si1ix120.4 (3)O5—Si1—O3—Zn2vii82.5 (7)
O3—Si1—O1—Zn117.3 (11)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z1; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+1, z.
(0_33GPa_Imm2_ESRF) top
Crystal data top
O9Si2Zn4·ODx = 3.496 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Imm2Cell parameters from 2095 reflections
a = 8.35707 (12) Åθ = 2.1–19.2°
b = 10.714 (2) ŵ = 0.45 mm1
c = 5.11006 (5) ÅT = 293 K
V = 457.55 (9) Å3Block, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
3085 independent reflections
Radiation source: synchrotron2451 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.026
Detector resolution: 13.3333 pixels mm-1θmax = 20.2°, θmin = 1.5°
ω scansh = 2423
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2829
Tmin = 0.500, Tmax = 1.000l = 1415
7666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1116P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.057(Δ/σ)max < 0.001
wR(F2) = 0.158Δρmax = 6.19 e Å3
S = 1.02Δρmin = 1.06 e Å3
3085 reflectionsAbsolute structure: Flack x determined using 931 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
45 parametersAbsolute structure parameter: 0.47 (14)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70475 (3)0.33921 (3)0.53921 (7)0.01287 (6)
Si10.5000000.35413 (10)0.0320 (2)0.00944 (11)
O10.6611 (3)0.2945 (3)0.0963 (3)0.0155 (3)
O20.5000000.3341 (4)0.3459 (4)0.0142 (4)
O30.8057 (5)0.5000000.4984 (12)0.0244 (10)
O40.5000000.5000000.0533 (8)0.0170 (7)
O50.0000000.5000000.0082 (19)0.088 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01446 (10)0.01448 (10)0.00966 (7)0.00223 (10)0.00012 (11)0.00005 (12)
Si10.0109 (2)0.0103 (2)0.00711 (19)0.0000.0000.0001 (4)
O10.0177 (7)0.0185 (7)0.0102 (4)0.0063 (9)0.0027 (4)0.0023 (4)
O20.0129 (7)0.0222 (12)0.0074 (4)0.0000.0000.0006 (6)
O30.0209 (13)0.0140 (10)0.038 (3)0.0000.0094 (13)0.000
O40.026 (2)0.0084 (9)0.0161 (10)0.0000.0000.000
O50.052 (6)0.19 (3)0.027 (5)0.0000.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.946 (2)Si1—O1iii1.628 (2)
Zn1—O1ii1.9574 (18)Si1—O11.628 (2)
Zn1—O21.9766 (11)Si1—O21.618 (3)
Zn1—O31.9295 (19)Si1—O41.6226 (16)
O1i—Zn1—O1ii105.41 (6)O4—Si1—O1105.66 (13)
O1i—Zn1—O2107.47 (11)O4—Si1—O1iii105.66 (13)
O1ii—Zn1—O2107.90 (9)Zn1iv—O1—Zn1v114.30 (10)
O3—Zn1—O1ii113.77 (19)Si1—O1—Zn1v116.19 (13)
O3—Zn1—O1i111.51 (13)Si1—O1—Zn1iv128.44 (12)
O3—Zn1—O2110.45 (19)Zn1iii—O2—Zn1119.93 (11)
O1—Si1—O1iii111.55 (19)Si1—O2—Zn1iii119.45 (6)
O2—Si1—O1110.31 (10)Si1—O2—Zn1119.45 (6)
O2—Si1—O1iii110.31 (10)Zn1vi—O3—Zn1126.5 (2)
O2—Si1—O4113.2 (2)Si1—O4—Si1vii148.8 (3)
O1iii—Si1—O1—Zn1iv98.08 (17)O2—Si1—O1—Zn1iv24.9 (3)
O1iii—Si1—O1—Zn1v69.3 (2)O2—Si1—O1—Zn1v167.75 (16)
O1iii—Si1—O2—Zn1158.04 (19)O2—Si1—O4—Si1vii0.000 (1)
O1—Si1—O2—Zn134.4 (3)O4—Si1—O1—Zn1v45.0 (2)
O1iii—Si1—O2—Zn1iii34.4 (3)O4—Si1—O1—Zn1iv147.6 (2)
O1—Si1—O2—Zn1iii158.04 (19)O4—Si1—O2—Zn1iii83.8 (2)
O1iii—Si1—O4—Si1vii120.83 (10)O4—Si1—O2—Zn183.8 (2)
O1—Si1—O4—Si1vii120.83 (10)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z; (vii) x+1, y+1, z.
(3_11GPa_Pnn2_DESY_crystal_2) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.619 Mg m3
Orthorhombic, Pnn2Synchrotron radiation, λ = 0.35424 Å
a = 8.1572 (3) ÅCell parameters from 2573 reflections
b = 10.640 (3) Åθ = 2.2–22.5°
c = 5.0499 (1) ÅT = 293 K
V = 438.31 (11) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1064 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.038
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 22.9°, θmin = 2.2°
Tmin = 0.699, Tmax = 1.000h = 1413
4480 measured reflectionsk = 87
1164 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.102Δρmax = 0.58 e Å3
S = 1.04Δρmin = 0.86 e Å3
1164 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
74 parametersAbsolute structure parameter: 0.08 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.23381 (6)0.14772 (11)0.61453 (9)0.0129 (5)
Zn20.31639 (6)0.33290 (11)0.11990 (9)0.0130 (4)
Si10.52241 (13)0.3561 (3)0.6076 (4)0.0087 (10)
O10.3711 (5)0.2795 (10)0.4784 (6)0.018 (3)
O20.6973 (5)0.3118 (9)0.4856 (6)0.016 (3)
O30.5241 (4)0.3403 (8)0.9253 (6)0.013 (3)
O40.1832 (7)0.4807 (14)0.0751 (11)0.025 (5)
O50.5000000.5000000.5095 (10)0.024 (6)
O60.0000000.5000000.403 (2)0.083 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0140 (2)0.0147 (15)0.01001 (18)0.0033 (2)0.00006 (16)0.0001 (3)
Zn20.0145 (2)0.0145 (14)0.00993 (18)0.0034 (2)0.00032 (16)0.0006 (4)
Si10.0109 (4)0.008 (3)0.0070 (4)0.0009 (5)0.0004 (3)0.0004 (7)
O10.0221 (15)0.022 (10)0.0102 (9)0.013 (2)0.0034 (8)0.0029 (17)
O20.0177 (12)0.021 (9)0.0103 (9)0.010 (2)0.0033 (8)0.0046 (18)
O30.0127 (13)0.018 (10)0.0078 (10)0.0004 (15)0.0001 (5)0.0015 (13)
O40.0159 (16)0.014 (18)0.043 (3)0.001 (3)0.0082 (13)0.002 (3)
O50.024 (2)0.03 (2)0.014 (2)0.007 (4)0.0000.000
O60.043 (4)0.19 (4)0.020 (4)0.035 (9)0.0000.000
Geometric parameters (Å, º) top
Zn1—O11.922 (7)Zn2—O3iv1.961 (3)
Zn1—O2i1.946 (4)Zn2—O41.925 (12)
Zn1—O3ii1.963 (3)Si1—O11.616 (6)
Zn1—O4iii1.912 (14)Si1—O21.624 (4)
Zn2—Si12.9920 (17)Si1—O31.613 (4)
Zn2—O11.949 (4)Si1—O51.620 (3)
Zn2—O2ii1.943 (8)
O1—Zn1—O2i105.8 (3)O2—Si1—Zn299.04 (17)
O1—Zn1—O3ii106.6 (2)O3—Si1—Zn2144.59 (14)
O2i—Zn1—O3ii108.72 (17)O3—Si1—O1110.8 (3)
O4iii—Zn1—O1115.8 (3)O3—Si1—O2109.9 (2)
O4iii—Zn1—O2i111.1 (3)O3—Si1—O5113.8 (4)
O4iii—Zn1—O3ii108.6 (3)O5—Si1—Zn276.27 (15)
O1—Zn2—Si129.6 (2)O5—Si1—O2104.9 (3)
O1—Zn2—O3iv106.21 (16)Zn1—O1—Zn2114.3 (2)
O2ii—Zn2—Si1129.3 (2)Si1—O1—Zn1131.9 (3)
O2ii—Zn2—O1102.0 (3)Si1—O1—Zn2113.8 (4)
O2ii—Zn2—O3iv106.8 (2)Zn2v—O2—Zn1vi115.8 (3)
O3iv—Zn2—Si185.63 (10)Si1—O2—Zn1vi115.8 (3)
O4—Zn2—Si1110.3 (2)Si1—O2—Zn2v122.5 (3)
O4—Zn2—O1118.5 (3)Zn2vii—O3—Zn1v120.77 (17)
O4—Zn2—O2ii108.9 (3)Si1—O3—Zn1v119.01 (19)
O4—Zn2—O3iv113.3 (3)Si1—O3—Zn2vii119.68 (18)
O1—Si1—Zn236.6 (2)Zn1viii—O4—Zn2123.2 (3)
O1—Si1—O2111.8 (4)Si1ix—O5—Si1144.4 (4)
O1—Si1—O5105.5 (3)
Zn2—Si1—O1—Zn1178.9 (10)O2—Si1—O3—Zn2vii160.4 (5)
Zn2—Si1—O2—Zn1vi31.6 (5)O2—Si1—O5—Si1ix119.9 (2)
Zn2—Si1—O2—Zn2v120.2 (4)O3—Si1—O1—Zn117.1 (8)
Zn2—Si1—O3—Zn1v170.8 (2)O3—Si1—O1—Zn2161.8 (4)
Zn2—Si1—O3—Zn2vii17.7 (9)O3—Si1—O2—Zn1vi169.2 (4)
Zn2—Si1—O5—Si1ix144.25 (4)O3—Si1—O2—Zn2v39.0 (6)
O1—Si1—O2—Zn1vi67.3 (7)O3—Si1—O5—Si1ix0.23 (13)
O1—Si1—O2—Zn2v84.4 (4)O5—Si1—O1—Zn1140.7 (6)
O1—Si1—O3—Zn1v152.0 (5)O5—Si1—O1—Zn238.2 (5)
O1—Si1—O3—Zn2vii36.4 (7)O5—Si1—O2—Zn1vi46.5 (5)
O1—Si1—O5—Si1ix121.94 (19)O5—Si1—O2—Zn2v161.7 (4)
O2—Si1—O1—Zn1105.8 (5)O5—Si1—O3—Zn1v89.3 (4)
O2—Si1—O1—Zn275.3 (6)O5—Si1—O3—Zn2vii82.3 (5)
O2—Si1—O3—Zn1v28.0 (7)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+1, z.
