research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Managing negative linear compressibility and thermal expansion through steric hindrance: a case study of 1,2-bis­­(4′-pyridyl)­ethane cocrystals

crossmark logo

aFacuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
*Correspondence e-mail: ewapatyk@amu.edu.pl

Edited by C.-Y. Su, Sun Yat-Sen University, China (Received 14 October 2024; accepted 2 December 2024)

Multicomponent crystals have great scientific potential because of their amenability to crystal engineering in terms of composition and structure, and hence their properties can be easily modified. More and more research areas are employing the design of multicomponent materials to improve the known or induce novel physicochemical properties of crystals, and recently they have been explored as materials with abnormal pressure behaviour. The cocrystal of 1,2-bis­(4′-pyridyl)­ethane and fumaric acid (ETYFUM) exhibits a negative linear compressibility behaviour comparable to that of framework and metal-containing materials, but overcomes many of their deficiencies restricting their use. Herein ETYFUM was investigated at low temperature to reveal negative thermal expansion behaviour. Additionally, a cocrystal isostructural with ETYFUM, based on 1,2-bis­(4′-pyridyl)­ethane and succinic acid (ETYSUC), was exposed to high pressure and low temperature, showing that its behaviour is similar in nature to that of ETYFUM, but significantly differs in the magnitude of both effects. It was revealed that the minor structural difference between the acid molecules does not significantly affect the packing under ambient conditions, but has far-reaching consequences when it comes to the deformation of the structure when exposed to external stimuli.

1. Introduction

Multicomponent organic crystals have attracted a lot of interest as their composition, molecular aggregation and intermolecular interactions can be tuned and their synthesis is cost efficient (Ding et al., 2024[Ding, Y., Zhao, Y. & Liu, Y. (2024). Aggregate, e626.]). They can exhibit fluorescence (Li et al., 2016[Li, S., Lin, Y. & Yan, D. (2016). J. Mater. Chem. C. 4, 2527-2534.]; Dai et al., 2024[Dai, C., Ren, Z., Hu, W., Liu, Q. & Pang, Z. (2024). Dyes Pigments, 224, 112014.]), phospho­rescence (Zhou et al., 2020[Zhou, B., Zhao, Q., Tang, L. & Yan, D. (2020). Chem. Commun. 56, 7698-7701.]; Qu et al., 2023[Qu, S., Shen, K., Wu, B., He, Y., Zhao, Z., Yin, C., An, Z., Yan, S. & Shi, H. (2023). Cryst. Growth Des. 23, 31-36.]), light-induced dynamic movement (Li et al., 2020[Li, S., Lu, B., Fang, X. & Yan, D. (2020). Angew. Chem. Int. Ed. 59, 22623-22630.]), static photonic properties (Li et al., 2020[Li, S., Lu, B., Fang, X. & Yan, D. (2020). Angew. Chem. Int. Ed. 59, 22623-22630.]) and temperature- and pressure-induced proton transfer (Bhunia et al., 2010[Bhunia, M. K., Das, S. K. & Bhaumik, A. (2010). Chem. Phys. Lett. 498, 145-150.]; Jones et al., 2014[Jones, C. L., Wilson, C. C. & Thomas, L. H. (2014). CrystEngComm, 16, 5849-5858.]; Patyk-Kaźmierczak et al., 2024[Patyk-Kaźmierczak, E., Izquierdo-Ruiz, F., Lobato, A., Kaźmierczak, M., Moszczyńska, I., Olejniczak, A. & Recio, J. M. (2024). IUCrJ, 11, 168-181.]), or can be means to improve physicochemical properties of active pharmaceutical ingredients (Duggirala et al., 2015[Duggirala, N. K., Perry, M. L., Almarsson, Ö. & Zaworotko, M. J. (2015). Chem. Commun. 52, 640-655.]; Bolla et al., 2022[Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514-11603.]). Recently, a molecular cocrystal was discovered to exhibit significant negative linear compressibility (NLC) behaviour of a magnitude previously associated with framework materials. This 1:1 cocrystal composed of 1,2-bis­(4′-pyridyl)­ethane (ETY) and fumaric acid (FUM), herein referred to as ETYFUM (Patyk-Kaźmierczak & Kaźmierczak, 2024[Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2024). Chem. Commun. 60, 10310-10313.]), has a median compressibility of −24 (1) TPa−1 in the NLC direction and a compressibility capacity (Cairns & Goodwin, 2015[Cairns, A. B. & Goodwin, A. L. (2015). Phys. Chem. Chem. Phys. 17, 20449-20465.]), χK, equal to 6.8% (for the 0.1 MPa to 3.58 GPa pressure range). Its main advantage is its facile and environmentally friendly synthesis and the recyclability of the building blocks.

Negative compressibility behaviour is unusual, as it is expected that a crystal will respond to an increase in pressure by decreasing its dimensions. However, in rare cases, abnormal behaviour can be observed when a material expands along one (NLC) or two (negative area compressibility, NAC) principal axes (Baughman et al., 1998[Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. (1998). Science, 279, 1522-1524.]; Cairns & Goodwin, 2015[Cairns, A. B. & Goodwin, A. L. (2015). Phys. Chem. Chem. Phys. 17, 20449-20465.]). However, to make such a process thermodynamically possible, sufficient compression must take place along the remaining principal axes/axis to achieve overall volume reduction (Baughman et al., 1998[Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. (1998). Science, 279, 1522-1524.]; Cairns & Goodwin, 2015[Cairns, A. B. & Goodwin, A. L. (2015). Phys. Chem. Chem. Phys. 17, 20449-20465.]). On the other hand, there is no such limitation when it comes to negative thermal expansion (NTE), where linear or volumetric contraction can occur on heating (Miller et al., 2009[Miller, W., Smith, C. W., Mackenzie, D. S. & Evans, K. E. (2009). J. Mater. Sci. 44, 5441-5451.]). Materials exhibiting any of the above-mentioned behaviours have many possible applications. The ability to expand under pressure makes NLC and NAC materials applicable as optical sensors or in telecommunication systems required to function under high pressure (Baughman et al., 1998[Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. (1998). Science, 279, 1522-1524.]). Meanwhile, NTE materials can be used to compensate for the positive thermal expansion (PTE) of other materials (Takenaka, 2012[Takenaka, K. (2012). Sci. Technol. Adv. Mater. 13, 013001.]).

NTE materials have been intensively studied since the mid 1990s, when the NTE behaviour of a variety of materials was explained in relation to their crystal structures (Korthuis et al., 1995[Korthuis, V., Khosrovani, N., Sleight, A. W., Roberts, N., Dupree, R. & Warren, W. W. Jr (1995). Chem. Mater. 7, 412-417.]; Sleight, 1995[Sleight, A. W. (1995). Endeavour, 19, 64-68.]; Mary et al., 1996[Mary, T. A., Evans, J. S. O., Vogt, T. & Sleight, A. W. (1996). Science, 272, 90-92.]; Evans et al., 1997[Evans, J. S. O., Mary, T. A. & Sleight, A. W. (1997). J. Solid State Chem. 133, 580-583.]; Lind, 2012[Lind, C. (2012). Materials, 5, 1125-1154.]). There are many reports of inorganic and inorganic–organic hybrid materials exhibiting NTE along one or more principal axes; however, the literature on organic NTE crystals is comparably scarce. A study of the Cambridge Structural Database from 2021 (Lee & Dumitrescu, 2021[Lee, A. van der & Dumitrescu, D. G. (2021). Chem. Sci. 12, 8537-8547.]) has revealed that 37% of the deposited structures investigated at various temperatures exhibit NTE (34% axial NTE and 3% volumetric NTE), which is more than was believed. The largest NTE values found in the study reached ca −350 and −200 MK−1, but such cases can be considered outliers. More commonly, uniaxial NTE is in the range of −100 MK−1 (Lee & Dumitrescu, 2021[Lee, A. van der & Dumitrescu, D. G. (2021). Chem. Sci. 12, 8537-8547.]).

When it comes to NLC materials, reports of significant NLC are scarce, with the most negative median compressibility usually associated with framework materials. The most impressive cases are as follows: Ag3[Co(CN)6] Phase I [KNLC = −76 (9) TPa−1; Δp = 0–0.19 GPa (Goodwin et al., 2008[Goodwin, A. L., Keen, D. A. & Tucker, M. G. (2008). Proc. Natl Acad. Sci. USA, 105, 18708-18713.])], InH(BCD)2 [KNLC = −62.4 TPa−1; Δp = 0–0.53 GPa (Zeng et al., 2017[Zeng, Q., Wang, K. & Zou, B. (2017). J. Am. Chem. Soc. 139, 15648-15651.])] and Zn[Au(CN)2]2 Phase I [KNLC = −42 (5) TPa−1; Δp = 0–1.8 GPa (Cairns et al., 2013[Cairns, A. B., Catafesta, J., Levelut, C., Rouquette, J., van der Lee, A., Peters, L., Thompson, A. L., Dmitriev, V., Haines, J. & Goodwin, A. L. (2013). Nat. Mater. 12, 212-216.])]. Recently, density functional theory was used to uncover a massive NLC for the 3D covalent organic framework NPN-3 [KNLC = −42.04 TPa−1; Δp = 0–0.9 GPa (Erkartal, 2024[Erkartal, M. (2024). J. Phys. Chem. C, 128, 588-596.])].

It has been shown that some topological motifs show clear predisposition to exhibit NLC (Cairns & Goodwin, 2015[Cairns, A. B. & Goodwin, A. L. (2015). Phys. Chem. Chem. Phys. 17, 20449-20465.]). Hence, a search of novel NLC materials often focuses on crystals with structures utilizing such motifs, one of which is the wine rack. There are a number of NLC crystals of wine-rack structures reported in the literature, with some of the most recent and interesting cases including the already discussed ETYFUM (Patyk-Kaźmierczak & Kaźmierczak, 2024[Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2024). Chem. Commun. 60, 10310-10313.]), MCF-34 (Zeng et al., 2020[Zeng, Q., Wang, K. & Zou, B. (2020). ACS Materials Lett. 2, 291-295.]), Eu[Ag(CN)2]3·3H2O (Liu et al., 2024[Liu, Y., Fu, B., Wu, M., He, W., Liu, D., Liu, F., Wang, L., Liu, H., Wang, K. & Cai, W. (2024). Phys. Chem. Chem. Phys. 26, 1722-1728.]) and [C(NH2)3]Er(HCO2)2(C2O4) (Hitchings et al., 2024[Hitchings, J., Scatena, T., Allan, R. R., Cairns, D. B. & Saines, A. (2024). Chem. Commun. 60, 3271-3274.]). MCF-34 is a metal–organic framework with two distinctive wine-rack units oriented in four ways in the crystal structure, and is the first case of a multitype wine-rack material investigated in the context of NLC. Its NLC is also significant, with KNLC = −47.3 (2) TPa−1 in the 0–0.53 GPa range. Meanwhile, Eu[Ag(CN)2]3·3H2O is a framework material that exhibits NLC over a very wide pressure range, 0–8.2 GPa [KNLC = −4.2 (1) TPa−1]. Lastly, [C(NH2)3]Er(HCO2)2(C2O4) is the first reported case of a hybrid perovskite that exhibits NLC even from ambient pressure [KNLC = −10.1 (7) TPa−1 for the 0–2.63 (10) GPa range].

