research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Structural transformations and stability of benzo[a]pyrene under high pressure

crossmark logo

aMaterial Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95447 Bayreuth, Germany, bBayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany, cEuropean Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France, and dDepartment of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
*Correspondence e-mail: wenju.zhou@uni-bayreuth.de, natalia.dubrovinskaia@uni-bayreuth.de

Edited by L. R. MacGillivray, Université de Sherbrooke, Canada (Received 17 June 2024; accepted 29 October 2024)

Benzo[a]pyrene (BaP), C20H12, is a representative of polycyclic aromatic hydro­carbons (PAHs), which are ubiquitous in nature and the universe, where they are subjected to extreme conditions. This paper reports the results of investigations of the high-pressure behavior of BaP up to 28 GPa using in situ synchrotron single-crystal X-ray diffraction. We identified two previously unknown polymorphs, BaP-II (P21/c) at 4.8 GPa and BaP-III (P1) at 7.1 GPa. The structural transformation from BaP-I (P21/c) to BaP-II (P21/c) manifests as an abrupt change in the intermolecular angle and the unit-cell parameters a and b, whereas the transformation from BaP-II (P21/c) to BaP-III (P1) is characterized by a decrease in symmetry. According to density functional theory calculations, BaP-III is the most stable phase above 3.5 GPa. These studies advance our understanding of the structural dynamics and stability of PAHs under high pressure.

1. Introduction

Polycyclic aromatic hydro­carbons (PAHs) are complex organic compounds consisting of two or more condensed benzene rings. Owing to their exceptional properties and widespread applications, these compounds have attracted significant attention from geoscientists, chemists and physicists (Silinsh & Cápek, 1997[Silinsh, E. A. & Cápek, V. (1997). Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena. Oxford University Press.]; Farchioni, 2001[Farchioni, R. (2001). Organic Electronic Materials: Conjugted Polymers and Low Molecular Weight Electronic Solids, Vol. 41. Springer Science & Business Media.]; Allamandola et al., 1987[Allamandola, L. J., Sandford, S. A. & Wopenka, B. (1987). Science, 237, 56-59.]). PAHs are ubiquitous in interstellar space, comprising 20% of the carbon in the universe and potentially representing the most abundant free organic molecules in space (Allamandola et al., 1985[Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. (1985). ApJ, 290, L25-L28.]; Ehrenfreund & Charnley, 2000[Ehrenfreund, P. & Charnley, S. B. (2000). Annu. Rev. Astron. Astrophys. 38, 427-483.]; d'Hendecourt & Ehrenfreund, 1997[Hendecourt, L. d' & Ehrenfreund, P. (1997). Adv. Space Res. 19, 1023-1032.]). It is thought that research into the evolution of PAHs under pressure may help us to understand the origins of our universe (Mimura et al., 2005[Mimura, K., Toyama, S. & Sugitani, K. (2005). Earth Planet. Sci. Lett. 232, 143-156.]; Mimura & Toyama, 2005[Mimura, K. & Toyama, S. (2005). Geochim. Cosmochim. Acta, 69, 201-209.]).

Benzo[a]pyrene (BaP) is one of the two isomeric species of benzopyrene (C20H12), a representative of PAHs, formed by a benzene ring fused to pyrene. The compound is abundant (Bukowska et al., 2022[Bukowska, B., Mokra, K. & Michałowicz, J. (2022). Int. J. Mol. Sci. 23, 6348.]) and can be found, for example, in coal tar as a product of incomplete combustion of organic matter at high temperatures. It is a yellow solid under ambient conditions.

Crystals of BaP were first described by Iball (1936[Iball, J. (1936). Z. Kristallogr. 94, 7-21.]), who obtained them from BaP solutions in the form of needles and plates and determined their symmetry and unit-cell parameters using X-ray diffraction (XRD). The needle-shaped crystals were monoclinic (P21/c) whereas the plate-shaped crystals were orthorhombic (P212121). The crystal structure of the monoclinic BaP was later solved (Iball & Young, 1956[Iball, J. & Young, D. W. (1956). Nature, 177, 985-986.]) and refined (Iball et al., 1976[Iball, J., Scrimgeour, S. N. & Young, D. W. (1976). Acta Cryst. B32, 328-330.]). Subsequently, one more ortho­rhombic BaP polymorph was reported (Contag, 1978[Contag, B. (1978). Naturwissenschaften, 65, 108-109.]). However, it was found to be unstable and gradually, within 6 months, transformed into the known monoclinic BaP. Low-temperature single-crystal XRD (SC-XRD) measurements at 120 K (Carrell et al., 1997[Carrell, C. J., Carrell, T. G., Carrell, H. L., Prout, K. & Glusker, J. P. (1997). Carcinogenesis, 18, 415-422.]) enabled a more precise structure analysis.

In this work, we have investigated the behavior of BaP in the pressure range from ambient to 35 GPa using synchrotron SC-XRD in a diamond anvil cell (DAC). We have observed two previously unknown high-pressure polymorphs, BaP-II and BaP-III, and report the results of the analysis of their structures under pressure.

2. Experimental

2.1. Sample preparation

A crystalline powder of BaP of 96% purity was purchased from Merck. Single crystals were selected under an optical microscope and preselected for high-pressure XRD studies in DAC No. 1 at ambient pressure (see Table S1 of the supporting information for a summary of all experiments). The two preselected crystals and a piece of ruby were loaded in the membrane-type DAC No. 2 equipped with Boehler–Almax type diamonds (Boehler, 2006[Boehler, R. (2006). Rev. Sci. Instrum. 77, 115103.]) with culets 250 µm in size and a rhenium gasket with a hole ∼120 µm in diameter and a thickness of ∼30 µm. He was used as a pressure-transmitting medium. The DAC No. 2 was gradually pressurized from 2.2 to 35 GPa.

2.2. SC-XRD experiments

SC-XRD studies at room temperature were conducted in DAC No. 1 and DAC No. 2 on the ID15B beamline (λ = 0.4100 Å, ESRF) with a beam size of approximately 2 × 2 µm. In both experiments a micro-grain of tungsten was placed at the center of the pressure chamber along with the sample. The strong X-ray absorption signal of tungsten was used to adjust the rotation center. The pressure was determined by the ruby luminescence method (Mao et al., 1986[Mao, H. K., Xu, J. A. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673-4676.]). At each pressure step, the data were collected in step scans of 0.5° on rotating the DAC from −34 to +34° about the vertical axis (ω scan). For single-crystal data analysis (peak search, unit-cell finding and data integration), the CrysAlisPro software (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.]) was employed, and the crystal structures were determined using SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and refined utilizing Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). Crystal structure visualization was performed using VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]). EoSFIT7 (Angel et al., 2014[Angel, R. J., Alvaro, M. & Gonzalez-Platas, J. (2014). Z. Kristallogr. 229, 405-419.]) was used to fit the pressure–volume data.

2.3. Theoretical calculations

Our density functional theory (DFT) calculations were performed using the Vienna Ab-initio Simulation Package (VASP) (Kresse & Furthmüller, 1996[Kresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15-50.]) with the projector-augmented-wave method (Blöchl, 1994[Blöchl, P. E. (1994). Phys. Rev. B, 50, 17953-17979.]) and the generalized gradient approximation functional was used for calculating the exchange-correlation energy, as proposed by Perdew, Burke & Ernzerhof (PBE) (Kresse & Joubert, 1999[Kresse, G. & Joubert, D. (1999). Phys. Rev. B, 59, 1758-1775.]). Additionally, we employed the DFT-D3 method for dispersion correction (Grimme et al., 2011[Grimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456-1465.]). The Brillouin zone was sampled with a 7 × 1 × 2 Monkhorst–Pack (Monkhorst & Pack, 1976[Monkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188-5192.]) special k-point grid for BaP-I and BaP-II, and 7 × 2 × 1 for BaP-III. Furthermore, the valence states 2s22p2 for carbon and 1s1 for hydrogen were used with the energy cutoff of 520 eV for the plane-wave basis set. The geometries were optimized until the remaining atomic forces were less than 5 × 10−3 eV Å−1 and the energy convergence criterion was set at 10−5 eV.

3. Results

On compression of BaP-I (P21/c) to 4.8 GPa in an He pressure medium, we observed a phase transition to a previously unknown monoclinic polymorph BaP-II (P21/c). The next phase transition occurred at 7.1 GPa to BaP-III with a triclinic structure (P1), which was preserved up to about 28 GPa. At the next pressure step of 35 GPa, the XRD pattern disappeared. Below we describe in detail the structures of all BaP polymorphs observed in this work.

The structure of BaP-I determined at ambient and 2.2 GPa [Fig. 1[link](a)] is similar to the previously reported monoclinic structure (Carrell et al., 1997[Carrell, C. J., Carrell, T. G., Carrell, H. L., Prout, K. & Glusker, J. P. (1997). Carcinogenesis, 18, 415-422.]). For a detailed comparison with BaP-I at 120 K, see Table S2. The structure is monoclinic (space group No. 14, P21/c) with the following unit-cell parameters under ambient conditions: a = 4.5384(3) Å, b = 20.439(5) Å, c = 13.531(2) Å, β = 97.006(8)° and V = 1245.8(4) Å3.

[Figure 1]
Figure 1
Crystal structures of BaP polymorphs. (a) BaP-I under ambient conditions, as viewed along the a (top) and c (bottom) axes; (b) BaP-II at 4.8 GPa, viewed along the a (top) and c (bottom) axes; (c) BaP-III at 7.1 GPa, as viewed along the a (top) and b (bottom) axes: carbon atoms – black, hydrogen atoms – white.

The structure of the previously unknown monoclinic polymorph, BaP-II (space group No. 14, P21/c), was solved and refined at 4.8 GPa [Table S3, Fig. 1[link](b)] with the unit-cell parameters a = 3.59710(10) Å, b = 21.658(9) Å, c = 12.7908(9) Å, β = 95.339(5)° and V = 992.2(4) Å3. The arrangement of molecules in BaP-II is similar to that in BaP-I. In both structures, the molecules display a herringbone pattern projected along the a direction [Figs. 1[link](a) and 1[link](b), top], but the intermolecular angles in BaP-I and BaP-II are noticeably different [see the projections along the b axis in Figs. 1[link](a) and 1[link](b), bottom]. In our previous study of pyrene under pressure (Zhou et al., 2024[Zhou, W., Yin, Y., Laniel, D., Aslandukov, A., Bykova, E., Pakhomova, A., Hanfland, M., Poreba, T., Mezouar, M., Dubrovinsky, L. & Dubrovinskaia, N. (2024). Commun. Chem. 7, 209. ]), we also noticed that the phase transformation of pyrene-I to pyrene-II is accompanied by a change of the intermolecular angle, whereas the space-group symmetry remains the same.

Further compression of BaP-II led to the formation of a new triclinic polymorph, BaP-III (space group No. 2, P1), which we first observed at 7.1 GPa [Fig. 1[link](c)]. The unit-cell parameters at 7.1 GPa are as follows: a = 3.4912(1) Å, b = 12.687(3) Å, c = 21.531(6) Å, α = 91.51(2)°, β = 90.434(9)°, γ = 95.820(8)° and V = 911.5(2) Å3. Table S4 provides detailed crystallographic data for BaP-III at six pressure points in the range 7.1–27.9 GPa. As the α and β angles are very close to 90°, the structure of BaP-III, if viewed along the a and b directions, looks very similar to those of BaP-I and BaP-II (Fig. 1[link]). However, crystallographically, due to the lower symmetry, the molecular arrangement in BaP-III is missing the herringbone pattern. A detailed geometrical analysis of the structures in different polymorphs is given in the Discussion[link] below.

4. Discussion

4.1. Compressional behavior of the polymorphs of BaP

The compressional behavior of the polymorphs of BaP up to 27.9 GPa is presented in Fig. 2[link]. The values of the unit-cell volume per formula unit for BaP-I, BaP-II and BaP-III as a function of pressure were obtained from our experiments (Table S5). In Fig. 2[link] they are shown by solid symbols of different colors. These pressure–volume data were fitted using the third-order Birch–Murnaghan equation of state (EoS) with the volume V0 = 311.45 Å3, which is the volume of BaP-I under ambient conditions. The bulk modulus, K0, and its first derivative, K′, were determined to be 7.7(7) GPa and 10.10(10), respectively.

[Figure 2]
Figure 2
Pressure dependence of the unit-cell volume per formula unit for polymorphs of BaP up to 27.9 GPa. The experimental data for BaP-I are shown by green solid triangles, for BaP-II by red inversed solid triangles and for BaP-III by blue solid circles. The solid black line shows the fit of all pressure–volume experimental points using the third-order Birch–Murnaghan EoS with the parameters V0 = 311.45 Å3, K0 = 7.7(7) GPa and K′ = 10.10(10). The dashed black line shows the fit of the calculated pressure–volume data points with the parameters V0 = 295.92 Å3, K0 = 11.53(14) GPa and K′ = 8.28(9).

The pressure–volume data points calculated using DFT for each polymorph (Table S6) are consistent with the pressure points at which the phases were observed experimentally. The calculated data have also been fitted using the third-order Birch–Murnaghan EoS. The EoS parameters appeared to be as follows: V0 = 295.92 Å3, K0 = 11.53(14) GPa and K′ = 8.28(9). The volume values from the calculated data fitting are consistently lower than those from the experimental data fitting. This observation can be attributed to the fact that DFT calculations simulate the structures of polymorphs at 0 K, where their volumes are always smaller than those obtained from experiments at room temperature.

The dependences of the lattice parameters of BaP polymorphs on pressure is shown in Fig. 3[link] (see Table S7 for numerical values). On compression of BaP-I, the a and b parameters gradually shorten, but they change substantially during the transition from BaP-I to BaP-II: the value of the a parameter decreases from 4.2338(2) to 3.59710(10) Å, while the b parameter increases from 19.838(4) to 21.658(9) Å. The c parameter continuously shortens in all phases. The β angle decreases from 97.006(8) to 95.613(5)° on compression of BaP-I at pressures still below ∼3 GPa. After a phase transition at 4.8 GPa β slightly rises to 95.820(8)° in BaP-III and does not change considerably on compression to the maximum pressure of about 28 GPa.

[Figure 3]
Figure 3
Lattice parameters of BaP polymorphs as a function of pressure up to 27.9 GPa. Lattice parameters (a) a, (b) b, (c) c and (d) β are designated in the y axes for the structures of BaP-I and BaP-II. For the triclinic structure of BaP-III the corresponding lattice parameters are given in brackets in the legend. (As the α and β angles in the triclinic structure of BaP-III are very close to 90°, then b of BaP-I and BaP-II corresponds to c in BaP-III and vice versa, while β corresponds to γ in BaP-III). Green solid triangles – BaP-I, red inversed solid triangles – BaP-II and blue solid circles – BaP-III.

4.2. Theoretical calculations

DFT calculations were conducted at ten pressure points between 1 bar and 40 GPa. Relaxed structural parameters are detailed in Tables S8–S10, which include data for BaP-I at ambient pressure, BaP-II at 4.8 GPa and BaP-III at 7.1 GPa.

The enthalpy differences (ΔH) for the two polymorphs (BaP-I and BaP-III) relative to BaP-II were calculated as a function of pressure from ambient pressure up to 7.1 GPa at 0 K (Fig. 4[link]) as described in the Methods[link]. They revealed that, at ambient pressure, BaP-I is relatively more stable than BaP-II and BaP-III. We found that, at 2.2 GPa, BaP-I relaxed into an atomic configuration with an enthalpy much higher than that of BaP-II and BaP-III. At 3.5 GPa, starting from the atomic configuration of BaP-I, atomic positions relaxed to those of BaP-II. According to the calculations, BaP-III is the most stable phase above 3.5 GPa.

[Figure 4]
Figure 4
ΔH values for the two polymorphs BaP-I and BaP-III relative to BaP-II calculated up to 7.1 GPa. Designations for different polymorphs are as follows: BaP-I – green solid triangles, BaP-III – blue solid circles and BaP-II – red inversed solid triangles.

4.3. Geometrical analysis of the structures of BaP polymorphs

Fig. 5[link] illustrates the structures of BaP-I and BaP-II viewed along the [540] direction [Figs. 5[link](a) and 5[link](b)], and of BaP-III viewed along the [504] direction [Fig. 5[link](c)], chosen to optimally display the topology of the molecular structures of these different polymorphs. To accurately calculate the intermolecular distances in BaP polymorphs, the molecules were approximated by mean molecular planes considering 20 carbon atoms in a molecule, using the NumPy and SciPy libraries in Python (blue lines in Fig. 5[link]). The intermolecular distances (d, d1 and d2) and interplanar angles (δ) were calculated using the same software. They are listed in Table S11 and presented graphically in Fig. 6[link] as a function of pressure. It is clear that the structure of BaP-I undergoes gradual compaction on compression, characterized by a gradual decrease in the intermolecular distances [Fig. 6[link](a)]. The intermolecular angle in BaP-I changes slightly from 72.9° at ambient pressure to 73.5° at 2.2 GPa, whereas in the BaP-I to BaP-II transformation, the applied stress leads to an abrupt change in the intermolecular angle from 73.5° at 2.2 GPa in BaP-I to 53.5° at 4.8 GPa in BaP-II. Further compression of BaP-II to 7.1 GPa results in a decrease of symmetry to P1, indicating the transformation to BaP-III. On further compression of BaP-III from 4.8 to 27.9 GPa, the angle slowly rises to 54.8°. Interestingly, compared with the behavior of pyrene molecules, which showed curvature with increasing pressure, as found in our previous study of pyrene (Zhou et al., 2024[Zhou, W., Yin, Y., Laniel, D., Aslandukov, A., Bykova, E., Pakhomova, A., Hanfland, M., Poreba, T., Mezouar, M., Dubrovinsky, L. & Dubrovinskaia, N. (2024). Commun. Chem. 7, 209. ]), in BaP polymorphs the molecules remain flat up to about 28 GPa, the highest pressure achieved in this study.

[Figure 5]
Figure 5
Visualization of intermolecular distances and interplanar angles in the structures of BaP polymorphs. (a) BaP-I and (b) BaP-II, as viewed along the [504] direction; (c) BaP-III, as viewed along the [540] direction (hydrogen atoms are not shown, carbon atoms are shown as black dots). The blue lines represent the planes of the flat molecules; in BaP-I and BaP-II all intermolecular distances are equal (designated d); d1 and d2 are the interplanar distances in BaP-III, which are almost equal; δ is the interplanar angle.
[Figure 6]
Figure 6
Variation of (a) intermolecular distances (see Fig. 5[link] for designations) and (b) interplanar angles in the BaP polymorphs with pressure (see Fig. 5[link] for δ).

4.4. Evolution of intermolecular interactions on compression

To visualize intermolecular interactions and explore their evolution on compression, we constructed Hirshfeld surfaces for the three BaP polymorphs using the CrystalExplorer program (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Those mapped with the shape index are shown in Fig. 7[link]. Corresponding fingerprint plots are provided in Fig. S1 of the supporting information. The methodology of the Hirshfeld surface analysis is described in detail in a comprehensive review by McKinnon et al. (2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) and in the paper by Spackman & Jayatilaka (2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

[Figure 7]
Figure 7
Hirshfeld surfaces of BaP polymorphs mapped with the shape index. The front and back views of Hirshfeld surfaces for (a) BaP-I at ambient pressure, (b) BaP-II at 4.8 GPa and (c) BaP-III at 21.1 GPa. Shape index is mapped from −1.0 (red) to 0.0 (green) to 1.0 (blue).

The analysis of the Hirshfeld surfaces of BaP polymorphs – even based purely on visual inspection – shows that the two sides of a molecule are involved in quite similar contacts with neighboring molecules, participating in a planar stacking arrangement of molecules (ππ stacking) showing up as the alternating red and blue triangles in both the front and the back sides of the Hirshfeld surfaces (Fig. 7[link]) (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), as well as a red region near the center of the fingerprint plot (Fig. S1 of the supporting information). These features are quite obvious for all polymorphs (Figs. 7[link] and S1). For BaP-I the red region in the fingerprint plot is in the vicinity of (di, de) ≃ 1.8–2.0 Å, a range typical of the interplanar spacing of PAHs (di and de are the distances from the internal or external atoms to the Hirshfeld surface). With increasing pressure this red feature moves to lower (di, de) values, indicating a decrease in the intermolecular distances [see also Fig. 6[link](a)]. Blue signifies convex surface curvatures of the Hirshfeld surface corresponding to the direct H⋯H contacts. The red regions of concave curvature reflect the C⋯H interactions between the molecules.

One can break down the Hirshfeld surface into patches associated with specific atom-type/atom-type pairs to highlight just those regions on the surface, and sum the areas of surface patches associated with various contacts (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). We have made the calculations using the Crystal­Explorer program (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) for all BaP polymorphs as a function of pressure (Table S12). As seen, for BaP-I the H⋯H interactions are associated with nearly 60% of the surface area, whereas the contribution of the C⋯C interactions is about 20%, and the sum of all C⋯H interactions is also about 20%. Fig. S2 presents percentage contributions to the Hirshfeld surface area for the various close intermolecular contacts (C⋯C, H⋯H, Ce⋯Hi and Ci⋯He) as a function of pressure for the molecules in the BaP polymorphs. The percentage contribution of C⋯C intermolecular contacts increases with pressure, while that of H⋯H contacts decreases, showing an abrupt change as a result of the BaP-I to BaP-II transition: while the C⋯C contribution still shows an increase (although non-monotonic), the H⋯H contribution also increases, likely as a result of a sharp decrease of the interplanar angle by about 20°. The C⋯H contribution decreases as there is a decrease in the offset of stacked molecules following the BaP-I to BaP-II transition. However, in the BaP-II to BaP-III transition, there are no abrupt changes in the percentage contribution of direct H⋯H contacts (which continues to decrease monotonically) while that of the C⋯C contacts increases consistently, and the total C⋯H contribution shows almost no change. The shortest H⋯H contacts considerably decrease in BaP-II compared with those in BaP-I, but do not noticeably decrease on further compression (see the positions of the sharp features in the left lower corners of the fingerprint plots for BaP-I and BaP-III in Fig. S1). To summarize, in all three polymorphs, the molecules are involved in similar contacts with neighboring molecules, participating in a planar stacking arrangement. A general trend is observed with an increase in the percentage contribution of C⋯C intermolecular contacts and a decrease in H⋯H contacts on compression.

5. Conclusions

We have presented the results of high-pressure studies of BaP up to about 28 GPa. These provide insights into the structural transformations in a representative of a broad class of organic materials: PAHs. These studies combined in situ synchrotron SC-XRD in a diamond anvil cell and ab initio calculations. At 4.8 GPa, BaP-I was found to transform to a previously unknown BaP-II phase with the same space group (P21/c). The transformation manifests as an abrupt change in the intermolecular angle and unit-cell parameters. The second previously unknown polymorph, BaP-III, was detected at 7.1 GPa and preserved under an He pressure medium up to 27.9 GPa. According to the DFT calculations, BaP-III is the most stable phase above 3.5 GPa.