(4_1GPa_Pnn2_DESY_crystal_3) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.693 Mg m3
Orthorhombic, Pnn2Synchrotron radiation, λ = 0.35424 Å
a = 8.0991 (3) ÅCell parameters from 1170 reflections
b = 10.540 (5) Åθ = 2.4–21.2°
c = 5.0319 (3) ÅT = 293 K
V = 429.5 (2) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1055 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.070
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 22.5°, θmin = 2.4°
Tmin = 0.460, Tmax = 1.000h = 1616
4899 measured reflectionsk = 66
1265 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0621P)2 + 0.1355P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.115Δρmax = 1.22 e Å3
S = 1.00Δρmin = 0.89 e Å3
1265 reflectionsAbsolute structure: Flack x determined using 373 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
68 parametersAbsolute structure parameter: 0.05 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.24958 (6)0.36016 (15)0.5360 (2)0.0113 (6)
Zn20.33166 (6)0.67209 (15)0.54420 (14)0.0120 (6)
Si10.46417 (13)0.3565 (3)0.0300 (5)0.0090 (12)
O10.2846 (5)0.3220 (11)0.0893 (8)0.016 (4)
O20.6088 (5)0.2708 (14)0.1010 (9)0.022 (5)
O30.4617 (4)0.3432 (10)0.3491 (9)0.012 (4)
O40.1814 (5)0.5327 (16)0.5025 (15)0.021 (6)
O50.5000000.5000000.0730 (16)0.0182 (12)*
O61.0000000.5000000.035 (4)0.0342 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0116 (2)0.0124 (19)0.0099 (2)0.0023 (3)0.0003 (3)0.0005 (7)
Zn20.0114 (2)0.0147 (19)0.0098 (2)0.0023 (3)0.0000 (3)0.0006 (6)
Si10.0082 (4)0.012 (4)0.0064 (5)0.0004 (6)0.0003 (5)0.0002 (13)
O10.0112 (13)0.027 (13)0.0099 (13)0.008 (2)0.0036 (9)0.005 (2)
O20.0174 (16)0.038 (17)0.0114 (16)0.014 (3)0.0038 (11)0.002 (3)
O30.0099 (13)0.018 (13)0.0089 (14)0.0019 (19)0.0008 (9)0.000 (2)
O40.0157 (15)0.008 (18)0.038 (4)0.001 (2)0.0068 (17)0.003 (4)
Geometric parameters (Å, º) top
Zn1—O1i1.948 (5)Zn2—O3v1.947 (4)
Zn1—O2ii1.918 (10)Zn2—O41.919 (13)
Zn1—O31.967 (4)Si1—O11.615 (4)
Zn1—O41.908 (16)Si1—O21.620 (8)
Zn2—Si1iii2.967 (3)Si1—O31.612 (6)
Zn2—O1iv1.958 (9)Si1—O51.624 (4)
Zn2—O2iii1.945 (6)
O1i—Zn1—O3108.5 (2)O2—Si1—Zn2vi37.3 (3)
O2ii—Zn1—O1i106.6 (4)O2—Si1—O5105.1 (5)
O2ii—Zn1—O3106.4 (3)O3—Si1—Zn2vi144.97 (18)
O4—Zn1—O1i108.9 (4)O3—Si1—O1109.8 (3)
O4—Zn1—O2ii118.8 (4)O3—Si1—O2111.5 (4)
O4—Zn1—O3107.3 (4)O3—Si1—O5113.7 (5)
O1iv—Zn2—Si1iii129.3 (2)O5—Si1—Zn2vi74.5 (2)
O2iii—Zn2—Si1iii30.3 (3)Zn1vii—O1—Zn2viii115.4 (3)
O2iii—Zn2—O1iv100.6 (4)Si1—O1—Zn1vii116.4 (3)
O2iii—Zn2—O3v106.0 (2)Si1—O1—Zn2viii119.2 (4)
O3v—Zn2—Si1iii85.87 (14)Zn1ix—O2—Zn2vi113.9 (3)
O3v—Zn2—O1iv107.9 (3)Si1—O2—Zn1ix133.2 (3)
O4—Zn2—Si1iii111.5 (3)Si1—O2—Zn2vi112.4 (6)
O4—Zn2—O1iv106.0 (4)Zn2v—O3—Zn1121.1 (2)
O4—Zn2—O2iii119.6 (4)Si1—O3—Zn1118.6 (2)
O4—Zn2—O3v115.3 (4)Si1—O3—Zn2v119.9 (2)
O1—Si1—Zn2vi99.9 (2)Zn1—O4—Zn2122.4 (3)
O1—Si1—O2112.0 (4)Si1v—O5—Si1142.8 (6)
O1—Si1—O5104.6 (4)
Zn2vi—Si1—O1—Zn1vii29.0 (6)O2—Si1—O3—Zn2v36.9 (9)
Zn2vi—Si1—O1—Zn2viii116.6 (4)O2—Si1—O5—Si1v122.4 (2)
Zn2vi—Si1—O2—Zn1ix171.1 (13)O3—Si1—O1—Zn1vii169.7 (6)
Zn2vi—Si1—O3—Zn1171.1 (2)O3—Si1—O1—Zn2viii44.7 (7)
Zn2vi—Si1—O3—Zn2v15.0 (11)O3—Si1—O2—Zn1ix11.8 (10)
Zn2vi—Si1—O5—Si1v143.98 (5)O3—Si1—O2—Zn2vi159.4 (5)
O1—Si1—O2—Zn1ix111.7 (8)O3—Si1—O5—Si1v0.26 (16)
O1—Si1—O2—Zn2vi77.2 (7)O5—Si1—O1—Zn1vii47.4 (7)
O1—Si1—O3—Zn124.5 (9)O5—Si1—O1—Zn2viii167.0 (4)
O1—Si1—O3—Zn2v161.6 (6)O5—Si1—O2—Zn1ix135.3 (8)
O1—Si1—O5—Si1v119.5 (3)O5—Si1—O2—Zn2vi35.8 (6)
O2—Si1—O1—Zn1vii65.9 (8)O5—Si1—O3—Zn192.3 (5)
O2—Si1—O1—Zn2viii79.7 (6)O5—Si1—O3—Zn2v81.6 (6)
O2—Si1—O3—Zn1149.2 (6)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z1; (vii) x, y, z1; (viii) x+1/2, y1/2, z1/2; (ix) x+1/2, y+1/2, z1/2.
(3_26GPa_Pnn2_DESY_crystal_1) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.601 Mg m3
Orthorhombic, Pnn2Synchrotron radiation, λ = 0.35424 Å
a = 8.1701 (4) ÅCell parameters from 2670 reflections
b = 10.6651 (3) Åθ = 2.2–22.9°
c = 5.0554 (1) ÅT = 293 K
V = 440.50 (3) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1764 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.023
Absorption correction: multi-scan
CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 22.9°, θmin = 2.3°
Tmin = 0.985, Tmax = 1.000h = 1113
4747 measured reflectionsk = 1819
1836 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0503P)2 + 0.0842P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.079Δρmax = 0.74 e Å3
S = 1.12Δρmin = 1.59 e Å3
1836 reflectionsAbsolute structure: Flack x determined using 633 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
74 parametersAbsolute structure parameter: 0.06 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.22853 (5)0.15013 (3)0.61516 (7)0.01228 (7)
Zn20.31113 (5)0.33485 (3)0.11940 (6)0.01266 (7)
Si10.51794 (9)0.35575 (6)0.6084 (2)0.00874 (12)
O10.3641 (4)0.2836 (3)0.4790 (4)0.0192 (5)
O20.6902 (4)0.3089 (2)0.4852 (4)0.0162 (4)
O30.5187 (4)0.3407 (2)0.9255 (5)0.0134 (4)
O40.1832 (4)0.4840 (2)0.0734 (8)0.0246 (7)
O50.5000000.5000000.5099 (7)0.0168 (6)
O60.0000000.5000000.404 (2)0.078 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0127 (2)0.01349 (14)0.01063 (10)0.00302 (6)0.0002 (2)0.00049 (14)
Zn20.0134 (2)0.01399 (14)0.01064 (9)0.00366 (6)0.0002 (2)0.00024 (15)
Si10.0095 (4)0.0090 (3)0.0077 (2)0.00001 (13)0.0003 (3)0.0001 (3)
O10.0230 (18)0.0226 (12)0.0121 (6)0.0138 (8)0.0032 (8)0.0039 (6)
O20.0155 (15)0.0217 (11)0.0115 (6)0.0104 (7)0.0040 (7)0.0033 (6)
O30.0111 (17)0.0208 (12)0.0084 (6)0.0007 (5)0.0005 (6)0.0016 (5)
O40.0163 (18)0.0171 (11)0.041 (2)0.0005 (6)0.0046 (11)0.0008 (9)
O50.025 (2)0.0095 (15)0.0157 (10)0.0039 (8)0.0000.000
O60.042 (10)0.172 (12)0.021 (3)0.029 (5)0.0000.000
Geometric parameters (Å, º) top
Zn1—O11.931 (2)Zn2—O3iv1.960 (3)
Zn1—O2i1.946 (2)Zn2—O41.917 (3)
Zn1—O3ii1.967 (3)Si1—O11.612 (3)
Zn1—O4iii1.925 (3)Si1—O21.618 (3)
Zn2—O11.947 (2)Si1—O31.611 (3)
Zn2—O2ii1.946 (2)Si1—O51.6236 (13)
O1—Zn1—O2i105.61 (10)O3—Si1—O1111.05 (14)
O1—Zn1—O3ii106.84 (12)O3—Si1—O2110.41 (14)
O2i—Zn1—O3ii108.50 (11)O3—Si1—O5113.57 (16)
O4iii—Zn1—O1115.14 (15)Zn1—O1—Zn2114.33 (12)
O4iii—Zn1—O2i111.87 (14)Si1—O1—Zn1130.89 (14)
O4iii—Zn1—O3ii108.60 (13)Si1—O1—Zn2114.73 (12)
O1—Zn2—O3iv106.48 (12)Zn2v—O2—Zn1vi115.50 (11)
O2ii—Zn2—O1102.57 (9)Si1—O2—Zn1vi116.13 (13)
O2ii—Zn2—O3iv106.86 (11)Si1—O2—Zn2v123.42 (14)
O4—Zn2—O1117.85 (16)Zn2vii—O3—Zn1v120.79 (12)
O4—Zn2—O2ii109.53 (14)Si1—O3—Zn1v118.92 (17)
O4—Zn2—O3iv112.62 (13)Si1—O3—Zn2vii119.84 (16)
O1—Si1—O2112.00 (17)Zn2—O4—Zn1viii123.09 (18)
O1—Si1—O5104.91 (13)Si1ix—O5—Si1144.3 (2)
O2—Si1—O5104.67 (12)
O1—Si1—O2—Zn1vi67.23 (19)O3—Si1—O1—Zn2162.32 (16)
O1—Si1—O2—Zn2v86.7 (2)O3—Si1—O2—Zn1vi168.46 (15)
O1—Si1—O3—Zn1v152.92 (16)O3—Si1—O2—Zn2v37.6 (2)
O1—Si1—O3—Zn2vii34.7 (2)O3—Si1—O5—Si1ix0.35 (12)
O1—Si1—O5—Si1ix121.79 (12)O5—Si1—O1—Zn1143.6 (2)
O2—Si1—O1—Zn1103.5 (3)O5—Si1—O1—Zn239.2 (2)
O2—Si1—O1—Zn273.7 (2)O5—Si1—O2—Zn1vi45.9 (2)
O2—Si1—O3—Zn1v28.07 (19)O5—Si1—O2—Zn2v160.21 (19)
O2—Si1—O3—Zn2vii159.54 (15)O5—Si1—O3—Zn1v89.13 (14)
O2—Si1—O5—Si1ix120.15 (12)O5—Si1—O3—Zn2vii83.26 (14)
O3—Si1—O1—Zn120.5 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+1, z.
(2_49GPa_Imm2_DESY_crystal_2) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.550 Mg m3
Orthorhombic, Imm2Synchrotron radiation, λ = 0.35424 Å
a = 8.2334 (7) ÅCell parameters from 511 reflections
b = 10.717 (6) Åθ = 2.2–22.4°
c = 5.0641 (3) ÅT = 293 K
V = 446.8 (3) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
528 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.062
Absorption correction: multi-scan
CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 23.3°, θmin = 2.2°
Tmin = 0.336, Tmax = 1.000h = 1413
1340 measured reflectionsk = 86
677 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0911P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.050(Δ/σ)max < 0.001
wR(F2) = 0.160Δρmax = 1.01 e Å3
S = 1.03Δρmin = 1.59 e Å3
677 reflectionsAbsolute structure: Flack x determined using 192 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
42 parametersAbsolute structure parameter: 0.0 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70766 (10)0.3412 (2)0.5392 (3)0.0204 (8)
Si10.5000000.3558 (8)0.0314 (13)0.018 (2)
O10.6631 (10)0.295 (2)0.0970 (15)0.023 (5)
O20.5000000.3407 (19)0.3481 (16)0.0107 (12)*
O30.814 (2)0.5000000.497 (3)0.041 (18)
O40.5000000.5000000.063 (3)0.07 (3)
O50.0000000.5000000.014 (6)0.13 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0153 (4)0.036 (2)0.0101 (3)0.0037 (4)0.0002 (5)0.0002 (12)
Si10.0123 (9)0.036 (7)0.0064 (10)0.0000.0000.001 (3)
O10.024 (3)0.035 (16)0.011 (2)0.001 (5)0.0033 (19)0.002 (4)
O30.030 (7)0.06 (6)0.034 (10)0.0000.009 (4)0.000
O40.022 (8)0.18 (8)0.008 (6)0.0000.0000.000
O50.046 (14)0.32 (14)0.023 (15)0.0000.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.932 (17)Si1—O11.629 (12)
Zn1—O1ii1.943 (9)Si1—O1iii1.629 (12)
Zn1—O21.965 (4)Si1—O21.612 (11)
Zn1—O31.926 (8)Si1—O41.618 (9)
O1i—Zn1—O1ii104.4 (3)O4—Si1—O1iii105.4 (7)
O1i—Zn1—O2107.5 (6)O4—Si1—O1105.4 (7)
O1ii—Zn1—O2107.6 (4)Zn1iv—O1—Zn1v115.3 (6)
O3—Zn1—O1ii114.7 (7)Si1—O1—Zn1v115.5 (8)
O3—Zn1—O1i112.1 (6)Si1—O1—Zn1iv127.9 (7)
O3—Zn1—O2110.1 (8)Zn1iii—O2—Zn1121.0 (4)
O1iii—Si1—O1111.1 (11)Si1—O2—Zn1iii119.3 (2)
O2—Si1—O1iii110.9 (5)Si1—O2—Zn1119.3 (2)
O2—Si1—O1110.9 (5)Zn1—O3—Zn1vi124.1 (9)
O2—Si1—O4112.9 (10)Si1vii—O4—Si1145.6 (11)
O1iii—Si1—O1—Zn1iv95.7 (8)O2—Si1—O1—Zn1iv28.1 (16)
O1iii—Si1—O1—Zn1v70.9 (17)O2—Si1—O1—Zn1v165.2 (9)
O1—Si1—O2—Zn131.5 (16)O2—Si1—O4—Si1vii0.000 (4)
O1iii—Si1—O2—Zn1155.4 (11)O4—Si1—O1—Zn1v42.7 (12)
O1—Si1—O2—Zn1iii155.4 (11)O4—Si1—O1—Zn1iv150.7 (10)
O1iii—Si1—O2—Zn1iii31.5 (16)O4—Si1—O2—Zn1iii86.6 (11)
O1—Si1—O4—Si1vii121.2 (5)O4—Si1—O2—Zn186.6 (11)
O1iii—Si1—O4—Si1vii121.2 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z; (vii) x+1, y+1, z.