The NAC, NLC and NTE associated with changes along the orthogonal principal axes are easily monitored for materials of orthogonal crystal systems (orthorhombic, tetragonal and cubic). In the case of the remaining crystal systems, NLC, NAC and NTE can still be observed in the abnormal changes of the unit-cell parameters; however, to determine the magnitude and direction of each effect, a calculation of the strain along the principal axes is necessary. For instance, in the case of ETYFUM of a monoclinic system, two unit-cell parameters increase on compression although negative compressibility occurs only along one principal axis (Patyk-Kaźmierczak & Kaźmierczak, 2024[Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2024). Chem. Commun. 60, 10310-10313.]).

In this work, we present the case of a cocrystal (ETYSUC) of 1,2-bis­(4′-pyridyl)­ethane (ETY) and succinic acid (SUC), the NLC behaviour of which is masked by the decrease of all three unit-cell parameters. Under ambient conditions ETYSUC is isostructural with ETYFUM, however, its response to compression is remarkably different. Finally, the NTEs of ETYSUC and ETYFUM are investigated and compared. The difference in temperature and pressure behaviour of ETYSUC and ETYFUM is rationalized in terms of the subtle structural dissimilarities between SUC and FUM molecules.

2. Experimental

2.1. Cocrystal synthesis

ETYSUC and ETYFUM were synthesized by dissolving 1,2-bis­(4′-pyridyl)­ethane (ETY) and the respective acid (succinic acid – SUC, or fumaric acid – FUM) in a 1:1 molar ratio in hot methanol and leaving the solutions for slow evaporation at room temperature or by solvent-assisted ball milling (see the supporting information for additional details).

2.2. X-ray diffraction experiments

Single-crystal X-ray diffraction experiments were performed using a four-circle X-ray diffractometer equipped with a copper or molybdenum X-ray tube. In all cases, CrysAlisPro (Rigaku Oxford Diffraction, 2020[Rigaku Oxford Diffraction (2020). CrysAlisPro. Rigaku Corporation, Wroclaw, Poland.], 2022[Rigaku Oxford Diffraction (2022). CrysAlisPro. Rigaku Corporation, Wroclaw, Poland.]) was used for data collection, UB-matrix determination, data reduction and absorption correction. High-pressure conditions were provided by mounting the sample crystal in a Merrill–Bassett (Merrill & Bassett, 1974[Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290-294.]) diamond anvil cell (Fig. S1 of the supporting information). For low-temperature experiments (Figs. S2–S5), a nitrogen-flow attachment from Oxford Cryosystems was used. Crystal structure determination was performed using ShelXS or ShelXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), while refinement was performed using ShelXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), with the three programs implemented in Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) as an interface. The crystallographic details for all structures are listed in Tables S1–S16 of the supporting information. Powder X-ray diffraction experiments were performed for ETYSUC crystals obtained from ball-milling synthesis, using the Bruker D8 Advance diffractometer (equipped with a copper X-ray tube). Details on X-ray diffraction experiments and data treatment are provided in the supporting information.

2.3. Principal axis strain and linear coefficient of thermal expansion calculations

The principal axis strain and the linear coefficients of thermal expansion were calculated using the PASCal program (Cliffe & Goodwin, 2012[Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321-1329.]; Lertkiattrakul et al., 2023[Lertkiattrakul, M., Evans, M. L. & Cliffe, M. J. (2023). J. Open Source Softw. 8, 5556.]) available at https://www.pascalapp.co.uk/. For details, see the supporting information.

3. Results and discussion

ETYSUC crystallizes in the monoclinic crystal system, space group I2/a [originally reported in space group C2/c (Braga et al., 2010[Braga, D., Dichiarante, E., Palladino, G., Grepioni, F., Chierotti, M. R., Gobetto, R. & Pellegrino, L. (2010). CrystEngComm, 12, 3534-3536.]) but here a non-standard setting was selected to ensure a β angle value closer to 90°]. As mentioned previously, under ambient conditions, it is isostructural with ETYFUM. The only difference between the two structures lies in the structure of the acid molecules because FUM is an unsaturated analogue of SUC. Therefore, it is evident that the difference in the hybridization of α-carbon atoms and the presence of two additional hydrogen atoms in the SUC molecule does not significantly affect the preference for the aggregation of the coformers in the cocrystal. However, this seemingly insignificant difference in molecular structures is behind the drastically different pressure and temperature behaviour of ETYFUM and ETYSUC.

3.1. Pressure-induced phase transition in ETYSUC

Compression of the ETYSUC crystal up to 2.9 GPa results in a decrease in all three unit-cell parameters, and an increase in the β angle from 108.512 (3) to 113.81 (4)° (Fig. 1[link]). Above 2.9 GPa the trend in the pressure dependence of the unit-cell parameters changes, with the a parameter starting to increase on compression between 2.97 and 3.73 GPa, and the slope for the parameters c and b is altered (Fig. 1[link]). Based on this observation, it was established that above 2.9 GPa ETYSUC undergoes a phase transition to Phase I′, without alteration of the crystal symmetry nor a noticeable change in unit-cell parameters. The novel phase is structurally closely related to Phase I and differs only in its response to compression. In comparison, on compression of the ETYFUM crystal up to 3.6 GPa, only monotonic changes are observed and an increase in the length of the a and c lattice parameters and β angle accompanied by a significant decrease of b unit-cell parameter takes place (Fig. 1[link]).

[Figure 1]
Figure 1
Pressure dependence of the (a) unit-cell volume, (b) β angle and (c) unit-cell parameters for ETYFUM (solid lines) and ETYSUC (dashed and dotted lines). For ETYFUM, various symbols mark different sample crystals investigated under pressure as done in the original work (Patyk-Kaźmierczak & Kaźmierczak, 2024[Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2024). Chem. Commun. 60, 10310-10313.]). For ETYSUC, the full symbols and dashed lines are for Phase I, and the empty symbols and dotted lines are for Phase I′. The lower subscripts EF, ES-I and ES-I′ stand for ETYFUM, ETYSUC I and ETYSUC I′, respectively. The vertical dashed–dotted line marks the transition pressure (pc) for the crystal of ETYSUC. Solid and dashed lines in (b) and (c) are to guide the eye only, while in (a) they represent Birch–Murnaghan equations of states (Tables S17, S19 and S22). Insets in (a) show indicatrix plots representing compressibility tensors (with PLC and NLC marked in red and blue, respectively) calculated using PASCal (Cliffe & Goodwin, 2012[Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321-1329.]; Lertkiattrakul et al., 2023[Lertkiattrakul, M., Evans, M. L. & Cliffe, M. J. (2023). J. Open Source Softw. 8, 5556.]) for all data points of ETYFUM, and separately for data points of Phase I and Phase I′ of ETYSUC. The axes in the indicatrix plots show the a, b and c axes of the lattice.

3.2. Negative linear compressibility

It was revealed that ETYSUC exhibits NLC behaviour along a similar, but quite not the same, direction (0.80a − 0.60c, Tables S17 and S18) as ETYFUM (0.73a − 0.68c, Tables S22 and S23), and of a much smaller magnitude. For the 0.1 MPa–2.9 GPa range, the median compressibility, KNLC, is equal to −5.4 (2) TPa−1 and the compressibility capacity (Cairns & Goodwin, 2015[Cairns, A. B. & Goodwin, A. L. (2015). Phys. Chem. Chem. Phys. 17, 20449-20465.]), χK, is equal to 1.9% (Table S17, Fig. S14). Such parameters make ETYSUC a material with moderate NLC. The significantly lower magnitude is behind the observed decrease in all three unit-cell parameters, in contrast to two ETYFUM parameters that increase with compression. As the NLC strain axis is to some degree aligned with the diagonal [10−1], its elongation should affect the a and c axes in a similar manner (i.e. leading to an increase in the a and c unit-cell parameters). However, it can be compensated for by an increase of the β angle. The change in β angle for both cocrystals can be considered similar, and in the case of ETYSUC, where the effect of NLC is small, it is sufficient to balance the elongation along the 0.80a − 0.60c direction. Meanwhile, it is insufficient for ETYFUM. After the phase transition, when the direction of the NLC of ETYSUC slightly changes (to 0.81a − 0.59c; Table S19 and Fig. S8) and becomes aligned closer to the a axis, we start to observe a slight increase of the a parameter on compression (Fig. 1[link]). However, for ETYSUC I′, the low number of experimental points and their inconsistency (probably caused by the crystal strain resulting from several compression/decompression runs) affect the calculated compressibility values and their estimated standard deviations (ESDs; Table S19).

As the structure of ETYSUC does not differ significantly between Phases I and I′, the strain along the principal axes was also calculated for the data of Phases I and I′ joined (Tables S20 and S21, Fig. S9). For the combined data, the NLC direction is 0.78a − 0.63c, and the median compressibility in the NLC direction shifts to −4.2 (4) TPa−1, which is unsurprising, as the pressure range is now wider (0.1 MPa–3.73 GPa). At the same time, compressibility values calculated for experimental points of ETYSUC I do not notably differ from the results received when ETYSUC I data were considered separately. Meanwhile, the KNLC values obtained for Phase I′ became much more reasonable (Tables S20 and S21), supporting the observation of NLC made for Phase I′ on a limited number of data points.

3.2.1. NLC mechanism

The mechanism behind NLC in ETYSUC is the same as in ETYFUM, i.e. originates from the deformation of the wine-rack motif formed by O—H⋯N bonded chains of the ETY and SUC molecules (Fig. 2[link]). Similarly to ETYFUM, there are no classic hinges in the form of metal centres, but the same hinge point can be assigned: an oxygen atom of the carb­oxy­lic group interlocked between two hydrogen atoms of the pyridine ring of ETY (Figs. 2[link] and S10). To track the changes in the geometry of the wine rack on compression it is sufficient to analyse changes occurring in its fragment. In the case of ETYFUM, a triangle was constructed on three adjacent centroids calculated for triads of atoms O1, C4 and C5, each representing a hinge point [Figs. 2[link](d), 3[link] and S10]. The height of the triangle is approximately aligned with the direction of NLC in ETYFUM (0.73a − 0.68c), and is related to the parameter d1 (side) and the φ angle of the triangle according to equation (1)[link]:

[h = d_1 \cos (\varphi /2). \eqno (1)]

When pressure is applied, the wine rack deforms, becoming flatter, resulting in a decrease in the base of the triangle (parameter d2) and φ angle, while the side of the triangle (d1) remains almost constant (Fig. 3[link]). Therefore, as compression progresses, the height of the triangle will increase, and as we have reported previously for ETYFUM (Patyk-Kaźmierczak & Kaźmierczak, 2024[Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2024). Chem. Commun. 60, 10310-10313.]), this change matches the increase in NLC axis X3 calculated with PASCal, confirming the deformation of wine rack is the cause standing behind the NLC behaviour.