6. Related literature

The following references are cited in the supporting information: Carrell et al. (1997[Carrell, C. J., Carrell, T. G., Carrell, H. L., Prout, K. & Glusker, J. P. (1997). Carcinogenesis, 18, 415-422.]).

Supporting information


Computing details top

(benzoapyrene_0GPa) top
Crystal data top
C20H12F(000) = 528
Mr = 252.30Dx = 1.345 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.410 Å
a = 4.5384 (3) ÅCell parameters from 302 reflections
b = 20.439 (5) Åθ = 2.6–15.0°
c = 13.531 (2) ŵ = 0.04 mm1
β = 97.006 (8)°T = 293 K
V = 1245.8 (4) Å3Block, clear colourless
Z = 40.01 × 0.01 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1877 independent reflections
Radiation source: synchrotron661 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.035
ω scansθmax = 21.6°, θmin = 2.6°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 77
Tmin = 0.296, Tmax = 1.000k = 2218
3094 measured reflectionsl = 1918
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.0949P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
1877 reflectionsΔρmax = 0.08 e Å3
181 parametersΔρmin = 0.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C0010.3158 (6)0.4606 (3)0.6504 (3)0.0774 (15)
H0010.4049080.4580740.5848420.093*
C0020.2356 (6)0.6528 (2)0.5597 (2)0.0689 (13)
H0020.1417460.6502250.4947310.083*
C0030.3064 (5)0.6117 (2)0.7322 (2)0.0535 (11)
C0040.5137 (5)0.6624 (2)0.7561 (2)0.0581 (10)
C0050.2387 (5)0.5664 (2)0.8047 (2)0.0580 (11)
C0060.5820 (5)0.6230 (2)0.9273 (2)0.0638 (12)
H0060.6735080.6261580.9924360.077*
C0070.5829 (6)0.7088 (2)0.6828 (3)0.0652 (13)
C0080.1096 (5)0.5105 (2)0.6781 (3)0.0652 (12)
C0090.1626 (5)0.6063 (2)0.6309 (2)0.0642 (13)
C00A0.0292 (5)0.5143 (2)0.7772 (2)0.0621 (12)
C00B0.3820 (5)0.5749 (2)0.9036 (2)0.0667 (12)
H00B0.3362930.5465250.9532020.080*
C00C0.0378 (6)0.5575 (2)0.6070 (2)0.0663 (13)
H00C0.1311420.5548170.5419770.080*
C00D0.6565 (5)0.6687 (2)0.8557 (2)0.0651 (12)
C00E0.0457 (6)0.4672 (2)0.8451 (3)0.0701 (13)
H00E0.0437020.4688620.9106770.084*
C00F0.8646 (6)0.7196 (3)0.8766 (3)0.0763 (14)
H00F0.9608650.7238260.9410400.092*
C00G0.4377 (6)0.7009 (2)0.5835 (2)0.0733 (13)
H00G0.4832060.7294830.5341090.088*
C00H0.2470 (7)0.4189 (3)0.8173 (3)0.0860 (14)
H00H0.2923030.3879770.8636390.103*
C00I0.7891 (6)0.7572 (2)0.7101 (3)0.0762 (14)
H00I0.8345740.7871240.6623670.091*
C00J0.9291 (6)0.7626 (3)0.8057 (3)0.0801 (14)
H00J1.0677480.7955500.8218670.096*
C00K0.3866 (6)0.4159 (3)0.7179 (3)0.0894 (16)
H00K0.5260900.3835430.6989590.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C0010.0637 (15)0.072 (6)0.095 (3)0.001 (2)0.0019 (15)0.011 (2)
C0020.0787 (15)0.071 (5)0.055 (2)0.0065 (19)0.0020 (13)0.0060 (15)
C0030.0548 (11)0.042 (4)0.062 (2)0.0086 (15)0.0002 (10)0.0028 (13)
C0040.0585 (11)0.052 (4)0.064 (2)0.0109 (16)0.0085 (11)0.0005 (15)
C0050.0600 (12)0.045 (4)0.068 (2)0.0054 (16)0.0049 (12)0.0014 (14)
C0060.0718 (14)0.063 (4)0.054 (2)0.0085 (19)0.0033 (12)0.0017 (14)
C0070.0664 (15)0.051 (5)0.078 (2)0.0079 (18)0.0090 (13)0.0002 (16)
C0080.0603 (13)0.053 (5)0.081 (3)0.0077 (18)0.0020 (13)0.0057 (17)
C0090.0633 (13)0.067 (5)0.060 (2)0.0115 (18)0.0008 (12)0.0007 (15)
C00A0.0633 (13)0.051 (5)0.071 (3)0.0090 (17)0.0059 (13)0.0001 (15)
C00B0.0730 (14)0.066 (4)0.060 (2)0.0097 (18)0.0059 (12)0.0062 (14)
C00C0.0690 (14)0.058 (5)0.068 (2)0.0086 (19)0.0062 (13)0.0045 (16)
C00D0.0570 (12)0.071 (5)0.066 (2)0.0099 (18)0.0027 (12)0.0120 (15)
C00E0.0800 (17)0.051 (5)0.081 (3)0.004 (2)0.0141 (15)0.0002 (17)
C00F0.0703 (16)0.070 (6)0.086 (3)0.007 (2)0.0003 (15)0.0177 (18)
C00G0.0860 (17)0.066 (5)0.070 (2)0.018 (2)0.0154 (15)0.0160 (16)
C00H0.0954 (19)0.060 (6)0.108 (3)0.003 (3)0.0317 (18)0.006 (2)
C00I0.0802 (17)0.047 (6)0.103 (3)0.000 (2)0.0169 (16)0.0001 (18)
C00J0.0837 (19)0.047 (6)0.110 (4)0.010 (2)0.0164 (17)0.013 (2)
C00K0.0728 (17)0.076 (6)0.121 (4)0.009 (2)0.0167 (18)0.025 (3)
Geometric parameters (Å, º) top
C001—H0010.9300C008—C00A1.412 (5)
C001—C0081.405 (6)C008—C00C1.426 (5)
C001—C00K1.358 (6)C009—C00C1.361 (5)
C002—H0020.9300C00A—C00E1.401 (5)
C002—C0091.422 (5)C00B—H00B0.9300
C002—C00G1.356 (5)C00C—H00C0.9300
C003—C0041.410 (5)C00D—C00F1.410 (6)
C003—C0051.409 (5)C00E—H00E0.9300
C003—C0091.449 (4)C00E—C00H1.367 (6)
C004—C0071.434 (5)C00F—H00F0.9300
C004—C00D1.428 (4)C00F—C00J1.359 (6)
C005—C00A1.446 (5)C00G—H00G0.9300
C005—C00B1.425 (4)C00H—H00H0.9300
C006—H0060.9300C00H—C00K1.417 (5)
C006—C00B1.349 (5)C00I—H00I0.9300
C006—C00D1.416 (5)C00I—C00J1.374 (5)
C007—C00G1.431 (5)C00J—H00J0.9300
C007—C00I1.382 (6)C00K—H00K0.9300
C008—C001—H001119.6C005—C00B—H00B119.0
C00K—C001—H001119.6C006—C00B—C005121.9 (4)
C00K—C001—C008120.9 (4)C006—C00B—H00B119.0
C009—C002—H002119.0C008—C00C—H00C118.9
C00G—C002—H002119.0C009—C00C—C008122.2 (3)
C00G—C002—C009122.0 (3)C009—C00C—H00C118.9
C004—C003—C009118.9 (3)C006—C00D—C004117.8 (4)
C005—C003—C004121.3 (3)C00F—C00D—C004118.1 (4)
C005—C003—C009119.8 (3)C00F—C00D—C006124.0 (3)
C003—C004—C007121.6 (3)C00A—C00E—H00E119.2
C003—C004—C00D119.7 (3)C00H—C00E—C00A121.6 (4)
C00D—C004—C007118.7 (4)C00H—C00E—H00E119.2
C003—C005—C00A119.8 (3)C00D—C00F—H00F118.9
C003—C005—C00B117.4 (4)C00J—C00F—C00D122.1 (4)
C00B—C005—C00A122.8 (3)C00J—C00F—H00F118.9
C00B—C006—H006119.1C002—C00G—C007121.7 (4)
C00B—C006—C00D121.9 (3)C002—C00G—H00G119.1
C00D—C006—H006119.1C007—C00G—H00G119.1
C00G—C007—C004117.4 (4)C00E—C00H—H00H120.1
C00I—C007—C004119.2 (3)C00E—C00H—C00K119.9 (4)
C00I—C007—C00G123.4 (4)C00K—C00H—H00H120.1
C001—C008—C00A120.0 (4)C007—C00I—H00I119.1
C001—C008—C00C120.6 (3)C00J—C00I—C007121.9 (4)
C00A—C008—C00C119.5 (4)C00J—C00I—H00I119.1
C002—C009—C003118.3 (4)C00F—C00J—C00I119.9 (4)
C00C—C009—C002122.2 (3)C00F—C00J—H00J120.0
C00C—C009—C003119.5 (3)C00I—C00J—H00J120.0
C008—C00A—C005119.2 (4)C001—C00K—C00H119.7 (5)
C00E—C00A—C005122.8 (3)C001—C00K—H00K120.2
C00E—C00A—C008118.0 (4)C00H—C00K—H00K120.2
C001—C008—C00A—C005179.4 (3)C008—C001—C00K—C00H1.2 (7)
C001—C008—C00A—C00E0.0 (6)C008—C00A—C00E—C00H0.1 (6)
C001—C008—C00C—C009179.4 (3)C009—C002—C00G—C0072.0 (6)
C002—C009—C00C—C008179.6 (4)C009—C003—C004—C0070.6 (5)
C003—C004—C007—C00G1.3 (5)C009—C003—C004—C00D179.7 (3)
C003—C004—C007—C00I179.6 (3)C009—C003—C005—C00A0.8 (5)
C003—C004—C00D—C0060.0 (5)C009—C003—C005—C00B178.7 (3)
C003—C004—C00D—C00F179.4 (3)C00A—C005—C00B—C006178.4 (3)
C003—C005—C00A—C0081.4 (5)C00A—C008—C00C—C0090.3 (6)
C003—C005—C00A—C00E179.2 (3)C00A—C00E—C00H—C00K0.4 (6)
C003—C005—C00B—C0062.0 (5)C00B—C005—C00A—C008178.1 (3)
C003—C009—C00C—C0081.0 (5)C00B—C005—C00A—C00E1.2 (6)
C004—C003—C005—C00A178.8 (3)C00B—C006—C00D—C0040.3 (5)
C004—C003—C005—C00B1.6 (5)C00B—C006—C00D—C00F179.8 (3)
C004—C003—C009—C0020.5 (5)C00C—C008—C00A—C0050.8 (5)
C004—C003—C009—C00C180.0 (3)C00C—C008—C00A—C00E179.8 (4)
C004—C007—C00G—C0022.0 (5)C00D—C004—C007—C00G179.6 (3)
C004—C007—C00I—C00J0.4 (6)C00D—C004—C007—C00I1.3 (5)
C004—C00D—C00F—C00J0.8 (6)C00D—C006—C00B—C0051.4 (6)
C005—C003—C004—C007179.8 (3)C00D—C00F—C00J—C00I0.1 (7)
C005—C003—C004—C00D0.6 (5)C00E—C00H—C00K—C0011.0 (6)
C005—C003—C009—C002179.9 (3)C00G—C002—C009—C0031.2 (5)
C005—C003—C009—C00C0.4 (5)C00G—C002—C009—C00C179.3 (3)
C005—C00A—C00E—C00H179.3 (3)C00G—C007—C00I—C00J178.6 (4)
C006—C00D—C00F—C00J179.8 (4)C00I—C007—C00G—C002179.8 (3)
C007—C004—C00D—C006179.1 (3)C00K—C001—C008—C00A0.7 (6)
C007—C004—C00D—C00F1.5 (5)C00K—C001—C008—C00C179.6 (4)
C007—C00I—C00J—C00F0.3 (6)
(benzoapyrene_2.2GPa) top
Crystal data top
C20H12F(000) = 528
Mr = 252.30Dx = 1.553 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.410 Å
a = 4.2338 (2) ÅCell parameters from 558 reflections
b = 19.838 (4) Åθ = 2.8–19.2°
c = 12.9059 (10) ŵ = 0.04 mm1
β = 95.613 (5)°T = 293 K
V = 1078.8 (2) Å3Block, clear yellowish colourless
Z = 40.02 × 0.01 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1646 independent reflections
Radiation source: synchrotron831 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.013
ω scansθmax = 21.4°, θmin = 2.8°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 66
Tmin = 0.081, Tmax = 1.000k = 1913
2644 measured reflectionsl = 1719
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1566P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1646 reflectionsΔρmax = 0.25 e Å3
181 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C0010.9753 (5)0.4875 (2)0.2231 (2)0.0414 (11)
C0020.4528 (5)0.3356 (2)0.2466 (2)0.0405 (11)
C0030.6750 (4)0.3883 (2)0.2705 (2)0.0396 (11)
C0041.0367 (5)0.4436 (2)0.4010 (2)0.0469 (12)
H0041.1313730.4469080.4689730.056*
C0050.7511 (5)0.4336 (2)0.1948 (2)0.0410 (12)
C0060.7400 (5)0.3443 (2)0.4513 (2)0.0476 (12)
H0060.8377330.3468420.5188920.057*
C0070.3903 (5)0.3765 (2)0.06792 (19)0.0475 (12)
H0070.2965010.3729460.0000830.057*
C0080.3049 (5)0.3299 (2)0.1426 (2)0.0432 (11)
C0091.1185 (5)0.4905 (2)0.3268 (2)0.0451 (12)
C00A1.3416 (5)0.5420 (2)0.3545 (2)0.0493 (13)
H00A1.4341500.5443020.4227710.059*
C00B1.2776 (5)0.5852 (2)0.1806 (3)0.0535 (12)
H00B1.3290210.6169500.1320010.064*
C00C0.1534 (5)0.2384 (2)0.2959 (2)0.0497 (12)
H00C0.1032280.2074390.3458900.060*
C00D0.8212 (5)0.3928 (2)0.3766 (2)0.0417 (11)
C00E1.4246 (5)0.5879 (3)0.2845 (3)0.0533 (13)
H00E1.5753520.6208220.3039650.064*
C00F0.0826 (5)0.2777 (2)0.1196 (2)0.0499 (13)
H00F0.0136620.2730430.0520740.060*
C00G0.0067 (6)0.2341 (3)0.1946 (2)0.0518 (13)
H00G0.1453440.2009840.1781270.062*
C00H0.5267 (5)0.2950 (2)0.4272 (2)0.0499 (11)
H00H0.4769250.2648660.4783260.060*
C00I0.6033 (5)0.4262 (2)0.0914 (2)0.0454 (10)
H00I0.6538660.4558110.0396420.054*
C00J0.3742 (5)0.2886 (2)0.3221 (2)0.0457 (12)
C00K1.0618 (5)0.5361 (2)0.1524 (2)0.0470 (12)
H00K0.9688290.5348080.0841310.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C0010.0373 (10)0.041 (4)0.0455 (17)0.0030 (12)0.0048 (9)0.0021 (14)
C0020.0355 (10)0.041 (4)0.0448 (18)0.0029 (11)0.0050 (9)0.0000 (13)
C0030.0353 (9)0.042 (4)0.0408 (16)0.0057 (11)0.0016 (8)0.0006 (13)
C0040.0399 (10)0.063 (5)0.0370 (16)0.0061 (13)0.0026 (9)0.0060 (13)
C0050.0370 (10)0.045 (4)0.0410 (18)0.0026 (11)0.0030 (9)0.0021 (12)
C0060.0466 (11)0.060 (4)0.0359 (16)0.0082 (13)0.0017 (9)0.0044 (13)
C0070.0426 (11)0.063 (4)0.0356 (16)0.0055 (13)0.0026 (9)0.0014 (12)
C0080.0363 (10)0.048 (4)0.0448 (17)0.0041 (11)0.0012 (9)0.0029 (13)
C0090.0369 (10)0.054 (4)0.0448 (17)0.0058 (12)0.0027 (9)0.0027 (14)
C00A0.0398 (11)0.052 (5)0.055 (2)0.0032 (13)0.0012 (10)0.0040 (15)
C00B0.0522 (13)0.046 (5)0.064 (2)0.0028 (15)0.0162 (11)0.0055 (16)
C00C0.0476 (12)0.049 (4)0.054 (2)0.0013 (13)0.0127 (10)0.0006 (14)
C00D0.0388 (10)0.043 (4)0.0428 (18)0.0062 (11)0.0008 (9)0.0007 (13)
C00E0.0435 (12)0.043 (5)0.073 (3)0.0036 (14)0.0085 (12)0.0066 (18)
C00F0.0423 (11)0.060 (5)0.0471 (19)0.0018 (13)0.0021 (10)0.0085 (15)
C00G0.0494 (13)0.049 (5)0.058 (2)0.0029 (14)0.0113 (11)0.0091 (16)
C00H0.0451 (12)0.063 (4)0.0414 (17)0.0049 (13)0.0065 (9)0.0084 (13)
C00I0.0457 (11)0.051 (4)0.0393 (17)0.0062 (13)0.0040 (9)0.0062 (12)
C00J0.0382 (11)0.043 (4)0.056 (2)0.0056 (12)0.0070 (9)0.0013 (15)
C00K0.0452 (12)0.044 (5)0.052 (2)0.0052 (13)0.0068 (10)0.0016 (14)
Geometric parameters (Å, º) top
C001—C0051.453 (5)C008—C00F1.411 (6)
C001—C0091.415 (4)C009—C00A1.412 (6)
C001—C00K1.400 (5)C00A—H00A0.9300
C002—C0031.420 (5)C00A—C00E1.355 (6)
C002—C0081.429 (4)C00B—H00B0.9300
C002—C00J1.411 (5)C00B—C00E1.422 (4)
C003—C0051.389 (5)C00B—C00K1.360 (5)
C003—C00D1.450 (3)C00C—H00C0.9300
C004—H0040.9300C00C—C00G1.394 (4)
C004—C0091.404 (5)C00C—C00J1.386 (5)
C004—C00D1.374 (5)C00E—H00E0.9300
C005—C00I1.425 (4)C00F—H00F0.9300
C006—H0060.9300C00F—C00G1.360 (6)
C006—C00D1.427 (5)C00G—H00G0.9300
C006—C00H1.347 (5)C00H—H00H0.9300
C007—H0070.9300C00H—C00J1.449 (4)
C007—C0081.409 (5)C00I—H00I0.9300
C007—C00I1.350 (5)C00K—H00K0.9300
C009—C001—C005118.5 (3)C00E—C00B—H00B120.0
C00K—C001—C005123.3 (3)C00K—C00B—H00B120.0
C00K—C001—C009118.2 (3)C00K—C00B—C00E120.0 (3)
C003—C002—C008118.9 (3)C00G—C00C—H00C120.0
C00J—C002—C003122.1 (3)C00J—C00C—H00C120.0
C00J—C002—C008119.0 (3)C00J—C00C—C00G120.1 (4)
C002—C003—C00D117.6 (3)C004—C00D—C003118.3 (3)
C005—C003—C002121.2 (2)C004—C00D—C006122.5 (3)
C005—C003—C00D121.2 (3)C006—C00D—C003119.2 (3)
C009—C004—H004118.9C00A—C00E—C00B119.0 (4)
C00D—C004—H004118.9C00A—C00E—H00E120.5
C00D—C004—C009122.1 (3)C00B—C00E—H00E120.5
C003—C005—C001119.4 (2)C008—C00F—H00F119.5
C003—C005—C00I118.7 (3)C00G—C00F—C008121.1 (3)
C00I—C005—C001121.9 (3)C00G—C00F—H00F119.5
C00D—C006—H006118.9C00C—C00G—H00G119.5
C00H—C006—H006118.9C00F—C00G—C00C121.0 (4)
C00H—C006—C00D122.3 (3)C00F—C00G—H00G119.5
C008—C007—H007118.8C006—C00H—H00H119.8
C00I—C007—H007118.8C006—C00H—C00J120.4 (3)
C00I—C007—C008122.5 (2)C00J—C00H—H00H119.8
C007—C008—C002118.2 (3)C005—C00I—H00I119.7
C007—C008—C00F123.3 (3)C007—C00I—C005120.5 (3)
C00F—C008—C002118.5 (3)C007—C00I—H00I119.7
C004—C009—C001120.4 (3)C002—C00J—C00H118.4 (3)
C004—C009—C00A120.6 (3)C00C—C00J—C002120.3 (3)
C00A—C009—C001118.9 (3)C00C—C00J—C00H121.3 (3)
C009—C00A—H00A119.1C001—C00K—H00K119.0
C00E—C00A—C009121.9 (3)C00B—C00K—C001122.0 (3)
C00E—C00A—H00A119.1C00B—C00K—H00K119.0
C001—C005—C00I—C007178.5 (3)C009—C001—C005—C00I178.4 (3)
C001—C009—C00A—C00E0.7 (6)C009—C001—C00K—C00B0.2 (6)
C002—C003—C005—C001178.9 (3)C009—C004—C00D—C0030.1 (5)
C002—C003—C005—C00I0.4 (5)C009—C004—C00D—C006179.1 (3)
C002—C003—C00D—C004180.0 (3)C009—C00A—C00E—C00B1.4 (6)
C002—C003—C00D—C0060.7 (5)C00D—C003—C005—C0011.6 (5)
C002—C008—C00F—C00G0.8 (5)C00D—C003—C005—C00I179.1 (3)
C003—C002—C008—C0070.9 (5)C00D—C004—C009—C0011.0 (5)
C003—C002—C008—C00F179.5 (3)C00D—C004—C009—C00A179.8 (3)
C003—C002—C00J—C00C179.3 (3)C00D—C006—C00H—C00J1.2 (6)
C003—C002—C00J—C00H0.0 (5)C00E—C00B—C00K—C0010.4 (6)
C003—C005—C00I—C0070.8 (5)C00G—C00C—C00J—C0020.3 (5)
C004—C009—C00A—C00E179.9 (4)C00G—C00C—C00J—C00H179.0 (3)
C005—C001—C009—C0042.0 (5)C00H—C006—C00D—C0031.3 (5)
C005—C001—C009—C00A178.7 (3)C00H—C006—C00D—C004179.4 (3)
C005—C001—C00K—C00B178.6 (3)C00I—C007—C008—C0020.5 (6)
C005—C003—C00D—C0040.5 (5)C00I—C007—C008—C00F179.9 (3)
C005—C003—C00D—C006178.8 (3)C00J—C002—C003—C005179.5 (3)
C006—C00H—C00J—C0020.6 (5)C00J—C002—C003—C00D0.1 (5)
C006—C00H—C00J—C00C179.8 (3)C00J—C002—C008—C007179.0 (3)
C007—C008—C00F—C00G179.6 (4)C00J—C002—C008—C00F0.6 (5)
C008—C002—C003—C0050.4 (5)C00J—C00C—C00G—C00F1.7 (6)
C008—C002—C003—C00D180.0 (3)C00K—C001—C005—C003178.9 (3)
C008—C002—C00J—C00C0.8 (5)C00K—C001—C005—C00I0.4 (5)
C008—C002—C00J—C00H179.9 (3)C00K—C001—C009—C004179.1 (3)
C008—C007—C00I—C0050.3 (6)C00K—C001—C009—C00A0.1 (5)
C008—C00F—C00G—C00C2.0 (6)C00K—C00B—C00E—C00A1.2 (6)
C009—C001—C005—C0032.3 (5)
(benzoapyrene_4.8GPa) top
Crystal data top
C20H12F(000) = 528
Mr = 252.30Dx = 1.689 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.410 Å
a = 3.5971 (1) ÅCell parameters from 347 reflections
b = 21.658 (9) Åθ = 3.3–18.4°
c = 12.7908 (9) ŵ = 0.04 mm1
β = 95.339 (5)°T = 293 K
V = 992.2 (4) Å3Block, clear reddish colourless
Z = 40.02 × 0.01 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1313 independent reflections
Radiation source: synchrotron796 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.020
ω scansθmax = 21.5°, θmin = 3.3°
Absorption correction: multi-scan
CrysAlisPro 1.171.43.70a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 65
Tmin = 0.190, Tmax = 1.000k = 1115
2486 measured reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.1059P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1313 reflectionsΔρmax = 0.20 e Å3
181 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C0010.9560 (5)0.4913 (2)0.21894 (14)0.0312 (18)
C0020.4951 (5)0.3365 (2)0.23624 (14)0.0338 (19)