(3_50GPa_Pnn2_DESY_crystal_1) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.636 Mg m3
Orthorhombic, Pnn2Synchrotron radiation, λ = 0.35424 Å
a = 8.1412 (9) ÅCell parameters from 1048 reflections
b = 10.6227 (8) Åθ = 2.3–22.4°
c = 5.0448 (2) ÅT = 293 K
V = 436.28 (6) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1654 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.033
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 22.9°, θmin = 2.3°
Tmin = 0.519, Tmax = 1.000h = 1311
2456 measured reflectionsk = 1918
1841 independent reflectionsl = 1010
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0699P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max < 0.001
wR(F2) = 0.116Δρmax = 0.98 e Å3
S = 0.98Δρmin = 1.56 e Å3
1841 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
74 parametersAbsolute structure parameter: 0.11 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.23556 (8)0.14699 (5)0.61429 (13)0.01130 (12)
Zn20.31788 (8)0.33239 (5)0.12008 (11)0.01166 (12)
Si10.52395 (16)0.35601 (11)0.6073 (4)0.00775 (19)
O40.1824 (8)0.4786 (5)0.0755 (14)0.0249 (14)
O30.5245 (6)0.3414 (4)0.9250 (7)0.0129 (7)
O20.6987 (7)0.3133 (4)0.4866 (7)0.0141 (7)
O10.3729 (7)0.2800 (5)0.4790 (7)0.0180 (9)
O50.5000000.5000000.5110 (12)0.0161 (11)
O60.0000000.5000000.396 (4)0.072 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0114 (3)0.0131 (2)0.00939 (16)0.00268 (11)0.0003 (3)0.0005 (3)
Zn20.0122 (3)0.0134 (2)0.00937 (16)0.00350 (12)0.0000 (4)0.0000 (3)
Si10.0090 (7)0.0084 (5)0.0058 (3)0.0002 (2)0.0004 (6)0.0001 (5)
O40.017 (3)0.017 (2)0.041 (4)0.0015 (10)0.007 (2)0.0058 (18)
O30.012 (3)0.020 (2)0.0071 (10)0.0015 (10)0.0002 (11)0.0026 (10)
O20.014 (3)0.020 (2)0.0088 (10)0.0084 (11)0.0044 (12)0.0040 (11)
O10.023 (3)0.022 (2)0.0090 (10)0.0136 (14)0.0032 (14)0.0021 (12)
O50.022 (4)0.011 (3)0.0156 (19)0.0023 (15)0.0000.000
O60.053 (14)0.140 (16)0.023 (4)0.027 (7)0.0000.000
Geometric parameters (Å, º) top
Zn1—O4i1.919 (5)Zn2—O2ii1.946 (4)
Zn1—O3ii1.970 (5)Zn2—O11.946 (4)
Zn1—O2iii1.948 (4)Si1—O31.610 (5)
Zn1—O11.927 (4)Si1—O21.613 (5)
Zn2—Si12.986 (2)Si1—O11.607 (5)
Zn2—O41.918 (5)Si1—O51.617 (2)
Zn2—O3iv1.951 (5)
O4i—Zn1—O3ii108.2 (2)O3—Si1—O5113.0 (3)
O4i—Zn1—O2iii110.7 (3)O2—Si1—Zn299.29 (18)
O4i—Zn1—O1116.5 (3)O2—Si1—O5105.0 (2)
O2iii—Zn1—O3ii108.6 (2)O1—Si1—Zn236.53 (14)
O1—Zn1—O3ii106.8 (2)O1—Si1—O2112.4 (3)
O1—Zn1—O2iii105.78 (17)O1—Si1—O5105.2 (2)
O4—Zn2—Si1110.58 (19)O5—Si1—Zn276.38 (19)
O4—Zn2—O3iv113.4 (2)Zn2—O4—Zn1v122.9 (3)
O4—Zn2—O2ii108.5 (3)Zn2vi—O3—Zn1vii120.70 (19)
O4—Zn2—O1118.2 (3)Si1—O3—Zn1vii118.6 (3)
O3iv—Zn2—Si185.79 (13)Si1—O3—Zn2vi120.3 (3)
O2ii—Zn2—Si1129.16 (14)Zn2vii—O2—Zn1viii115.4 (2)
O2ii—Zn2—O3iv107.12 (18)Si1—O2—Zn1viii116.0 (2)
O2ii—Zn2—O1102.08 (17)Si1—O2—Zn2vii122.2 (2)
O1—Zn2—Si129.44 (13)Zn1—O1—Zn2113.9 (2)
O1—Zn2—O3iv106.6 (2)Si1—O1—Zn1132.0 (2)
O3—Si1—Zn2144.36 (19)Si1—O1—Zn2114.0 (2)
O3—Si1—O2110.3 (2)Si1—O5—Si1ix145.0 (5)
O3—Si1—O1110.8 (2)
Zn2—Si1—O3—Zn1vii170.90 (9)O2—Si1—O1—Zn274.7 (4)
Zn2—Si1—O3—Zn2vi16.2 (5)O2—Si1—O5—Si1ix119.6 (2)
Zn2—Si1—O2—Zn1viii31.1 (3)O1—Si1—O3—Zn1vii151.9 (3)
Zn2—Si1—O2—Zn2vii119.6 (3)O1—Si1—O3—Zn2vi35.1 (4)
Zn2—Si1—O1—Zn1179.8 (8)O1—Si1—O2—Zn1viii66.7 (3)
Zn2—Si1—O5—Si1ix144.24 (5)O1—Si1—O2—Zn2vii84.0 (4)
O3—Si1—O2—Zn1viii169.2 (2)O1—Si1—O5—Si1ix121.5 (2)
O3—Si1—O2—Zn2vii40.2 (4)O5—Si1—O3—Zn1vii90.3 (3)
O3—Si1—O1—Zn118.4 (6)O5—Si1—O3—Zn2vi82.6 (3)
O3—Si1—O1—Zn2161.5 (3)O5—Si1—O2—Zn1viii47.2 (4)
O3—Si1—O5—Si1ix0.6 (2)O5—Si1—O2—Zn2vii162.2 (3)
O2—Si1—O3—Zn1vii26.8 (4)O5—Si1—O1—Zn1140.7 (5)
O2—Si1—O3—Zn2vi160.2 (3)O5—Si1—O1—Zn239.1 (4)
O2—Si1—O1—Zn1105.5 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z1; (v) x+1/2, y+1/2, z1/2; (vi) x, y, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+1, z.
(3_19GPa_Pnn2_DESY_crystal_3) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.623 Mg m3
Orthorhombic, Pnn2Synchrotron radiation, λ = 0.35424 Å
a = 8.1559 (2) ÅCell parameters from 2172 reflections
b = 10.636 (3) Åθ = 1.6–22.8°
c = 5.0475 (1) ÅT = 293 K
V = 437.85 (11) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1281 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.038
Absorption correction: multi-scan
CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 22.8°, θmin = 1.6°
Tmin = 0.578, Tmax = 1.000h = 1616
5254 measured reflectionsk = 77
1406 independent reflectionsl = 99
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.096Δρmax = 0.75 e Å3
S = 1.04Δρmin = 0.70 e Å3
1406 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
74 parametersAbsolute structure parameter: 0.05 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.23405 (4)0.14767 (8)0.61465 (8)0.0123 (3)
Zn20.31663 (4)0.33293 (8)0.11982 (8)0.0129 (3)
Si10.52270 (7)0.3560 (2)0.6082 (3)0.0088 (7)
O10.3714 (3)0.2795 (8)0.4782 (5)0.019 (3)
O20.6967 (3)0.3122 (7)0.4857 (5)0.017 (2)
O30.5240 (2)0.3399 (6)0.9250 (5)0.011 (2)
O40.1834 (3)0.4802 (9)0.0746 (10)0.029 (3)
O50.5000000.5000000.5084 (9)0.021 (4)
O60.0000000.5000000.402 (2)0.071 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01217 (13)0.0146 (11)0.01006 (14)0.00276 (15)0.00001 (13)0.0001 (3)
Zn20.01277 (13)0.0160 (10)0.01001 (13)0.00336 (14)0.00012 (14)0.0005 (3)
Si10.0091 (3)0.010 (2)0.0070 (3)0.0001 (3)0.0002 (3)0.0005 (5)
O10.0211 (10)0.026 (8)0.0095 (8)0.0107 (15)0.0039 (7)0.0026 (13)
O20.0151 (8)0.027 (7)0.0100 (8)0.0098 (13)0.0033 (6)0.0021 (14)
O30.0122 (8)0.012 (8)0.0074 (8)0.0009 (9)0.0006 (4)0.0025 (10)
O40.0169 (9)0.033 (10)0.038 (3)0.0029 (17)0.0056 (10)0.001 (3)
O50.0239 (14)0.026 (13)0.0130 (15)0.005 (3)0.0000.000
O60.045 (3)0.15 (3)0.022 (3)0.041 (6)0.0000.000
Geometric parameters (Å, º) top
Zn1—O11.922 (6)Zn2—O3iv1.958 (2)
Zn1—O2i1.945 (3)Zn2—O41.920 (8)
Zn1—O3ii1.967 (2)Si1—O11.617 (5)
Zn1—O4iii1.915 (10)Si1—O21.617 (3)
Zn2—Si12.9938 (13)Si1—O31.608 (3)
Zn2—O11.948 (3)Si1—O51.623 (2)
Zn2—O2ii1.949 (6)
O1—Zn1—O2i106.0 (2)O2—Si1—O1111.7 (3)
O1—Zn1—O3ii106.51 (19)O2—Si1—O5104.7 (3)
O2i—Zn1—O3ii108.52 (12)O3—Si1—Zn2144.47 (10)
O4iii—Zn1—O1115.8 (2)O3—Si1—O1110.8 (2)
O4iii—Zn1—O2i111.1 (3)O3—Si1—O2110.10 (17)
O4iii—Zn1—O3ii108.5 (2)O3—Si1—O5114.2 (3)
O1—Zn2—Si129.60 (17)O5—Si1—Zn275.98 (14)
O1—Zn2—O2ii101.9 (2)Zn1—O1—Zn2114.32 (19)
O1—Zn2—O3iv106.22 (12)Si1—O1—Zn1131.8 (2)
O2ii—Zn2—Si1129.25 (14)Si1—O1—Zn2113.9 (3)
O2ii—Zn2—O3iv106.81 (17)Zn1v—O2—Zn2vi115.5 (2)
O3iv—Zn2—Si185.72 (8)Si1—O2—Zn1v116.3 (2)
O4—Zn2—Si1110.41 (18)Si1—O2—Zn2vi122.4 (3)
O4—Zn2—O1118.6 (3)Zn2vii—O3—Zn1vi120.71 (14)
O4—Zn2—O2ii108.7 (2)Si1—O3—Zn1vi118.85 (13)
O4—Zn2—O3iv113.5 (2)Si1—O3—Zn2vii119.84 (12)
O1—Si1—Zn236.50 (18)Zn1viii—O4—Zn2123.17 (16)
O1—Si1—O5105.2 (3)Si1ix—O5—Si1143.8 (3)
O2—Si1—Zn298.87 (12)
Zn2—Si1—O1—Zn1178.9 (8)O2—Si1—O3—Zn2vii160.6 (4)
Zn2—Si1—O2—Zn1v31.5 (4)O2—Si1—O5—Si1ix120.10 (16)
Zn2—Si1—O2—Zn2vi120.2 (2)O3—Si1—O1—Zn117.0 (6)
Zn2—Si1—O3—Zn1vi170.84 (14)O3—Si1—O1—Zn2161.8 (3)
Zn2—Si1—O3—Zn2vii18.0 (7)O3—Si1—O2—Zn1v169.4 (3)
Zn2—Si1—O5—Si1ix144.23 (3)O3—Si1—O2—Zn2vi38.9 (5)
O1—Si1—O2—Zn1v67.1 (5)O3—Si1—O5—Si1ix0.39 (9)
O1—Si1—O2—Zn2vi84.7 (3)O5—Si1—O1—Zn1140.9 (5)
O1—Si1—O3—Zn1vi152.2 (4)O5—Si1—O1—Zn238.0 (4)
O1—Si1—O3—Zn2vii36.6 (5)O5—Si1—O2—Zn1v46.2 (4)
O1—Si1—O5—Si1ix122.07 (14)O5—Si1—O2—Zn2vi162.0 (3)
O2—Si1—O1—Zn1106.1 (4)O5—Si1—O3—Zn1vi89.2 (3)
O2—Si1—O1—Zn275.0 (5)O5—Si1—O3—Zn2vii81.9 (4)
O2—Si1—O3—Zn1vi28.2 (5)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z1; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+1, z.