[Figure 2]
Figure 2
Fragment of the ETYSUC I structure at (a) 0.1 MPa and 298 K, and (b) 2.90 GPa and 298 K, showing a wine-rack motif formed by the ETY⋯SUC chains. (c) Superposition of the motif at 0.1 MPa (blue) and 2.90 GPa (red) with the indicatrix plot calculated using PASCal for the 0.1 MPa–2.90 GPa range, mapped in the same orientation as the structure (NLC marked in blue, PLC marked in red); black arrows show direction of the chains movement on compression, blue arrows the direction of NLC and red arrows the direction of PLC. (d) Magnification of the fragment of the ETYSUC structure showing three adjacent hinge points (red centroids) with the parameters of the triangle formed by them marked: d1 – side, red dashed lines; d2 – base, green dashed line; h – height, blue dashed line; φ – purple highlight.
[Figure 3]
Figure 3
Change rate (green axis) for parameters d1, h and φ as a function of pressure (right) and temperature (left). For clarity, magnification of temperature data is given as an insert on the left side of the graph. In the pressure graph/magnification of the temperature graph the change in the length of the NLC axis (X3/X1) for ETYFUM and ETYSUC I, calculated using PASCal, is also included (pink and green open diamond symbols and dashed lines). The rate of change for the parameters d1, h and φ was obtained for the values calculated based on functions fitted to the experimental data (Fig. S14 and S20; Tables S33 and S35).

In the case of ETYSUC I, when we analyse the same motif as in ETYFUM, the φ angle changes by only 9% between 0.1 MPa and 2.9 GPa (compared with a decrease of more than 22% observed for ETYFUM for the 0.1 MPa–3.58 GPa range and 20% for the 0.1 MPa–2.9 GPa range). The smaller change in the φ angle translates into a weaker NLC effect. However, it should be noted that the direction of NLC in ETYSUC is different compared with ETYFUM and is not as closely aligned with the height of the triangle, which can explain the difference in the change rate of h and NLC axis X3 (Fig. 3[link]). The fact that the NLC behaviour is observed and its mechanism is so strongly related to that observed in ETYFUM confirms that the latter can be used as a blueprint for NLC materials, and also shows the magnitude of the effect can be controlled.

3.2.2. Managing NLC magnitude via steric hindrance

It appears that NLC damping in ETYSUC is mainly caused by a steric hindrance in the form of hydrogen atoms at the α-carbon (C2A), see Fig. S11. For ETYFUM, the pivoting of the chains can take place more freely as the hydrogen atom at the α-carbon (C8, which is an equivalent of the C2A atom in ETYSUC) is placed between the hydrogen atoms of the pyridine rings (Fig. S11). Meanwhile, atoms H5 and H6 of the pyridine ring are facing two hydrogen atoms at C2A in ETYSUC. Interestingly, when the evolution of the distance between the hydrogen atoms of the pyridine ring of ETY and the hydrogen atoms of FUM and SUC with pressure is considered (Fig. S15), we observe that it is quite similar. However, the rapprochement of the hydrogen atoms of ETY and SUC/FUM takes place not only as a result of direct compression of the crystal but also due to the pivoting of the ETY⋯SUC and ETY⋯FUM chains. Therefore, the same rapprochement of hydrogen atoms is achieved in both structures, but in ETYFUM it is associated with a decrease in the φ angle of 22% while in ETYSUC it is only by 9% (Fig. 3[link]). It is hence clear that the distance between the hydrogen atoms of ETY and the respective acid is the limiting factor halting the pivoting of chains and hence controlling the NLC magnitude.

Interestingly, when the transition to ETYSUC I′ occurs, the strain in the form of close proximity between atoms H6 and H2ab at the symmetry-equivalent position at 1/2 + x, −y, z is partially released as the intermolecular distance between the two atoms increases (Fig. S12). It appears that when the distance limit between hydrogen atoms of ETY and SUC was achieved at 2.9 GPa, the structure adapted by changing the direction of NLC, allowing for further non-destructive compression of the crystal and separation of one pair of closely squeezed ETY and SUC hydrogen atoms.

Steric hindrance can also explain the difference in the direction of NLC between ETYFUM and ETYSUC. A slight rotation of the SUC molecule with respect to ETY (considering the ETY/SUC pair bonded by a C—H⋯O1 bond) helps to keep the hydrogen atoms at the α-carbon further away from the H5 and H6 atoms of ETY. As a result, the O—H⋯N bonded chains move with respect to one another in two planes instead of one, like in ETYFUM (Fig. 4[link]). Hence, the deformation of the wine rack is accompanied by slight rotation of ETY⋯SUC chains, making the resultant NLC direction different to ETYFUM, and no longer aligned with the height of the triangle constructed on the centroids calculated for hinge points.

[Figure 4]
Figure 4
Fragments of the ETYSUC and ETYFUM structures shown along the [010] direction in the pressure ranges 0.1 MPa–3.73 GPa and 0.1 MPa–3.58 GPa, respectively. For each cocrystal, one molecule of ETY was superimposed to constitute a reference point for each structure. Structures at different pressure are marked in varied colours (see the colour scale next to each structure). Red arrows mark the direction of movement of the ETY⋯SUC/FUM chains with respect to the reference ETY molecule on compression.

Lastly, some analogies between steric-hindrance control over NLC magnitude observed by us and previously reported on two hybrid perovskites {of the general formula [A]Er(HCO2)2(C2O4), where A = [(NH2)3C] or [(CH3)2NH2] (Hitchings et al., 2024[Hitchings, J., Scatena, T., Allan, R. R., Cairns, D. B. & Saines, A. (2024). Chem. Commun. 60, 3271-3274.])} can be drawn. In the work by Hitchings et. al. (2024[Hitchings, J., Scatena, T., Allan, R. R., Cairns, D. B. & Saines, A. (2024). Chem. Commun. 60, 3271-3274.]), only [(NH2)3C]Er(HCO2)2(C2O4) exhibits NLC, despite the wine-rack motif being present in both materials. The reasons behind this include differences in host–guest interactions, resulting from different guest molecules being present in the cavities of the framework. It appears that the presence of (CH3)2NH2 in the openings of the wine rack in [(CH3)2NH2]Er(HCO2)2(C2O4) caused steric hindrance that prevented hinging and NLC. It shows that ensuring the presence of the structural motifs predisposed to NLC might not be enough to successfully design materials of negative compressibility and additional factors such as steric hindrance need to be considered. On the other hand, it opens the possibilities to modify or avoid NLC in the wine-rack framework materials simply by exchanging guest molecules. Of course, the guest-exchange approach is not applicable to non-framework materials, such as ETYFUM or ETYSUC. In this case, the only possibility to introduce steric hindrance is to modify the wine rack by replacing molecules that form it with more bulky analogues. In the case of ETYFUM and ETYSUC, the difference in FUM and SUC molecules is extremely small, yet sufficient to significantly modify the NLC behaviour of the two materials. We believe that further exploration of the effect of larger substituents at α-carbon atoms on NLC would offer more insight into this matter. Nevertheless, our data and results reported by Hitchings et al. (2024[Hitchings, J., Scatena, T., Allan, R. R., Cairns, D. B. & Saines, A. (2024). Chem. Commun. 60, 3271-3274.]) sufficiently show how the introduction of steric hindrance (either in the form of a guest molecule or structural modification of molecules forming the wine rack) can be employed to control the NLC behaviour of the material with structures utilizing the wine-rack motif, leading to either significant damping of NLC or its annihilation.

3.3. Negative thermal expansion

It has been previously shown that the same effects observed on crystal compression can be achieved by exposing the crystal to low temperature. However, the temperature range that can be applied is limited (with temperatures close to absolute zero being very difficult to achieve experimentally). This affects the magnitude of changes that can be induced by cooling. According to the pressure–temperature correspondence rule, usually the same effects can be achieved on compression to approximately 0.2–0.5 GPa as when the temperature is lowered from 300 to 100 K (Kaźmierczak et al., 2021[Kaźmierczak, M., Patyk-Kaźmierczak, E. & Katrusiak, A. (2021). Cryst. Growth Des. 21, 2196-2204.]). Therefore, NLCs of ETYFUM and ETYSUC can be a predictor of the abnormal thermal behaviour of the two cocrystals. We have established that indeed they both exhibit NTE along one principal axis, but some differences in their behaviour can be noted.

In the case of ETYFUM, the direction of NTE (0.72a − 0.69c) is almost exactly the same as for NLC (0.73a − 0.68c); however, it is not observed over the entire investigated temperature range (100–300 K), as PTE was recorded between 100 and 150 K along all three primary axes (Tables S28–S30). Interestingly, when the crystal is gradually cooled (with 5 K steps), the NTE behaviour was observed in the 140–300 K range (Tables S28 and S29, Fig. S18). Still, there is no significant difference in the crystal structure or lattice constants of ETYFUM measured in the 140–300 K and 100–150 K ranges, and the symmetry of the crystal (the crystal system and space group) is preserved. Hence, the ETYFUM form that exists between 100 and 150 K is referenced as ETYFUM-lt (as, similarly to compressed ETYSUC, it is only the response to cooling that changes below 150 K). At the same time, NTE in ETYSUC is observed in the whole 100–300 K temperature range (Tables S24 and S25), regardless of the rate of change of temperature, and the direction of NTE in ETYSUC (0.79a − 0.61c) is also close to the direction of NLC (0.80a − 0.60c).

Similar to NLC, NTE is more significant in ETYFUM than in ETYSUC [with linear coefficients of thermal expansion equal to −39.7 (8) MK−1 and −16.5 (7) MK−1, respectively]. In addition, an increase in the unit-cell parameters on cooling is only observed in the case of ETYFUM, but, unlike NLC, it is recorded for the c unit-cell parameter only, and exclusively in the 300–200 K temperature range (Fig. 5[link]).

[Figure 5]
Figure 5
Temperature dependence of the (a) unit-cell volume, (b) β angle and (c) unit-cell parameters for ETYFUM sample crystal A (solid and dotted lines) and ETYSUC I sample crystal A (dashed lines). The lower subscripts EF, EF-lt and ES-I stand for ETYFUM, ETYFUM low temperature and ETYSUC Phase I, respectively. The insets in (a) show indicatrix plots representing thermal expansion tensors (PTE and NTE marked in red and blue, respectively) calculated using PASCal (Cliffe & Goodwin, 2012[Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321-1329.]; Lertkiattrakul et al., 2023[Lertkiattrakul, M., Evans, M. L. & Cliffe, M. J. (2023). J. Open Source Softw. 8, 5556.]). The axes in the indicatrix plots show the a, b and c axes of the lattice.
3.3.1. NTE mechanism and magnitude control

The mechanism behind NTE can be linked to the wine-rack motif in a manner similar to that for NLC. In general, on cooling of the ETYFUM and ETYSUC crystals, the φ angle decreases (Fig. 3[link], S16) while the d1 parameter remains almost constant, causing the height of the triangle to increase [according to equation (1[link])], which results in elongation of the crystal along one principal axis (i.e. NTE). Interestingly, the geometry of the wine rack changes in a similar manner on cooling ETYFUM from 150 to 100 K when the crystal exhibits PTE. However, the rate of changes of the φ angle becomes milder while the d1 parameter starts to decrease more rapidly compared with what is observed when cooling ETYFUM from 300 to 140 K and ETYSUC from 300 to 100 K. As a result, when the ETYFUM crystal is cooled from 150 to 100 K, the height of the triangle starts to decrease, which results in PTE. Moreover, in the case of ETYFUM, the increase in h on cooling (in the 300–140 K range) closely matches the change in the NTE axis (X1) calculated using PASCal (Fig. 3[link]) which allows us to correlate NTE behaviour with deformation of the wine rack.