C0030.6983 (4)0.3907 (2)0.26420 (13)0.0308 (19)
C0041.0480 (5)0.4511 (2)0.39873 (15)0.0334 (19)
H0041.1490320.4559470.4678380.040*
C0050.7525 (5)0.4365 (2)0.18844 (14)0.0319 (17)
C0060.7899 (5)0.3509 (2)0.44576 (14)0.0347 (18)
H0060.8958270.3546440.5146130.042*
C0070.4104 (5)0.3734 (2)0.05571 (14)0.0351 (18)
H0070.3158330.3680990.0138810.042*
C0080.3476 (5)0.3270 (2)0.13099 (15)0.0317 (18)
C0091.1032 (5)0.4978 (2)0.32472 (15)0.034 (2)
C00A1.3072 (5)0.5519 (3)0.35532 (16)0.0357 (19)
H00A1.4050780.5562490.4248150.043*
C00B1.2134 (5)0.5905 (3)0.18101 (17)0.041 (2)
H00B1.2503410.6214850.1326710.049*
C00C0.2349 (5)0.2374 (3)0.28234 (18)0.040 (2)
H00C0.1982270.2070700.3318110.048*
C00D0.8503 (5)0.3991 (2)0.37117 (14)0.0302 (18)
C00E1.3632 (5)0.5976 (2)0.28526 (18)0.042 (2)
H00E1.4981630.6328310.3063170.050*
C00F0.1436 (5)0.2740 (3)0.10398 (17)0.037 (2)
H00F0.0420450.2683750.0351030.045*
C00G0.0903 (5)0.2296 (3)0.17900 (18)0.045 (2)
H00G0.0443760.1940830.1597450.054*
C00H0.5871 (5)0.3015 (2)0.41827 (16)0.034 (2)
H00H0.5411960.2727170.4694960.040*
C00I0.6035 (5)0.4246 (2)0.08364 (14)0.0252 (17)
H00I0.6417180.4536700.0321720.030*
C00J0.4366 (5)0.2910 (2)0.31259 (16)0.032 (2)
C00K1.0152 (5)0.5394 (2)0.14868 (15)0.0312 (19)
H00K0.9172580.5362820.0789840.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C0010.0269 (7)0.036 (6)0.0312 (9)0.0044 (12)0.0061 (6)0.0067 (13)
C0020.0272 (7)0.044 (6)0.0315 (9)0.0026 (12)0.0091 (6)0.0012 (13)
C0030.0286 (7)0.038 (6)0.0271 (9)0.0043 (13)0.0071 (6)0.0005 (12)
C0040.0327 (8)0.040 (6)0.0267 (8)0.0061 (13)0.0013 (6)0.0012 (12)
C0050.0290 (7)0.042 (5)0.0252 (8)0.0058 (12)0.0047 (6)0.0014 (12)
C0060.0370 (8)0.040 (6)0.0281 (8)0.0083 (14)0.0070 (7)0.0035 (13)
C0070.0313 (7)0.047 (6)0.0273 (9)0.0012 (13)0.0047 (6)0.0052 (13)
C0080.0301 (7)0.031 (6)0.0351 (9)0.0024 (12)0.0082 (6)0.0054 (13)
C0090.0290 (8)0.042 (7)0.0307 (9)0.0023 (12)0.0062 (7)0.0014 (13)
C00A0.0298 (8)0.039 (6)0.0385 (10)0.0022 (12)0.0042 (7)0.0101 (14)
C00B0.0334 (8)0.049 (7)0.0428 (11)0.0032 (13)0.0116 (7)0.0040 (16)
C00C0.0377 (9)0.035 (8)0.0492 (12)0.0001 (15)0.0155 (9)0.0025 (16)
C00D0.0318 (7)0.030 (6)0.0294 (9)0.0063 (13)0.0067 (6)0.0014 (12)
C00E0.0294 (8)0.044 (7)0.0526 (12)0.0004 (13)0.0097 (7)0.0127 (18)
C00F0.0318 (8)0.040 (7)0.0403 (10)0.0002 (13)0.0077 (7)0.0085 (15)
C00G0.0358 (10)0.047 (8)0.0545 (13)0.0020 (15)0.0141 (9)0.0034 (19)
C00H0.0379 (9)0.027 (7)0.0372 (10)0.0074 (14)0.0123 (8)0.0097 (14)
C00I0.0347 (8)0.013 (6)0.0288 (8)0.0022 (12)0.0078 (6)0.0015 (12)
C00J0.0320 (8)0.028 (7)0.0380 (10)0.0021 (12)0.0107 (7)0.0018 (14)
C00K0.0320 (8)0.029 (6)0.0337 (9)0.0039 (13)0.0072 (7)0.0018 (14)
Geometric parameters (Å, º) top
C001—C0051.430 (6)C008—C00F1.387 (7)
C001—C0091.414 (3)C009—C00A1.417 (6)
C001—C00K1.406 (5)C00A—H00A0.9300
C002—C0031.412 (6)C00A—C00E1.364 (6)
C002—C0081.416 (3)C00B—H00B0.9300
C002—C00J1.418 (5)C00B—C00E1.399 (3)
C003—C0051.412 (5)C00B—C00K1.360 (6)
C003—C00D1.437 (3)C00C—H00C0.9300
C004—H0040.9300C00C—C00G1.385 (3)
C004—C0091.413 (5)C00C—C00J1.403 (7)
C004—C00D1.360 (6)C00E—H00E0.9300
C005—C00I1.420 (3)C00F—H00F0.9300
C006—H0060.9300C00F—C00G1.385 (6)
C006—C00D1.444 (5)C00G—H00G0.9300
C006—C00H1.324 (6)C00H—H00H0.9300
C007—H0070.9300C00H—C00J1.427 (3)
C007—C0081.425 (5)C00I—H00I0.9300
C007—C00I1.339 (6)C00K—H00K0.9300
C009—C001—C005118.8 (3)C00E—C00B—H00B119.2
C00K—C001—C005123.1 (2)C00K—C00B—H00B119.2
C00K—C001—C009118.1 (3)C00K—C00B—C00E121.6 (4)
C003—C002—C008120.1 (3)C00G—C00C—H00C119.9
C003—C002—C00J120.7 (2)C00G—C00C—C00J120.2 (4)
C008—C002—C00J119.1 (3)C00J—C00C—H00C119.9
C002—C003—C005120.7 (2)C003—C00D—C006118.1 (4)
C002—C003—C00D119.2 (3)C004—C00D—C003119.6 (3)
C005—C003—C00D120.0 (4)C004—C00D—C006122.3 (2)
C009—C004—H004119.3C00A—C00E—C00B118.6 (4)
C00D—C004—H004119.3C00A—C00E—H00E120.7
C00D—C004—C009121.5 (2)C00B—C00E—H00E120.7
C003—C005—C001119.7 (2)C008—C00F—H00F119.8
C003—C005—C00I117.2 (4)C00G—C00F—C008120.4 (2)
C00I—C005—C001123.1 (3)C00G—C00F—H00F119.8
C00D—C006—H006119.3C00C—C00G—H00G119.6
C00H—C006—H006119.3C00F—C00G—C00C120.8 (4)
C00H—C006—C00D121.5 (2)C00F—C00G—H00G119.6
C008—C007—H007119.5C006—C00H—H00H118.9
C00I—C007—H007119.5C006—C00H—C00J122.1 (3)
C00I—C007—C008121.0 (2)C00J—C00H—H00H118.9
C002—C008—C007118.1 (4)C005—C00I—H00I118.6
C00F—C008—C002120.0 (3)C007—C00I—C005122.8 (3)
C00F—C008—C007121.9 (2)C007—C00I—H00I118.6
C001—C009—C00A119.1 (3)C002—C00J—C00H118.3 (3)
C004—C009—C001120.4 (3)C00C—C00J—C002119.4 (2)
C004—C009—C00A120.6 (2)C00C—C00J—C00H122.3 (3)
C009—C00A—H00A119.2C001—C00K—H00K119.5
C00E—C00A—C009121.5 (2)C00B—C00K—C001121.0 (2)
C00E—C00A—H00A119.2C00B—C00K—H00K119.5
C001—C005—C00I—C007179.4 (3)C009—C001—C005—C00I178.0 (2)
C001—C009—C00A—C00E0.2 (4)C009—C001—C00K—C00B1.0 (4)
C002—C003—C005—C001179.3 (3)C009—C004—C00D—C0031.0 (4)
C002—C003—C005—C00I1.7 (4)C009—C004—C00D—C006179.8 (2)
C002—C003—C00D—C004179.7 (3)C009—C00A—C00E—C00B0.2 (4)
C002—C003—C00D—C0060.5 (4)C00D—C003—C005—C0010.6 (4)
C002—C008—C00F—C00G1.5 (4)C00D—C003—C005—C00I178.4 (2)
C003—C002—C008—C0070.1 (4)C00D—C004—C009—C0010.7 (4)
C003—C002—C008—C00F179.1 (3)C00D—C004—C009—C00A179.4 (3)
C003—C002—C00J—C00C179.7 (3)C00D—C006—C00H—C00J4.1 (5)
C003—C002—C00J—C00H0.2 (4)C00E—C00B—C00K—C0010.6 (4)
C003—C005—C00I—C0071.7 (4)C00G—C00C—C00J—C0020.8 (5)
C004—C009—C00A—C00E179.9 (2)C00G—C00C—C00J—C00H179.2 (2)
C005—C001—C009—C0040.3 (4)C00H—C006—C00D—C0032.9 (4)
C005—C001—C009—C00A179.6 (3)C00H—C006—C00D—C004177.9 (3)
C005—C001—C00K—C00B179.4 (3)C00I—C007—C008—C0020.1 (4)
C005—C003—C00D—C0040.4 (4)C00I—C007—C008—C00F179.0 (3)
C005—C003—C00D—C006179.6 (2)C00J—C002—C003—C005179.2 (2)
C006—C00H—C00J—C0022.7 (4)C00J—C002—C003—C00D0.7 (4)
C006—C00H—C00J—C00C177.2 (3)C00J—C002—C008—C007180.0 (2)
C007—C008—C00F—C00G179.5 (3)C00J—C002—C008—C00F1.1 (4)
C008—C002—C003—C0051.0 (4)C00J—C00C—C00G—C00F0.4 (4)
C008—C002—C003—C00D179.1 (2)C00K—C001—C005—C003178.7 (2)
C008—C002—C00J—C00C0.1 (4)C00K—C001—C005—C00I2.4 (4)
C008—C002—C00J—C00H179.9 (2)C00K—C001—C009—C004179.3 (2)
C008—C007—C00I—C0050.8 (5)C00K—C001—C009—C00A0.8 (4)
C008—C00F—C00G—C00C0.8 (4)C00K—C00B—C00E—C00A0.0 (4)
C009—C001—C005—C0030.9 (4)
(benzoapyrene_7.1GPa) top
Crystal data top
C20H12Z = 4
Mr = 252.30F(000) = 528
Triclinic, P1Dx = 1.767 Mg m3
a = 3.4912 (1) ÅSynchrotron radiation, λ = 0.410 Å
b = 12.687 (3) ÅCell parameters from 373 reflections
c = 21.531 (6) Åθ = 3.4–18.8°
α = 91.51 (2)°µ = 0.05 mm1
β = 90.434 (9)°T = 293 K
γ = 95.820 (8)°Block, clear colourless
V = 948.4 (3) Å30.02 × 0.02 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1531 independent reflections
Radiation source: synchrotron867 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.031
ω scansθmax = 21.0°, θmin = 3.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.164, Tmax = 1.000k = 1516
2260 measured reflectionsl = 1621
Refinement top
Refinement on F266 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0973P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1531 reflectionsΔρmax = 0.20 e Å3
361 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5265 (8)0.2857 (6)0.5063 (5)0.035 (7)
C30.4547 (14)0.2227 (8)0.0088 (7)0.028 (5)
C50.9781 (8)0.2543 (5)0.6626 (5)0.025 (4)
C70.0231 (10)0.2332 (7)0.1652 (6)0.029 (9)
C90.7716 (8)0.2323 (5)0.6073 (5)0.023 (7)
C110.1838 (11)0.2627 (7)0.1110 (6)0.026 (5)
C130.3994 (8)0.1046 (5)0.5417 (5)0.028 (7)
H130.2781450.0365130.5350660.034*
C150.5296 (14)0.4017 (8)0.0524 (8)0.041 (10)
H150.6209310.4724770.0477500.049*
C170.7319 (8)0.3112 (6)0.5640 (5)0.029 (7)
C190.2484 (10)0.1894 (7)0.0646 (6)0.027 (9)
C210.6564 (8)0.0469 (6)0.6394 (5)0.046 (8)
H210.5342700.0211800.6332200.055*
C230.2617 (12)0.4444 (8)0.1534 (8)0.057 (11)
H230.3566280.5150140.1492990.068*
C251.0918 (9)0.4385 (6)0.6322 (5)0.027 (6)
H251.2010560.5075160.6401450.033*
C270.0911 (11)0.0510 (7)0.1242 (6)0.047 (9)
H270.1810450.0197830.1289610.057*
C310.1620 (11)0.1255 (7)0.1713 (6)0.025 (4)
C330.3574 (8)0.1806 (6)0.4955 (5)0.043 (8)
C350.5958 (13)0.3324 (8)0.0072 (7)0.029 (10)
C370.1496 (9)0.1561 (6)0.4406 (5)0.035 (8)
H370.0313320.0877120.4338160.042*
C470.3030 (9)0.2743 (6)0.2641 (5)0.030 (4)
H470.3494560.3221820.2958900.036*
C510.3285 (12)0.3735 (7)0.1070 (7)0.026 (5)
C550.8677 (16)0.2965 (9)0.0935 (9)0.042 (11)
H551.0146740.3205030.1271420.050*
C750.0932 (12)0.3064 (8)0.2117 (7)0.032 (5)
C790.5208 (13)0.1543 (8)0.0397 (8)0.058 (11)
H790.4294050.0830750.0371260.069*
C530.1152 (9)0.2300 (6)0.3965 (5)0.038 (8)
H530.0178010.2117390.3595440.046*
C670.0592 (8)0.4158 (6)0.2062 (5)0.032 (8)
H670.0220130.4656970.2374010.038*
C630.4422 (12)0.1654 (8)0.2668 (7)0.026 (4)
H630.5930670.1431690.3003290.032*
C430.7194 (8)0.1881 (6)0.0923 (5)0.034 (4)
H430.7540050.1416320.1254520.041*
C571.3447 (8)0.3800 (6)0.7313 (6)0.044 (8)
H571.4587240.4483220.7398170.053*
C390.8023 (16)0.3634 (9)0.0485 (9)0.047 (10)
H390.8929200.4343190.0525030.056*
C291.1382 (8)0.3591 (6)0.6771 (5)0.030 (7)
C410.2835 (9)0.3337 (6)0.4078 (5)0.029 (8)
H410.2540610.3851890.3787170.035*
C451.2317 (9)0.2003 (6)0.7614 (5)0.033 (8)
H451.2588970.1484240.7903750.039*
C490.6020 (8)0.1255 (5)0.5936 (5)0.034 (8)
C590.3689 (11)0.0956 (8)0.2247 (7)0.039 (10)
H590.4546950.0246350.2299770.046*
C611.3870 (9)0.3018 (6)0.7734 (5)0.031 (8)
H611.5225750.3184770.8102640.037*
C650.8732 (8)0.0680 (6)0.6900 (5)0.030 (4)
H650.9231530.0131200.7157560.036*
C690.8978 (8)0.4161 (6)0.5799 (5)0.043 (8)
H690.8682820.4702150.5524720.051*
C710.1085 (8)0.0800 (5)0.0709 (5)0.033 (9)
H710.1506360.0299070.0400640.040*
C731.0307 (8)0.1737 (6)0.7054 (5)0.037 (7)
C770.4822 (9)0.3594 (6)0.4590 (5)0.032 (8)
H770.5982570.4283140.4643440.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (15)0.041 (7)0.046 (18)0.0121 (17)0.014 (3)0.003 (11)
C30.0281 (17)0.028 (5)0.028 (11)0.008 (2)0.002 (3)0.004 (7)
C50.0259 (13)0.035 (5)0.015 (10)0.0082 (16)0.007 (2)0.007 (6)
C70.0232 (17)0.036 (8)0.03 (2)0.006 (2)0.002 (3)0.004 (14)
C90.0263 (14)0.029 (6)0.017 (16)0.0091 (16)0.012 (2)0.004 (10)
C110.0225 (15)0.034 (5)0.023 (11)0.009 (2)0.003 (3)0.008 (7)
C130.0287 (16)0.030 (7)0.026 (18)0.0064 (16)0.013 (3)0.010 (11)
C150.0282 (19)0.039 (9)0.06 (2)0.004 (2)0.004 (4)0.014 (15)
C170.0264 (15)0.035 (7)0.028 (17)0.0118 (16)0.013 (2)0.002 (11)
C190.0230 (17)0.039 (9)0.02 (2)0.010 (2)0.008 (3)0.004 (14)
C210.0283 (16)0.054 (7)0.058 (18)0.0108 (18)0.012 (3)0.022 (12)
C230.030 (2)0.051 (10)0.09 (3)0.009 (3)0.001 (4)0.032 (16)
C250.0286 (15)0.035 (6)0.018 (15)0.0057 (18)0.007 (3)0.009 (10)
C270.0309 (18)0.043 (9)0.07 (2)0.003 (2)0.002 (3)0.028 (14)
C310.0277 (15)0.021 (5)0.025 (11)0.0046 (19)0.003 (3)0.015 (7)
C330.0237 (15)0.051 (8)0.056 (18)0.0064 (18)0.008 (3)0.016 (12)
C350.0247 (18)0.031 (9)0.03 (2)0.006 (2)0.000 (3)0.005 (15)
C370.0297 (16)0.040 (8)0.034 (19)0.0044 (19)0.014 (3)0.010 (12)
C470.0320 (14)0.035 (5)0.023 (10)0.0096 (18)0.001 (3)0.015 (7)
C510.0265 (16)0.026 (5)0.025 (11)0.006 (2)0.004 (3)0.007 (7)
C550.026 (2)0.058 (11)0.04 (3)0.011 (3)0.004 (4)0.010 (17)
C750.0289 (16)0.046 (6)0.023 (11)0.014 (2)0.004 (3)0.002 (7)
C790.0256 (19)0.048 (10)0.10 (3)0.005 (2)0.008 (4)0.027 (16)
C530.0281 (16)0.055 (8)0.033 (18)0.0107 (18)0.005 (3)0.002 (12)
C670.0294 (16)0.035 (8)0.032 (19)0.0088 (18)0.002 (3)0.011 (12)
C630.0303 (17)0.039 (5)0.011 (11)0.010 (2)0.001 (3)0.008 (7)
C430.0293 (14)0.051 (6)0.023 (10)0.0092 (19)0.002 (3)0.010 (7)
C570.0240 (16)0.055 (8)0.06 (2)0.0094 (18)0.005 (3)0.002 (12)
C390.025 (2)0.057 (10)0.06 (2)0.008 (2)0.005 (4)0.026 (16)
C290.0252 (14)0.046 (7)0.021 (17)0.0075 (17)0.008 (2)0.002 (11)
C410.0347 (17)0.038 (8)0.02 (2)0.0114 (19)0.003 (3)0.010 (13)
C450.0335 (17)0.053 (8)0.014 (18)0.015 (2)0.012 (3)0.000 (12)
C490.0253 (15)0.044 (7)0.035 (18)0.0070 (17)0.011 (3)0.008 (12)
C590.0297 (19)0.048 (9)0.04 (2)0.013 (2)0.005 (3)0.007 (15)
C610.0298 (16)0.051 (8)0.013 (18)0.0129 (19)0.006 (3)0.011 (12)
C650.0307 (14)0.041 (5)0.019 (10)0.0104 (17)0.012 (2)0.000 (7)
C690.0282 (15)0.039 (7)0.062 (18)0.0069 (18)0.008 (3)0.012 (12)
C710.0315 (15)0.036 (8)0.03 (2)0.0074 (18)0.002 (3)0.002 (14)
C730.0237 (15)0.061 (7)0.028 (17)0.0112 (18)0.010 (3)0.009 (11)
C770.0274 (16)0.035 (7)0.032 (18)0.0054 (17)0.007 (3)0.006 (12)
Geometric parameters (Å, º) top
C1—C171.442 (15)C31—C591.402 (14)
C1—C331.414 (11)C33—C371.394 (15)
C1—C771.419 (7)C35—C391.447 (15)
C3—C191.455 (14)C37—H370.9300
C3—C351.430 (13)C37—C531.364 (7)
C3—C791.38 (3)C47—H470.9300
C5—C91.393 (13)C47—C751.397 (12)
C5—C291.415 (12)C47—C631.420 (11)
C5—C731.420 (6)C55—H550.9300
C7—C111.415 (13)C55—C431.421 (13)
C7—C311.412 (10)C55—C391.31 (3)
C7—C751.39 (2)C75—C671.443 (10)
C9—C171.403 (6)C79—H790.9300
C9—C491.445 (11)C79—C431.388 (13)
C11—C191.38 (2)C53—H530.9300
C11—C511.449 (11)C53—C411.400 (12)
C13—H130.9300C67—H670.9300
C13—C331.420 (7)C63—H630.9300
C13—C491.325 (12)C63—C591.30 (3)
C15—H150.9300C43—H430.9300
C15—C351.33 (3)C57—H570.9300
C15—C511.409 (15)C57—C291.373 (14)
C17—C691.428 (12)C57—C611.379 (7)
C19—C711.434 (9)C39—H390.9300
C21—H210.9300C41—H410.9300
C21—C491.446 (6)C41—C771.312 (13)
C21—C651.328 (13)C45—H450.9300
C23—H230.9300C45—C611.362 (11)
C23—C511.36 (3)C45—C731.406 (15)
C23—C671.380 (14)C59—H590.9300
C25—H250.9300C61—H610.9300
C25—C291.434 (6)C65—H650.9300
C25—C691.320 (14)C65—C731.427 (12)
C27—H270.9300C69—H690.9300
C27—C311.41 (2)C71—H710.9300
C27—C711.385 (12)C77—H770.9300
C33—C1—C17118.5 (5)C43—C55—H55119.2
C33—C1—C77117.2 (9)C39—C55—H55119.2
C77—C1—C17124.2 (7)C39—C55—C43121.5 (9)
C35—C3—C19115.9 (14)C7—C75—C47120.3 (7)
C79—C3—C19123.3 (8)C7—C75—C67119.6 (8)
C79—C3—C35120.8 (10)C47—C75—C67120.1 (12)
C9—C5—C29119.8 (4)C3—C79—H79119.0
C9—C5—C73121.5 (7)C3—C79—C43122.1 (8)
C29—C5—C73118.7 (9)C43—C79—H79119.0
C31—C7—C11118.3 (13)C37—C53—H53120.6
C75—C7—C11122.0 (7)C37—C53—C41118.8 (10)
C75—C7—C31119.7 (9)C41—C53—H53120.6
C5—C9—C17121.4 (7)C23—C67—C75118.2 (12)
C5—C9—C49119.4 (4)C23—C67—H67120.9
C17—C9—C49119.1 (8)C75—C67—H67120.9
C7—C11—C51116.7 (12)C47—C63—H63118.5
C19—C11—C7121.7 (7)C59—C63—C47123.0 (9)
C19—C11—C51121.7 (9)C59—C63—H63118.5
C33—C13—H13118.2C55—C43—H43121.3
C49—C13—H13118.2C79—C43—C55117.4 (13)
C49—C13—C33123.6 (7)C79—C43—H43121.3
C35—C15—H15118.3C29—C57—H57119.3
C35—C15—C51123.4 (8)C29—C57—C61121.5 (8)
C51—C15—H15118.3C61—C57—H57119.3
C9—C17—C1120.3 (7)C35—C39—H39118.4
C9—C17—C69117.3 (9)C55—C39—C35123.3 (9)
C69—C17—C1122.3 (5)C55—C39—H39118.4
C11—C19—C3120.4 (8)C5—C29—C25117.6 (9)
C11—C19—C71120.1 (8)C57—C29—C5119.5 (5)
C71—C19—C3119.6 (12)C57—C29—C25122.8 (7)
C49—C21—H21118.6C53—C41—H41119.5
C65—C21—H21118.6C77—C41—C53121.0 (5)
C65—C21—C49122.8 (6)C77—C41—H41119.5
C51—C23—H23118.6C61—C45—H45119.9
C51—C23—C67122.8 (8)C61—C45—C73120.3 (5)
C67—C23—H23118.6C73—C45—H45119.9
C29—C25—H25119.2C9—C49—C21116.9 (8)
C69—C25—H25119.2C13—C49—C9119.6 (4)
C69—C25—C29121.6 (7)C13—C49—C21123.5 (7)
C31—C27—H27119.0C31—C59—H59119.5
C71—C27—H27119.0C63—C59—C31121.0 (8)
C71—C27—C31122.1 (6)C63—C59—H59119.5
C27—C31—C7119.7 (9)C57—C61—H61119.7
C59—C31—C7118.6 (13)C45—C61—C57120.6 (9)
C59—C31—C27121.7 (8)C45—C61—H61119.7
C1—C33—C13118.7 (9)C21—C65—H65119.6
C37—C33—C1118.8 (5)C21—C65—C73120.8 (4)
C37—C33—C13122.5 (7)C73—C65—H65119.6
C3—C35—C39114.9 (14)C17—C69—H69119.0
C15—C35—C3122.6 (10)C25—C69—C17122.0 (5)
C15—C35—C39122.4 (9)C25—C69—H69119.0
C33—C37—H37119.2C19—C71—H71120.9
C53—C37—C33121.7 (7)C27—C71—C19118.2 (10)
C53—C37—H37119.2C27—C71—H71120.9
C75—C47—H47121.4C5—C73—C65118.3 (9)
C75—C47—C63117.3 (11)C45—C73—C5119.4 (7)
C63—C47—H47121.4C45—C73—C65122.3 (5)
C15—C51—C11115.9 (13)C1—C77—H77118.8