(2_8GPA_Pnn2_DESY_crystal_3) top
Crystal data top
O9Si2Zn4·OF(000) = 456
Mr = 477.66Dx = 3.598 Mg m3
Orthorhombic, Pnn2Synchrotron radiation, λ = 0.35424 Å
a = 8.1865 (4) ÅCell parameters from 1089 reflections
b = 10.670 (5) Åθ = 2.4–21.3°
c = 5.0479 (2) ÅT = 293 K
V = 440.93 (19) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
671 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.046
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 22.9°, θmin = 1.6°
Tmin = 0.488, Tmax = 1.000h = 1616
2790 measured reflectionsk = 77
758 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0904P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max = 0.241
wR(F2) = 0.130Δρmax = 0.84 e Å3
S = 1.05Δρmin = 0.91 e Å3
758 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
58 parametersAbsolute structure parameter: 0.32 (18)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.2196 (7)0.1568 (15)0.6115 (18)0.0127 (11)
Zn20.3024 (7)0.3407 (12)0.1218 (15)0.0114 (11)
Si10.507 (6)0.3553 (6)0.6064 (8)0.011 (3)
O10.3528 (13)0.282 (3)0.476 (2)0.012 (2)*
O20.6762 (14)0.306 (2)0.485 (2)0.013 (6)
O30.494 (7)0.3387 (18)0.9259 (14)0.020 (5)
O50.5000000.5000000.509 (2)0.0221 (17)*
O60.0000000.5000000.404 (5)0.044 (4)*
O40.3171 (9)0.01 (4)0.5710 (15)0.0240 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0093 (15)0.015 (3)0.0142 (11)0.0042 (15)0.0060 (15)0.0003 (9)
Zn20.0090 (16)0.017 (3)0.0080 (13)0.0049 (18)0.0007 (9)0.0003 (11)
Si10.010 (7)0.015 (5)0.0073 (6)0.000 (2)0.002 (3)0.0006 (11)
O20.009 (3)0.017 (18)0.012 (3)0.004 (5)0.002 (2)0.003 (4)
O30.012 (8)0.036 (17)0.011 (2)0.002 (8)0.006 (7)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O11.86 (3)Zn2—O3iii1.85 (5)
Zn1—O2i1.960 (14)Zn2—O4iv2.0 (4)
Zn1—O3ii2.07 (5)Si1—O11.63 (4)
Zn1—O41.8 (4)Si1—O21.60 (5)
Zn2—Si12.97 (3)Si1—O31.626 (12)
Zn2—O11.937 (15)Si1—O51.622 (7)
Zn2—O2ii2.00 (2)
O1—Zn1—O2i108.5 (11)O1—Si1—O5108 (2)
O1—Zn1—O3ii109.9 (10)O2—Si1—Zn299.0 (5)
O1—Zn1—O4110 (7)O2—Si1—O3114 (3)
O2i—Zn1—O3ii105.6 (10)O2—Si1—O5103 (2)
O2i—Zn1—O4112 (2)O3—Si1—Zn2141 (3)
O3ii—Zn1—O4111 (5)O5—Si1—Zn277.2 (10)
O1—Zn2—Si130.3 (9)O5—Si1—O3113.7 (9)
O1—Zn2—O2ii100.1 (11)Zn1—O1—Zn2116.6 (9)
O2ii—Zn2—Si1128.0 (7)Si1—O1—Zn1130.7 (9)
O3iii—Zn2—Si187.8 (12)Si1—O1—Zn2112.7 (13)
O3iii—Zn2—O1107.9 (10)Zn1v—O2—Zn2vi113.3 (9)
O3iii—Zn2—O2ii104.1 (10)Si1—O2—Zn1v117.3 (11)
O4iv—Zn2—Si1109 (5)Si1—O2—Zn2vi124.8 (9)
O4iv—Zn2—O1119.9 (19)Zn2vii—O3—Zn1vi120.8 (4)
O4iv—Zn2—O2ii113 (6)Si1—O3—Zn1vi113 (4)
O4iv—Zn2—O3iii110 (4)Si1—O3—Zn2vii126 (4)
O1—Si1—Zn237.0 (8)Si1viii—O5—Si1144.7 (9)
O1—Si1—O2111.1 (9)Zn2ix—O4—Zn1123.0 (6)
O1—Si1—O3107 (3)
Zn2—Si1—O1—Zn1179 (3)O2—Si1—O3—Zn2vii161.3 (17)
Zn2—Si1—O2—Zn1v31.1 (15)O2—Si1—O5—Si1viii119.1 (17)
Zn2—Si1—O2—Zn2vi123.3 (10)O3ii—Zn1—O1—Zn224.2 (17)
Zn2—Si1—O3—Zn1vi171.6 (10)O3ii—Zn1—O1—Si1155 (2)
Zn2—Si1—O3—Zn2vii18 (2)O3ii—Zn1—O4—Zn2ix45 (2)
Zn2—Si1—O5—Si1viii144.5 (11)O3—Si1—O1—Zn120 (3)
O1—Zn1—O4—Zn2ix167.2 (9)O3—Si1—O1—Zn2158.6 (18)
O1—Si1—O2—Zn1v67.4 (14)O3—Si1—O2—Zn1v171.4 (17)
O1—Si1—O2—Zn2vi87.0 (14)O3—Si1—O2—Zn2vi34 (3)
O1—Si1—O3—Zn1vi151.4 (18)O3—Si1—O5—Si1viii5 (3)
O1—Si1—O3—Zn2vii38 (2)O5—Si1—O1—Zn1143.1 (15)
O1—Si1—O5—Si1viii123 (2)O5—Si1—O1—Zn236 (2)
O2i—Zn1—O1—Zn2139.3 (11)O5—Si1—O2—Zn1v47.8 (19)
O2i—Zn1—O1—Si140 (2)O5—Si1—O2—Zn2vi157.8 (10)
O2i—Zn1—O4—Zn2ix73 (3)O5—Si1—O3—Zn1vi90 (3)
O2—Si1—O1—Zn1104.6 (18)O5—Si1—O3—Zn2vii81 (3)
O2—Si1—O1—Zn276.4 (15)O4—Zn1—O1—Zn298.6 (19)
O2—Si1—O3—Zn1vi28.1 (18)O4—Zn1—O1—Si182 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y, z+1; (viii) x+1, y+1, z; (ix) x+1/2, y1/2, z+1/2.
(1_92GPa_Imm2_DESY_crystal_3) top
Crystal data top
O9Si2Zn4·ODx = 3.548 Mg m3
Mr = 477.66Synchrotron radiation, λ = 0.35424 Å
Orthorhombic, Imm2Cell parameters from 1616 reflections
a = 8.2501 (2) Åθ = 1.6–22.3°
b = 10.694 (3) ŵ = 1.62 mm1
c = 5.06794 (16) ÅT = 293 K
V = 447.12 (12) Å3Block, colourless
Z = 20.06 × 0.04 × 0.02 mm
F(000) = 456
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
737 independent reflections
Radiation source: synchrotron678 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.123
Detector resolution: 5.8140 pixels mm-1θmax = 23.6°, θmin = 2.4°
φ scansh = 1616
Absorption correction: multi-scan
CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 77
Tmin = 0.048, Tmax = 1.000l = 109
2462 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.099(Δ/σ)max < 0.001
wR(F2) = 0.252Δρmax = 2.49 e Å3
S = 1.03Δρmin = 2.18 e Å3
737 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
43 parametersAbsolute structure parameter: 0.6 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70714 (8)0.3407 (2)0.53930 (2)0.0159 (10)
Si10.5000000.3550 (6)0.0309 (11)0.013 (2)
O10.6617 (8)0.2936 (18)0.0964 (16)0.017 (5)
O20.5000000.3370 (16)0.3462 (18)0.015 (7)
O30.8141 (14)0.5000000.500 (4)0.033 (11)
O40.5000000.5000000.060 (3)0.047 (18)
O50.0000000.5000000.028 (13)0.063 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0127 (4)0.025 (3)0.0102 (4)0.0028 (3)0.0001 (3)0.0002 (11)
Si10.0101 (8)0.020 (8)0.0072 (9)0.0000.0000.0012 (17)
O10.018 (2)0.020 (17)0.0135 (19)0.011 (3)0.0027 (14)0.008 (4)
O20.010 (2)0.03 (2)0.009 (2)0.0000.0000.002 (3)
O30.015 (3)0.03 (3)0.051 (11)0.0000.004 (4)0.000
O40.024 (6)0.11 (6)0.011 (6)0.0000.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.926 (14)Si1—O11.620 (9)
Zn1—O1ii1.950 (9)Si1—O1iii1.620 (9)
Zn1—O21.970 (5)Si1—O21.609 (12)
Zn1—O31.929 (6)Si1—O41.618 (8)
O1i—Zn1—O1ii104.7 (3)O2—Si1—O1iii110.3 (5)
O1i—Zn1—O2107.1 (5)O2—Si1—O4113.4 (9)
O1ii—Zn1—O2107.3 (3)Zn1iv—O1—Zn1v115.0 (5)
O1i—Zn1—O3111.4 (5)Si1—O1—Zn1v115.5 (7)
O3—Zn1—O1ii114.5 (8)Si1—O1—Zn1iv128.5 (7)
O3—Zn1—O2111.3 (7)Zn1iii—O2—Zn1120.4 (5)
O1iii—Si1—O1110.8 (11)Si1—O2—Zn1119.4 (3)
O1iii—Si1—O4105.9 (8)Si1—O2—Zn1iii119.4 (3)
O1—Si1—O4105.9 (8)Zn1—O3—Zn1vi124.0 (6)
O2—Si1—O1110.3 (5)Si1vii—O4—Si1147.0 (12)
O1iii—Si1—O1—Zn1iv96.4 (7)O2—Si1—O1—Zn1v166.0 (9)
O1iii—Si1—O1—Zn1v71.5 (16)O2—Si1—O1—Zn1iv26.0 (14)
O1—Si1—O2—Zn133.9 (13)O2—Si1—O4—Si1vii0.000 (4)
O1iii—Si1—O2—Zn1156.6 (11)O4—Si1—O1—Zn1v42.9 (11)
O1iii—Si1—O2—Zn1iii33.9 (13)O4—Si1—O1—Zn1iv149.1 (11)
O1—Si1—O2—Zn1iii156.6 (11)O4—Si1—O2—Zn1iii84.7 (9)
O1—Si1—O4—Si1vii121.1 (5)O4—Si1—O2—Zn184.7 (9)
O1iii—Si1—O4—Si1vii121.1 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z; (vii) x+1, y+1, z.