Similarly, as observed in the compression experiments, the height of the triangle is not aligned with the NTE axis as closely in ETYSUC as in ETYFUM. In fact, the effect of the temperature on h is similar for both cocrystals, but the increase of h in ETYSUC differs significantly from the change observed for the NTE axis X3 (see Fig. 3[link]). Hence it appears that the final NTE magnitude might again be affected by displacement of the SUC molecules with respect to ETY, similar to that described for the compressed ETYSUC crystal. Although structural changes on cooling from 300 to 100 K are less noticeable and harder to observe visually, the temperature dependence of C—H⋯O bonds (calculated for the C—H bonds normalized to 1.089 Å to avoid bias caused by refinement of the positions of the hydrogen atoms and the lengths of the C—H bonds varying between structural models) shows that the rotation of SUC molecules with respect to ETY takes place in a manner similar to that observed for the compressed crystal of ETYSUC (Fig. S21). Although the length of both C—H⋯O bonds in ETYFUM decreases at a similar rate, in ETYSUC the length of the C5—H5⋯O1A bond decreases faster than for C6—H6⋯O1A, suggesting that the distance between atoms is affected inconsistently and is not a result of linear contraction, but rather additional rotation of molecules has to take place. As a result, the direction of NTE is affected and deformation of the triangle constructed on centroids calculated for O1, C5 and C6 atoms cannot be directly translated into the magnitude of NTE. It is therefore plausible that the effect coming from the deformation of the wine rack is damped by additional movement of SUC and ETY molecules with respect to one another.

3.4. Effect of pressure and temperature on torsion angles of SUC and FUM

Lastly, we would like to comment on the conformational preference of SUC molecules in ETYSUC crystals. Understandably, the order of the bond between α-carbon atoms affects the flexibility of SUC and FUM molecules. In particular, the double bond in FUM forms a conjugated system with two double carbon–oxygen bonds of carb­oxy­lic groups. As a result, there is tendency for the molecule to be planar, or nearly planar (Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry. Cornell University Press.]), and it introduces a level of rigidity in the FUM molecules. In SUC the order of all carbon–carbon bonds is one and such restrictions do not apply. Nevertheless, the SUC molecules still take almost completely flat conformation [with an O1a–C1a–C2a–C2a torsion angle of about 6.2 (2)° under ambient conditions]. Despite the ability of SUC molecules to change conformation more freely, it remains resistant to changes in pressure and temperature, and on cooling to 100 K, the torsion angle oscillates in the 6.4 (4)–7.3 (5)° range (Fig. S22). The variation in torsion angle with pressure is more significant (in the 0–12° range, Fig. S22); however, as the quality of structural models is low, these values are accompanied by large ESDs and it is hard to evaluate actual changes in conformation induced by pressure. Meanwhile, the analogous torsion angle of FUM (O1–C7–C8–C8) in ETYFUM is closer to 0° [−3.2 (2)° under ambient conditions] and its response to cooling is even smaller [oscillating between −3.1 (3) and −2.7 (2)° in the 100–300 K range, see Fig. S22]. Similarly to ETYSUC, for high-pressure structural models of ETYFUM, the O1–C7–C8–C8 torsion angle of FUM shows larger variation, with values accompanied by large ESDs, which hinders reliable evaluation of the effect of pressure.

4. Conclusions

Abnormal pressure and temperature behaviour of the organic cocrystal ETYSUC was detected and analysed in the context of the previously reported metal-free NLC material, ETYFUM, which is isostructural to ETYSUC. Interestingly, the NLC and NTE of ETYSUC are completely concealed by the decrease in the unit-cell parameters a, b and c with compression and temperature reduction. Only above 2.9 GPa can an increase of the unit-cell parameter a be observed, and the response of the crystal to pressure changes. Hence, 2.9 GPa is considered a phase transition pressure; however, since there is no drastic change in the crystal structure, the high-pressure phase was labelled ETYSUC I′. Despite the similar molecular aggregation of ETYSUC and ETYFUM, the former exhibits NLC and NTE of significantly smaller magnitude. This can be linked to steric hindrance caused by the close positioning of hydrogen atoms at the α-carbon of SUC to hydrogen atoms H5 and H6 of the pyridine ring of ETY, and the different manner in which the O—H⋯N-bonded chains change their respective positions on compression and cooling in ETYSUC compared with ETYFUM. Despite the lower magnitude of NLC, ETYSUC can still be used as an example, confirming that ETYFUM can be used as a blueprint for the design of metal-free NLC materials. At the same time, it provides additional input to the concept by showing how steric hindrance can dampen the NLC and NTE effects and how the molecular structure needs to be considered when coformers are selected, exemplifying the macroscopic behaviour affected by microscopic modifications.

5. Related literature

The following references are cited in the supporting information: Budzianowski & Katrusiak (2004[Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. McMillan, pp. 101-112. Dordrecht: Springer Netherlands.]); Bull et al. (2019[Bull, C. L., Funnell, N. P., Ridley, C. J., Pulham, C. R., Coster, P. L., Tellam, J. P. & Marshall, W. G. (2019). CrystEngComm, 21, 5872-5881.]); Cai & Katrusiak (2014[Cai, W. & Katrusiak, A. (2014). Nat. Commun. 5, 4337.]); Harty et al. (2015[Harty, E. L., Ha, A. R., Warren, M. R., Thompson, A. L., Allan, D. R., Goodwin, A. L. & Funnell, N. P. (2015). Chem. Commun. 51, 10608-10611.]); Jiang et al. (2022[Jiang, D., Wen, T., Guo, Y., Liang, J., Jiang, Z., Li, C., Liu, K., Yang, W. & Wang, Y. (2022). Chem. Mater. 34, 2764-2770.]); Knížek (2021[Knížek, K. (2021). KDiff, Kalvados Software Package. Prague, Czech Republic.]); Macrae et al. (2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]); Piermarini et al. (1975[Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774-2780.]); Shephard et al. (2022[Shephard, J. J., Berryman, V. E. J., Ochiai, T., Walter, O., Price, A. N., Warren, M. R., Arnold, P. L., Kaltsoyannis, N. & Parsons, S. (2022). Nat. Commun. 13, 5923.], 2012[Shepherd, H. J., Palamarciuc, T., Rosa, P., Guionneau, P., Molnár, G., Létard, J.-F. & Bousseksou, A. (2012). Angew. Chem. Int. Ed. 51, 3910-3914.]); Szafrański (2020[Szafrański, M. (2020). J. Phys. Chem. C, 124, 11631-11638.]); Woodall et al. (2013[Woodall, C. H., Beavers, C. M., Christensen, J., Hatcher, L. E., Intissar, M., Parlett, A., Teat, S. J., Reber, C. & Raithby, P. R. (2013). Angew. Chem. Int. Ed. 52, 9691-9694.]); Yeung et al. (2017[Yeung, H. H.-M., Kilmurray, R., Hobday, C. L., McKellar, S. C., Cheetham, A. K., Allan, D. R. & Moggach, S. A. (2017). Phys. Chem. Chem. Phys. 19, 3544-3549.]); Zhao et al. (2020[Zhao, Y., Fan, C., Pei, C., Geng, X., Xing, G., Ben, T. & Qiu, S. (2020). J. Am. Chem. Soc. 142, 3593-3599.]).