C23—C51—C11120.7 (9)C41—C77—C1122.4 (7)
C23—C51—C15123.4 (8)C41—C77—H77118.8
C1—C17—C69—C25178.7 (6)C35—C15—C51—C23179.8 (9)
C1—C33—C37—C531.9 (11)C37—C53—C41—C772.2 (11)
C3—C19—C71—C27179.2 (5)C47—C75—C67—C23179.4 (5)
C3—C35—C39—C552.1 (14)C47—C63—C59—C313.7 (14)
C3—C79—C43—C552.4 (10)C51—C11—C19—C32.1 (12)
C5—C9—C17—C1178.1 (6)C51—C11—C19—C71178.5 (4)
C5—C9—C17—C692.6 (10)C51—C15—C35—C32.5 (15)
C5—C9—C49—C13178.8 (6)C51—C15—C35—C39179.8 (6)
C5—C9—C49—C210.6 (10)C51—C23—C67—C751.1 (10)
C7—C11—C19—C3178.6 (5)C75—C7—C11—C19179.2 (8)
C7—C11—C19—C710.8 (11)C75—C7—C11—C511.5 (10)
C7—C11—C51—C15179.2 (6)C75—C7—C31—C27180.0 (8)
C7—C11—C51—C230.6 (10)C75—C7—C31—C590.1 (10)
C7—C31—C59—C632.1 (12)C75—C47—C63—C593.1 (11)
C7—C75—C67—C231.9 (9)C79—C3—C19—C11178.5 (8)
C9—C5—C29—C252.4 (10)C79—C3—C19—C710.9 (11)
C9—C5—C29—C57179.3 (6)C79—C3—C35—C15178.2 (10)
C9—C5—C73—C45178.2 (6)C79—C3—C35—C390.7 (11)
C9—C5—C73—C651.4 (10)C53—C41—C77—C12.4 (11)
C9—C17—C69—C252.0 (11)C67—C23—C51—C110.5 (12)
C11—C7—C31—C270.2 (10)C67—C23—C51—C15179.0 (5)
C11—C7—C31—C59179.7 (6)C63—C47—C75—C70.9 (9)
C11—C7—C75—C47179.2 (4)C63—C47—C75—C67179.5 (5)
C11—C7—C75—C672.2 (12)C43—C55—C39—C353.6 (18)
C11—C19—C71—C270.2 (9)C39—C55—C43—C793.7 (13)
C13—C33—C37—C53179.4 (7)C29—C5—C9—C172.9 (11)
C15—C35—C39—C55179.5 (11)C29—C5—C9—C49178.6 (6)
C17—C1—C33—C130.5 (10)C29—C5—C73—C451.3 (10)
C17—C1—C33—C37178.3 (6)C29—C5—C73—C65179.1 (6)
C17—C1—C77—C41178.0 (7)C29—C25—C69—C171.7 (12)
C17—C9—C49—C132.7 (10)C29—C57—C61—C451.7 (11)
C17—C9—C49—C21179.1 (6)C49—C9—C17—C10.4 (10)
C19—C3—C35—C152.9 (12)C49—C9—C17—C69178.9 (6)
C19—C3—C35—C39179.6 (6)C49—C13—C33—C12.8 (11)
C19—C3—C79—C43179.8 (4)C49—C13—C33—C37178.6 (7)
C19—C11—C51—C151.5 (10)C49—C21—C65—C737.2 (12)
C19—C11—C51—C23179.9 (8)C61—C57—C29—C52.7 (11)
C21—C65—C73—C55.5 (11)C61—C57—C29—C25179.5 (8)
C21—C65—C73—C45174.1 (7)C61—C45—C73—C52.4 (11)
C27—C31—C59—C63177.9 (8)C61—C45—C73—C65178.1 (6)
C31—C7—C11—C190.6 (10)C65—C21—C49—C94.7 (11)
C31—C7—C11—C51178.8 (5)C65—C21—C49—C13177.1 (7)
C31—C7—C75—C470.6 (11)C69—C25—C29—C51.9 (11)
C31—C7—C75—C67178.1 (4)C69—C25—C29—C57178.7 (7)
C31—C27—C71—C190.6 (9)C71—C27—C31—C70.8 (11)
C33—C1—C17—C91.9 (10)C71—C27—C31—C59179.1 (4)
C33—C1—C17—C69177.4 (6)C73—C5—C9—C17177.6 (7)
C33—C1—C77—C412.2 (11)C73—C5—C9—C490.9 (10)
C33—C13—C49—C94.3 (11)C73—C5—C29—C25178.1 (6)
C33—C13—C49—C21177.6 (7)C73—C5—C29—C571.2 (11)
C33—C37—C53—C412.0 (11)C73—C45—C61—C570.9 (11)
C35—C3—C19—C112.7 (10)C77—C1—C17—C9178.0 (7)
C35—C3—C19—C71177.9 (5)C77—C1—C17—C692.8 (11)
C35—C3—C79—C431.1 (13)C77—C1—C33—C13179.4 (7)
C35—C15—C51—C111.7 (12)C77—C1—C33—C371.9 (10)
(benzoapyrene_9.1GPa) top
Crystal data top
C20H12Z = 4
Mr = 252.30F(000) = 528
Triclinic, P1Dx = 1.838 Mg m3
a = 3.4134 (1) ÅSynchrotron radiation, λ = 0.410 Å
b = 12.5674 (19) ÅCell parameters from 523 reflections
c = 21.367 (5) Åθ = 3.5–19.1°
α = 91.675 (15)°µ = 0.05 mm1
β = 90.433 (7)°T = 293 K
γ = 95.755 (6)°Block, clear colourless
V = 911.5 (2) Å30.01 × 0.01 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1617 independent reflections
Radiation source: synchrotron1036 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.017
ω scansθmax = 21.3°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlisPro 1.171.43.70a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.360, Tmax = 1.000k = 1517
2374 measured reflectionsl = 1823
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.1029P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1617 reflectionsΔρmax = 0.18 e Å3
361 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0333 (9)0.2330 (5)0.1653 (4)0.019 (4)
C30.9800 (6)0.2525 (4)0.6623 (3)0.033 (5)
C50.5217 (6)0.2865 (4)0.5063 (3)0.025 (5)
C70.4552 (10)0.2230 (6)0.0097 (5)0.020 (7)
C90.5973 (10)0.3333 (6)0.0061 (5)0.022 (6)
C110.3476 (6)0.1808 (4)0.4937 (4)0.033 (5)
C130.1756 (9)0.1236 (6)0.1714 (5)0.025 (6)
C151.1440 (6)0.3572 (4)0.6778 (4)0.032 (5)
C170.7707 (6)0.2305 (4)0.6073 (4)0.048 (5)
C190.1778 (8)0.2645 (5)0.1115 (4)0.017 (4)
C210.7300 (6)0.3098 (4)0.5621 (3)0.028 (5)
C230.2445 (8)0.1883 (5)0.0634 (4)0.026 (6)
C250.3890 (6)0.1016 (4)0.5388 (3)0.031 (5)
H250.2668240.0329180.5309690.037*
C270.5257 (10)0.4041 (6)0.0537 (5)0.031 (7)
H270.6199910.4756240.0498620.038*
C290.0969 (9)0.0504 (6)0.1243 (5)0.020 (6)
H290.1843300.0214410.1287490.024*
C311.0957 (6)0.4394 (4)0.6343 (4)0.023 (5)
H311.2019580.5091670.6435260.028*
C330.8058 (10)0.3653 (6)0.0483 (5)0.039 (7)
H330.8984640.4370630.0517030.046*
C350.1347 (6)0.1573 (4)0.4392 (4)0.031 (5)
H350.0100600.0885950.4324310.038*
C370.6547 (6)0.0423 (4)0.6372 (3)0.036 (5)
H370.5309080.0265800.6307780.043*
C390.2524 (10)0.4473 (7)0.1546 (6)0.048 (7)
H390.3474050.5187820.1510400.057*
C410.9000 (6)0.4166 (4)0.5808 (4)0.038 (5)
H410.8702650.4721680.5538960.046*
C430.1032 (6)0.0801 (4)0.0719 (3)0.030 (6)
H430.1478980.0287350.0413010.036*
C450.5959 (6)0.1216 (4)0.5919 (4)0.034 (5)
C470.3233 (9)0.3754 (6)0.1067 (5)0.021 (6)
C490.5236 (11)0.1528 (6)0.0409 (5)0.026 (7)
H490.4287120.0809930.0388240.032*
C510.4793 (6)0.3626 (4)0.4596 (3)0.032 (5)
H510.5945580.4323500.4657970.039*
C530.1069 (8)0.3066 (6)0.2120 (5)0.048 (7)
C551.0344 (6)0.1697 (4)0.7052 (4)0.041 (5)
C571.3515 (7)0.3777 (5)0.7325 (4)0.045 (5)
H571.4670410.4467900.7412950.054*
C590.3864 (9)0.0935 (6)0.2241 (5)0.031 (6)
H590.4800970.0220660.2286450.037*
C610.7250 (6)0.1869 (4)0.0931 (3)0.028 (4)
H610.7619990.1393900.1262110.033*
C630.2765 (7)0.3356 (5)0.4067 (4)0.034 (5)
H630.2512670.3871390.3769690.040*
C650.8759 (11)0.2960 (7)0.0955 (6)0.047 (7)
H651.0235640.3199350.1296590.057*
C670.1019 (7)0.2313 (5)0.3953 (4)0.031 (5)
H670.0347710.2131420.3580700.037*
C690.8797 (6)0.0638 (4)0.6878 (3)0.033 (5)
H690.9377090.0078040.7126350.040*
C710.0487 (6)0.4171 (4)0.2068 (4)0.045 (5)
H710.0103540.4669660.2386280.053*
C731.2362 (7)0.1966 (5)0.7617 (4)0.038 (6)
H731.2624790.1437520.7905650.046*
C750.3199 (6)0.2745 (5)0.2643 (4)0.028 (5)
H750.3699610.3240520.2956990.034*
C771.3955 (7)0.2991 (5)0.7753 (4)0.043 (5)
H771.5312870.3157010.8127780.051*
C790.4582 (9)0.1668 (6)0.2693 (5)0.024 (6)
H790.6021850.1449690.3042490.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (11)0.026 (5)0.012 (9)0.0077 (15)0.001 (2)0.003 (6)
C30.0179 (10)0.045 (5)0.037 (11)0.0074 (12)0.0071 (16)0.015 (8)
C50.0198 (11)0.033 (5)0.025 (11)0.0077 (12)0.0075 (16)0.000 (8)
C70.0211 (13)0.024 (7)0.017 (15)0.0068 (16)0.004 (2)0.001 (10)
C90.0199 (13)0.024 (7)0.022 (14)0.0043 (16)0.003 (2)0.000 (10)
C110.0195 (11)0.041 (6)0.042 (12)0.0084 (13)0.0086 (17)0.013 (8)
C130.0211 (12)0.027 (7)0.028 (14)0.0052 (16)0.000 (2)0.006 (10)
C150.0200 (11)0.032 (5)0.045 (12)0.0067 (12)0.0040 (17)0.004 (8)
C170.0175 (10)0.050 (5)0.080 (12)0.0088 (12)0.0100 (17)0.039 (8)
C190.0194 (10)0.024 (5)0.008 (9)0.0053 (15)0.0008 (19)0.006 (6)
C210.0199 (11)0.033 (5)0.030 (11)0.0063 (12)0.0061 (16)0.007 (8)
C230.0210 (12)0.032 (6)0.026 (14)0.0073 (16)0.004 (2)0.012 (10)
C250.0226 (11)0.029 (5)0.042 (11)0.0035 (12)0.0079 (17)0.010 (8)
C270.0221 (13)0.040 (7)0.034 (15)0.0057 (18)0.001 (2)0.015 (10)
C290.0263 (14)0.025 (7)0.009 (14)0.0062 (17)0.004 (2)0.003 (10)
C310.0228 (11)0.024 (5)0.024 (12)0.0071 (12)0.0064 (17)0.004 (8)
C330.0205 (14)0.043 (7)0.054 (15)0.0063 (17)0.002 (2)0.024 (10)
C350.0234 (11)0.033 (6)0.038 (12)0.0062 (13)0.0112 (18)0.001 (8)
C370.0229 (11)0.037 (6)0.051 (12)0.0096 (13)0.0127 (17)0.020 (8)
C390.0255 (14)0.051 (8)0.070 (16)0.0095 (19)0.006 (3)0.038 (11)
C410.0215 (11)0.035 (5)0.060 (11)0.0081 (12)0.0091 (17)0.020 (8)
C430.0241 (11)0.037 (6)0.031 (13)0.0087 (13)0.0042 (18)0.010 (9)
C450.0194 (10)0.031 (5)0.053 (11)0.0050 (12)0.0063 (17)0.012 (8)
C470.0210 (13)0.027 (7)0.014 (15)0.0047 (16)0.002 (2)0.002 (10)
C490.0230 (14)0.031 (7)0.026 (15)0.0065 (17)0.002 (2)0.004 (11)
C510.0224 (11)0.032 (5)0.044 (11)0.0064 (13)0.0044 (17)0.011 (8)
C530.0209 (13)0.060 (7)0.066 (15)0.0101 (18)0.004 (2)0.040 (10)
C550.0200 (11)0.046 (5)0.060 (12)0.0084 (12)0.0053 (17)0.025 (8)
C570.0221 (11)0.046 (6)0.070 (13)0.0097 (13)0.0069 (19)0.022 (9)
C590.0235 (13)0.037 (7)0.032 (14)0.0078 (16)0.003 (2)0.014 (10)
C610.0262 (11)0.045 (5)0.014 (8)0.0127 (15)0.0013 (18)0.002 (6)
C630.0261 (12)0.049 (6)0.029 (12)0.0117 (14)0.0066 (19)0.016 (9)
C650.0198 (14)0.055 (8)0.071 (16)0.0119 (19)0.009 (2)0.034 (11)
C670.0234 (11)0.042 (6)0.028 (12)0.0083 (13)0.0023 (17)0.001 (8)
C690.0240 (11)0.039 (5)0.038 (11)0.0089 (13)0.0089 (17)0.018 (8)
C710.0228 (11)0.044 (6)0.070 (12)0.0086 (13)0.0029 (18)0.027 (9)
C730.0246 (12)0.053 (6)0.039 (13)0.0132 (15)0.0079 (19)0.016 (9)
C750.0252 (12)0.041 (6)0.020 (12)0.0097 (14)0.0027 (18)0.002 (9)
C770.0226 (12)0.048 (6)0.059 (12)0.0107 (14)0.0043 (19)0.013 (9)
C790.0257 (13)0.030 (7)0.017 (13)0.0099 (18)0.006 (2)0.001 (9)
Geometric parameters (Å, º) top
C1—C131.422 (8)C35—H350.9300
C1—C191.407 (8)C35—C671.353 (5)
C1—C531.383 (18)C37—H370.9300
C3—C151.407 (9)C37—C451.436 (4)
C3—C171.377 (10)C37—C691.327 (9)
C3—C551.432 (4)C39—H390.9300
C5—C111.417 (8)C39—C471.38 (2)
C5—C211.391 (10)C39—C711.361 (9)
C5—C511.419 (5)C41—H410.9300
C7—C91.426 (9)C43—H430.9300
C7—C231.415 (9)C49—H490.9300
C7—C491.41 (2)C49—C611.370 (8)
C9—C271.37 (2)C51—H510.9300
C9—C331.414 (9)C51—C631.338 (10)
C11—C251.422 (4)C53—C711.444 (8)
C11—C351.376 (10)C53—C751.386 (8)
C13—C291.390 (18)C55—C691.419 (9)
C13—C591.383 (9)C55—C731.402 (11)
C15—C311.430 (4)C57—H570.9300
C15—C571.366 (10)C57—C771.383 (5)
C17—C211.425 (4)C59—H590.9300
C17—C451.464 (9)C59—C791.356 (19)
C19—C231.419 (16)C61—H610.9300
C19—C471.438 (8)C61—C651.419 (9)
C21—C411.452 (9)C63—H630.9300
C23—C431.414 (7)C63—C671.398 (9)
C25—H250.9300C65—H650.9300
C25—C451.337 (10)C67—H670.9300
C27—H270.9300C69—H690.9300
C27—C471.369 (9)C71—H710.9300
C29—H290.9300C73—H730.9300
C29—C431.357 (8)C73—C771.369 (9)
C31—H310.9300C75—H750.9300
C31—C411.329 (10)C75—C791.395 (8)
C33—H330.9300C77—H770.9300
C33—C651.35 (2)C79—H790.9300
C19—C1—C13119.3 (9)C21—C41—H41118.2
C53—C1—C13119.6 (6)C31—C41—C21123.6 (3)
C53—C1—C19121.2 (6)C31—C41—H41118.2
C15—C3—C55118.4 (6)C23—C43—H43119.6
C17—C3—C15120.8 (3)C29—C43—C23120.7 (8)
C17—C3—C55120.9 (5)C29—C43—H43119.6
C11—C5—C51117.0 (6)C25—C45—C17119.8 (3)
C21—C5—C11119.3 (3)C25—C45—C37124.0 (5)
C21—C5—C51123.7 (5)C37—C45—C17116.2 (6)
C23—C7—C9118.8 (10)C27—C47—C19117.2 (10)
C49—C7—C9118.8 (6)C27—C47—C39123.3 (7)
C49—C7—C23122.4 (7)C39—C47—C19119.5 (6)
C27—C9—C7120.1 (6)C7—C49—H49118.9
C27—C9—C33122.5 (7)C61—C49—C7122.2 (6)
C33—C9—C7117.4 (10)C61—C49—H49118.9
C5—C11—C25118.9 (6)C5—C51—H51119.4
C35—C11—C5119.8 (3)C63—C51—C5121.1 (5)
C35—C11—C25121.3 (5)C63—C51—H51119.4
C29—C13—C1118.9 (6)C1—C53—C71119.5 (6)
C59—C13—C1118.9 (10)C1—C53—C75120.4 (6)
C59—C13—C29122.2 (6)C75—C53—C71120.0 (9)
C3—C15—C31118.2 (7)C69—C55—C3117.7 (6)
C57—C15—C3120.0 (3)C73—C55—C3118.9 (6)
C57—C15—C31121.8 (6)C73—C55—C69123.4 (3)
C3—C17—C21122.2 (5)C15—C57—H57118.9
C3—C17—C45120.4 (3)C15—C57—C77122.2 (6)
C21—C17—C45117.3 (6)C77—C57—H57118.9
C1—C19—C23120.5 (6)C13—C59—H59119.6
C1—C19—C47118.3 (9)C79—C59—C13120.8 (6)
C23—C19—C47121.2 (6)C79—C59—H59119.6
C5—C21—C17121.8 (5)C49—C61—H61120.7
C5—C21—C41123.4 (3)C49—C61—C65118.7 (9)
C17—C21—C41114.7 (6)C65—C61—H61120.7
C7—C23—C19119.0 (6)C51—C63—H63119.4
C43—C23—C7122.7 (9)C51—C63—C67121.2 (3)
C43—C23—C19118.3 (5)C67—C63—H63119.4
C11—C25—H25118.6C33—C65—C61120.2 (6)
C45—C25—C11122.8 (5)C33—C65—H65119.9
C45—C25—H25118.6C61—C65—H65119.9
C9—C27—H27118.2C35—C67—C63119.0 (7)
C47—C27—C9123.7 (7)C35—C67—H67120.5
C47—C27—H27118.2C63—C67—H67120.5
C13—C29—H29118.9C37—C69—C55122.0 (3)
C43—C29—C13122.3 (5)C37—C69—H69119.0
C43—C29—H29118.9C55—C69—H69119.0
C15—C31—H31119.8C39—C71—C53119.0 (9)
C41—C31—C15120.5 (5)C39—C71—H71120.5
C41—C31—H31119.8C53—C71—H71120.5
C9—C33—H33118.6C55—C73—H73119.3
C65—C33—C9122.7 (7)C77—C73—C55121.4 (3)
C65—C33—H33118.6C77—C73—H73119.3
C11—C35—H35119.1C53—C75—H75120.4
C67—C35—C11121.8 (6)C53—C75—C79119.1 (8)
C67—C35—H35119.1C79—C75—H75120.4
C45—C37—H37118.9C57—C77—H77120.5
C69—C37—H37118.9C73—C77—C57119.1 (7)
C69—C37—C45122.3 (5)C73—C77—H77120.5
C47—C39—H39118.8C59—C79—C75121.2 (6)
C71—C39—H39118.8C59—C79—H79119.4
C71—C39—C47122.4 (6)C75—C79—H79119.4
C1—C13—C29—C431.6 (9)C19—C1—C53—C712.5 (8)
C1—C13—C59—C790.2 (8)C19—C1—C53—C75179.1 (3)
C1—C19—C23—C7179.5 (3)C19—C23—C43—C291.1 (6)
C1—C19—C23—C431.8 (7)C21—C5—C11—C250.4 (8)
C1—C19—C47—C27179.6 (4)C21—C5—C11—C35178.8 (5)
C1—C19—C47—C390.0 (8)C21—C5—C51—C63179.8 (5)
C1—C53—C71—C392.5 (7)C21—C17—C45—C253.7 (8)
C1—C53—C75—C790.2 (7)C21—C17—C45—C37177.6 (4)
C3—C15—C31—C410.1 (8)C23—C7—C9—C270.7 (9)
C3—C15—C57—C772.6 (8)C23—C7—C9—C33179.9 (4)
C3—C17—C21—C5179.3 (4)C23—C7—C49—C61179.5 (3)
C3—C17—C21—C414.5 (7)C23—C19—C47—C270.4 (7)
C3—C17—C45—C25179.1 (4)C23—C19—C47—C39180.0 (6)
C3—C17—C45—C370.4 (7)C25—C11—C35—C67178.3 (5)
C3—C55—C69—C377.3 (8)C27—C9—C33—C65179.8 (7)
C3—C55—C73—C772.8 (8)C29—C13—C59—C79180.0 (6)
C5—C11—C25—C452.1 (8)C31—C15—C57—C77179.1 (5)
C5—C11—C35—C673.4 (8)C33—C9—C27—C47179.7 (4)
C5—C21—C41—C31179.3 (4)C35—C11—C25—C45179.5 (5)
C5—C51—C63—C670.6 (8)C45—C17—C21—C52.1 (7)
C7—C9—C27—C470.6 (10)C45—C17—C21—C41178.4 (4)
C7—C9—C33—C650.6 (9)C45—C37—C69—C558.7 (9)
C7—C23—C43—C29179.9 (4)C47—C19—C23—C70.6 (8)
C7—C49—C61—C651.3 (8)C47—C19—C23—C43178.2 (3)
C9—C7—C23—C190.7 (8)C47—C39—C71—C531.3 (8)
C9—C7—C23—C43178.0 (4)C49—C7—C9—C27178.1 (7)
C9—C7—C49—C610.7 (10)C49—C7—C9—C331.0 (8)
C9—C27—C47—C190.4 (9)C49—C7—C23—C19178.1 (6)
C9—C27—C47—C39180.0 (7)C49—C7—C23—C433.2 (9)
C9—C33—C65—C612.6 (11)C49—C61—C65—C332.9 (8)
C11—C5—C21—C170.6 (8)C51—C5—C11—C25178.9 (4)
C11—C5—C21—C41176.5 (4)C51—C5—C11—C352.7 (8)
C11—C5—C51—C631.4 (7)C51—C5—C21—C17178.9 (5)
C11—C25—C45—C173.8 (8)C51—C5—C21—C415.2 (8)
C11—C25—C45—C37177.6 (5)C51—C63—C67—C351.1 (8)
C11—C35—C67—C632.5 (8)C53—C1—C13—C29179.5 (6)
C13—C1—C19—C230.7 (7)C53—C1—C13—C590.2 (8)
C13—C1—C19—C47179.2 (4)C53—C1—C19—C23178.8 (5)
C13—C1—C53—C71178.0 (3)C53—C1—C19—C471.2 (7)
C13—C1—C53—C750.4 (8)C53—C75—C79—C590.3 (8)
C13—C29—C43—C230.6 (7)C55—C3—C15—C31178.8 (4)
C13—C59—C79—C750.5 (10)C55—C3—C15—C570.4 (8)
C15—C3—C17—C213.9 (8)C55—C3—C17—C21176.4 (5)
C15—C3—C17—C45179.1 (4)C55—C3—C17—C450.6 (8)
C15—C3—C55—C69177.7 (4)C55—C73—C77—C570.8 (8)
C15—C3—C55—C732.2 (7)C57—C15—C31—C41178.5 (5)
C15—C31—C41—C211.1 (8)C59—C13—C29—C43178.7 (3)
C15—C57—C77—C732.0 (8)C69—C37—C45—C175.1 (8)
C17—C3—C15—C311.5 (8)C69—C37—C45—C25176.3 (5)
C17—C3—C15—C57179.9 (4)C69—C55—C73—C77177.1 (4)
C17—C3—C55—C692.5 (7)C71—C39—C47—C190.1 (10)
C17—C3—C55—C73177.5 (4)C71—C39—C47—C27179.7 (3)
C17—C21—C41—C313.1 (7)C71—C53—C75—C79178.2 (4)
C19—C1—C13—C290.9 (8)C73—C55—C69—C37172.8 (5)
C19—C1—C13—C59179.3 (4)C75—C53—C71—C39179.1 (4)
(benzoapyrene_11.8GPa) top
Crystal data top
C20H12Z = 4
Mr = 252.30F(000) = 528
Triclinic, P1Dx = 1.901 Mg m3
a = 3.3501 (1) ÅSynchrotron radiation, λ = 0.410 Å
b = 12.453 (2) ÅCell parameters from 526 reflections
c = 21.244 (5) Åθ = 3.6–19.3°
α = 91.709 (18)°µ = 0.05 mm1
β = 90.417 (8)°T = 293 K
γ = 95.599 (7)°Block, black
V = 881.6 (3) Å30.02 × 0.02 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1482 independent reflections
Radiation source: synchrotron979 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.023
ω scansθmax = 21.3°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.042, Tmax = 1.000k = 1416
2203 measured reflectionsl = 1822
Refinement top
Refinement on F278 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.1283P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1482 reflectionsΔρmax = 0.21 e Å3
361 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0407 (9)0.2358 (6)0.1674 (5)0.020 (4)