(1_5GPa_Imm2_ESRF) top
Crystal data top
O9Si2Zn4·ODx = 3.552 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Imm2Cell parameters from 1803 reflections
a = 8.2846 (2) Åθ = 2.1–18.8°
b = 10.697 (2) ŵ = 0.45 mm1
c = 5.0823 (1) ÅT = 293 K
V = 450.40 (10) Å3Block, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
2922 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.027
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 19.9°, θmin = 1.5°
Tmin = 0.005, Tmax = 1.000h = 2323
7797 measured reflectionsk = 3129
3625 independent reflectionsl = 1515
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1217P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.059(Δ/σ)max = 0.001
wR(F2) = 0.171Δρmax = 6.23 e Å3
S = 1.05Δρmin = 3.10 e Å3
3625 reflectionsAbsolute structure: Flack x determined using 1083 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
45 parametersAbsolute structure parameter: 0.456 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70662 (3)0.34063 (2)0.53928 (6)0.01341 (6)
Si10.5000000.35485 (7)0.0315 (2)0.00951 (10)
O10.6625 (3)0.29528 (19)0.0961 (3)0.0172 (3)
O20.5000000.3369 (3)0.3469 (4)0.0145 (3)
O30.8098 (5)0.5000000.4970 (13)0.0267 (10)
O40.5000000.5000000.0596 (8)0.0182 (7)
O50.0000000.5000000.011 (2)0.089 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01757 (11)0.01233 (8)0.01032 (7)0.00290 (6)0.00011 (9)0.00010 (9)
Si10.0134 (2)0.00768 (16)0.00747 (16)0.0000.0000.0001 (3)
O10.0235 (8)0.0178 (6)0.0102 (3)0.0099 (6)0.0032 (4)0.0031 (4)
O20.0159 (8)0.0203 (9)0.0073 (4)0.0000.0000.0008 (4)
O30.0220 (12)0.0121 (7)0.046 (3)0.0000.0077 (14)0.000
O40.031 (2)0.0072 (7)0.0168 (10)0.0000.0000.000
O50.052 (6)0.19 (2)0.025 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.9399 (19)Si1—O1iii1.625 (2)
Zn1—O1ii1.9500 (16)Si1—O11.625 (2)
Zn1—O21.9718 (10)Si1—O21.614 (2)
Zn1—O31.919 (2)Si1—O41.6202 (14)
O1i—Zn1—O1ii104.80 (6)O4—Si1—O1105.17 (11)
O1i—Zn1—O2107.11 (10)O4—Si1—O1iii105.17 (11)
O1ii—Zn1—O2107.67 (9)Zn1iv—O1—Zn1v114.76 (9)
O3—Zn1—O1ii114.3 (2)Si1—O1—Zn1v115.93 (11)
O3—Zn1—O1i112.15 (14)Si1—O1—Zn1iv127.99 (11)
O3—Zn1—O2110.44 (19)Zn1iii—O2—Zn1120.48 (10)
O1—Si1—O1iii111.92 (18)Si1—O2—Zn1iii119.34 (5)
O2—Si1—O1110.48 (8)Si1—O2—Zn1119.34 (5)
O2—Si1—O1iii110.48 (8)Zn1—O3—Zn1vi125.3 (2)
O2—Si1—O4113.44 (18)Si1vii—O4—Si1146.8 (3)
O1iii—Si1—O1—Zn1iv96.37 (17)O2—Si1—O1—Zn1iv27.2 (2)
O1iii—Si1—O1—Zn1v69.67 (19)O2—Si1—O1—Zn1v166.76 (13)
O1iii—Si1—O2—Zn1157.40 (15)O2—Si1—O4—Si1vii0.000 (1)
O1—Si1—O2—Zn133.0 (2)O4—Si1—O1—Zn1v44.00 (19)
O1iii—Si1—O2—Zn1iii33.0 (2)O4—Si1—O1—Zn1iv149.96 (19)
O1—Si1—O2—Zn1iii157.40 (15)O4—Si1—O2—Zn1iii84.80 (15)
O1iii—Si1—O4—Si1vii120.84 (10)O4—Si1—O2—Zn184.80 (15)
O1—Si1—O4—Si1vii120.84 (10)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z; (vii) x+1, y+1, z.
(I) top
Crystal data top
H0O10Si2Zn4F(000) = 456
Mr = 477.7Dx = 3.697 Mg m3
Orthorhombic, Pnn2(0β0)000†Synchrotron radiation, λ = 0.2229 Å
q = 0.152000b*Cell parameters from 9580 reflections
a = 8.0977 (6) Åθ = 2.4–19.0°
b = 10.5415 (10) ŵ = 0.47 mm1
c = 5.0266 (2) ÅT = 293 K
V = 429.08 (5) Å3Plate, colourless
Z = 20.05 × 0.03 × 0.02 mm
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, −x2, x3, −x4; (3) x1+1/2, −x2+1/2, x3+1/2, −x4; (4) −x1+1/2, x2+1/2, x3+1/2, x4.

Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
3955 independent reflections
Radiation source: synchrotron2127 reflections with I > 3σ(I)
Synchrotron monochromatorRint = 0.107
Detector resolution: 13.3333 pixels mm-1θmax = 10.7°, θmin = 1.5°
ω scansh = 1313
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 97
Tmin = 0.545, Tmax = 1l = 88
7097 measured reflections
Refinement top
Refinement on F1 constraint
R[F2 > 2σ(F2)] = 0.188H-atom parameters constrained
wR(F2) = 0.239Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + (0.01P)2]
where P = (Fo + 2Fc)/3
S = 7.71(Δ/σ)max = 3.394
3955 reflectionsΔρmax = 4.80 e Å3
74 parametersΔρmin = 3.29 e Å3
3 restraintsAbsolute structure: 0 of Friedel pairs used in the refinement
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.2288 (2)0.1465 (3)0.0051 (4)0.0251 (9)
Zn20.3088 (2)0.3364 (4)0.4960 (4)0.0251 (9)
O40.8186 (10)0.501 (2)0.5423 (14)0.018 (4)
Ow0.500.503 (7)0.05 (2)
Si10.5163 (4)0.3555 (5)0.0026 (10)0.010 (2)
O10.6836 (13)0.300 (2)0.1310 (19)0.018 (4)
O20.3626 (14)0.2818 (19)0.1338 (19)0.018 (4)
O30.5161 (15)0.341 (2)0.3159 (14)0.018 (4)
O50.50.50.102 (2)0.018 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0142 (5)0.053 (3)0.0084 (4)0.0063 (6)0.0050 (5)0.0009 (10)
Zn20.0142 (5)0.053 (3)0.0084 (4)0.0063 (6)0.0050 (5)0.0009 (10)
O40.023 (2)0.018 (12)0.0116 (15)0.006 (3)0.0049 (13)0.001 (2)
Ow0.036 (6)0.05 (6)0.052 (10)0.021 (12)00
Si10.0107 (12)0.013 (7)0.0069 (9)0.0008 (19)0.0007 (14)0.005 (2)
O10.023 (2)0.018 (12)0.0116 (15)0.006 (3)0.0049 (13)0.001 (2)
O20.023 (2)0.018 (12)0.0116 (15)0.006 (3)0.0049 (13)0.001 (2)
O30.023 (2)0.018 (12)0.0116 (15)0.006 (3)0.0049 (13)0.001 (2)
O50.023 (2)0.018 (12)0.0116 (15)0.006 (3)0.0049 (13)0.001 (2)
Geometric parameters (Å, º) top
AverageMinimumMaximum
Zn1—O4i1.75 (2)1.63 (2)2.02 (2)
Zn1—O1i1.962 (12)1.851 (15)2.120 (15)
Zn1—O21.932 (19)1.84 (2)2.10 (2)
Zn1—O3ii1.973 (17)1.900 (18)2.062 (18)
Zn2—O4iii2.02 (2)1.59 (3)2.26 (3)
Zn2—O1ii1.89 (2)1.80 (3)2.02 (3)
Zn2—O21.961 (12)1.901 (13)2.045 (13)
Zn2—O3iv1.933 (17)1.881 (17)1.972 (17)
Si1—O11.622 (19)1.61 (2)1.66 (2)
Si1—O21.622 (19)1.609 (19)1.660 (19)
Si1—O31.609 (9)1.608 (9)1.609 (9)
Si1—O51.623 (7)1.609 (7)1.664 (7)
O4i—Zn1—O1i117.3 (8)110.2 (8)127.4 (7)
O4i—Zn1—O2112.5 (9)106.8 (9)119.1 (9)
O4i—Zn1—O3ii110.8 (9)102.8 (9)123.2 (9)
O1i—Zn1—O2103.2 (8)91.3 (7)109.6 (8)
O1i—Zn1—O3ii105.6 (7)98.5 (7)110.6 (7)
O2—Zn1—O3ii105.6 (8)97.7 (8)111.1 (8)
O4iii—Zn2—O1ii109.7 (9)103.2 (9)116.0 (10)
O4iii—Zn2—O2118.1 (8)114.1 (9)121.4 (6)
O4iii—Zn2—O3iv111.2 (10)107.1 (10)114.9 (10)
O1ii—Zn2—O2103.3 (9)99.8 (9)106.6 (8)
O1ii—Zn2—O3iv108.2 (9)101.7 (8)112.2 (9)
O2—Zn2—O3iv105.7 (7)102.6 (7)109.6 (8)
Zn1v—O4—Zn2iii123.0 (10)112.9 (10)129.7 (10)
O1—Si1—O2108.4 (9)108.2 (9)109.1 (9)
O1—Si1—O3111.3 (9)110.6 (9)111.5 (9)
O1—Si1—O5106.9 (9)106.7 (10)107.4 (9)
O2—Si1—O3111.0 (9)110.3 (9)111.2 (9)
O2—Si1—O5105.6 (9)105.4 (9)106.1 (9)
O3—Si1—O5113.4 (10)113.1 (10)113.5 (10)
Zn1v—O1—Zn2vi116.6 (9)114.1 (9)121.3 (8)
Zn1v—O1—Si1114.4 (10)103.1 (11)119.0 (10)
Zn2vi—O1—Si1125.2 (9)117.8 (10)135.0 (7)
Zn1—O2—Zn2115.1 (8)111.0 (8)120.7 (8)
Zn1—O2—Si1129.1 (7)117.4 (9)134.9 (6)
Zn2—O2—Si1113.8 (10)110.9 (10)116.5 (10)
Zn1vi—O3—Zn2vii121.6 (4)120.5 (5)122.2 (4)
Zn1vi—O3—Si1118.2 (10)115.7 (9)120.4 (10)
Zn2vii—O3—Si1119.4 (10)117.7 (10)121.1 (10)
Si1—O5—Si1iii144.1 (8)143.8 (8)145.0 (8)
Symmetry codes: (i) x11/2, x2+1/2, x31/2, x4; (ii) x11/2, x2+1/2, x3+1/2, x4; (iii) x1+1, x2+1, x3, x4; (iv) x1, x2, x3+1, x4; (v) x1+1/2, x2+1/2, x3+1/2, x4; (vi) x1+1/2, x2+1/2, x31/2, x4; (vii) x1, x2, x31, x4.