Supporting information


Computing details top

1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_100k) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.372 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6633 (6) ÅCell parameters from 1744 reflections
b = 4.7294 (2) Åθ = 4.8–71.9°
c = 19.6488 (7) ŵ = 0.83 mm1
β = 110.091 (4)°T = 100 K
V = 1454.24 (10) Å3Plate, colourless
Z = 40.25 × 0.15 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1405 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1210 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.5384 pixels mm-1θmax = 72.5°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.699, Tmax = 1.000l = 2320
2766 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.7718P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1405 reflectionsΔρmax = 0.19 e Å3
132 parametersΔρmin = 0.20 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15976 (8)0.3997 (3)0.41402 (7)0.0213 (3)
H10.2201 (10)0.463 (3)0.4307 (8)0.025 (4)*
C20.13130 (8)0.2004 (3)0.45205 (6)0.0212 (3)
H20.1711 (9)0.111 (3)0.4949 (8)0.025 (4)*
C30.04530 (8)0.1264 (3)0.42803 (6)0.0186 (3)
C40.00877 (8)0.2575 (3)0.36580 (6)0.0204 (3)
H40.0706 (9)0.215 (3)0.3462 (8)0.027 (4)*
C50.02444 (8)0.4538 (3)0.33045 (7)0.0202 (3)
H50.0126 (9)0.547 (3)0.2862 (8)0.024 (4)*
C60.01141 (8)0.0783 (3)0.47017 (7)0.0208 (3)
H6A0.0407 (10)0.175 (3)0.4374 (8)0.025 (4)*
H6B0.0565 (9)0.221 (4)0.4942 (8)0.027 (4)*
N10.10748 (6)0.5249 (2)0.35404 (5)0.0198 (3)
C70.24227 (7)0.9748 (3)0.32059 (6)0.0192 (3)
C80.27288 (8)1.1997 (3)0.28212 (7)0.0200 (3)
H80.3295 (10)1.270 (4)0.3075 (8)0.030 (4)*
O10.16360 (5)0.89259 (19)0.28604 (5)0.0224 (2)
H1A0.1446 (13)0.747 (4)0.3166 (10)0.070 (7)*
O20.28847 (5)0.8816 (2)0.37897 (4)0.0244 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0174 (6)0.0225 (7)0.0237 (6)0.0011 (5)0.0066 (5)0.0001 (5)
C20.0212 (6)0.0210 (7)0.0203 (6)0.0006 (5)0.0057 (5)0.0018 (5)
C30.0219 (6)0.0158 (6)0.0198 (6)0.0011 (5)0.0094 (5)0.0027 (5)
C40.0184 (6)0.0199 (6)0.0233 (6)0.0015 (5)0.0077 (5)0.0018 (5)
C50.0199 (6)0.0191 (6)0.0205 (6)0.0001 (5)0.0056 (5)0.0009 (5)
C60.0231 (6)0.0177 (6)0.0229 (6)0.0016 (5)0.0097 (5)0.0001 (5)
N10.0194 (5)0.0188 (5)0.0219 (5)0.0019 (4)0.0079 (4)0.0002 (4)
C70.0180 (6)0.0185 (6)0.0214 (6)0.0001 (5)0.0071 (5)0.0004 (5)
C80.0169 (6)0.0194 (6)0.0240 (6)0.0023 (5)0.0072 (5)0.0006 (5)
O10.0178 (4)0.0232 (5)0.0238 (4)0.0049 (4)0.0041 (3)0.0054 (4)
O20.0212 (5)0.0267 (5)0.0226 (5)0.0016 (4)0.0040 (4)0.0046 (4)
Geometric parameters (Å, º) top
C1—H10.991 (15)C5—N11.3424 (15)
C1—C21.3837 (18)C6—C6i1.541 (2)
C1—N11.3390 (16)C6—H6A0.997 (16)
C2—H20.973 (15)C6—H6B0.998 (16)
C2—C31.3906 (17)C7—C81.4925 (18)
C3—C41.3907 (17)C7—O11.3111 (14)
C3—C61.5046 (17)C7—O21.2231 (15)
C4—H40.989 (15)C8—C8ii1.319 (2)
C4—C51.3835 (18)C8—H80.963 (16)
C5—H50.981 (15)O1—H1A1.031 (16)
C2—C1—H1121.5 (9)C3—C6—C6i110.28 (13)
N1—C1—H1116.0 (9)C3—C6—H6A110.4 (9)
N1—C1—C2122.43 (11)C3—C6—H6B109.3 (9)
C1—C2—H2120.4 (9)C6i—C6—H6A108.9 (9)
C1—C2—C3119.50 (11)C6i—C6—H6B107.8 (9)
C3—C2—H2120.1 (9)H6A—C6—H6B110.1 (13)
C2—C3—C6120.86 (11)C1—N1—C5118.36 (11)
C4—C3—C2117.85 (11)O1—C7—C8113.82 (10)
C4—C3—C6121.23 (11)O2—C7—C8121.14 (11)
C3—C4—H4121.8 (9)O2—C7—O1125.03 (11)
C5—C4—C3119.36 (11)C7—C8—H8115.4 (9)
C5—C4—H4118.8 (9)C8ii—C8—C7123.78 (15)
C4—C5—H5120.5 (9)C8ii—C8—H8120.8 (10)
N1—C5—C4122.50 (11)C7—O1—H1A110.4 (11)
N1—C5—H5117.0 (9)
C1—C2—C3—C40.24 (18)C4—C3—C6—C6i91.45 (16)
C1—C2—C3—C6176.88 (11)C4—C5—N1—C10.15 (18)
C2—C1—N1—C50.19 (19)C6—C3—C4—C5177.18 (11)
C2—C3—C4—C50.08 (18)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.57 (17)O1—C7—C8—C8ii2.7 (2)
C3—C4—C5—N10.28 (19)O2—C7—C8—C8ii177.32 (15)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_130k) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.366 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6728 (5) ÅCell parameters from 1742 reflections
b = 4.7388 (1) Åθ = 4.8–72.3°
c = 19.6680 (6) ŵ = 0.83 mm1
β = 110.024 (3)°T = 130 K
V = 1460.01 (7) Å3Plate, colourless
Z = 40.25 × 0.15 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1415 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1211 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.5384 pixels mm-1θmax = 72.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.699, Tmax = 1.000l = 2321
2783 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6041P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1415 reflectionsΔρmax = 0.17 e Å3
132 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15940 (8)0.4021 (3)0.41404 (7)0.0246 (3)
H10.2200 (10)0.458 (3)0.4299 (8)0.027 (4)*
C20.13110 (8)0.2029 (3)0.45222 (7)0.0248 (3)
H20.1719 (10)0.115 (3)0.4955 (8)0.027 (4)*
C30.04532 (8)0.1273 (3)0.42815 (6)0.0211 (3)
C40.00858 (8)0.2573 (3)0.36589 (7)0.0234 (3)
H40.0695 (10)0.216 (4)0.3474 (8)0.028 (4)*
C50.02448 (8)0.4536 (3)0.33049 (7)0.0230 (3)
H50.0129 (9)0.545 (3)0.2863 (8)0.023 (4)*
C60.01167 (9)0.0770 (3)0.47037 (7)0.0240 (3)
H6A0.0405 (10)0.170 (4)0.4375 (8)0.028 (4)*
H6B0.0566 (11)0.218 (4)0.4942 (9)0.036 (4)*
N10.10727 (7)0.5256 (2)0.35408 (6)0.0224 (3)
C70.24201 (8)0.9757 (3)0.32043 (7)0.0218 (3)
C80.27274 (8)1.1999 (3)0.28204 (7)0.0233 (3)
H80.3293 (11)1.270 (4)0.3076 (9)0.034 (4)*
O10.16362 (5)0.8931 (2)0.28613 (5)0.0264 (3)
H1A0.1425 (12)0.741 (5)0.3167 (11)0.062 (6)*
O20.28801 (6)0.8831 (2)0.37871 (5)0.0287 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0186 (6)0.0277 (7)0.0268 (6)0.0023 (5)0.0069 (5)0.0014 (5)
C20.0240 (6)0.0262 (7)0.0232 (6)0.0001 (5)0.0067 (5)0.0029 (5)
C30.0249 (6)0.0188 (6)0.0224 (6)0.0014 (5)0.0118 (5)0.0020 (5)
C40.0200 (6)0.0237 (7)0.0265 (6)0.0025 (5)0.0082 (5)0.0012 (5)
C50.0218 (6)0.0236 (7)0.0228 (6)0.0011 (5)0.0067 (5)0.0017 (5)
C60.0268 (7)0.0204 (7)0.0270 (7)0.0021 (5)0.0122 (5)0.0005 (5)
N10.0219 (5)0.0224 (6)0.0238 (5)0.0023 (4)0.0091 (4)0.0003 (4)
C70.0198 (6)0.0224 (7)0.0231 (6)0.0007 (5)0.0073 (5)0.0001 (5)
C80.0190 (6)0.0235 (7)0.0267 (6)0.0037 (5)0.0069 (5)0.0000 (5)
O10.0205 (5)0.0292 (5)0.0269 (5)0.0058 (4)0.0048 (4)0.0071 (4)
O20.0241 (5)0.0330 (6)0.0256 (5)0.0022 (4)0.0042 (4)0.0067 (4)
Geometric parameters (Å, º) top
C1—H10.987 (16)C6—C6i1.534 (3)
C1—C21.3859 (19)C6—H6A0.992 (16)
C1—N11.3366 (17)C6—H6B0.993 (18)
C2—H20.982 (16)N1—H1A1.49 (2)
C2—C31.3908 (18)C7—C81.4919 (19)
C3—C41.3904 (18)C7—O11.3086 (15)
C3—C61.5036 (18)C7—O21.2218 (16)
C4—H40.974 (15)C8—C8ii1.317 (3)
C4—C51.3843 (18)C8—H80.964 (17)
C5—H50.981 (15)O1—H1A1.07 (2)
C5—N11.3410 (16)
C2—C1—H1121.0 (9)C3—C6—H6A109.7 (9)
N1—C1—H1116.6 (9)C3—C6—H6B109.3 (10)
N1—C1—C2122.48 (12)C6i—C6—H6A108.2 (9)
C1—C2—H2119.7 (9)C6i—C6—H6B107.9 (10)
C1—C2—C3119.49 (12)H6A—C6—H6B111.1 (14)
C3—C2—H2120.8 (9)C1—N1—C5118.38 (11)
C2—C3—C6120.83 (12)C1—N1—H1A119.2 (7)
C4—C3—C2117.70 (12)C5—N1—H1A122.4 (7)
C4—C3—C6121.39 (11)O1—C7—C8114.05 (11)
C3—C4—H4121.2 (9)O2—C7—C8121.09 (11)
C5—C4—C3119.48 (12)O2—C7—O1124.86 (12)
C5—C4—H4119.3 (9)C7—C8—H8115.3 (10)
C4—C5—H5120.1 (9)C8ii—C8—C7123.79 (15)
N1—C5—C4122.47 (12)C8ii—C8—H8120.9 (10)
N1—C5—H5117.4 (9)C7—O1—H1A112.0 (10)
C3—C6—C6i110.66 (14)
C1—C2—C3—C40.10 (19)C4—C3—C6—C6i91.34 (17)
C1—C2—C3—C6176.85 (12)C4—C5—N1—C10.03 (19)
C2—C1—N1—C50.3 (2)C6—C3—C4—C5177.12 (12)
C2—C3—C4—C50.19 (19)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.49 (18)O1—C7—C8—C8ii2.7 (2)