C30.9838 (7)0.2508 (5)0.6630 (4)0.034 (6)
C50.5186 (7)0.2871 (5)0.5065 (4)0.036 (6)
C70.4554 (9)0.2228 (7)0.0093 (6)0.022 (4)
C90.5981 (10)0.3335 (7)0.0056 (6)0.021 (4)
C110.3407 (7)0.1799 (5)0.4931 (4)0.024 (3)
C130.1857 (9)0.1228 (7)0.1712 (5)0.030 (8)
C151.1497 (7)0.3577 (5)0.6791 (4)0.025 (3)
C170.7709 (7)0.2284 (5)0.6064 (4)0.027 (6)
C190.1717 (9)0.2647 (6)0.1110 (5)0.021 (3)
C210.7287 (7)0.3107 (5)0.5639 (4)0.041 (6)
C230.2411 (9)0.1891 (6)0.0645 (5)0.022 (4)
C250.3833 (7)0.1006 (5)0.5384 (4)0.026 (6)
H250.2593670.0313280.5305850.031*
C270.5240 (10)0.4038 (7)0.0516 (6)0.036 (8)
H270.6159260.4760480.0469860.044*
C290.1056 (10)0.0507 (7)0.1259 (5)0.022 (4)
H290.1910540.0216860.1312690.026*
C311.1002 (7)0.4399 (5)0.6351 (4)0.035 (6)
H311.2045340.5106160.6444170.042*
C330.8126 (12)0.3664 (8)0.0490 (6)0.026 (8)
H330.9082710.4386890.0523130.032*
C350.1236 (7)0.1580 (5)0.4399 (4)0.025 (6)
H350.0085800.0893480.4334260.030*
C370.6560 (7)0.0398 (5)0.6368 (4)0.024 (6)
H370.5316480.0296900.6298970.029*
C390.2484 (12)0.4491 (8)0.1546 (6)0.028 (8)
H390.3473090.5210460.1512040.034*
C410.9033 (7)0.4158 (5)0.5801 (4)0.048 (6)
H410.8816800.4705150.5517290.058*
C430.0989 (7)0.0793 (5)0.0713 (4)0.023 (4)
H430.1411490.0278040.0401370.028*
C450.5953 (7)0.1211 (5)0.5923 (4)0.027 (5)
C470.3173 (12)0.3752 (8)0.1059 (7)0.038 (9)
C490.5265 (10)0.1534 (7)0.0396 (6)0.025 (4)
H490.4328590.0809590.0367610.029*
C510.4772 (7)0.3632 (5)0.4592 (4)0.034 (6)
H510.5962480.4333580.4654870.040*
C530.1190 (10)0.3077 (7)0.2121 (5)0.032 (7)
C551.0394 (7)0.1667 (5)0.7052 (4)0.025 (6)
C571.3615 (7)0.3774 (5)0.7340 (4)0.041 (7)
H571.4807340.4468260.7429740.049*
C590.4009 (10)0.0932 (7)0.2249 (6)0.022 (4)
H590.4961680.0211900.2295740.026*
C610.7324 (7)0.1863 (5)0.0935 (4)0.026 (4)
H610.7688820.1374610.1264300.031*
C630.2695 (7)0.3367 (5)0.4053 (4)0.025 (6)
H630.2476110.3884870.3751050.030*
C650.8830 (12)0.2948 (9)0.0969 (7)0.036 (9)
H651.0307000.3182170.1316390.043*
C670.0907 (7)0.2335 (5)0.3949 (4)0.028 (3)
H670.0514010.2150880.3577640.034*
C690.8855 (7)0.0613 (5)0.6878 (4)0.025 (6)
H690.9459260.0046430.7125800.030*
C710.0403 (7)0.4181 (5)0.2067 (4)0.031 (7)
H710.0011750.4683000.2387780.038*
C731.2428 (8)0.1927 (6)0.7618 (4)0.043 (7)
H731.2713950.1387490.7903390.052*
C750.3346 (7)0.2757 (5)0.2655 (4)0.029 (6)
H750.3844150.3256490.2971980.035*
C771.4045 (7)0.2976 (5)0.7765 (4)0.045 (6)
H771.5396320.3137850.8145380.054*
C790.4739 (10)0.1666 (8)0.2703 (6)0.031 (8)
H790.6198650.1443130.3054000.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0189 (11)0.027 (5)0.016 (8)0.0061 (17)0.002 (2)0.002 (6)
C30.0183 (11)0.044 (6)0.040 (13)0.0097 (13)0.0083 (18)0.012 (9)
C50.0177 (11)0.047 (6)0.044 (13)0.0090 (14)0.0064 (18)0.015 (9)
C70.0210 (12)0.030 (5)0.017 (8)0.0073 (19)0.000 (2)0.000 (6)
C90.0201 (12)0.024 (5)0.018 (8)0.0050 (18)0.000 (2)0.004 (6)
C110.0193 (10)0.029 (4)0.023 (8)0.0076 (13)0.0087 (17)0.005 (5)
C130.0206 (13)0.032 (8)0.038 (17)0.0075 (19)0.002 (2)0.008 (12)
C150.0197 (10)0.034 (4)0.023 (8)0.0084 (13)0.0070 (17)0.005 (5)
C170.0185 (11)0.039 (6)0.025 (12)0.0079 (13)0.0060 (17)0.003 (9)
C190.0202 (11)0.026 (4)0.018 (6)0.0066 (16)0.000 (2)0.004 (4)
C210.0188 (11)0.047 (7)0.058 (13)0.0075 (14)0.0076 (18)0.024 (9)
C230.0234 (12)0.026 (5)0.017 (8)0.0054 (17)0.000 (2)0.000 (6)
C250.0227 (12)0.026 (6)0.029 (13)0.0080 (13)0.0120 (18)0.001 (9)
C270.0231 (14)0.042 (8)0.046 (17)0.007 (2)0.004 (3)0.022 (12)
C290.0256 (13)0.025 (5)0.016 (8)0.0077 (18)0.002 (2)0.004 (6)
C310.0219 (12)0.036 (7)0.049 (14)0.0053 (14)0.0045 (19)0.011 (10)
C330.0221 (16)0.035 (9)0.023 (17)0.005 (2)0.003 (3)0.004 (12)
C350.0235 (12)0.030 (7)0.023 (14)0.0065 (14)0.010 (2)0.012 (10)
C370.0230 (12)0.024 (6)0.026 (13)0.0084 (13)0.0096 (18)0.005 (9)
C390.0251 (15)0.031 (9)0.029 (18)0.004 (2)0.002 (3)0.005 (13)
C410.0209 (12)0.051 (7)0.075 (14)0.0087 (14)0.0072 (19)0.032 (10)
C430.0261 (11)0.025 (4)0.019 (8)0.0069 (14)0.0026 (19)0.001 (6)
C450.0204 (11)0.029 (6)0.032 (12)0.0054 (13)0.0072 (18)0.002 (9)
C470.0212 (15)0.040 (9)0.054 (19)0.010 (2)0.003 (3)0.016 (14)
C490.0245 (12)0.024 (5)0.026 (8)0.0069 (18)0.000 (2)0.003 (6)
C510.0227 (12)0.039 (7)0.041 (14)0.0072 (14)0.0059 (18)0.010 (10)
C530.0222 (14)0.043 (8)0.034 (16)0.016 (2)0.007 (2)0.011 (12)
C550.0206 (11)0.033 (6)0.022 (13)0.0092 (13)0.0061 (18)0.000 (9)
C570.0213 (12)0.044 (7)0.059 (15)0.0096 (14)0.006 (2)0.010 (10)
C590.0218 (12)0.023 (5)0.021 (8)0.0058 (17)0.002 (2)0.005 (6)
C610.0260 (11)0.036 (5)0.018 (8)0.0120 (15)0.0032 (19)0.007 (6)
C630.0252 (13)0.031 (7)0.021 (14)0.0125 (14)0.008 (2)0.006 (10)
C650.0176 (15)0.051 (10)0.041 (19)0.008 (2)0.004 (3)0.011 (13)
C670.0235 (11)0.037 (5)0.024 (8)0.0053 (14)0.0004 (18)0.008 (6)
C690.0248 (12)0.032 (6)0.019 (13)0.0095 (14)0.0099 (19)0.002 (9)
C710.0237 (12)0.041 (8)0.031 (15)0.0124 (16)0.004 (2)0.000 (11)
C730.0236 (13)0.061 (7)0.050 (15)0.0164 (16)0.010 (2)0.021 (11)
C750.0255 (13)0.043 (7)0.020 (14)0.0136 (16)0.005 (2)0.001 (10)
C770.0230 (12)0.060 (7)0.055 (14)0.0117 (15)0.007 (2)0.021 (10)
C790.0249 (14)0.040 (9)0.032 (17)0.012 (2)0.009 (3)0.011 (12)
Geometric parameters (Å, º) top
C1—C131.448 (10)C35—H350.9300
C1—C191.435 (10)C35—C671.372 (5)
C1—C531.331 (19)C37—H370.9300
C3—C151.422 (10)C37—C451.434 (5)
C3—C171.401 (11)C37—C691.328 (10)
C3—C551.424 (5)C39—H390.9300
C5—C111.427 (10)C39—C471.40 (2)
C5—C211.412 (12)C39—C711.358 (10)
C5—C511.416 (5)C41—H410.9300
C7—C91.418 (11)C43—H430.9300
C7—C231.432 (10)C49—H490.9300
C7—C491.37 (2)C49—C611.392 (9)
C9—C271.33 (2)C51—H510.9300
C9—C331.418 (11)C51—C631.351 (12)
C11—C251.416 (5)C53—C711.434 (9)
C11—C351.345 (11)C53—C751.397 (9)
C13—C291.34 (2)C55—C691.401 (10)
C13—C591.393 (10)C55—C731.390 (12)
C15—C311.428 (5)C57—H570.9300
C15—C571.363 (12)C57—C771.381 (5)
C17—C211.403 (5)C59—H590.9300
C17—C451.429 (10)C59—C791.35 (2)
C19—C231.380 (18)C61—H610.9300
C19—C471.422 (11)C61—C651.398 (11)
C21—C411.412 (11)C63—H630.9300
C23—C431.414 (8)C63—C671.375 (10)
C25—H250.9300C65—H650.9300
C25—C451.347 (11)C67—H670.9300
C27—H270.9300C69—H690.9300
C27—C471.388 (12)C71—H710.9300
C29—H290.9300C73—H730.9300
C29—C431.388 (9)C73—C771.390 (11)
C31—H310.9300C75—H750.9300
C31—C411.350 (12)C75—C791.399 (10)
C33—H330.9300C77—H770.9300
C33—C651.37 (2)C79—H790.9300
C19—C1—C13115.4 (11)C21—C41—H41118.7
C53—C1—C13121.5 (6)C31—C41—C21122.5 (4)
C53—C1—C19123.1 (6)C31—C41—H41118.7
C15—C3—C55118.9 (7)C23—C43—H43120.9
C17—C3—C15120.6 (4)C29—C43—C23118.1 (9)
C17—C3—C55120.5 (6)C29—C43—H43120.9
C21—C5—C11119.6 (4)C17—C45—C37117.6 (7)
C21—C5—C51124.1 (6)C25—C45—C17119.2 (4)
C51—C5—C11116.3 (7)C25—C45—C37123.2 (6)
C9—C7—C23118.0 (12)C27—C47—C19117.0 (13)
C49—C7—C9119.0 (7)C27—C47—C39123.3 (8)
C49—C7—C23123.0 (7)C39—C47—C19119.7 (7)
C27—C9—C7120.5 (7)C7—C49—H49118.5
C27—C9—C33121.6 (7)C7—C49—C61123.0 (7)
C33—C9—C7117.9 (12)C61—C49—H49118.5
C25—C11—C5118.2 (7)C5—C51—H51119.1
C35—C11—C5119.8 (4)C63—C51—C5121.9 (6)
C35—C11—C25121.9 (6)C63—C51—H51119.1
C29—C13—C1121.1 (6)C1—C53—C71119.2 (6)
C29—C13—C59122.3 (7)C1—C53—C75120.8 (6)
C59—C13—C1116.5 (11)C75—C53—C71119.9 (10)
C3—C15—C31117.8 (7)C69—C55—C3118.2 (7)
C57—C15—C3119.7 (4)C73—C55—C3118.8 (6)
C57—C15—C31122.5 (6)C73—C55—C69123.0 (4)
C3—C17—C21120.3 (6)C15—C57—H57119.0
C3—C17—C45119.6 (4)C15—C57—C77122.1 (7)
C21—C17—C45120.2 (7)C77—C57—H57119.0
C23—C19—C1122.0 (6)C13—C59—H59119.3
C23—C19—C47121.3 (8)C79—C59—C13121.4 (7)
C47—C19—C1116.6 (11)C79—C59—H59119.3
C17—C21—C5119.9 (6)C49—C61—H61120.8
C17—C21—C41118.3 (7)C49—C61—C65118.3 (10)
C41—C21—C5121.9 (4)C65—C61—H61120.8
C19—C23—C7119.4 (6)C51—C63—H63119.9
C19—C23—C43120.2 (6)C51—C63—C67120.2 (4)
C43—C23—C7120.4 (10)C67—C63—H63119.9
C11—C25—H25118.5C33—C65—C61120.0 (7)
C45—C25—C11122.9 (6)C33—C65—H65120.0
C45—C25—H25118.5C61—C65—H65120.0
C9—C27—H27118.2C35—C67—C63119.4 (8)
C9—C27—C47123.6 (8)C35—C67—H67120.3
C47—C27—H27118.2C63—C67—H67120.3
C13—C29—H29118.5C37—C69—C55122.0 (3)
C13—C29—C43123.1 (6)C37—C69—H69119.0
C43—C29—H29118.5C55—C69—H69119.0
C15—C31—H31119.8C39—C71—C53119.8 (10)
C41—C31—C15120.5 (6)C39—C71—H71120.1
C41—C31—H31119.8C53—C71—H71120.1
C9—C33—H33119.1C55—C73—H73119.3
C65—C33—C9121.8 (8)C77—C73—C55121.4 (4)
C65—C33—H33119.1C77—C73—H73119.3
C11—C35—H35118.9C53—C75—H75120.8
C11—C35—C67122.3 (6)C53—C75—C79118.4 (10)
C67—C35—H35118.9C79—C75—H75120.8
C45—C37—H37119.2C57—C77—C73119.1 (8)
C69—C37—H37119.2C57—C77—H77120.5
C69—C37—C45121.6 (5)C73—C77—H77120.5
C47—C39—H39119.2C59—C79—C75121.4 (7)
C71—C39—H39119.2C59—C79—H79119.3
C71—C39—C47121.5 (7)C75—C79—H79119.3
C1—C13—C29—C433.6 (10)C19—C1—C53—C714.9 (9)
C1—C13—C59—C790.9 (9)C19—C1—C53—C75178.6 (3)
C1—C19—C23—C7179.9 (3)C19—C23—C43—C290.7 (7)
C1—C19—C23—C430.5 (8)C21—C5—C11—C250.1 (8)
C1—C19—C47—C27179.8 (4)C21—C5—C11—C35176.8 (5)
C1—C19—C47—C390.2 (9)C21—C5—C51—C63179.4 (6)
C1—C53—C71—C393.7 (8)C21—C17—C45—C251.2 (9)
C1—C53—C75—C791.4 (8)C21—C17—C45—C37178.6 (5)
C3—C15—C31—C410.3 (8)C23—C7—C9—C271.8 (8)
C3—C15—C57—C773.4 (10)C23—C7—C9—C33179.5 (4)
C3—C17—C21—C5179.1 (5)C23—C7—C49—C61179.6 (3)
C3—C17—C21—C410.4 (9)C23—C19—C47—C271.4 (8)
C3—C17—C45—C25178.5 (5)C23—C19—C47—C39178.6 (6)
C3—C17—C45—C371.7 (8)C25—C11—C35—C67178.0 (6)
C3—C55—C69—C377.2 (8)C27—C9—C33—C65178.8 (8)
C3—C55—C73—C772.5 (9)C29—C13—C59—C79179.2 (7)
C5—C11—C25—C452.4 (9)C31—C15—C57—C77179.4 (6)
C5—C11—C35—C675.2 (10)C33—C9—C27—C47179.6 (5)
C5—C21—C41—C31179.1 (5)C35—C11—C25—C45179.2 (6)
C5—C51—C63—C670.0 (9)C45—C17—C21—C51.2 (9)
C7—C9—C27—C471.7 (11)C45—C17—C21—C41179.3 (5)
C7—C9—C33—C650.1 (10)C45—C37—C69—C558.3 (9)
C7—C23—C43—C29179.7 (4)C47—C19—C23—C71.6 (9)
C7—C49—C61—C651.8 (7)C47—C19—C23—C43178.9 (4)
C9—C7—C23—C191.7 (7)C47—C39—C71—C530.9 (9)
C9—C7—C23—C43178.8 (4)C49—C7—C9—C27178.0 (6)
C9—C7—C49—C610.2 (9)C49—C7—C9—C330.7 (8)
C9—C27—C47—C191.5 (10)C49—C7—C23—C19178.1 (5)
C9—C27—C47—C39178.5 (7)C49—C7—C23—C431.4 (8)
C9—C33—C65—C611.7 (12)C49—C61—C65—C332.5 (9)
C11—C5—C21—C171.8 (9)C51—C5—C11—C25178.5 (5)
C11—C5—C21—C41178.7 (5)C51—C5—C11—C354.6 (8)
C11—C5—C51—C632.1 (8)C51—C5—C21—C17176.7 (5)
C11—C25—C45—C173.0 (9)C51—C5—C21—C412.8 (10)
C11—C25—C45—C37176.8 (5)C51—C63—C67—C350.3 (9)
C11—C35—C67—C633.0 (10)C53—C1—C13—C29180.0 (6)
C13—C1—C19—C231.6 (7)C53—C1—C13—C591.7 (8)
C13—C1—C19—C47179.9 (4)C53—C1—C19—C23178.4 (6)
C13—C1—C53—C71178.5 (3)C53—C1—C19—C473.1 (8)
C13—C1—C53—C752.0 (9)C53—C75—C79—C590.6 (8)
C13—C29—C43—C232.3 (8)C55—C3—C15—C31178.1 (5)
C13—C59—C79—C750.4 (10)C55—C3—C15—C570.8 (9)
C15—C3—C17—C211.9 (9)C55—C3—C17—C21177.8 (5)
C15—C3—C17—C45177.8 (5)C55—C3—C17—C452.5 (8)
C15—C3—C55—C69177.9 (5)C55—C73—C77—C570.0 (9)
C15—C3—C55—C732.1 (8)C57—C15—C31—C41177.0 (6)
C15—C31—C41—C211.7 (9)C59—C13—C29—C43178.2 (3)
C15—C57—C77—C733.1 (9)C69—C37—C45—C173.7 (9)
C17—C3—C15—C311.5 (8)C69—C37—C45—C25176.1 (6)
C17—C3—C15—C57178.9 (5)C69—C55—C73—C77177.6 (5)
C17—C3—C55—C691.7 (8)C71—C39—C47—C190.8 (11)
C17—C3—C55—C73178.3 (5)C71—C39—C47—C27179.2 (3)
C17—C21—C41—C311.4 (9)C71—C53—C75—C79177.8 (4)
C19—C1—C13—C293.1 (8)C73—C55—C69—C37172.7 (5)
C19—C1—C13—C59178.6 (4)C75—C53—C71—C39179.7 (4)
(benzoapyrene_14.2GPa) top
Crystal data top
C20H12Z = 4
Mr = 252.30F(000) = 528
Triclinic, P1Dx = 1.959 Mg m3
a = 3.2931 (2) ÅSynchrotron radiation, λ = 0.410 Å
b = 12.347 (4) ÅCell parameters from 438 reflections
c = 21.133 (7) Åθ = 3.6–18.5°
α = 91.42 (3)°µ = 0.05 mm1
β = 90.439 (11)°T = 293 K
γ = 95.290 (11)°Block, black
V = 855.3 (4) Å30.02 × 0.02 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1448 independent reflections
Radiation source: synchrotron790 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.022
ω scansθmax = 21.3°, θmin = 3.6°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.023, Tmax = 1.000k = 1516
2119 measured reflectionsl = 1420
Refinement top
Refinement on F290 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.1529P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1448 reflectionsΔρmax = 0.23 e Å3
361 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0481 (17)0.7663 (9)0.8347 (8)0.027 (5)
C30.9897 (13)0.2515 (8)0.6642 (8)0.058 (12)
C50.5156 (13)0.2841 (9)0.5051 (7)0.034 (11)
C70.5420 (16)0.7759 (9)0.9902 (8)0.024 (5)
C90.4019 (17)0.6670 (10)0.9952 (8)0.028 (5)
C110.3385 (15)0.1813 (9)0.4938 (7)0.025 (5)
C131.1939 (16)0.8757 (9)0.8274 (8)0.026 (5)
C151.1532 (15)0.3562 (9)0.6792 (8)0.045 (12)
C170.7727 (13)0.2261 (8)0.6055 (8)0.048 (11)
C190.8284 (16)0.7338 (10)0.8876 (8)0.027 (11)
C210.7329 (15)0.3100 (9)0.5624 (8)0.061 (12)
C230.7599 (16)0.8124 (9)0.9365 (8)0.034 (12)
C250.3828 (15)0.0987 (9)0.5383 (8)0.044 (12)
H250.2579570.0291660.5298270.052*
C270.4755 (17)0.5939 (10)0.9485 (8)0.029 (12)
H270.3808720.5212080.9530220.035*
C291.1127 (17)0.9522 (10)0.8756 (8)0.026 (11)
H291.2014921.0252660.8709720.031*
C311.1020 (16)0.4381 (9)0.6337 (8)0.036 (12)
H311.2105800.5091140.6425220.044*
C330.1820 (18)0.6365 (10)1.0506 (9)0.048 (11)
H330.0844840.5637751.0541130.058*
C350.1152 (16)0.1562 (10)0.4378 (9)0.058 (13)
H350.0113400.0863270.4308500.069*
C370.6577 (14)0.0365 (9)0.6361 (8)0.069 (12)
H370.5321870.0335320.6295550.083*
C390.7507 (17)0.5476 (10)0.8445 (9)0.028 (8)
H390.6454620.4753710.8475760.034*
C410.9050 (15)0.4158 (9)0.5795 (8)0.055 (12)
H410.8788720.4717990.5515880.066*
C430.9068 (14)0.9204 (8)0.9284 (7)0.038 (10)
H430.8630600.9719860.9598590.045*
C450.5952 (14)0.1176 (8)0.5912 (8)0.042 (11)
C470.6846 (17)0.6240 (10)0.8951 (8)0.027 (5)
C490.4708 (18)0.8483 (11)1.0412 (9)0.038 (12)
H490.5683180.9210621.0382890.045*
C510.4714 (16)0.3645 (10)0.4584 (8)0.064 (11)
H510.5848480.4356130.4652880.077*
C531.1185 (17)0.6882 (10)0.7857 (8)0.032 (5)
C551.0481 (16)0.1652 (9)0.7051 (8)0.050 (12)
C571.3698 (16)0.3775 (10)0.7350 (9)0.070 (13)
H571.4872130.4474390.7445770.084*
C591.4161 (16)0.9065 (9)0.7753 (8)0.027 (8)
H591.5244920.9783630.7717680.033*
C610.2639 (15)0.8156 (9)1.0948 (7)0.032 (11)
H610.2278600.8643601.1280710.039*
C630.2632 (16)0.3360 (10)0.4041 (8)0.032 (5)
H630.2431300.3878170.3733540.038*
C650.107 (2)0.7045 (11)1.0973 (9)0.046 (11)
H650.0470400.6799621.1316350.056*
C670.0817 (16)0.2329 (10)0.3933 (8)0.061 (11)
H670.0634020.2154890.3559440.073*
C690.8928 (14)0.0586 (9)0.6876 (7)0.044 (12)
H690.9554900.0015720.7127690.052*
C710.9631 (14)0.5791 (8)0.7928 (7)0.030 (5)
H711.0078240.5278010.7611970.037*
C731.2518 (16)0.1916 (10)0.7636 (8)0.035 (12)
H731.2763560.1381110.7932700.042*
C751.3443 (15)0.7225 (9)0.7340 (8)0.049 (11)
H751.4049670.6716650.7030850.058*
C771.4111 (16)0.2956 (10)0.7760 (8)0.063 (12)
H771.5530580.3114870.8138080.076*
C791.4807 (19)0.8293 (11)0.7270 (9)0.041 (13)
H791.6164290.8510950.6903720.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (2)0.033 (6)0.025 (11)0.003 (3)0.005 (4)0.006 (7)
C30.0161 (19)0.052 (11)0.11 (3)0.008 (3)0.006 (5)0.031 (17)
C50.0163 (19)0.043 (10)0.04 (3)0.008 (3)0.001 (5)0.009 (16)
C70.018 (2)0.025 (6)0.026 (11)0.005 (3)0.012 (4)0.008 (7)
C90.021 (2)0.041 (7)0.024 (11)0.005 (3)0.006 (4)0.005 (8)
C110.023 (2)0.033 (6)0.019 (11)0.007 (3)0.004 (4)0.012 (7)
C130.023 (2)0.026 (6)0.028 (11)0.004 (3)0.006 (4)0.007 (7)
C150.018 (2)0.051 (11)0.07 (3)0.005 (3)0.002 (5)0.006 (17)
C170.0163 (19)0.045 (10)0.08 (3)0.006 (3)0.007 (5)0.016 (17)
C190.023 (2)0.048 (11)0.01 (2)0.012 (4)0.002 (6)0.001 (16)
C210.023 (2)0.068 (12)0.10 (3)0.013 (4)0.013 (5)0.044 (18)
C230.024 (2)0.041 (11)0.04 (3)0.008 (4)0.003 (6)0.004 (17)
C250.022 (2)0.039 (10)0.07 (3)0.002 (3)0.000 (5)0.011 (17)
C270.027 (2)0.024 (11)0.03 (3)0.003 (4)0.006 (6)0.009 (18)
C290.031 (2)0.036 (11)0.01 (3)0.010 (4)0.001 (6)0.004 (17)