(2_33GPa_Pnn2_ESRF) top
Crystal data top
O9Si2Zn4·ODx = 3.597 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Pnn2Cell parameters from 2102 reflections
a = 8.2199 (6) Åθ = 2.7–19.9°
b = 10.6921 (2) ŵ = 0.46 mm1
c = 5.0603 (1) ÅT = 293 K
V = 444.74 (3) Å3Block, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
2167 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.018
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 19.9°, θmin = 1.6°
Tmin = 0.834, Tmax = 1.000h = 1310
5555 measured reflectionsk = 3129
3878 independent reflectionsl = 1515
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.001
wR(F2) = 0.124Δρmax = 1.21 e Å3
S = 1.00Δρmin = 0.88 e Å3
3878 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
74 parametersAbsolute structure parameter: 0.05 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.29029 (5)0.34218 (2)0.53721 (9)0.01267 (8)
Zn20.29328 (5)0.65884 (2)0.53732 (9)0.01279 (8)
Si10.49858 (9)0.35518 (4)0.02866 (12)0.00904 (12)
O10.3368 (4)0.29611 (17)0.0986 (3)0.0195 (6)
O20.6598 (4)0.29411 (17)0.0975 (3)0.0178 (6)
O30.4983 (3)0.33896 (16)0.3449 (3)0.0143 (5)
O40.1876 (5)0.50088 (14)0.4901 (9)0.0270 (9)
O50.5000000.5000000.0661 (4)0.0166 (6)
O61.0000000.5000000.0108 (14)0.070 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0142 (3)0.01401 (8)0.00982 (6)0.00372 (6)0.0002 (3)0.00008 (19)
Zn20.0144 (3)0.01396 (8)0.01004 (6)0.00401 (6)0.0002 (3)0.00019 (19)
Si10.0113 (4)0.00887 (11)0.00700 (10)0.00001 (12)0.0002 (6)0.00004 (14)
O10.026 (2)0.0230 (7)0.0097 (4)0.0145 (7)0.0041 (7)0.0044 (5)
O20.019 (2)0.0240 (7)0.0109 (5)0.0127 (7)0.0040 (7)0.0031 (5)
O30.0127 (18)0.0227 (6)0.0074 (2)0.0003 (5)0.0003 (6)0.0013 (3)
O40.018 (2)0.0160 (6)0.047 (2)0.0004 (5)0.0059 (13)0.0015 (7)
O50.027 (2)0.0078 (4)0.0153 (5)0.0008 (7)0.0000.000
O60.01 (2)0.172 (12)0.027 (2)0.008 (4)0.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.9456 (15)Zn2—O3v1.971 (3)
Zn1—O2ii1.9335 (17)Zn2—O41.914 (2)
Zn1—O31.967 (3)Si1—O11.607 (3)
Zn1—O41.910 (2)Si1—O21.609 (3)
Zn2—O1iii1.9416 (17)Si1—O31.6096 (15)
Zn2—O2iv1.9537 (16)Si1—O51.6210 (8)
O1i—Zn1—O3107.07 (11)O2—Si1—O3110.60 (12)
O2ii—Zn1—O1i104.60 (7)O2—Si1—O5105.33 (9)
O2ii—Zn1—O3107.13 (9)O3—Si1—O5113.39 (10)
O4—Zn1—O1i115.46 (15)Zn2vi—O1—Zn1vii114.75 (10)
O4—Zn1—O2ii112.35 (14)Si1—O1—Zn1vii116.27 (10)
O4—Zn1—O3109.75 (14)Si1—O1—Zn2vi127.65 (10)
O1iii—Zn2—O2iv104.42 (7)Zn1viii—O2—Zn2ix114.71 (10)
O1iii—Zn2—O3v107.14 (10)Si1—O2—Zn1viii128.52 (10)
O2iv—Zn2—O3v107.01 (11)Si1—O2—Zn2ix115.67 (10)
O4—Zn2—O1iii111.89 (14)Zn1—O3—Zn2v120.72 (7)
O4—Zn2—O2iv115.78 (15)Si1—O3—Zn1119.42 (14)
O4—Zn2—O3v110.09 (14)Si1—O3—Zn2v119.24 (15)
O1—Si1—O2111.29 (16)Zn1—O4—Zn2124.6 (2)
O1—Si1—O3110.78 (12)Si1—O5—Si1v145.59 (15)
O1—Si1—O5105.24 (9)
O1—Si1—O2—Zn1viii96.15 (18)O3—Si1—O1—Zn2vi28.4 (2)
O1—Si1—O2—Zn2ix71.12 (17)O3—Si1—O2—Zn1viii27.4 (2)
O1—Si1—O3—Zn132.30 (16)O3—Si1—O2—Zn2ix165.29 (13)
O1—Si1—O3—Zn2v156.63 (12)O3—Si1—O5—Si1v0.05 (11)
O1—Si1—O5—Si1v121.27 (10)O5—Si1—O1—Zn1vii42.59 (18)
O2—Si1—O1—Zn1vii71.00 (18)O5—Si1—O1—Zn2vi151.33 (17)
O2—Si1—O1—Zn2vi95.08 (18)O5—Si1—O2—Zn1viii150.32 (17)
O2—Si1—O3—Zn1156.19 (12)O5—Si1—O2—Zn2ix42.42 (18)
O2—Si1—O3—Zn2v32.74 (16)O5—Si1—O3—Zn185.76 (11)
O2—Si1—O5—Si1v121.02 (10)O5—Si1—O3—Zn2v85.31 (11)
O3—Si1—O1—Zn1vii165.51 (13)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+1/2, y1/2, z1/2; (vii) x, y, z1; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+1, z1.
(3_3GPa_Pnn2_ESRF) top
Crystal data top
O9Si2Zn4·ODx = 3.670 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Pnn2Cell parameters from 2350 reflections
a = 8.1356 (8) Åθ = 2.4–19.5°
b = 10.6329 (3) ŵ = 0.47 mm1
c = 5.0386 (1) ÅT = 293 K
V = 435.86 (5) Å3Plate, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
2475 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.016
Absorption correction: multi-scan
CrysAlisPro 1.171.42.36a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 19.9°, θmin = 1.6°
Tmin = 0.848, Tmax = 1.000h = 1310
4410 measured reflectionsk = 3029
3231 independent reflectionsl = 1515
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0784P)2 + 1.1597P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.063(Δ/σ)max = 0.001
wR(F2) = 0.211Δρmax = 3.28 e Å3
S = 1.20Δρmin = 3.13 e Å3
3231 reflectionsAbsolute structure: Flack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
74 parametersAbsolute structure parameter: 0.10 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.27841 (15)0.34744 (6)0.53828 (15)0.0237 (2)
Zn20.30232 (15)0.66146 (6)0.53995 (14)0.0253 (3)
Si10.4890 (3)0.35608 (11)0.0293 (3)0.0163 (4)
O10.3192 (13)0.3043 (6)0.0949 (7)0.038 (3)
O20.6457 (14)0.2887 (6)0.0973 (7)0.046 (3)
O30.4895 (9)0.3414 (4)0.3476 (6)0.0204 (14)
O40.177 (2)0.5103 (6)0.491 (2)0.035 (4)
O50.5000000.5000000.0703 (10)0.0191 (17)
O61.0000000.5000000.022 (6)0.086 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0378 (8)0.0225 (2)0.01088 (12)0.0160 (2)0.0014 (7)0.0005 (4)
Zn20.0421 (8)0.0228 (2)0.01088 (13)0.0181 (3)0.0022 (7)0.0003 (4)
Si10.0312 (14)0.0106 (3)0.0070 (3)0.0002 (3)0.0003 (8)0.0004 (3)
O10.062 (8)0.041 (3)0.0113 (8)0.041 (4)0.0067 (18)0.0061 (12)
O20.075 (9)0.050 (3)0.0118 (8)0.051 (4)0.008 (2)0.0069 (14)
O30.028 (5)0.0251 (16)0.0081 (6)0.0015 (15)0.0004 (12)0.0018 (7)
O40.009 (14)0.049 (5)0.048 (5)0.004 (3)0.002 (5)0.003 (2)
O50.032 (6)0.0102 (12)0.0151 (12)0.0061 (16)0.0000.000
O60.01 (5)0.21 (3)0.038 (8)0.021 (13)0.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.933 (4)Zn2—O3v1.951 (7)
Zn1—O2ii1.930 (5)Zn2—O41.918 (11)
Zn1—O31.969 (7)Si1—O11.613 (8)
Zn1—O41.932 (9)Si1—O21.596 (7)
Zn2—O1iii1.936 (4)Si1—O31.611 (4)
Zn2—O2iv1.949 (5)Si1—O51.6130 (19)
O1i—Zn1—O3108.0 (3)O2—Si1—O3110.6 (3)
O2ii—Zn1—O1i104.9 (2)O2—Si1—O5104.9 (3)
O2ii—Zn1—O3106.9 (3)O3—Si1—O5113.7 (2)
O4—Zn1—O1i113.8 (4)Zn2vi—O1—Zn1vii115.7 (3)
O4—Zn1—O2ii113.0 (6)Si1—O1—Zn1vii115.9 (3)
O4—Zn1—O3109.9 (5)Si1—O1—Zn2vi124.7 (4)
O1iii—Zn2—O2iv103.1 (2)Zn1viii—O2—Zn2ix114.5 (3)
O1iii—Zn2—O3v106.3 (3)Si1—O2—Zn1viii130.0 (3)
O2iv—Zn2—O3v106.4 (4)Si1—O2—Zn2ix115.2 (3)
O4—Zn2—O1iii110.0 (5)Zn1—O3—Zn2v121.00 (16)
O4—Zn2—O2iv117.6 (4)Si1—O3—Zn1118.7 (4)
O4—Zn2—O3v112.6 (4)Si1—O3—Zn2v119.9 (4)
O1—Si1—O2112.1 (6)Zn1—O4—Zn2120.6 (9)
O1—Si1—O3110.8 (3)Si1—O5—Si1v143.8 (4)
O1—Si1—O5104.5 (3)
O1—Si1—O2—Zn1viii99.6 (7)O3—Si1—O1—Zn2vi35.4 (7)
O1—Si1—O2—Zn2ix73.0 (7)O3—Si1—O2—Zn1viii24.6 (9)
O1—Si1—O3—Zn129.0 (5)O3—Si1—O2—Zn2ix162.8 (5)
O1—Si1—O3—Zn2v158.4 (4)O3—Si1—O5—Si1v0.5 (3)
O1—Si1—O5—Si1v120.4 (3)O5—Si1—O1—Zn1vii44.4 (6)
O2—Si1—O1—Zn1vii68.7 (6)O5—Si1—O1—Zn2vi158.3 (5)
O2—Si1—O1—Zn2vi88.7 (5)O5—Si1—O2—Zn1viii147.5 (7)
O2—Si1—O3—Zn1153.9 (5)O5—Si1—O2—Zn2ix39.8 (7)
O2—Si1—O3—Zn2v33.4 (5)O5—Si1—O3—Zn188.3 (3)
O2—Si1—O5—Si1v121.5 (3)O5—Si1—O3—Zn2v84.3 (3)
O3—Si1—O1—Zn1vii167.2 (4)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+1/2, y1/2, z1/2; (vii) x, y, z1; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+1, z1.