C3—C4—C5—N10.3 (2)O2—C7—C8—C8ii177.36 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_140k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.366 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6842 (6) ÅCell parameters from 2289 reflections
b = 4.7293 (1) Åθ = 4.3–71.2°
c = 19.6920 (7) ŵ = 0.83 mm1
β = 110.036 (4)°T = 140 K
V = 1459.75 (9) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1385 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.0294 pixels mm-1θmax = 71.6°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.788, Tmax = 0.899l = 2324
4110 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.083P)2 + 0.1471P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1385 reflectionsΔρmax = 0.20 e Å3
132 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15924 (7)0.4026 (3)0.41421 (7)0.0257 (3)
H10.2195 (9)0.461 (3)0.4295 (7)0.024 (3)*
C20.13120 (7)0.2037 (3)0.45233 (6)0.0257 (3)
H20.1704 (10)0.115 (3)0.4947 (7)0.028 (4)*
C30.04530 (7)0.1279 (2)0.42825 (6)0.0223 (3)
C40.00863 (7)0.2575 (3)0.36593 (6)0.0243 (3)
H40.0686 (8)0.215 (3)0.3464 (7)0.024 (3)*
C50.02460 (7)0.4525 (3)0.33072 (6)0.0241 (3)
H50.0121 (9)0.548 (3)0.2874 (7)0.022 (3)*
C60.01158 (8)0.0771 (3)0.47021 (6)0.0252 (3)
H6A0.0407 (11)0.171 (3)0.4383 (9)0.034 (4)*
H6B0.0552 (10)0.220 (4)0.4940 (8)0.033 (4)*
N10.10716 (6)0.5255 (2)0.35427 (5)0.0235 (3)
C70.24203 (7)0.9762 (2)0.32039 (6)0.0228 (3)
C80.27258 (7)1.2002 (3)0.28217 (6)0.0246 (3)
H80.3259 (10)1.268 (4)0.3066 (8)0.037 (4)*
O10.16362 (5)0.89356 (18)0.28620 (4)0.0276 (3)
H1A0.1479 (14)0.748 (4)0.3179 (9)0.071 (6)*
O20.28778 (5)0.88381 (19)0.37861 (5)0.0298 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (6)0.0295 (7)0.0275 (6)0.0015 (5)0.0096 (5)0.0017 (5)
C20.0244 (6)0.0289 (6)0.0238 (6)0.0010 (5)0.0084 (5)0.0028 (5)
C30.0272 (6)0.0205 (6)0.0231 (6)0.0009 (4)0.0134 (5)0.0029 (4)
C40.0222 (6)0.0254 (6)0.0267 (6)0.0030 (5)0.0101 (5)0.0013 (5)
C50.0247 (6)0.0249 (6)0.0224 (6)0.0008 (5)0.0079 (5)0.0015 (5)
C60.0308 (6)0.0221 (6)0.0265 (6)0.0021 (5)0.0145 (5)0.0005 (5)
N10.0254 (5)0.0240 (6)0.0235 (5)0.0020 (4)0.0116 (4)0.0011 (4)
C70.0231 (6)0.0237 (6)0.0229 (6)0.0007 (5)0.0096 (4)0.0009 (5)
C80.0212 (6)0.0252 (6)0.0281 (6)0.0038 (5)0.0094 (5)0.0002 (5)
O10.0233 (5)0.0311 (5)0.0266 (5)0.0059 (3)0.0063 (4)0.0075 (3)
O20.0260 (5)0.0349 (5)0.0260 (5)0.0026 (4)0.0059 (4)0.0073 (3)
Geometric parameters (Å, º) top
C1—H10.985 (14)C5—N11.3393 (15)
C1—C21.3812 (17)C6—C6i1.539 (2)
C1—N11.3353 (16)C6—H6A0.987 (17)
C2—H20.962 (15)C6—H6B0.987 (16)
C2—C31.3936 (16)C7—C81.4871 (17)
C3—C41.3910 (16)C7—O11.3092 (13)
C3—C61.5025 (16)C7—O21.2201 (14)
C4—H40.963 (13)C8—C8ii1.319 (2)
C4—C51.3791 (17)C8—H80.912 (16)
C5—H50.973 (13)O1—H1A1.022 (16)
C2—C1—H1121.7 (8)C3—C6—C6i110.65 (12)
N1—C1—H1115.8 (8)C3—C6—H6A110.8 (9)
N1—C1—C2122.54 (11)C3—C6—H6B110.5 (9)
C1—C2—H2120.8 (9)C6i—C6—H6A107.4 (9)
C1—C2—C3119.39 (11)C6i—C6—H6B107.5 (9)
C3—C2—H2119.8 (9)H6A—C6—H6B109.9 (12)
C2—C3—C6120.94 (11)C1—N1—C5118.32 (10)
C4—C3—C2117.75 (11)O1—C7—C8114.07 (10)
C4—C3—C6121.24 (11)O2—C7—C8121.21 (10)
C3—C4—H4121.9 (8)O2—C7—O1124.72 (11)
C5—C4—C3119.23 (11)C7—C8—H8115.2 (10)
C5—C4—H4118.9 (8)C8ii—C8—C7123.94 (14)
C4—C5—H5120.6 (8)C8ii—C8—H8120.9 (10)
N1—C5—C4122.77 (11)C7—O1—H1A107.9 (12)
N1—C5—H5116.7 (8)
C1—C2—C3—C40.23 (17)C4—C3—C6—C6i91.82 (16)
C1—C2—C3—C6177.03 (11)C4—C5—N1—C10.31 (18)
C2—C1—N1—C50.22 (19)C6—C3—C4—C5177.51 (10)
C2—C3—C4—C50.26 (17)N1—C1—C2—C30.49 (19)
C2—C3—C6—C6i85.34 (16)O1—C7—C8—C8ii3.3 (2)
C3—C4—C5—N10.55 (19)O2—C7—C8—C8ii177.06 (15)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_145k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.365 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6876 (7) ÅCell parameters from 2278 reflections
b = 4.7329 (2) Åθ = 4.3–71.2°
c = 19.6859 (9) ŵ = 0.82 mm1
β = 110.002 (5)°T = 145 K
V = 1461.02 (12) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1394 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.0294 pixels mm-1θmax = 71.6°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.849, Tmax = 0.930l = 2324
4130 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.079P)2 + 0.3412P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1394 reflectionsΔρmax = 0.19 e Å3
132 parametersΔρmin = 0.22 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15925 (8)0.4027 (3)0.41426 (7)0.0267 (3)
C20.13110 (8)0.2044 (3)0.45239 (7)0.0268 (3)
C30.04539 (8)0.1282 (3)0.42826 (6)0.0233 (3)
C40.00851 (8)0.2575 (3)0.36592 (7)0.0251 (3)
C50.02465 (8)0.4528 (3)0.33077 (7)0.0251 (3)
C60.01164 (8)0.0771 (3)0.47028 (7)0.0261 (3)
N10.10719 (7)0.5258 (2)0.35427 (5)0.0243 (3)
C70.24189 (7)0.9764 (3)0.32046 (6)0.0237 (3)
C80.27263 (8)1.2002 (3)0.28214 (7)0.0254 (3)
O10.16369 (5)0.89356 (19)0.28625 (5)0.0286 (3)
O20.28776 (6)0.8840 (2)0.37861 (5)0.0310 (3)
H50.0132 (9)0.546 (3)0.2874 (8)0.025 (4)*
H20.1721 (10)0.117 (3)0.4957 (8)0.030 (4)*
H6A0.0399 (10)0.169 (3)0.4388 (9)0.030 (4)*
H80.3266 (10)1.269 (4)0.3065 (8)0.033 (4)*
H6B0.0553 (10)0.219 (4)0.4942 (8)0.037 (4)*
H10.2198 (9)0.459 (3)0.4301 (8)0.026 (4)*
H40.0701 (9)0.215 (3)0.3460 (7)0.027 (4)*
H1A0.1455 (13)0.752 (4)0.3175 (10)0.073 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (6)0.0303 (7)0.0286 (6)0.0014 (5)0.0098 (5)0.0024 (5)
C20.0258 (6)0.0298 (7)0.0250 (6)0.0014 (5)0.0088 (5)0.0035 (5)
C30.0289 (6)0.0212 (6)0.0240 (6)0.0008 (5)0.0144 (5)0.0026 (4)
C40.0228 (6)0.0258 (7)0.0280 (6)0.0022 (5)0.0105 (5)0.0006 (5)
C50.0258 (6)0.0263 (6)0.0233 (6)0.0004 (5)0.0086 (5)0.0017 (5)
C60.0313 (7)0.0230 (6)0.0278 (7)0.0033 (5)0.0150 (5)0.0001 (5)
N10.0264 (6)0.0244 (6)0.0244 (5)0.0020 (4)0.0117 (4)0.0015 (4)
C70.0239 (6)0.0247 (6)0.0239 (6)0.0007 (5)0.0098 (5)0.0010 (5)
C80.0221 (6)0.0258 (6)0.0287 (6)0.0039 (5)0.0093 (5)0.0002 (5)
O10.0245 (5)0.0315 (5)0.0278 (5)0.0063 (4)0.0065 (4)0.0077 (4)
O20.0274 (5)0.0363 (6)0.0270 (5)0.0029 (4)0.0063 (4)0.0069 (4)
Geometric parameters (Å, º) top
C1—C21.3806 (18)C5—H50.978 (15)
C1—N11.3367 (16)C6—C6i1.538 (2)
C1—H10.987 (15)C6—H6A0.974 (16)
C2—C31.3916 (17)C6—H6B0.984 (18)
C2—H20.983 (15)C7—C81.4895 (18)
C3—C41.3909 (17)C7—O11.3073 (14)
C3—C61.5049 (17)C7—O21.2200 (15)
C4—C51.3789 (18)C8—C8ii1.319 (3)
C4—H40.987 (14)C8—H80.923 (16)
C5—N11.3396 (15)O1—H1A1.023 (16)
C2—C1—H1120.9 (9)C3—C6—C6i110.56 (13)
N1—C1—C2122.51 (11)C3—C6—H6A110.7 (9)
N1—C1—H1116.6 (9)C3—C6—H6B110.4 (10)
C1—C2—C3119.45 (11)C6i—C6—H6A107.4 (9)
C1—C2—H2119.5 (9)C6i—C6—H6B107.4 (9)
C3—C2—H2121.1 (9)H6A—C6—H6B110.3 (13)
C2—C3—C6120.93 (11)C1—N1—C5118.26 (11)
C4—C3—C2117.78 (11)O1—C7—C8114.11 (11)
C4—C3—C6121.23 (11)O2—C7—C8121.07 (11)
C3—C4—H4122.2 (9)O2—C7—O1124.82 (11)
C5—C4—C3119.22 (12)C7—C8—H8115.5 (10)
C5—C4—H4118.6 (9)C8ii—C8—C7123.82 (15)
C4—C5—H5119.4 (9)C8ii—C8—H8120.7 (10)
N1—C5—C4122.77 (11)C7—O1—H1A109.6 (12)
N1—C5—H5117.8 (9)
C1—C2—C3—C40.06 (19)C4—C3—C6—C6i91.81 (17)
C1—C2—C3—C6177.17 (11)C4—C5—N1—C10.14 (19)
C2—C1—N1—C50.1 (2)C6—C3—C4—C5177.41 (11)
C2—C3—C4—C50.19 (18)N1—C1—C2—C30.2 (2)
C2—C3—C6—C6i85.33 (17)O1—C7—C8—C8ii2.9 (2)
C3—C4—C5—N10.3 (2)O2—C7—C8—C8ii177.02 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_150k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.364 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6834 (8) ÅCell parameters from 2251 reflections
b = 4.7362 (2) Åθ = 4.3–71.2°
c = 19.6927 (10) ŵ = 0.82 mm1
β = 109.981 (6)°T = 150 K
V = 1462.37 (13) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1396 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.899l = 2324