C310.026 (2)0.029 (11)0.05 (3)0.000 (4)0.002 (6)0.003 (18)
C330.019 (2)0.062 (11)0.06 (3)0.001 (4)0.007 (5)0.025 (17)
C350.027 (2)0.062 (12)0.09 (3)0.006 (4)0.006 (6)0.03 (2)
C370.021 (2)0.065 (11)0.12 (3)0.011 (3)0.010 (5)0.046 (18)
C390.029 (2)0.025 (8)0.031 (19)0.003 (3)0.006 (5)0.003 (12)
C410.021 (2)0.050 (11)0.10 (3)0.009 (3)0.008 (5)0.030 (17)
C430.027 (2)0.047 (10)0.04 (2)0.009 (3)0.002 (5)0.008 (15)
C450.019 (2)0.031 (10)0.08 (3)0.003 (3)0.004 (5)0.003 (16)
C470.025 (2)0.036 (6)0.022 (11)0.007 (3)0.007 (4)0.006 (8)
C490.027 (2)0.039 (11)0.05 (3)0.006 (4)0.003 (6)0.009 (18)
C510.025 (2)0.066 (10)0.10 (2)0.012 (4)0.010 (5)0.042 (16)
C530.025 (2)0.046 (7)0.026 (11)0.010 (3)0.007 (4)0.005 (8)
C550.025 (2)0.038 (11)0.09 (3)0.012 (4)0.012 (6)0.013 (18)
C570.020 (2)0.065 (12)0.13 (3)0.012 (4)0.009 (6)0.029 (19)
C590.023 (2)0.019 (8)0.038 (19)0.006 (3)0.008 (5)0.011 (12)
C610.029 (2)0.053 (11)0.02 (3)0.013 (4)0.002 (5)0.005 (17)
C630.029 (2)0.038 (6)0.030 (11)0.010 (3)0.001 (4)0.007 (8)
C650.024 (3)0.051 (11)0.07 (3)0.010 (4)0.010 (6)0.015 (16)
C670.026 (2)0.081 (12)0.08 (2)0.021 (4)0.012 (5)0.028 (16)
C690.024 (2)0.059 (12)0.05 (3)0.012 (4)0.006 (5)0.016 (18)
C710.027 (2)0.035 (6)0.030 (11)0.008 (3)0.007 (4)0.009 (7)
C730.024 (2)0.043 (11)0.04 (3)0.009 (4)0.002 (5)0.006 (18)
C750.027 (2)0.054 (11)0.07 (3)0.014 (4)0.008 (6)0.014 (17)
C770.028 (2)0.077 (12)0.09 (3)0.022 (4)0.012 (6)0.031 (18)
C790.031 (3)0.059 (13)0.04 (3)0.017 (5)0.011 (7)0.01 (2)
Geometric parameters (Å, º) top
C1—C131.404 (13)C35—H350.9300
C1—C191.385 (15)C35—C671.362 (11)
C1—C531.43 (3)C37—H370.9300
C3—C151.383 (18)C37—C451.425 (10)
C3—C171.44 (2)C37—C691.34 (2)
C3—C551.414 (9)C39—H390.9300
C5—C111.362 (17)C39—C471.44 (3)
C5—C211.42 (2)C39—C711.349 (15)
C5—C511.432 (10)C41—H410.9300
C7—C91.388 (14)C43—H430.9300
C7—C231.408 (14)C49—H490.9300
C7—C491.42 (3)C49—C611.375 (15)
C9—C271.36 (3)C51—H510.9300
C9—C331.422 (17)C51—C631.35 (3)
C11—C251.419 (10)C53—C711.409 (14)
C11—C351.40 (2)C53—C751.380 (14)
C13—C291.42 (3)C55—C691.406 (18)
C13—C591.369 (15)C55—C731.42 (3)
C15—C311.432 (10)C57—H570.9300
C15—C571.38 (3)C57—C771.363 (11)
C17—C211.411 (10)C59—H590.9300
C17—C451.435 (17)C59—C791.41 (3)
C19—C231.43 (3)C61—H610.9300
C19—C471.407 (14)C61—C651.423 (17)
C21—C411.41 (2)C63—H630.9300
C23—C431.392 (13)C63—C671.37 (2)
C25—H250.9300C65—H650.9300
C25—C451.32 (2)C67—H670.9300
C27—H270.9300C69—H690.9300
C27—C471.369 (16)C71—H710.9300
C29—H290.9300C73—H730.9300
C29—C431.358 (14)C73—C771.361 (19)
C31—H310.9300C75—H750.9300
C31—C411.32 (3)C75—C791.364 (15)
C33—H330.9300C77—H770.9300
C33—C651.32 (3)C79—H790.9300
C13—C1—C53119.3 (9)C21—C41—H41118.8
C19—C1—C13120.9 (16)C31—C41—C21122.5 (8)
C19—C1—C53119.8 (11)C31—C41—H41118.8
C15—C3—C17121.3 (7)C23—C43—H43119.3
C15—C3—C55120.6 (14)C29—C43—C23121.4 (15)
C55—C3—C17118.1 (12)C29—C43—H43119.3
C11—C5—C21119.9 (8)C25—C45—C17119.0 (7)
C11—C5—C51118.6 (14)C25—C45—C37123.9 (11)
C21—C5—C51121.5 (12)C37—C45—C17117.1 (13)
C9—C7—C23120.5 (16)C19—C47—C39118.2 (10)
C9—C7—C49118.3 (10)C27—C47—C19119.6 (16)
C23—C7—C49121.2 (11)C27—C47—C39122.2 (11)
C7—C9—C33117.3 (16)C7—C49—H49118.5
C27—C9—C7120.5 (10)C61—C49—C7123.0 (11)
C27—C9—C33122.3 (11)C61—C49—H49118.5
C5—C11—C25120.3 (14)C5—C51—H51120.3
C5—C11—C35120.0 (8)C63—C51—C5119.4 (12)
C35—C11—C25119.7 (12)C63—C51—H51120.3
C1—C13—C29118.5 (9)C71—C53—C1118.8 (9)
C59—C13—C1120.3 (15)C75—C53—C1118.6 (11)
C59—C13—C29121.2 (10)C75—C53—C71122.6 (16)
C3—C15—C31117.3 (14)C3—C55—C73117.6 (12)
C57—C15—C3119.9 (8)C69—C55—C3119.6 (14)
C57—C15—C31122.7 (12)C69—C55—C73122.8 (7)
C21—C17—C3118.9 (12)C15—C57—H57120.1
C21—C17—C45120.3 (14)C77—C57—C15119.8 (13)
C45—C17—C3120.8 (7)C77—C57—H57120.1
C1—C19—C23119.5 (11)C13—C59—H59120.0
C1—C19—C47120.9 (16)C13—C59—C79120.0 (10)
C47—C19—C23119.6 (10)C79—C59—H59120.0
C17—C21—C5118.4 (12)C49—C61—H61121.3
C17—C21—C41118.0 (15)C49—C61—C65117.5 (16)
C41—C21—C5123.6 (7)C65—C61—H61121.3
C7—C23—C19117.9 (10)C51—C63—H63119.1
C43—C23—C7123.4 (16)C51—C63—C67121.8 (8)
C43—C23—C19118.7 (9)C67—C63—H63119.1
C11—C25—H25119.0C33—C65—C61119.6 (10)
C45—C25—C11122.1 (12)C33—C65—H65120.2
C45—C25—H25119.0C61—C65—H65120.2
C9—C27—H27119.0C35—C67—C63119.4 (16)
C9—C27—C47122.0 (11)C35—C67—H67120.3
C47—C27—H27119.0C63—C67—H67120.3
C13—C29—H29119.5C37—C69—C55122.3 (7)
C43—C29—C13120.9 (10)C37—C69—H69118.9
C43—C29—H29119.5C55—C69—H69118.9
C15—C31—H31119.0C39—C71—C53121.2 (15)
C41—C31—C15122.0 (12)C39—C71—H71119.4
C41—C31—H31119.0C53—C71—H71119.4
C9—C33—H33117.9C55—C73—H73120.2
C65—C33—C9124.3 (12)C77—C73—C55119.5 (8)
C65—C33—H33117.9C77—C73—H73120.2
C11—C35—H35119.6C53—C75—H75119.2
C67—C35—C11120.7 (13)C79—C75—C53121.6 (16)
C67—C35—H35119.6C79—C75—H75119.2
C45—C37—H37119.2C57—C77—H77118.8
C69—C37—H37119.2C73—C77—C57122.3 (16)
C69—C37—C45121.6 (11)C73—C77—H77118.8
C47—C39—H39119.5C59—C79—H79120.0
C71—C39—H39119.5C75—C79—C59120.1 (11)
C71—C39—C47121.0 (11)C75—C79—H79120.0
C1—C13—C29—C431.5 (15)C19—C1—C53—C710.4 (15)
C1—C13—C59—C793.4 (15)C19—C1—C53—C75178.9 (7)
C1—C19—C23—C7178.8 (7)C19—C23—C43—C290.2 (13)
C1—C19—C23—C431.9 (14)C21—C5—C11—C252.3 (13)
C1—C19—C47—C27178.7 (9)C21—C5—C11—C35178.5 (9)
C1—C19—C47—C393.6 (13)C21—C5—C51—C63179.6 (9)
C1—C53—C71—C390.1 (13)C21—C17—C45—C252.4 (13)
C1—C53—C75—C793.7 (15)C21—C17—C45—C37178.3 (8)
C3—C15—C31—C410.4 (14)C23—C7—C9—C270.5 (14)
C3—C15—C57—C772.0 (15)C23—C7—C9—C33179.6 (8)
C3—C17—C21—C5179.5 (8)C23—C7—C49—C61179.2 (7)
C3—C17—C21—C410.8 (12)C23—C19—C47—C271.0 (13)
C3—C17—C45—C25176.9 (8)C23—C19—C47—C39178.7 (9)
C3—C17—C45—C372.4 (12)C25—C11—C35—C67177.5 (8)
C3—C55—C69—C376.2 (13)C27—C9—C33—C65179.3 (12)
C3—C55—C73—C775.3 (13)C29—C13—C59—C79177.8 (10)
C5—C11—C25—C450.4 (14)C31—C15—C57—C77179.3 (9)
C5—C11—C35—C671.8 (15)C33—C9—C27—C47179.5 (8)
C5—C21—C41—C31179.1 (9)C35—C11—C25—C45178.8 (9)
C5—C51—C63—C672.1 (15)C45—C17—C21—C50.2 (13)
C7—C9—C27—C470.6 (16)C45—C17—C21—C41178.5 (7)
C7—C9—C33—C650.6 (16)C45—C37—C69—C558.5 (15)
C7—C23—C43—C29179.4 (8)C47—C19—C23—C71.1 (13)
C7—C49—C61—C651.8 (14)C47—C19—C23—C43179.6 (7)
C9—C7—C23—C190.4 (13)C47—C39—C71—C531.6 (14)
C9—C7—C23—C43179.6 (8)C49—C7—C9—C27177.7 (10)
C9—C7—C49—C611.0 (15)C49—C7—C9—C332.3 (13)
C9—C27—C47—C190.2 (15)C49—C7—C23—C19178.5 (10)
C9—C27—C47—C39177.7 (10)C49—C7—C23—C432.3 (14)
C9—C33—C65—C612.3 (18)C49—C61—C65—C333.4 (15)
C11—C5—C21—C172.5 (13)C51—C5—C11—C25178.6 (9)
C11—C5—C21—C41176.2 (8)C51—C5—C11—C350.6 (13)
C11—C5—C51—C631.3 (14)C51—C5—C21—C17178.4 (8)
C11—C25—C45—C172.7 (14)C51—C5—C21—C412.9 (14)
C11—C25—C45—C37178.0 (8)C51—C63—C67—C351.0 (15)
C11—C35—C67—C631.0 (15)C53—C1—C13—C29178.4 (9)
C13—C1—C19—C231.9 (14)C53—C1—C13—C592.8 (14)
C13—C1—C19—C47179.6 (8)C53—C1—C19—C23179.9 (9)
C13—C1—C53—C71178.6 (6)C53—C1—C19—C472.2 (14)
C13—C1—C53—C752.9 (14)C53—C75—C79—C594.3 (16)
C13—C29—C43—C231.6 (14)C55—C3—C15—C31176.4 (8)
C13—C59—C79—C754.2 (16)C55—C3—C15—C571.1 (14)
C15—C3—C17—C210.9 (13)C55—C3—C17—C21176.2 (7)
C15—C3—C17—C45178.4 (7)C55—C3—C17—C454.5 (13)
C15—C3—C55—C69177.5 (8)C55—C73—C77—C572.4 (14)
C15—C3—C55—C734.7 (12)C57—C15—C31—C41177.8 (10)
C15—C31—C41—C210.3 (15)C59—C13—C29—C43177.2 (8)
C15—C57—C77—C731.3 (15)C69—C37—C45—C174.1 (13)
C17—C3—C15—C310.7 (13)C69—C37—C45—C25176.6 (10)
C17—C3—C15—C57178.2 (8)C69—C55—C73—C77176.9 (7)
C17—C3—C55—C690.3 (12)C71—C39—C47—C193.4 (14)
C17—C3—C55—C73178.2 (8)C71—C39—C47—C27179.0 (7)
C17—C21—C41—C310.5 (14)C71—C53—C75—C79177.8 (9)
C19—C1—C13—C290.2 (14)C73—C55—C69—C37171.5 (9)
C19—C1—C13—C59179.0 (9)C75—C53—C71—C39178.6 (9)
(benzoapyrene_21.1GPa) top
Crystal data top
C20H12Z = 4
Mr = 252.30F(000) = 528
Triclinic, P1Dx = 2.085 Mg m3
a = 3.1883 (4) ÅSynchrotron radiation, λ = 0.410 Å
b = 12.1605 (18) ÅCell parameters from 581 reflections
c = 20.825 (6) Åθ = 3.7–20.0°
α = 91.99 (2)°µ = 0.05 mm1
β = 90.297 (18)°T = 293 K
γ = 95.206 (11)°Block, black
V = 803.6 (3) Å30.02 × 0.02 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1242 independent reflections
Radiation source: synchrotron801 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.023
ω scansθmax = 21.2°, θmin = 3.7°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 55
Tmin = 0.062, Tmax = 1.000k = 1919
1711 measured reflectionsl = 1211
Refinement top
Refinement on F272 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1784P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1242 reflectionsΔρmax = 0.18 e Å3
361 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0678 (10)0.2352 (3)0.1655 (6)0.036 (8)
C31.0023 (10)0.7529 (3)0.3359 (6)0.028 (4)
C51.4903 (11)0.7122 (3)0.4942 (6)0.028 (4)
C70.4592 (10)0.2214 (3)0.0094 (6)0.032 (8)
C90.6015 (10)0.3342 (3)0.0028 (6)0.050 (8)
C111.6701 (11)0.8196 (3)0.5072 (7)0.028 (9)
C130.2154 (10)0.1235 (3)0.1734 (6)0.043 (8)
C150.8356 (11)0.6447 (3)0.3212 (7)0.026 (4)
C171.2243 (11)0.7744 (3)0.3922 (6)0.025 (4)
C190.1567 (10)0.2663 (3)0.1109 (6)0.038 (8)
C211.2652 (11)0.6899 (3)0.4358 (6)0.035 (9)
C230.2310 (10)0.1889 (3)0.0622 (6)0.027 (4)
C251.6290 (10)0.9029 (3)0.4641 (6)0.028 (8)
H251.7574270.9733920.4736850.034*
C270.5205 (11)0.4088 (3)0.0514 (7)0.040 (9)
H270.6177730.4825650.0470320.047*
C290.1347 (10)0.0469 (3)0.1243 (6)0.040 (8)
H290.2339010.0268050.1282350.048*
C310.8797 (12)0.5605 (3)0.3629 (6)0.030 (8)
H310.7681620.4887340.3523570.035*
C330.8227 (11)0.3657 (4)0.0521 (6)0.028 (9)
H330.9084850.4401890.0566030.033*
C351.9035 (12)0.8423 (4)0.5628 (7)0.033 (9)
H352.0383450.9127320.5701440.040*
C371.3365 (11)0.9676 (3)0.3649 (6)0.031 (4)
H371.4706721.0379430.3725960.037*
C390.2361 (11)0.4561 (3)0.1560 (6)0.049 (9)
H390.3450330.5294350.1535730.058*
C411.0887 (12)0.5839 (3)0.4196 (6)0.033 (8)
H411.1137560.5275830.4481020.039*
C430.0817 (11)0.0771 (3)0.0719 (6)0.031 (4)
H430.1358050.0233490.0409420.037*
C451.4008 (11)0.8837 (3)0.4071 (6)0.029 (8)
C470.3072 (11)0.3804 (3)0.1049 (6)0.046 (9)
C490.5385 (11)0.1495 (3)0.0434 (6)0.048 (9)
H490.4344810.0756250.0423790.058*
C511.5357 (12)0.6330 (3)0.5413 (7)0.029 (4)
H511.4117360.5613940.5340880.035*
C530.1481 (11)0.3120 (3)0.2140 (6)0.041 (8)
C550.9413 (12)0.8392 (3)0.2937 (6)0.027 (4)
C570.6123 (11)0.6255 (4)0.2633 (7)0.033 (4)
H570.4897460.5547400.2528610.040*
C590.4429 (11)0.0945 (3)0.2246 (6)0.036 (9)
H590.5547980.0214970.2274400.043*
C610.7591 (11)0.1847 (4)0.0947 (7)0.053 (10)
H610.8082180.1354900.1284490.063*
C631.7551 (12)0.6584 (4)0.5969 (7)0.031 (9)
H631.7790820.6052020.6273500.037*
C650.9141 (11)0.2957 (4)0.0971 (7)0.045 (9)
H651.0834780.3194000.1310280.054*
C671.9414 (11)0.7645 (4)0.6072 (7)0.050 (10)
H672.0940630.7828190.6448220.060*
C691.0855 (11)0.9478 (3)0.3137 (6)0.035 (8)
H691.0041821.0067920.2908370.042*
C710.0182 (11)0.4249 (3)0.2071 (6)0.032 (4)
H710.0286700.4771430.2393120.038*
C730.7277 (12)0.8150 (4)0.2370 (7)0.044 (9)
H730.6895200.8710390.2088540.053*
C750.3745 (12)0.2802 (3)0.2652 (7)0.031 (9)
H750.4381910.3331330.2960610.038*
C770.5704 (10)0.7091 (3)0.2215 (6)0.035 (4)
H770.4333560.6932810.1823170.042*
C790.5177 (10)0.1696 (3)0.2736 (6)0.031 (9)
H790.6578330.1474090.3106620.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0262 (14)0.034 (2)0.05 (2)0.0045 (13)0.004 (4)0.011 (4)
C30.0268 (15)0.0334 (19)0.023 (12)0.0044 (13)0.009 (3)0.003 (4)
C50.0269 (14)0.0329 (18)0.025 (13)0.0049 (13)0.003 (3)0.002 (4)
C70.0284 (15)0.033 (2)0.03 (3)0.0033 (13)0.006 (4)0.006 (5)
C90.0285 (15)0.0293 (19)0.09 (3)0.0032 (13)0.011 (4)0.004 (4)
C110.0289 (16)0.034 (2)0.02 (3)0.0049 (14)0.007 (5)0.002 (5)
C130.0266 (15)0.038 (2)0.07 (3)0.0073 (13)0.001 (4)0.012 (5)
C150.0296 (15)0.0314 (18)0.016 (12)0.0044 (13)0.004 (3)0.003 (4)
C170.0268 (14)0.0332 (18)0.016 (12)0.0059 (13)0.009 (3)0.003 (4)
C190.0258 (15)0.0300 (19)0.06 (2)0.0039 (12)0.005 (4)0.007 (4)
C210.0276 (15)0.034 (2)0.04 (3)0.0051 (13)0.008 (4)0.006 (5)
C230.0267 (14)0.0282 (17)0.025 (12)0.0062 (11)0.001 (3)0.000 (3)
C250.0280 (15)0.0308 (18)0.02 (3)0.0005 (13)0.003 (4)0.012 (4)
C270.0312 (15)0.0277 (18)0.06 (3)0.0016 (12)0.003 (4)0.006 (4)
C290.0319 (15)0.0233 (17)0.07 (2)0.0013 (12)0.011 (4)0.000 (4)
C310.0331 (16)0.029 (2)0.03 (2)0.0029 (14)0.009 (4)0.003 (4)
C330.0318 (16)0.036 (2)0.02 (3)0.0034 (13)0.003 (4)0.004 (4)
C350.0325 (16)0.035 (2)0.03 (3)0.0031 (14)0.010 (4)0.003 (4)
C370.0308 (15)0.0339 (18)0.027 (12)0.0043 (12)0.002 (3)0.008 (4)
C390.0334 (16)0.0300 (18)0.08 (3)0.0035 (13)0.011 (4)0.008 (4)
C410.0317 (16)0.0298 (19)0.04 (3)0.0042 (14)0.010 (4)0.007 (4)
C430.0326 (15)0.0313 (18)0.028 (12)0.0033 (12)0.007 (3)0.007 (3)
C450.0277 (15)0.036 (2)0.02 (3)0.0051 (14)0.006 (4)0.009 (4)
C470.0297 (17)0.035 (2)0.07 (3)0.0061 (14)0.007 (5)0.007 (5)
C490.0353 (17)0.0278 (18)0.08 (3)0.0060 (13)0.021 (5)0.009 (4)
C510.0327 (16)0.0332 (18)0.021 (12)0.0054 (14)0.013 (3)0.004 (4)
C530.0301 (15)0.0287 (19)0.06 (3)0.0048 (13)0.007 (4)0.008 (4)
C550.0269 (14)0.0357 (18)0.019 (12)0.0049 (13)0.005 (3)0.000 (4)
C570.0332 (16)0.0361 (19)0.030 (13)0.0050 (14)0.006 (4)0.005 (4)
C590.0316 (15)0.0318 (19)0.05 (3)0.0047 (13)0.006 (4)0.003 (4)
C610.0328 (17)0.050 (2)0.08 (3)0.0118 (15)0.012 (5)0.010 (5)
C630.0351 (18)0.036 (2)0.02 (3)0.0087 (14)0.004 (5)0.004 (5)
C650.0258 (15)0.053 (2)0.06 (3)0.0080 (14)0.006 (4)0.003 (5)
C670.0333 (16)0.041 (2)0.07 (3)0.0065 (15)0.014 (5)0.010 (5)
C690.0313 (15)0.037 (2)0.04 (2)0.0065 (13)0.001 (4)0.008 (5)
C710.0320 (15)0.0332 (19)0.029 (12)0.0061 (13)0.003 (3)0.008 (4)
C730.0316 (17)0.041 (2)0.06 (3)0.0102 (15)0.015 (5)0.005 (5)
C750.0334 (16)0.039 (2)0.02 (3)0.0075 (14)0.008 (4)0.003 (5)
C770.0310 (16)0.040 (2)0.033 (13)0.0039 (13)0.008 (3)0.006 (4)
C790.0305 (16)0.039 (2)0.02 (3)0.0076 (13)0.001 (4)0.006 (4)
Geometric parameters (Å, º) top
C1—C131.412 (7)C35—H350.9300
C1—C191.391 (15)C35—C671.358 (15)
C1—C531.393 (12)C37—H370.9300
C3—C151.397 (6)C37—C451.399 (13)
C3—C171.371 (17)C37—C691.331 (16)
C3—C551.418 (14)C39—H390.9300
C5—C111.395 (6)C39—C471.415 (13)
C5—C211.413 (18)C39—C711.321 (15)
C5—C511.415 (15)C41—H410.9300
C7—C91.416 (6)C43—H430.9300
C7—C231.371 (14)C49—H490.9300
C7—C491.419 (13)C49—C611.344 (15)
C9—C271.376 (12)C51—H510.9300
C9—C331.393 (15)C51—C631.361 (17)
C11—C251.391 (14)C53—C711.439 (6)
C11—C351.380 (19)C53—C751.339 (15)
C13—C291.399 (12)C55—C691.407 (7)
C13—C591.332 (14)C55—C731.370 (17)
C15—C311.383 (15)C57—H570.9300
C15—C571.398 (19)C57—C771.376 (14)
C17—C211.409 (15)C59—H590.9300
C17—C451.419 (6)C59—C791.381 (13)
C19—C231.396 (12)C61—H610.9300
C19—C471.437 (6)C61—C651.397 (6)
C21—C411.389 (6)C63—H630.9300
C23—C431.420 (7)C63—C671.379 (6)
C25—H250.9300C65—H650.9300
C25—C451.390 (17)C67—H670.9300
C27—H270.9300C69—H690.9300
C27—C471.348 (16)C71—H710.9300
C29—H290.9300C73—H730.9300
C29—C431.339 (15)C73—C771.366 (7)
C31—H310.9300C75—H750.9300
C31—C411.361 (16)C75—C791.398 (7)
C33—H330.9300C77—H770.9300
C33—C651.297 (13)C79—H790.9300
C19—C1—C13120.4 (7)C21—C41—H41119.2
C19—C1—C53121.5 (5)C31—C41—C21121.5 (9)
C53—C1—C13118.2 (9)C31—C41—H41119.2
C15—C3—C55120.7 (10)C23—C43—H43119.1
C17—C3—C15118.8 (9)C29—C43—C23121.9 (7)
C17—C3—C55120.6 (5)C29—C43—H43119.1
C11—C5—C21118.3 (9)C25—C45—C17118.0 (9)
C11—C5—C51117.6 (10)C25—C45—C37122.6 (5)
C21—C5—C51124.1 (5)C37—C45—C17119.4 (10)
C9—C7—C49116.0 (9)C27—C47—C19117.8 (7)
C23—C7—C9120.1 (7)C27—C47—C39123.5 (5)
C23—C7—C49123.8 (5)C39—C47—C19118.7 (9)
C27—C9—C7118.7 (9)C7—C49—H49118.9
C27—C9—C33122.2 (5)C61—C49—C7122.1 (5)
C33—C9—C7119.1 (7)C61—C49—H49118.9
C25—C11—C5121.1 (11)C5—C51—H51119.0
C35—C11—C5119.2 (9)C63—C51—C5122.0 (5)
C35—C11—C25119.7 (5)C63—C51—H51119.0
C29—C13—C1117.8 (9)C1—C53—C71118.0 (9)
C59—C13—C1120.3 (7)C75—C53—C1120.1 (5)
C59—C13—C29121.9 (5)C75—C53—C71121.8 (7)