(4_1GPa_Pnn2_ESRF) top
Crystal data top
O9Si2Zn4·ODx = 3.734 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Pnn2Cell parameters from 2393 reflections
a = 8.0899 (13) Åθ = 2.4–19.6°
b = 10.5425 (5) ŵ = 0.48 mm1
c = 5.0237 (1) ÅT = 293 K
V = 428.46 (7) Å3Block, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
2601 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.019
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 20.0°, θmin = 1.6°
Tmin = 0.712, Tmax = 1.000h = 1013
5096 measured reflectionsk = 2931
3654 independent reflectionsl = 1515
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.198(Δ/σ)max < 0.001
wR(F2) = 0.562Δρmax = 20.59 e Å3
S = 2.43Δρmin = 7.77 e Å3
3654 reflectionsAbsolute structure: Flack x determined using 753 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
66 parametersAbsolute structure parameter: 0.32 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.2686 (4)0.35237 (17)0.5390 (3)0.0336 (8)
Zn20.3148 (4)0.66595 (17)0.5426 (3)0.0294 (8)
Si10.4829 (7)0.3564 (2)0.0280 (6)0.0201 (11)
O10.309 (3)0.3098 (15)0.0914 (16)0.060 (9)
O20.628 (3)0.2798 (14)0.0963 (16)0.044 (7)
O30.481 (2)0.3422 (10)0.3500 (15)0.027 (4)
O40.185 (5)0.523 (2)0.501 (6)0.055 (6)*
O50.5000000.5000000.070 (2)0.017 (3)
O61.0000000.5000000.038 (16)0.052 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.061 (2)0.0290 (6)0.0112 (3)0.0278 (9)0.0035 (11)0.0014 (6)
Zn20.049 (2)0.0277 (6)0.0117 (3)0.0237 (8)0.0032 (10)0.0007 (6)
Si10.044 (4)0.0104 (7)0.0058 (5)0.0006 (7)0.0032 (12)0.0012 (6)
O10.12 (2)0.050 (7)0.0118 (17)0.069 (12)0.008 (5)0.007 (3)
O20.076 (18)0.044 (6)0.0130 (17)0.048 (9)0.006 (4)0.007 (3)
O30.052 (13)0.020 (3)0.0089 (15)0.002 (3)0.002 (3)0.0050 (16)
O50.032 (10)0.0049 (16)0.015 (2)0.0026 (18)0.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.938 (10)Zn2—O3v1.914 (16)
Zn1—O2ii1.921 (10)Zn2—O41.85 (3)
Zn1—O31.968 (16)Si1—O11.61 (2)
Zn1—O41.93 (3)Si1—O21.558 (15)
Zn2—Si1iii2.946 (5)Si1—O31.625 (8)
Zn2—O1iv1.937 (8)Si1—O51.598 (4)
Zn2—O2iii1.957 (11)
O1i—Zn1—O3107.7 (9)O2—Si1—O1110.8 (13)
O2ii—Zn1—O1i105.7 (4)O2—Si1—O3110.9 (7)
O2ii—Zn1—O3107.8 (8)O2—Si1—O5107.6 (8)
O2ii—Zn1—O4115.6 (15)O3—Si1—Zn2vi145.2 (7)
O4—Zn1—O1i111.6 (11)O5—Si1—Zn2vi76.9 (3)
O4—Zn1—O3108.1 (12)O5—Si1—O1104.5 (7)
O1iv—Zn2—Si1iii129.5 (6)O5—Si1—O3113.2 (5)
O1iv—Zn2—O2iii102.4 (5)Zn2vii—O1—Zn1viii115.3 (6)
O2iii—Zn2—Si1iii29.0 (4)Si1—O1—Zn1viii115.7 (7)
O3v—Zn2—Si1iii86.3 (4)Si1—O1—Zn2vii124.2 (10)
O3v—Zn2—O1iv107.7 (7)Zn1ix—O2—Zn2vi113.7 (8)
O3v—Zn2—O2iii106.2 (8)Si1—O2—Zn1ix132.9 (6)
O4—Zn2—Si1iii110.2 (10)Si1—O2—Zn2vi113.4 (5)
O4—Zn2—O1iv107.7 (15)Zn2v—O3—Zn1120.8 (4)
O4—Zn2—O2iii118.4 (11)Si1—O3—Zn1118.9 (9)
O4—Zn2—O3v113.4 (12)Si1—O3—Zn2v120.0 (9)
O1—Si1—Zn2vi98.8 (6)Zn2—O4—Zn1123 (2)
O1—Si1—O3109.6 (8)Si1—O5—Si1v144.2 (7)
O2—Si1—Zn2vi37.6 (3)
Zn2vi—Si1—O1—Zn1viii32.8 (14)O2—Si1—O3—Zn1150.2 (12)
Zn2vi—Si1—O1—Zn2vii121.3 (13)O2—Si1—O3—Zn2v36.4 (12)
Zn2vi—Si1—O2—Zn1ix177 (3)O2—Si1—O5—Si1v123.0 (8)
Zn2vi—Si1—O3—Zn1170.6 (3)O3v—Zn2—O4—Zn148 (2)
Zn2vi—Si1—O3—Zn2v16.0 (12)O3—Si1—O1—Zn1viii167.5 (10)
Zn2vi—Si1—O5—Si1v144.87 (14)O3—Si1—O1—Zn2vii38.4 (18)
Si1iii—Zn2—O4—Zn147 (2)O3—Si1—O2—Zn1ix16 (2)
O1iv—Zn2—O4—Zn1167.3 (15)O3—Si1—O2—Zn2vi160.9 (11)
O1—Si1—O2—Zn1ix105.8 (19)O3—Si1—O5—Si1v0.0 (7)
O1—Si1—O2—Zn2vi77.1 (15)O5—Si1—O1—Zn1viii45.8 (15)
O1—Si1—O3—Zn127.5 (12)O5—Si1—O1—Zn2vii160.0 (13)
O1—Si1—O3—Zn2v159.1 (10)O5—Si1—O2—Zn1ix140.5 (18)
O1—Si1—O5—Si1v119.2 (8)O5—Si1—O2—Zn2vi36.6 (16)
O2iii—Zn2—O4—Zn177 (2)O5—Si1—O3—Zn188.7 (8)
O2—Si1—O1—Zn1viii69.8 (14)O5—Si1—O3—Zn2v84.7 (7)
O2—Si1—O1—Zn2vii84.4 (14)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z1; (vii) x+1/2, y1/2, z1/2; (viii) x, y, z1; (ix) x+1/2, y+1/2, z1/2.
(1_0GPa_Imm2_ESRF) top
Crystal data top
O9Si2Zn4·ODx = 3.526 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Imm2Cell parameters from 1914 reflections
a = 8.31709 (17) Åθ = 2.1–20.3°
b = 10.706 (3) ŵ = 0.45 mm1
c = 5.09489 (7) ÅT = 293 K
V = 453.66 (12) Å3Block, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
3585 independent reflections
Radiation source: synchrotron2967 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.037
Detector resolution: 13.3333 pixels mm-1θmax = 20.2°, θmin = 1.5°
ω scansh = 2323
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2931
Tmin = 0.187, Tmax = 1.000l = 1515
7678 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.119P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.056(Δ/σ)max = 0.001
wR(F2) = 0.169Δρmax = 6.19 e Å3
S = 1.08Δρmin = 3.35 e Å3
3585 reflectionsAbsolute structure: Flack x determined using 1095 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
45 parametersAbsolute structure parameter: 0.29 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70587 (3)0.34002 (2)0.53933 (8)0.01247 (6)
Si10.5000000.35451 (7)0.0314 (2)0.00890 (9)
O10.6614 (3)0.29502 (19)0.0963 (3)0.0158 (3)
O20.5000000.3356 (3)0.3465 (4)0.0140 (3)
O30.8081 (5)0.5000000.4981 (12)0.0239 (9)
O40.5000000.5000000.0566 (7)0.0166 (6)
O50.0000000.5000000.0111 (18)0.079 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01571 (10)0.01189 (7)0.00980 (6)0.00282 (5)0.00014 (9)0.00018 (9)
Si10.0120 (2)0.00750 (15)0.00717 (16)0.0000.0000.0001 (3)
O10.0199 (6)0.0174 (5)0.0102 (3)0.0094 (6)0.0031 (4)0.0031 (4)
O20.0151 (7)0.0195 (9)0.0074 (4)0.0000.0000.0014 (4)
O30.0194 (10)0.0124 (7)0.040 (3)0.0000.0068 (12)0.000
O40.0265 (18)0.0072 (6)0.0160 (9)0.0000.0000.000
O50.054 (7)0.16 (2)0.024 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.9456 (18)Si1—O1iii1.6222 (19)
Zn1—O1ii1.9535 (16)Si1—O11.6222 (19)
Zn1—O21.9747 (10)Si1—O21.618 (2)
Zn1—O31.9238 (18)Si1—O41.6209 (13)
O1i—Zn1—O1ii105.16 (6)O4—Si1—O1105.45 (10)
O1i—Zn1—O2107.29 (9)O4—Si1—O1iii105.44 (10)
O1ii—Zn1—O2107.63 (9)Zn1iv—O1—Zn1v114.42 (9)
O3—Zn1—O1ii114.03 (19)Si1—O1—Zn1v116.16 (10)
O3—Zn1—O1i111.83 (13)Si1—O1—Zn1iv128.23 (10)
O3—Zn1—O2110.52 (17)Zn1—O2—Zn1iii120.24 (10)
O1—Si1—O1iii111.72 (17)Si1—O2—Zn1119.38 (5)
O2—Si1—O1110.40 (8)Si1—O2—Zn1iii119.38 (5)
O2—Si1—O1iii110.41 (8)Zn1—O3—Zn1vi125.8 (2)
O2—Si1—O4113.27 (17)Si1—O4—Si1vii147.9 (3)
O1iii—Si1—O1—Zn1iv97.17 (16)O2—Si1—O1—Zn1iv26.1 (2)
O1iii—Si1—O1—Zn1v69.59 (18)O2—Si1—O1—Zn1v167.14 (13)
O1iii—Si1—O2—Zn1iii33.7 (2)O2—Si1—O4—Si1vii0.000 (1)
O1—Si1—O2—Zn1iii157.70 (14)O4—Si1—O1—Zn1v44.46 (18)
O1iii—Si1—O2—Zn1157.70 (14)O4—Si1—O1—Zn1iv148.78 (18)
O1—Si1—O2—Zn133.7 (2)O4—Si1—O2—Zn184.32 (15)
O1iii—Si1—O4—Si1vii120.83 (9)O4—Si1—O2—Zn1iii84.32 (15)
O1—Si1—O4—Si1vii120.83 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z; (vii) x+1, y+1, z.
(2_1GPa_Imm2_ESRF) top
Crystal data top
O9Si2Zn4·ODx = 3.580 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Imm2Cell parameters from 1740 reflections
a = 8.2502 (2) Åθ = 2.1–19.4°
b = 10.685 (3) ŵ = 0.46 mm1
c = 5.0695 (1) ÅT = 293 K
V = 446.89 (11) Å3Block, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
2878 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.025
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 20.4°, θmin = 1.5°
Tmin = 0.255, Tmax = 1.000h = 2323
7661 measured reflectionsk = 3130
3598 independent reflectionsl = 1515
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1051P)2 + 0.1189P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.055(Δ/σ)max = 0.001
wR(F2) = 0.162Δρmax = 5.24 e Å3
S = 1.07Δρmin = 2.12 e Å3
3598 reflectionsAbsolute structure: Flack x determined using 1045 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
45 parametersAbsolute structure parameter: 0.52 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70747 (3)0.34134 (2)0.53930 (7)0.01366 (6)
Si10.5000000.35513 (7)0.0316 (2)0.00972 (10)
O10.6631 (3)0.2956 (2)0.0962 (3)0.0185 (3)
O20.5000000.3382 (3)0.3472 (4)0.0147 (4)
O30.8128 (5)0.5000000.4946 (13)0.0269 (10)
O40.5000000.5000000.0626 (8)0.0183 (7)
O50.0000000.5000000.0109 (19)0.095 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01750 (11)0.01315 (8)0.01032 (6)0.00328 (6)0.00006 (11)0.00010 (10)
Si10.0132 (3)0.00826 (17)0.00767 (18)0.0000.0000.0001 (3)
O10.0246 (9)0.0204 (7)0.0103 (3)0.0120 (7)0.0038 (5)0.0034 (5)
O20.0152 (8)0.0216 (10)0.0074 (4)0.0000.0000.0004 (5)
O30.0199 (12)0.0138 (8)0.047 (3)0.0000.0061 (15)0.000
O40.031 (2)0.0077 (8)0.0159 (10)0.0000.0000.000
O50.051 (6)0.21 (3)0.024 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.937 (2)Si1—O1iii1.623 (2)
Zn1—O1ii1.9460 (17)Si1—O11.623 (2)
Zn1—O21.9697 (11)Si1—O21.610 (3)
Zn1—O31.918 (2)Si1—O41.6198 (14)
O1i—Zn1—O1ii104.52 (6)O4—Si1—O1104.89 (11)
O1i—Zn1—O2106.90 (11)O4—Si1—O1iii104.89 (11)
O1ii—Zn1—O2107.55 (10)Zn1iv—O1—Zn1v115.00 (10)
O3—Zn1—O1ii114.8 (2)Si1—O1—Zn1v115.88 (12)
O3—Zn1—O1i112.08 (15)Si1—O1—Zn1iv127.69 (11)
O3—Zn1—O2110.52 (18)Zn1—O2—Zn1iii120.69 (11)
O1—Si1—O1iii112.0 (2)Si1—O2—Zn1119.30 (6)
O2—Si1—O1110.64 (9)Si1—O2—Zn1iii119.30 (6)
O2—Si1—O1iii110.64 (9)Zn1vi—O3—Zn1124.2 (2)
O2—Si1—O4113.60 (18)Si1vii—O4—Si1145.7 (3)
O1iii—Si1—O1—Zn1iv95.76 (18)O2—Si1—O1—Zn1iv28.2 (2)
O1iii—Si1—O1—Zn1v69.8 (2)O2—Si1—O1—Zn1v166.26 (15)
O1iii—Si1—O2—Zn1iii32.4 (2)O2—Si1—O4—Si1vii0.000 (1)
O1—Si1—O2—Zn1iii157.14 (17)O4—Si1—O1—Zn1v43.4 (2)
O1iii—Si1—O2—Zn1157.14 (17)O4—Si1—O1—Zn1iv151.0 (2)
O1—Si1—O2—Zn132.4 (2)O4—Si1—O2—Zn185.21 (16)
O1iii—Si1—O4—Si1vii120.94 (10)O4—Si1—O2—Zn1iii85.21 (16)
O1—Si1—O4—Si1vii120.94 (10)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z1/2; (v) x, y, z1; (vi) x, y+1, z; (vii) x+1, y+1, z.