4133 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.3683P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1396 reflectionsΔρmax = 0.20 e Å3
132 parametersΔρmin = 0.23 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15914 (8)0.4031 (3)0.41428 (7)0.0267 (3)
H10.2190 (9)0.462 (3)0.4305 (8)0.025 (4)*
C20.13113 (8)0.2048 (3)0.45243 (7)0.0267 (3)
H20.1725 (10)0.115 (3)0.4958 (8)0.030 (4)*
C30.04531 (8)0.1282 (3)0.42827 (6)0.0227 (3)
C40.00846 (8)0.2576 (3)0.36597 (7)0.0250 (3)
H40.0697 (9)0.214 (4)0.3465 (7)0.029 (4)*
C50.02469 (8)0.4526 (3)0.33073 (7)0.0252 (3)
H50.0130 (10)0.548 (3)0.2867 (8)0.029 (4)*
C60.01172 (8)0.0769 (3)0.47035 (7)0.0260 (3)
H6A0.0403 (10)0.168 (3)0.4388 (9)0.027 (4)*
H6B0.0553 (11)0.219 (4)0.4943 (8)0.036 (4)*
N10.10713 (6)0.5258 (2)0.35428 (5)0.0240 (3)
C70.24189 (7)0.9766 (3)0.32046 (6)0.0233 (3)
C80.27255 (8)1.1999 (3)0.28208 (7)0.0250 (3)
H80.3266 (10)1.270 (4)0.3069 (8)0.035 (4)*
O10.16365 (5)0.8935 (2)0.28623 (5)0.0288 (3)
H1A0.1460 (13)0.749 (4)0.3170 (10)0.073 (6)*
O20.28764 (6)0.8841 (2)0.37852 (5)0.0314 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (6)0.0296 (7)0.0291 (6)0.0023 (5)0.0101 (5)0.0018 (5)
C20.0260 (6)0.0296 (7)0.0248 (6)0.0010 (5)0.0092 (5)0.0038 (5)
C30.0278 (6)0.0210 (6)0.0232 (6)0.0016 (5)0.0136 (5)0.0028 (4)
C40.0231 (6)0.0259 (7)0.0275 (6)0.0027 (5)0.0105 (5)0.0007 (5)
C50.0255 (6)0.0268 (6)0.0231 (6)0.0016 (5)0.0081 (5)0.0013 (5)
C60.0317 (7)0.0229 (6)0.0276 (7)0.0027 (5)0.0157 (6)0.0003 (5)
N10.0257 (6)0.0244 (6)0.0240 (5)0.0020 (4)0.0113 (4)0.0012 (4)
C70.0236 (6)0.0242 (6)0.0236 (6)0.0005 (5)0.0099 (5)0.0012 (5)
C80.0220 (6)0.0262 (6)0.0276 (6)0.0034 (5)0.0097 (5)0.0006 (5)
O10.0247 (5)0.0323 (6)0.0275 (5)0.0066 (4)0.0066 (4)0.0078 (4)
O20.0281 (5)0.0369 (6)0.0266 (5)0.0030 (4)0.0062 (4)0.0079 (4)
Geometric parameters (Å, º) top
C1—H10.979 (15)C5—N11.3383 (16)
C1—C21.3801 (18)C6—C6i1.536 (2)
C1—N11.3366 (16)C6—H6A0.978 (16)
C2—H20.991 (15)C6—H6B0.986 (18)
C2—C31.3936 (17)C7—C81.4884 (18)
C3—C41.3904 (17)C7—O11.3084 (14)
C3—C61.5039 (17)C7—O21.2188 (15)
C4—H40.982 (15)C8—C8ii1.318 (2)
C4—C51.3796 (18)C8—H80.927 (16)
C5—H50.989 (15)O1—H1A1.024 (16)
C2—C1—H1120.9 (9)C3—C6—C6i110.63 (13)
N1—C1—H1116.4 (9)C3—C6—H6A110.6 (9)
N1—C1—C2122.62 (11)C3—C6—H6B110.7 (10)
C1—C2—H2119.7 (9)C6i—C6—H6A106.9 (9)
C1—C2—C3119.39 (11)C6i—C6—H6B107.4 (9)
C3—C2—H2120.9 (9)H6A—C6—H6B110.5 (13)
C2—C3—C6120.85 (11)C1—N1—C5118.25 (11)
C4—C3—C2117.67 (11)O1—C7—C8114.05 (10)
C4—C3—C6121.42 (11)O2—C7—C8121.21 (11)
C3—C4—H4121.5 (9)O2—C7—O1124.74 (11)
C5—C4—C3119.36 (11)C7—C8—H8115.3 (10)
C5—C4—H4119.1 (9)C8ii—C8—C7124.04 (15)
C4—C5—H5120.2 (9)C8ii—C8—H8120.6 (10)
N1—C5—C4122.71 (12)C7—O1—H1A109.6 (12)
N1—C5—H5117.1 (9)
C1—C2—C3—C40.03 (19)C4—C3—C6—C6i91.67 (17)
C1—C2—C3—C6177.11 (11)C4—C5—N1—C10.3 (2)
C2—C1—N1—C50.1 (2)C6—C3—C4—C5177.47 (11)
C2—C3—C4—C50.34 (18)N1—C1—C2—C30.3 (2)
C2—C3—C6—C6i85.37 (17)O1—C7—C8—C8ii2.7 (2)
C3—C4—C5—N10.5 (2)O2—C7—C8—C8ii177.11 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_150k) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.362 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6852 (7) ÅCell parameters from 1712 reflections
b = 4.7457 (2) Åθ = 3.0–72.2°
c = 19.6763 (7) ŵ = 0.82 mm1
β = 109.949 (4)°T = 150 K
V = 1464.54 (11) Å3Plate, colourless
Z = 40.25 × 0.14 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1418 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1195 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.5384 pixels mm-1θmax = 72.3°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.697, Tmax = 1.000l = 2321
2787 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4337P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1418 reflectionsΔρmax = 0.14 e Å3
132 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15923 (8)0.4036 (3)0.41420 (7)0.0267 (3)
H10.2200 (10)0.465 (3)0.4303 (8)0.028 (4)*
C20.13099 (8)0.2043 (3)0.45227 (7)0.0267 (3)
H20.1724 (10)0.118 (4)0.4959 (9)0.035 (4)*
C30.04536 (8)0.1284 (3)0.42826 (7)0.0227 (3)
C40.00846 (8)0.2573 (3)0.36597 (7)0.0252 (3)
H40.0696 (10)0.213 (4)0.3465 (8)0.031 (4)*
C50.02471 (8)0.4534 (3)0.33064 (7)0.0252 (3)
H50.0131 (10)0.545 (3)0.2860 (8)0.027 (4)*
C60.01161 (9)0.0765 (3)0.47027 (7)0.0262 (3)
H6A0.0404 (11)0.175 (4)0.4376 (9)0.034 (4)*
H6B0.0561 (10)0.217 (4)0.4938 (8)0.031 (4)*
N10.10719 (7)0.5262 (2)0.35421 (6)0.0243 (3)
C70.24181 (8)0.9763 (3)0.32043 (7)0.0235 (3)
C80.27255 (8)1.2004 (3)0.28200 (7)0.0249 (3)
H80.3282 (11)1.271 (4)0.3067 (9)0.035 (4)*
O10.16365 (6)0.8934 (2)0.28618 (5)0.0285 (3)
H1A0.1432 (14)0.747 (5)0.3169 (12)0.076 (7)*
O20.28780 (6)0.8842 (2)0.37865 (5)0.0316 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (6)0.0303 (8)0.0288 (7)0.0023 (5)0.0077 (5)0.0016 (5)
C20.0253 (7)0.0288 (7)0.0255 (6)0.0001 (5)0.0079 (5)0.0037 (5)
C30.0262 (6)0.0209 (7)0.0238 (6)0.0013 (5)0.0123 (5)0.0022 (5)
C40.0219 (6)0.0265 (7)0.0274 (6)0.0027 (5)0.0086 (5)0.0009 (5)
C50.0248 (7)0.0258 (7)0.0243 (6)0.0017 (5)0.0074 (5)0.0024 (5)
C60.0301 (7)0.0223 (7)0.0292 (7)0.0027 (5)0.0138 (6)0.0006 (5)
N10.0246 (6)0.0240 (6)0.0256 (5)0.0027 (4)0.0101 (4)0.0012 (4)
C70.0215 (6)0.0241 (7)0.0248 (6)0.0006 (5)0.0079 (5)0.0004 (5)
C80.0205 (6)0.0255 (7)0.0282 (6)0.0035 (5)0.0077 (5)0.0010 (5)
O10.0224 (5)0.0319 (6)0.0281 (5)0.0067 (4)0.0045 (4)0.0077 (4)
O20.0265 (5)0.0371 (6)0.0276 (5)0.0028 (4)0.0046 (4)0.0075 (4)
Geometric parameters (Å, º) top
C1—H10.998 (16)C6—C6i1.535 (3)
C1—C21.3850 (19)C6—H6A1.002 (17)
C1—N11.3366 (17)C6—H6B0.987 (17)
C2—H20.989 (17)N1—H1A1.52 (2)
C2—C31.3906 (18)C7—C81.4936 (19)
C3—C41.3900 (18)C7—O11.3076 (15)
C3—C61.5045 (18)C7—O21.2216 (16)
C4—H40.982 (15)C8—C8ii1.314 (3)
C4—C51.3849 (19)C8—H80.951 (17)
C5—H50.991 (15)O1—H1A1.05 (2)
C5—N11.3389 (17)
C2—C1—H1121.7 (9)C3—C6—H6A110.8 (10)
N1—C1—H1115.8 (9)C3—C6—H6B109.3 (9)
N1—C1—C2122.45 (12)C6i—C6—H6A108.7 (10)
C1—C2—H2119.2 (10)C6i—C6—H6B107.9 (9)
C1—C2—C3119.52 (12)H6A—C6—H6B109.5 (14)
C3—C2—H2121.2 (10)C1—N1—C5118.34 (11)
C2—C3—C6120.97 (12)C1—N1—H1A118.9 (8)
C4—C3—C2117.73 (12)C5—N1—H1A122.7 (8)
C4—C3—C6121.25 (12)O1—C7—C8114.05 (11)
C3—C4—H4121.5 (10)O2—C7—C8121.02 (12)
C5—C4—C3119.33 (12)O2—C7—O1124.93 (12)
C5—C4—H4119.2 (9)C7—C8—H8115.9 (10)
C4—C5—H5119.9 (9)C8ii—C8—C7123.84 (15)
N1—C5—C4122.62 (12)C8ii—C8—H8120.2 (10)
N1—C5—H5117.4 (9)C7—O1—H1A111.4 (12)
C3—C6—C6i110.61 (14)
C1—C2—C3—C40.3 (2)C4—C3—C6—C6i91.86 (17)
C1—C2—C3—C6176.93 (12)C4—C5—N1—C10.1 (2)
C2—C1—N1—C50.3 (2)C6—C3—C4—C5177.34 (12)
C2—C3—C4—C50.07 (19)N1—C1—C2—C30.6 (2)
C2—C3—C6—C6i85.33 (18)O1—C7—C8—C8ii2.8 (2)
C3—C4—C5—N10.3 (2)O2—C7—C8—C8ii177.09 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_155k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.364 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6821 (8) ÅCell parameters from 2236 reflections
b = 4.7392 (2) Åθ = 4.3–71.2°
c = 19.6849 (9) ŵ = 0.82 mm1
β = 109.948 (5)°T = 155 K
V = 1462.91 (12) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1397 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.899l = 2324
4149 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.2849P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1397 reflectionsΔρmax = 0.18 e Å3
132 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15908 (8)0.4036 (3)0.41427 (7)0.0277 (3)
H10.2197 (10)0.461 (3)0.4296 (8)0.028 (4)*
C20.13106 (8)0.2050 (3)0.45238 (7)0.0279 (3)
H20.1720 (10)0.116 (3)0.4959 (8)0.032 (4)*