C3—C15—C57117.4 (9)C69—C55—C3118.0 (10)
C31—C15—C3121.4 (11)C73—C55—C3119.4 (5)
C31—C15—C57121.2 (5)C73—C55—C69122.5 (8)
C3—C17—C21120.5 (6)C15—C57—H57119.3
C3—C17—C45119.2 (9)C77—C57—C15121.3 (5)
C21—C17—C45120.3 (11)C77—C57—H57119.3
C1—C19—C23121.0 (5)C13—C59—H59119.0
C1—C19—C47118.8 (7)C13—C59—C79122.0 (5)
C23—C19—C47120.1 (9)C79—C59—H59119.0
C17—C21—C5120.5 (5)C49—C61—H61120.2
C41—C21—C5120.8 (9)C49—C61—C65119.5 (8)
C41—C21—C17118.6 (11)C65—C61—H61120.2
C7—C23—C19119.8 (5)C51—C63—H63120.6
C7—C23—C43122.9 (7)C51—C63—C67118.9 (10)
C19—C23—C43117.2 (9)C67—C63—H63120.6
C11—C25—H25119.2C33—C65—C61120.2 (9)
C45—C25—C11121.7 (5)C33—C65—H65119.9
C45—C25—H25119.2C61—C65—H65119.9
C9—C27—H27118.3C35—C67—C63120.5 (11)
C47—C27—C9123.4 (5)C35—C67—H67119.8
C47—C27—H27118.3C63—C67—H67119.8
C13—C29—H29119.1C37—C69—C55121.1 (8)
C43—C29—C13121.7 (5)C37—C69—H69119.5
C43—C29—H29119.1C55—C69—H69119.5
C15—C31—H31120.4C39—C71—C53121.6 (7)
C41—C31—C15119.1 (5)C39—C71—H71119.2
C41—C31—H31120.4C53—C71—H71119.2
C9—C33—H33118.6C55—C73—H73119.8
C65—C33—C9122.8 (6)C77—C73—C55120.4 (10)
C65—C33—H33118.6C77—C73—H73119.8
C11—C35—H35119.1C53—C75—H75119.1
C67—C35—C11121.7 (5)C53—C75—C79121.8 (7)
C67—C35—H35119.1C79—C75—H75119.1
C45—C37—H37119.6C57—C77—H77119.6
C69—C37—H37119.6C73—C77—C57120.8 (11)
C69—C37—C45120.8 (5)C73—C77—H77119.6
C47—C39—H39119.3C59—C79—C75117.4 (9)
C71—C39—H39119.3C59—C79—H79121.3
C71—C39—C47121.4 (5)C75—C79—H79121.3
C1—C13—C29—C431.2 (12)C19—C1—C53—C711.7 (12)
C1—C13—C59—C794.7 (13)C19—C1—C53—C75178.2 (7)
C1—C19—C23—C7178.9 (6)C19—C23—C43—C292.3 (11)
C1—C19—C23—C432.3 (12)C21—C5—C11—C250.2 (8)
C1—C19—C47—C27179.4 (7)C21—C5—C11—C35177.8 (5)
C1—C19—C47—C392.5 (11)C21—C5—C51—C63179.9 (6)
C1—C53—C71—C390.9 (12)C21—C17—C45—C252.9 (8)
C1—C53—C75—C793.4 (14)C21—C17—C45—C37176.5 (5)
C3—C15—C31—C410.3 (8)C23—C7—C9—C272.5 (12)
C3—C15—C57—C772.1 (9)C23—C7—C9—C33178.2 (7)
C3—C17—C21—C5179.4 (5)C23—C7—C49—C61179.1 (7)
C3—C17—C21—C412.2 (8)C23—C19—C47—C270.3 (12)
C3—C17—C45—C25179.2 (5)C23—C19—C47—C39178.3 (7)
C3—C17—C45—C371.5 (8)C25—C11—C35—C67177.9 (5)
C3—C55—C69—C3711.8 (9)C27—C9—C33—C65177.5 (8)
C3—C55—C73—C770.8 (8)C29—C13—C59—C79179.0 (7)
C5—C11—C25—C451.4 (9)C31—C15—C57—C77179.6 (5)
C5—C11—C35—C674.1 (9)C33—C9—C27—C47180.0 (7)
C5—C21—C41—C31178.4 (5)C35—C11—C25—C45179.3 (5)
C5—C51—C63—C670.5 (8)C45—C17—C21—C51.4 (8)
C7—C9—C27—C470.8 (13)C45—C17—C21—C41179.9 (4)
C7—C9—C33—C651.8 (13)C45—C37—C69—C5512.1 (11)
C7—C23—C43—C29178.9 (7)C47—C19—C23—C72.0 (12)
C7—C49—C61—C650.5 (13)C47—C19—C23—C43178.6 (6)
C9—C7—C23—C193.1 (12)C47—C39—C71—C531.6 (13)
C9—C7—C23—C43179.5 (7)C49—C7—C9—C27177.7 (7)
C9—C7—C49—C614.1 (12)C49—C7—C9—C333.1 (11)
C9—C27—C47—C190.3 (13)C49—C7—C23—C19177.8 (7)
C9—C27—C47—C39177.7 (7)C49—C7—C23—C435.7 (13)
C9—C33—C65—C615.7 (13)C49—C61—C65—C334.5 (13)
C11—C5—C21—C170.1 (8)C51—C5—C11—C25178.1 (5)
C11—C5—C21—C41178.4 (5)C51—C5—C11—C353.9 (8)
C11—C5—C51—C631.7 (7)C51—C5—C21—C17178.1 (5)
C11—C25—C45—C172.9 (8)C51—C5—C21—C413.5 (8)
C11—C25—C45—C37176.5 (5)C51—C63—C67—C350.5 (8)
C11—C35—C67—C631.9 (8)C53—C1—C13—C29179.8 (7)
C13—C1—C19—C231.8 (13)C53—C1—C13—C593.3 (12)
C13—C1—C19—C47179.1 (7)C53—C1—C19—C23179.2 (6)
C13—C1—C53—C71177.4 (7)C53—C1—C19—C470.1 (12)
C13—C1—C53—C752.7 (13)C53—C75—C79—C594.5 (12)
C13—C29—C43—C231.9 (13)C55—C3—C15—C31177.7 (5)
C13—C59—C79—C755.2 (12)C55—C3—C15—C570.6 (8)
C15—C3—C17—C213.1 (8)C55—C3—C17—C21176.5 (5)
C15—C3—C17—C45178.9 (5)C55—C3—C17—C451.4 (8)
C15—C3—C55—C69174.7 (5)C55—C73—C77—C571.9 (8)
C15—C3—C55—C732.0 (8)C57—C15—C31—C41178.0 (5)
C15—C31—C41—C211.3 (8)C59—C13—C29—C43177.6 (7)
C15—C57—C77—C733.5 (8)C69—C37—C45—C175.3 (9)
C17—C3—C15—C311.9 (8)C69—C37—C45—C25174.0 (6)
C17—C3—C15—C57179.8 (5)C69—C55—C73—C77175.8 (5)
C17—C3—C55—C694.9 (8)C71—C39—C47—C193.3 (12)
C17—C3—C55—C73178.3 (5)C71—C39—C47—C27178.7 (7)
C17—C21—C41—C310.1 (8)C71—C53—C75—C79176.6 (8)
C19—C1—C13—C291.2 (12)C73—C55—C69—C37171.5 (6)
C19—C1—C13—C59177.6 (7)C75—C53—C71—C39179.0 (8)
(benzoapyrene_27.9GPa) top
Crystal data top
C20H12Z = 4
Mr = 252.30F(000) = 528
Triclinic, P1Dx = 2.195 Mg m3
a = 3.1077 (4) ÅSynchrotron radiation, λ = 0.410 Å
b = 11.995 (2) ÅCell parameters from 482 reflections
c = 20.571 (8) Åθ = 3.9–16.1°
α = 91.56 (3)°µ = 0.06 mm1
β = 89.92 (3)°T = 293 K
γ = 95.171 (13)°Block, black
V = 763.4 (3) Å30.02 × 0.02 × 0.02 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
764 independent reflections
Radiation source: synchrotron431 reflections with I > 2σ(I)
Detector resolution: 13.3333 pixels mm-1Rint = 0.059
ω scansθmax = 15.9°, θmin = 3.8°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.044, Tmax = 1.000k = 1515
988 measured reflectionsl = 116
Refinement top
Refinement on F2186 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.143H-atom parameters constrained
wR(F2) = 0.364 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.68(Δ/σ)max < 0.001
764 reflectionsΔρmax = 0.31 e Å3
361 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.078 (3)0.7640 (10)0.8305 (17)0.04 (2)
C31.011 (3)0.2464 (10)0.667 (2)0.07 (3)
C50.508 (3)0.2907 (10)0.5031 (18)0.029 (4)
C70.533 (3)0.7775 (10)0.9907 (17)0.037 (4)
C90.399 (4)0.6661 (12)1.001 (2)0.04 (3)
C110.328 (3)0.1789 (11)0.495 (2)0.07 (3)
C131.236 (3)0.8772 (11)0.8247 (17)0.039 (10)
C151.174 (3)0.3561 (11)0.675 (2)0.035 (4)
C170.778 (3)0.2231 (9)0.6040 (17)0.026 (4)
C190.847 (4)0.7313 (12)0.8895 (19)0.042 (4)
C210.739 (3)0.3106 (10)0.5602 (19)0.032 (6)
C230.775 (3)0.8119 (11)0.9365 (19)0.038 (4)
C250.364 (3)0.0946 (9)0.5355 (17)0.04 (2)
H250.2285320.0237800.5259160.045*
C270.476 (4)0.5892 (12)0.951 (2)0.041 (4)
H270.3712440.5146680.9546920.049*
C291.154 (4)0.9542 (10)0.8763 (19)0.037 (10)
H291.2603911.0288180.8729740.044*
C311.131 (3)0.4391 (10)0.640 (2)0.034 (4)
H311.2359480.5113560.6532600.041*
C330.167 (4)0.6325 (13)1.052 (2)0.043 (4)
H330.0596630.5576451.0530980.052*
C350.082 (4)0.1567 (12)0.431 (2)0.045 (10)
H350.0448490.0850140.4211230.055*
C370.674 (3)0.0307 (9)0.6383 (18)0.032 (10)
H370.5200630.0390810.6330340.038*
C390.764 (3)0.5399 (11)0.843 (2)0.042 (4)
H390.6390470.4665170.8440410.051*
C410.913 (3)0.4162 (9)0.5797 (17)0.04 (2)
H410.8857580.4752980.5520870.044*
C430.929 (3)0.9229 (12)0.930 (2)0.043 (10)
H430.8766740.9758600.9617710.051*
C450.607 (3)0.1142 (11)0.592 (2)0.034 (4)
C470.697 (4)0.6191 (10)0.896 (2)0.041 (10)
C490.456 (3)0.8541 (11)1.0406 (19)0.039 (4)
H490.5622110.9288821.0380570.046*
C510.463 (3)0.3704 (11)0.459 (2)0.07 (3)
H510.5886680.4426560.4668720.088*
C531.164 (4)0.6843 (11)0.788 (2)0.044 (4)
C551.075 (3)0.1552 (11)0.706 (2)0.040 (4)
C571.406 (3)0.3754 (11)0.739 (2)0.06 (3)
H571.5248440.4472040.7502830.067*
C591.469 (3)0.9044 (10)0.7736 (18)0.035 (4)
H591.5901420.9778780.7709690.042*
C610.219 (3)0.8168 (13)1.094 (2)0.054 (10)
H610.1524260.8698961.1255850.065*
C630.233 (3)0.3473 (11)0.4010 (19)0.034 (4)
H630.2047080.4030760.3711490.041*
C650.074 (3)0.7052 (13)1.105 (2)0.07 (3)
H650.0695620.6810271.1419880.080*
C670.044 (3)0.2377 (12)0.389 (2)0.045 (10)
H670.1117540.2215020.3507690.055*
C690.931 (3)0.0463 (11)0.6854 (19)0.036 (4)
H691.0253690.0144290.7066990.044*
C710.994 (3)0.5720 (10)0.7948 (18)0.035 (6)
H711.0534760.5193630.7628450.042*
C731.293 (3)0.1828 (12)0.770 (2)0.041 (4)
H731.3179710.1288870.8015790.049*
C751.397 (3)0.7175 (13)0.731 (2)0.048 (10)
H751.4501180.6643220.6989840.058*
C771.449 (3)0.2895 (11)0.7803 (19)0.040 (4)
H771.5997130.3071370.8188150.048*
C791.546 (4)0.8298 (12)0.723 (2)0.042 (4)
H791.6896090.8534010.6854590.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (4)0.038 (6)0.06 (7)0.001 (4)0.005 (12)0.002 (12)
C30.031 (5)0.028 (6)0.16 (9)0.001 (4)0.003 (14)0.005 (14)
C50.027 (3)0.031 (4)0.031 (9)0.002 (3)0.007 (5)0.006 (6)
C70.036 (4)0.039 (5)0.037 (9)0.009 (3)0.002 (5)0.003 (6)
C90.033 (5)0.045 (7)0.05 (8)0.008 (4)0.011 (13)0.010 (13)
C110.024 (4)0.035 (7)0.16 (9)0.004 (4)0.012 (14)0.010 (14)
C130.031 (4)0.037 (6)0.05 (3)0.005 (4)0.019 (9)0.013 (10)
C150.032 (4)0.038 (5)0.036 (9)0.003 (4)0.006 (6)0.000 (6)
C170.024 (3)0.027 (4)0.027 (8)0.000 (3)0.010 (5)0.003 (5)
C190.040 (4)0.044 (5)0.042 (9)0.012 (4)0.001 (6)0.002 (6)
C210.027 (4)0.030 (5)0.038 (16)0.002 (4)0.021 (8)0.010 (9)
C230.036 (4)0.041 (5)0.039 (9)0.008 (3)0.002 (5)0.001 (6)
C250.029 (4)0.022 (5)0.06 (7)0.002 (4)0.024 (11)0.005 (11)
C270.040 (4)0.041 (5)0.042 (9)0.001 (4)0.006 (6)0.007 (6)
C290.042 (5)0.026 (5)0.04 (3)0.003 (4)0.011 (10)0.012 (9)
C310.034 (4)0.032 (5)0.035 (8)0.002 (4)0.004 (6)0.005 (6)
C330.043 (4)0.044 (5)0.044 (9)0.008 (4)0.009 (6)0.002 (6)
C350.035 (4)0.041 (6)0.06 (3)0.001 (5)0.011 (10)0.010 (11)
C370.028 (4)0.028 (5)0.04 (3)0.005 (3)0.017 (9)0.012 (10)
C390.043 (4)0.042 (5)0.042 (9)0.004 (4)0.004 (6)0.000 (6)
C410.027 (4)0.029 (6)0.05 (7)0.001 (4)0.008 (12)0.004 (11)
C430.036 (5)0.048 (7)0.05 (3)0.015 (4)0.008 (10)0.017 (11)
C450.031 (4)0.037 (5)0.034 (9)0.002 (4)0.005 (6)0.004 (6)
C470.037 (5)0.033 (6)0.05 (3)0.004 (4)0.009 (10)0.020 (11)
C490.035 (4)0.041 (5)0.041 (9)0.004 (3)0.010 (5)0.005 (6)
C510.033 (5)0.033 (7)0.16 (8)0.014 (4)0.000 (14)0.010 (14)
C530.044 (4)0.045 (5)0.045 (9)0.009 (4)0.002 (6)0.003 (6)
C550.034 (4)0.045 (5)0.040 (9)0.003 (4)0.006 (6)0.001 (6)
C570.031 (5)0.037 (7)0.10 (8)0.004 (4)0.030 (13)0.011 (14)
C590.037 (4)0.032 (5)0.036 (9)0.002 (3)0.005 (6)0.005 (6)
C610.032 (5)0.064 (8)0.07 (3)0.010 (5)0.017 (10)0.004 (13)
C630.030 (4)0.037 (5)0.037 (9)0.004 (3)0.011 (6)0.005 (6)
C650.023 (4)0.078 (10)0.10 (8)0.009 (5)0.006 (12)0.003 (18)
C670.029 (4)0.054 (8)0.05 (3)0.009 (4)0.005 (9)0.002 (12)
C690.033 (4)0.038 (5)0.038 (9)0.001 (3)0.007 (6)0.008 (6)
C710.039 (4)0.029 (5)0.037 (16)0.007 (4)0.019 (8)0.013 (8)
C730.037 (4)0.045 (5)0.042 (9)0.008 (4)0.003 (6)0.001 (6)
C750.033 (4)0.050 (7)0.06 (3)0.005 (4)0.007 (10)0.006 (12)
C770.030 (4)0.050 (5)0.041 (9)0.003 (4)0.009 (6)0.003 (6)
C790.037 (4)0.048 (5)0.042 (9)0.008 (4)0.002 (5)0.006 (6)
Geometric parameters (Å, º) top
C1—C131.41 (2)C35—H350.9300
C1—C191.45 (5)C35—C671.33 (4)
C1—C531.33 (3)C37—H370.9300
C3—C151.373 (17)C37—C451.42 (4)
C3—C171.49 (5)C37—C691.26 (4)
C3—C551.40 (4)C39—H390.9300
C5—C111.413 (16)C39—C471.46 (4)
C5—C211.38 (5)C39—C711.27 (4)
C5—C511.36 (4)C41—H410.9300
C7—C91.39 (2)C43—H430.9300
C7—C231.40 (4)C49—H490.9300
C7—C491.39 (3)C49—C611.39 (5)
C9—C271.41 (4)C51—H510.9300
C9—C331.32 (5)C51—C631.39 (5)
C11—C251.34 (4)C53—C711.41 (2)
C11—C351.52 (6)C53—C751.42 (5)
C13—C291.43 (3)C55—C691.39 (2)
C13—C591.31 (4)C55—C731.51 (6)
C15—C311.26 (4)C57—H570.9300
C15—C571.49 (6)C57—C771.37 (4)
C17—C211.42 (4)C59—H590.9300
C17—C451.380 (16)C59—C791.39 (4)
C19—C231.38 (4)C61—H610.9300
C19—C471.39 (2)C61—C651.39 (3)
C21—C411.381 (19)C63—H630.9300
C23—C431.39 (2)C63—C671.406 (18)
C25—H250.9300C65—H650.9300
C25—C451.40 (5)C67—H670.9300
C27—H270.9300C69—H690.9300
C27—C471.35 (5)C71—H710.9300
C29—H290.9300C73—H730.9300
C29—C431.34 (5)C73—C771.337 (18)
C31—H310.9300C75—H750.9300
C31—C411.43 (5)C75—C791.40 (2)
C33—H330.9300C77—H770.9300
C33—C651.42 (4)C79—H790.9300
C13—C1—C19118 (2)C21—C41—C31123 (2)
C53—C1—C13123 (3)C21—C41—H41118.4
C53—C1—C19118.4 (19)C31—C41—H41118.4
C15—C3—C17113 (3)C23—C43—H43120.0
C15—C3—C55129 (3)C29—C43—C23120 (2)
C55—C3—C17117.6 (17)C29—C43—H43120.0
C21—C5—C11114 (3)C17—C45—C25116 (3)
C51—C5—C11123 (3)C17—C45—C37120 (3)
C51—C5—C21123.5 (14)C25—C45—C37124.2 (14)
C9—C7—C23123 (2)C19—C47—C39119 (3)
C9—C7—C49117 (3)C27—C47—C19118 (2)
C49—C7—C23120.3 (15)C27—C47—C39122.5 (15)
C7—C9—C27117 (3)C7—C49—H49120.6
C33—C9—C7123 (2)C61—C49—C7118.8 (15)
C33—C9—C27119.8 (18)C61—C49—H49120.6
C5—C11—C35114 (3)C5—C51—H51119.0
C25—C11—C5127 (3)C5—C51—C63122.1 (15)
C25—C11—C35119.8 (15)C63—C51—H51119.0
C1—C13—C29118 (2)C1—C53—C71121 (3)
C59—C13—C1117.8 (18)C1—C53—C75117.6 (18)
C59—C13—C29123.7 (15)C71—C53—C75121 (2)
C3—C15—C57112 (3)C3—C55—C73116.0 (17)
C31—C15—C3130 (3)C69—C55—C3121 (3)
C31—C15—C57118.5 (17)C69—C55—C73123 (3)
C21—C17—C3120.1 (14)C15—C57—H57119.3
C45—C17—C3116 (3)C77—C57—C15121.4 (15)
C45—C17—C21124 (3)C77—C57—H57119.3
C23—C19—C1119.4 (18)C13—C59—H59118.1
C23—C19—C47122 (3)C13—C59—C79123.8 (15)
C47—C19—C1118 (2)C79—C59—H59118.1
C5—C21—C17120.4 (14)C49—C61—H61117.7
C41—C21—C5122 (2)C49—C61—C65125 (2)
C41—C21—C17117 (3)C65—C61—H61117.7
C19—C23—C7117.3 (17)C51—C63—H63120.8
C19—C23—C43121 (3)C51—C63—C67118 (3)
C43—C23—C7121 (2)C67—C63—H63120.8
C11—C25—H25120.2C33—C65—H65123.5
C11—C25—C45119.5 (15)C61—C65—C33113 (3)
C45—C25—H25120.2C61—C65—H65123.5
C9—C27—H27118.6C35—C67—C63122 (3)
C47—C27—C9122.7 (18)C35—C67—H67119.2
C47—C27—H27118.6C63—C67—H67119.2
C13—C29—H29118.8C37—C69—C55120 (2)
C43—C29—C13122.4 (15)C37—C69—H69120.2
C43—C29—H29118.8C55—C69—H69120.2
C15—C31—H31121.8C39—C71—C53123 (2)
C15—C31—C41116.5 (17)C39—C71—H71118.5
C41—C31—H31121.8C53—C71—H71118.5
C9—C33—H33118.5C55—C73—H73122.1
C9—C33—C65123.0 (17)C77—C73—C55116 (3)
C65—C33—H33118.5C77—C73—H73122.1
C11—C35—H35119.3C53—C75—H75119.8
C67—C35—C11121.4 (16)C79—C75—C53120 (2)
C67—C35—H35119.3C79—C75—H75119.8
C45—C37—H37118.3C57—C77—H77117.1
C69—C37—H37118.3C73—C77—C57126 (3)
C69—C37—C45123.4 (13)C73—C77—H77117.1
C47—C39—H39120.4C59—C79—C75117 (3)
C71—C39—H39120.4C59—C79—H79121.5
C71—C39—C47119.2 (15)C75—C79—H79121.5
C1—C13—C29—C431 (3)C19—C1—C53—C718 (4)
C1—C13—C59—C794 (4)C19—C1—C53—C75178.8 (19)
C1—C19—C23—C7176.7 (18)C19—C23—C43—C290 (4)
C1—C19—C23—C432 (4)C21—C5—C11—C251 (3)
C1—C19—C47—C27179 (2)C21—C5—C11—C35178.7 (17)
C1—C19—C47—C392 (3)C21—C5—C51—C63179.0 (18)
C1—C53—C71—C392 (4)C21—C17—C45—C254 (3)
C1—C53—C75—C793 (4)C21—C17—C45—C37177.8 (15)
C3—C15—C31—C416 (3)C23—C7—C9—C277 (4)
C3—C15—C57—C771 (3)C23—C7—C9—C33179 (3)
C3—C17—C21—C5177.3 (16)C23—C7—C49—C61179 (2)
C3—C17—C21—C412 (2)C23—C19—C47—C270 (4)
C3—C17—C45—C25175.9 (16)C23—C19—C47—C39176 (2)
C3—C17—C45—C373 (2)C25—C11—C35—C67179.2 (17)
C3—C55—C69—C3713 (3)C27—C9—C33—C65180 (2)
C3—C55—C73—C778 (2)C29—C13—C59—C79179 (2)
C5—C11—C25—C451 (3)C31—C15—C57—C77177.4 (16)
C5—C11—C35—C671 (3)C33—C9—C27—C47177 (2)
C5—C21—C41—C31176.3 (17)C35—C11—C25—C45177.1 (18)
C5—C51—C63—C670 (2)C45—C17—C21—C52 (3)
C7—C9—C27—C475 (4)C45—C17—C21—C41177.4 (15)
C7—C9—C33—C658 (4)C45—C37—C69—C5518 (3)
C7—C23—C43—C29179 (2)C47—C19—C23—C72 (4)
C7—C49—C61—C655 (4)C47—C19—C23—C43179 (2)
C9—C7—C23—C196 (4)C47—C39—C71—C535 (4)
C9—C7—C23—C43176 (2)C49—C7—C9—C27179.9 (19)
C9—C7—C49—C616 (3)C49—C7—C9—C338 (4)
C9—C27—C47—C191 (4)C49—C7—C23—C19179 (2)
C9—C27—C47—C39178 (2)C49—C7—C23—C433 (4)
C9—C33—C65—C615 (4)C49—C61—C65—C334 (4)
C11—C5—C21—C170 (2)C51—C5—C11—C25178.7 (17)
C11—C5—C21—C41174.9 (16)C51—C5—C11—C350 (2)
C11—C5—C51—C630 (2)C51—C5—C21—C17179.3 (16)
C11—C25—C45—C173 (3)C51—C5—C21—C416 (3)
C11—C25—C45—C37178.6 (16)C51—C63—C67—C350 (3)
C11—C35—C67—C631 (3)C53—C1—C13—C29175 (3)
C13—C1—C19—C233 (4)C53—C1—C13—C592 (4)
C13—C1—C19—C47179 (2)C53—C1—C19—C23176 (2)
C13—C1—C53—C71179 (2)C53—C1—C19—C475 (4)
C13—C1—C53—C755 (4)C53—C75—C79—C592 (3)
C13—C29—C43—C231 (4)C55—C3—C15—C31178 (2)
C13—C59—C79—C756 (4)C55—C3—C15—C577 (3)
C15—C3—C17—C210 (2)C55—C3—C17—C21174.2 (16)
C15—C3—C17—C45180.0 (14)C55—C3—C17—C456 (2)
C15—C3—C55—C69172 (2)C55—C73—C77—C574 (2)
C15—C3—C55—C7310 (3)C57—C15—C31—C41179.0 (18)
C15—C31—C41—C212 (2)C59—C13—C29—C43177 (2)
C15—C57—C77—C731 (3)C69—C37—C45—C1710 (3)
C17—C3—C15—C315 (3)C69—C37—C45—C25172 (2)
C17—C3—C15—C57179.7 (15)C69—C55—C73—C77173.9 (13)
C17—C3—C55—C691 (3)C71—C39—C47—C197 (4)
C17—C3—C55—C73177.1 (15)C71—C39—C47—C27176 (2)
C17—C21—C41—C311 (2)C71—C53—C75—C79177 (2)
C19—C1—C13—C291 (3)C73—C55—C69—C37165 (2)
C19—C1—C13—C59175 (2)C75—C53—C71—C39176 (3)
 