(2_6GPa_Pnn2_ESRF) top
Crystal data top
H2O9Si2Zn4·H2ODx = 3.607 Mg m3
Mr = 481.69Synchrotron radiation, λ = 0.2229 Å
Orthorhombic, Pnn2Cell parameters from 1830 reflections
a = 8.2161 (2) Åθ = 2.1–18.9°
b = 10.673 (3) ŵ = 0.46 mm1
c = 5.0579 (1) ÅT = 293 K
V = 443.54 (13) Å3Plate, colourless
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 464
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
3345 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.022
Absorption correction: multi-scan
CrysAlisPro 1.171.43.105a (Rigaku Oxford Diffraction, 2024) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 19.9°, θmin = 1.6°
Tmin = 0.779, Tmax = 1.000h = 2323
10608 measured reflectionsk = 3129
5952 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.418P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.196(Δ/σ)max = 0.021
S = 1.08Δρmax = 5.40 e Å3
5952 reflectionsΔρmin = 1.83 e Å3
82 parametersAbsolute structure: Flack x determined using 1090 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
1 restraintAbsolute structure parameter: 0.02 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70897 (5)0.65731 (4)0.53692 (6)0.01520 (7)
Zn20.70774 (5)0.34154 (4)0.53747 (6)0.01485 (7)
Si10.50070 (10)0.64440 (7)0.0282 (2)0.01070 (9)
O10.6641 (4)0.7036 (3)0.0975 (4)0.0217 (5)
O20.3369 (4)0.7044 (3)0.0983 (4)0.0240 (6)
O30.5007 (3)0.6602 (3)0.3458 (4)0.0162 (3)
O50.5000000.5000000.0681 (7)0.0200 (7)
O40.8160 (5)0.4987 (3)0.4885 (13)0.0316 (11)
H40.942 (13)0.484 (8)0.473 (19)0.02 (2)*
O60.0000000.5000000.011 (3)0.095 (7)
H60.006 (11)0.58 (2)0.17 (3)0.06 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01913 (14)0.01553 (12)0.01094 (9)0.00445 (10)0.00110 (11)0.00078 (11)
Zn20.01948 (14)0.01462 (11)0.01046 (9)0.00611 (9)0.00097 (11)0.00110 (10)
Si10.0154 (2)0.00931 (16)0.00741 (16)0.0010 (2)0.0007 (2)0.0001 (2)
O10.0306 (12)0.0239 (10)0.0107 (5)0.0179 (10)0.0028 (6)0.0025 (6)
O20.0298 (12)0.0310 (13)0.0113 (5)0.0172 (12)0.0059 (7)0.0067 (7)
O30.0176 (7)0.0228 (9)0.0081 (4)0.0004 (9)0.0007 (5)0.0011 (4)
O50.036 (2)0.0083 (7)0.0159 (9)0.0062 (11)0.0000.000
O40.0196 (10)0.0221 (11)0.053 (3)0.0027 (11)0.0059 (14)0.0053 (15)
O60.066 (8)0.19 (2)0.030 (5)0.005 (6)0.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.949 (2)Zn2—O41.914 (3)
Zn1—O2ii1.937 (3)Si1—O11.614 (3)
Zn1—O31.966 (2)Si1—O21.622 (3)
Zn1—O41.924 (4)Si1—O31.615 (2)
Zn2—O1iii1.935 (2)Si1—O51.6164 (13)
Zn2—O2iv1.941 (2)O4—H41.05 (11)
Zn2—O3v1.968 (2)O6—H61.28 (19)
O1i—Zn1—O3107.32 (12)O3—Si1—O5113.54 (16)
O2ii—Zn1—O1i104.15 (12)O5—Si1—O2104.74 (15)
O2ii—Zn1—O3106.67 (11)Zn2vi—O1—Zn1vii115.13 (12)
O4—Zn1—O1i115.5 (2)Si1—O1—Zn1vii115.58 (13)
O4—Zn1—O2ii112.20 (17)Si1—O1—Zn2vi127.71 (15)
O4—Zn1—O3110.43 (18)Zn1viii—O2—Zn2ix115.14 (13)
O1iii—Zn2—O2iv104.23 (12)Si1—O2—Zn1viii127.72 (14)
O1iii—Zn2—O3v107.01 (12)Si1—O2—Zn2ix115.57 (15)
O2iv—Zn2—O3v107.50 (12)Zn1—O3—Zn2v121.00 (10)
O4—Zn2—O1iii111.59 (17)Si1—O3—Zn1119.17 (13)
O4—Zn2—O2iv115.6 (2)Si1—O3—Zn2v119.28 (13)
O4—Zn2—O3v110.41 (18)Si1—O5—Si1v144.9 (2)
O1—Si1—O2112.3 (2)Zn1—O4—H4127 (4)
O1—Si1—O3110.55 (12)Zn2—O4—Zn1122.8 (2)
O1—Si1—O5104.93 (14)Zn2—O4—H4109 (4)
O3—Si1—O2110.55 (13)
O1—Si1—O2—Zn1viii94.7 (3)O3—Si1—O1—Zn2vi29.4 (3)
O1—Si1—O2—Zn2ix70.3 (3)O3—Si1—O2—Zn1viii29.3 (3)
O1—Si1—O3—Zn131.8 (2)O3—Si1—O2—Zn2ix165.74 (18)
O1—Si1—O3—Zn2v156.63 (18)O3—Si1—O5—Si1v0.03 (10)
O1—Si1—O5—Si1v120.79 (12)O5—Si1—O1—Zn1vii42.9 (2)
O2—Si1—O1—Zn1vii70.3 (2)O5—Si1—O1—Zn2vi152.2 (2)
O2—Si1—O1—Zn2vi94.6 (2)O5—Si1—O2—Zn1viii152.0 (3)
O2—Si1—O3—Zn1156.81 (19)O5—Si1—O2—Zn2ix43.1 (3)
O2—Si1—O3—Zn2v31.6 (2)O5—Si1—O3—Zn185.83 (16)
O2—Si1—O5—Si1v120.73 (13)O5—Si1—O3—Zn2v85.77 (16)
O3—Si1—O1—Zn1vii165.69 (17)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z1/2; (iv) x+1, y+1, z1; (v) x+1, y+1, z; (vi) x+3/2, y+1/2, z+1/2; (vii) x, y, z+1; (viii) x1/2, y+3/2, z+1/2; (ix) x+1, y+1, z+1.
 

Data availability

The CIF may be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany [fax: (+49)7247–808-666; e-mail: crysdata@fiz-karlsruhe.de] on quoting the CCDC deposition Nos. 2378030–2378046.

Funding information

Support for this work provided by the National Science Centre, Poland (OPUS grant No. UMO-2019/33/B/ST10/02671 awarded to KW) is gratefully acknowledged. This work was carried out, in part, at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by the European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007–2013. The work was accomplished at the TEAM TECH Core Facility for crystallographic and biophysical research to support the development of medicinal products sponsored by the Foundation for Polish Science (FNP). Research presented in this work was possible thanks to beam time allocation at different synchrotron facilities: proposal Nos. I-20220925 EC (DESY), ES-1296 (ESRF) and 20230281 (Elettra).

References

First citationBarclay, G. A. & Cox, E. G. (1960). Z. Kristallogr. Cryst. Mater. 113, 23–29.  CrossRef CAS Google Scholar
First citationBelsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBindi, L. & Chapuis, G. (2017). European Mineralogical Union, Notes in Mineralogy, ch. 5, pp. 213–254. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland.  Google Scholar
First citationBoni, M. & Mondillo, N. (2015). Ore Geol. Rev. 67, 208–233.  CrossRef Google Scholar
First citationCooper, B., Gibbs, G. & Ross, F. (1981). Z. Kristallogr. Cryst. Mater. 156, 305–321.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHazen, R. & Au, A. (1986). Phys. Chem. Miner. 13, 69–78.  CrossRef ICSD CAS Google Scholar
First citationHill, R., Gibbs, G., Craig, J., Ross, F. & Williams, J. (1977). Z. Kristallogr. 146, 241–259.  CrossRef ICSD Google Scholar
First citationIto, T. & West, J. (1932). Z. Kristallogr. Cryst. Mater. 83, 1–8.  CrossRef CAS Google Scholar
First citationKemei, M. C., Harada, J. K., Seshadri, R. & Suchomel, M. R. (2014). Phys. Rev. B, 90, 064418.  CrossRef Google Scholar
First citationKlaska, K.-H., Eck, J. C. & Pohl, D. (1978). Acta Cryst. B34, 3324–3325.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLazic, B., Krüger, H., Kahlenberg, V., Konzett, J. & Kaindl, R. (2008). Acta Cryst. B64, 417–425.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y. & Bass, J. D. (2020). Minerals, 10, 425.  CrossRef Google Scholar
First citationLibowitzky, E., Kohler, T., Armbruster, T. & Rossman, G. R. (1997). Eur. J. Mineral. 9, 803–810.  CrossRef ICSD CAS Google Scholar
First citationLibowitzky, E., Schultz, A. J. & Young, D. M. (1998). Z. Kristallogr. Cryst. Mater. 213, 659–668.  CrossRef ICSD CAS Google Scholar
First citationMarumo, F. & Syono, Y. (1971). Acta Cryst. B27, 1868–1870.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationMcDonald, W. S. & Cruickshank, D. W. J. (1967). Z. Kristallogr. 124, 180–191.  CrossRef ICSD CAS Google Scholar
First citationMedas, D., Meneghini, C., Podda, F., Floris, C., Casu, M., Casu, M. A., Musu, E. & de Giudici, G. (2018). Am. Mineral. 103, 711–719.  CrossRef Google Scholar
First citationOkamoto, K., Kuribayashi, T. & Nagase, T. (2021). J. Mineral. Petrological Sci. 116, 251–262.  CrossRef CAS Google Scholar
First citationPetricek, V., Palatinus, L., Plasil, J. & Dusek, M. (2023). Z. Kristallogr. Cryst. Mater. 238, 271–282.  CAS Google Scholar
First citationPoręba, T., Comboni, D., Mezouar, M., Garbarino, G. & Hanfland, M. (2022). J. Phys. Condens. Matter, 35, 054001.  Google Scholar
First citationRigaku Oxford Diffraction (2014). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSeryotkin, Y. V. & Bakakin, V. V. (2011). Phys. Chem. Miner. 38, 679–684.  CrossRef ICSD CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSławiński, W., Przeniosło, R., Sosnowska, I., Bieringer, M., Margiolaki, I. & Suard, E. (2009). Acta Cryst. B65, 535–542.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakéuchi, Y., Sasaki, S., Joswig, W. & Fuess, H. (1978). Proc. Jpn. Acad. Ser. B, 54, 577–582.  Google Scholar
First citationWarr, L. N. (2021). MinMag, 85, 291–320.  CrossRef CAS Google Scholar
First citationWolff, P. M. de (1974). Acta Cryst. A30, 777–785.  CrossRef Web of Science IUCr Journals Google Scholar
First citationWu, Y., Meng, D., Hao, M., Wang, Q., Chen, F., Sun, T., Chen, X., Meng, F., Li, H., Liu, L., Sun, R. & Zhao, C. (2023). Appl. Phys. Lett. 122, 192904.  CrossRef Google Scholar
First citationYang, H., Hazen, R. M., Downs, R. T. & Finger, L. W. (1997). Phys. Chem. Miner. 24, 510–519.  CrossRef ICSD CAS Web of Science Google Scholar
First citationYin, Y., Aslandukov, A., Bykov, M., Laniel, D., Aslandukova, A., Pakhomova, A., Fedotenko, T., Zhou, W., Akbar, F. I., Hanfland, M., Glazyrin, K., Giacobbe, C., Bright, E. L., Garbarino, G., Jia, Z., Dubrovinskaia, N. & Dubrovinsky, L. (2024). Phys. Rev. B, 110, 104111.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

ISSN: 2052-2525