Acknowledgements

LD and ND conceived the overall project. WZ prepared the high-pressure experiments. WZ, AA, AM and MH performed the synchrotron XRD experiments. WZ processed the synchrotron X-ray diffraction data and performed the theoretical calculations. WZ, LD and ND analyzed all the data. WZ, LD and ND wrote the manuscript with contribution and discussion from all the authors.

Funding information

The authors acknowledge the European Synchrotron Radiation Facility for the provision of beam time at the ID15b beamline. Computations were performed at the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities, and the research center for scientific computing at the University of Bayreuth. ND and LD thank the Deutsche Forschungsgemeinschaft (project Nos. LA 4916/1-1; DU 945/15-1; DU 393–9/2; DU 393–13/1) for financial support. ND also thanks the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (faculty grant SFO-Mat-LiU No. 2009 00971).

References

First citationAllamandola, L. J., Sandford, S. A. & Wopenka, B. (1987). Science, 237, 56–59.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAllamandola, L. J., Tielens, A. G. G. M. & Barker, J. (1985). ApJ, 290, L25–L28.  CrossRef CAS Web of Science Google Scholar
First citationAngel, R. J., Alvaro, M. & Gonzalez-Platas, J. (2014). Z. Kristallogr. 229, 405–419.  Web of Science CrossRef CAS Google Scholar
First citationBlöchl, P. E. (1994). Phys. Rev. B, 50, 17953–17979.  CrossRef Web of Science Google Scholar
First citationBoehler, R. (2006). Rev. Sci. Instrum. 77, 115103.  Web of Science CrossRef Google Scholar
First citationBukowska, B., Mokra, K. & Michałowicz, J. (2022). Int. J. Mol. Sci. 23, 6348.  Web of Science CrossRef PubMed Google Scholar
First citationCarrell, C. J., Carrell, T. G., Carrell, H. L., Prout, K. & Glusker, J. P. (1997). Carcinogenesis, 18, 415–422.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationContag, B. (1978). Naturwissenschaften, 65, 108–109.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEhrenfreund, P. & Charnley, S. B. (2000). Annu. Rev. Astron. Astrophys. 38, 427–483.  Web of Science CrossRef CAS Google Scholar
First citationFarchioni, R. (2001). Organic Electronic Materials: Conjugted Polymers and Low Molecular Weight Electronic Solids, Vol. 41. Springer Science & Business Media.  Google Scholar
First citationGrimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456–1465.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHendecourt, L. d' & Ehrenfreund, P. (1997). Adv. Space Res. 19, 1023–1032.  PubMed Web of Science Google Scholar
First citationIball, J. (1936). Z. Kristallogr. 94, 7–21.  CSD CrossRef CAS Google Scholar
First citationIball, J., Scrimgeour, S. N. & Young, D. W. (1976). Acta Cryst. B32, 328–330.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIball, J. & Young, D. W. (1956). Nature, 177, 985–986.  CrossRef CAS Web of Science Google Scholar
First citationKresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15–50.  CrossRef CAS Web of Science Google Scholar
First citationKresse, G. & Joubert, D. (1999). Phys. Rev. B, 59, 1758–1775.  Web of Science CrossRef CAS Google Scholar
First citationMao, H. K., Xu, J. A. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673–4676.  CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMimura, K. & Toyama, S. (2005). Geochim. Cosmochim. Acta, 69, 201–209.  Web of Science CrossRef CAS Google Scholar
First citationMimura, K., Toyama, S. & Sugitani, K. (2005). Earth Planet. Sci. Lett. 232, 143–156.  Web of Science CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMonkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188–5192.  CrossRef Web of Science Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilinsh, E. A. & Cápek, V. (1997). Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena. Oxford University Press.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, W., Yin, Y., Laniel, D., Aslandukov, A., Bykova, E., Pakhomova, A., Hanfland, M., Poreba, T., Mezouar, M., Dubrovinsky, L. & Dubrovinskaia, N. (2024). Commun. Chem. 7, 209.   Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525