C30.04536 (8)0.1285 (3)0.42826 (6)0.0236 (3)
C40.00836 (8)0.2576 (3)0.36596 (7)0.0258 (3)
H40.0699 (9)0.215 (4)0.3461 (7)0.032 (4)*
C50.02476 (8)0.4529 (3)0.33076 (7)0.0261 (3)
H50.0116 (10)0.548 (3)0.2874 (8)0.031 (4)*
C60.01167 (9)0.0767 (3)0.47024 (7)0.0269 (3)
H6A0.0394 (11)0.170 (3)0.4391 (9)0.032 (4)*
H6B0.0554 (11)0.218 (4)0.4944 (9)0.039 (4)*
N10.10716 (6)0.5263 (2)0.35434 (5)0.0249 (3)
C70.24191 (7)0.9767 (3)0.32042 (6)0.0242 (3)
C80.27259 (8)1.2003 (3)0.28207 (7)0.0262 (3)
H80.3266 (10)1.265 (4)0.3068 (8)0.033 (4)*
O10.16368 (5)0.8937 (2)0.28625 (5)0.0298 (3)
H1A0.1463 (14)0.744 (5)0.3176 (11)0.073 (6)*
O20.28758 (6)0.8844 (2)0.37851 (5)0.0324 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (6)0.0311 (7)0.0295 (6)0.0021 (5)0.0100 (5)0.0023 (5)
C20.0274 (6)0.0305 (7)0.0259 (6)0.0008 (5)0.0091 (5)0.0037 (5)
C30.0295 (6)0.0211 (6)0.0240 (6)0.0009 (5)0.0143 (5)0.0021 (4)
C40.0238 (6)0.0267 (7)0.0281 (6)0.0031 (5)0.0103 (5)0.0009 (5)
C50.0267 (6)0.0275 (6)0.0237 (6)0.0012 (5)0.0081 (5)0.0019 (5)
C60.0327 (7)0.0238 (6)0.0283 (7)0.0022 (5)0.0158 (6)0.0007 (5)
N10.0268 (6)0.0253 (6)0.0247 (5)0.0022 (4)0.0115 (4)0.0018 (4)
C70.0244 (6)0.0244 (6)0.0246 (6)0.0007 (5)0.0096 (5)0.0005 (5)
C80.0230 (6)0.0271 (6)0.0291 (6)0.0039 (5)0.0097 (5)0.0004 (5)
O10.0249 (5)0.0333 (6)0.0289 (5)0.0071 (4)0.0064 (4)0.0079 (4)
O20.0289 (5)0.0379 (6)0.0277 (5)0.0028 (4)0.0062 (4)0.0077 (4)
Geometric parameters (Å, º) top
C1—H10.990 (15)C5—N11.3383 (16)
C1—C21.3809 (18)C6—C6i1.537 (2)
C1—N11.3352 (17)C6—H6A0.969 (17)
C2—H20.989 (15)C6—H6B0.986 (18)
C2—C31.3919 (18)C7—C81.4896 (18)
C3—C41.3897 (18)C7—O11.3081 (14)
C3—C61.5038 (17)C7—O21.2185 (15)
C4—H40.986 (15)C8—C8ii1.317 (3)
C4—C51.3796 (18)C8—H80.919 (16)
C5—H50.972 (16)O1—H1A1.04 (2)
C2—C1—H1121.5 (9)C3—C6—C6i110.64 (13)
N1—C1—H1115.8 (9)C3—C6—H6A111.0 (10)
N1—C1—C2122.62 (11)C3—C6—H6B110.6 (10)
C1—C2—H2119.9 (9)C6i—C6—H6A107.5 (10)
C1—C2—C3119.40 (11)C6i—C6—H6B107.0 (10)
C3—C2—H2120.7 (9)H6A—C6—H6B110.0 (14)
C2—C3—C6120.92 (11)C1—N1—C5118.24 (11)
C4—C3—C2117.68 (11)O1—C7—C8114.10 (11)
C4—C3—C6121.34 (11)O2—C7—C8121.20 (11)
C3—C4—H4122.1 (9)O2—C7—O1124.70 (11)
C5—C4—C3119.36 (12)C7—C8—H8114.5 (10)
C5—C4—H4118.5 (9)C8ii—C8—C7123.86 (15)
C4—C5—H5120.9 (9)C8ii—C8—H8121.6 (10)
N1—C5—C4122.70 (12)C7—O1—H1A109.3 (11)
N1—C5—H5116.4 (9)
C1—C2—C3—C40.20 (19)C4—C3—C6—C6i91.90 (17)
C1—C2—C3—C6177.07 (11)C4—C5—N1—C10.3 (2)
C2—C1—N1—C50.1 (2)C6—C3—C4—C5177.45 (11)
C2—C3—C4—C50.19 (19)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.27 (17)O1—C7—C8—C8ii2.9 (2)
C3—C4—C5—N10.5 (2)O2—C7—C8—C8ii177.10 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_160k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.362 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6868 (6) ÅCell parameters from 2266 reflections
b = 4.7394 (1) Åθ = 4.3–71.4°
c = 19.6945 (7) ŵ = 0.82 mm1
β = 109.936 (4)°T = 160 K
V = 1464.21 (9) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1397 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.900l = 2324
4147 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.3236P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1397 reflectionsΔρmax = 0.20 e Å3
132 parametersΔρmin = 0.22 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15905 (8)0.4038 (3)0.41424 (7)0.0284 (3)
H10.2198 (10)0.462 (3)0.4310 (8)0.031 (4)*
C20.13103 (8)0.2053 (3)0.45230 (7)0.0287 (3)
H20.1719 (10)0.117 (3)0.4957 (8)0.032 (4)*
C30.04543 (8)0.1288 (3)0.42832 (6)0.0242 (3)
C40.00837 (8)0.2577 (3)0.36606 (7)0.0269 (3)
H40.0696 (9)0.215 (4)0.3458 (7)0.032 (4)*
C50.02473 (8)0.4529 (3)0.33079 (7)0.0266 (3)
H50.0125 (9)0.547 (3)0.2877 (8)0.028 (4)*
C60.01170 (9)0.0764 (3)0.47029 (7)0.0279 (3)
H6A0.0384 (11)0.170 (3)0.4396 (9)0.032 (4)*
H6B0.0553 (11)0.220 (4)0.4940 (9)0.042 (4)*
N10.10711 (6)0.5264 (2)0.35434 (5)0.0254 (3)
C70.24193 (7)0.9766 (3)0.32042 (6)0.0249 (3)
C80.27257 (8)1.2001 (3)0.28213 (7)0.0267 (3)
H80.3276 (10)1.268 (4)0.3064 (8)0.037 (4)*
O10.16370 (5)0.8939 (2)0.28625 (5)0.0305 (3)
H1A0.1458 (13)0.750 (4)0.3174 (10)0.072 (6)*
O20.28751 (6)0.8847 (2)0.37845 (5)0.0332 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0231 (6)0.0327 (7)0.0303 (6)0.0025 (5)0.0102 (5)0.0023 (5)
C20.0278 (6)0.0314 (7)0.0266 (6)0.0007 (5)0.0090 (5)0.0045 (5)
C30.0296 (6)0.0218 (6)0.0251 (6)0.0006 (5)0.0145 (5)0.0022 (5)
C40.0248 (6)0.0281 (7)0.0288 (6)0.0031 (5)0.0102 (5)0.0007 (5)
C50.0267 (6)0.0283 (6)0.0244 (6)0.0015 (5)0.0083 (5)0.0019 (5)
C60.0335 (7)0.0242 (6)0.0298 (7)0.0030 (5)0.0159 (6)0.0001 (5)
N10.0272 (6)0.0258 (6)0.0255 (5)0.0021 (4)0.0119 (4)0.0019 (4)
C70.0246 (6)0.0256 (6)0.0255 (6)0.0006 (5)0.0099 (5)0.0004 (5)
C80.0229 (6)0.0275 (7)0.0304 (6)0.0042 (5)0.0100 (5)0.0003 (5)
O10.0255 (5)0.0345 (6)0.0295 (5)0.0069 (4)0.0066 (4)0.0081 (4)
O20.0287 (5)0.0394 (6)0.0286 (5)0.0033 (4)0.0062 (4)0.0082 (4)
Geometric parameters (Å, º) top
C1—H10.992 (15)C5—N11.3384 (16)
C1—C21.3801 (18)C6—C6i1.535 (2)
C1—N11.3353 (16)C6—H6A0.956 (17)
C2—H20.987 (15)C6—H6B0.990 (18)
C2—C31.3910 (17)C7—C81.4884 (18)
C3—C41.3900 (18)C7—O11.3082 (14)
C3—C61.5041 (17)C7—O21.2172 (15)
C4—H40.984 (15)C8—C8ii1.320 (3)
C4—C51.3802 (18)C8—H80.935 (16)
C5—H50.972 (15)O1—H1A1.028 (16)
C2—C1—H1120.4 (9)C3—C6—C6i110.74 (13)
N1—C1—H1117.0 (9)C3—C6—H6A111.1 (10)
N1—C1—C2122.57 (11)C3—C6—H6B110.5 (10)
C1—C2—H2119.8 (9)C6i—C6—H6A107.8 (10)
C1—C2—C3119.50 (11)C6i—C6—H6B107.6 (10)
C3—C2—H2120.7 (9)H6A—C6—H6B108.9 (13)
C2—C3—C6121.03 (11)C1—N1—C5118.26 (11)
C4—C3—C2117.67 (11)O1—C7—C8114.05 (10)
C4—C3—C6121.25 (12)O2—C7—C8121.18 (11)
C3—C4—H4122.4 (9)O2—C7—O1124.77 (11)
C5—C4—C3119.32 (12)C7—C8—H8115.6 (10)
C5—C4—H4118.3 (9)C8ii—C8—C7123.94 (15)
C4—C5—H5120.0 (9)C8ii—C8—H8120.5 (10)
N1—C5—C4122.69 (12)C7—O1—H1A109.5 (11)
N1—C5—H5117.3 (9)
C1—C2—C3—C40.21 (19)C4—C3—C6—C6i91.85 (17)
C1—C2—C3—C6177.04 (12)C4—C5—N1—C10.4 (2)
C2—C1—N1—C50.1 (2)C6—C3—C4—C5177.48 (11)
C2—C3—C4—C50.24 (18)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.30 (17)O1—C7—C8—C8ii3.0 (2)
C3—C4—C5—N10.5 (2)O2—C7—C8—C8ii177.19 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_165k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.362 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6819 (6) ÅCell parameters from 2250 reflections
b = 4.7422 (2) Åθ = 4.3–71.3°
c = 19.6945 (8) ŵ = 0.82 mm1
β = 109.915 (4)°T = 165 K
V = 1464.84 (11) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1399 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.0294 pixels mm-1θmax = 71.6°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.900l = 2324
4144 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.3081P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1399 reflectionsΔρmax = 0.18 e Å3
132 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15893 (8)0.4041 (3)0.41434 (7)0.0286 (3)
H10.2189 (9)0.465 (3)0.4303 (8)0.029 (4)*
C20.13091 (8)0.2059 (3)0.45237 (7)0.0287 (3)
H20.1722 (10)0.120 (3)0.4953 (8)0.033 (4)*
C30.04537 (8)0.1290 (3)0.42829 (6)0.0248 (3)
C40.00834 (8)0.2577 (3)0.36604 (7)0.0271 (3)
H40.0696 (9)0.217 (4)0.3458 (7)0.032 (4)*
C50.02475 (8)0.4527 (3)0.33078 (7)0.0272 (3)
H50.0128 (10)0.545 (3)0.2873 (8)0.030 (4)*
C60.01169 (9)0.0763 (3)0.47026 (7)0.0281 (3)
H6A0.0402 (11)0.169 (3)0.4380 (9)0.036 (4)*
H6B0.0553 (10)0.218 (4)0.4934 (8)0.039 (4)*
N10.10706 (7)0.5265 (2)0.35431 (5)0.0258 (3)
C70.24177 (7)0.9770 (3)0.32042 (6)0.0251 (3)
C80.27247 (8)1.2001 (3)0.28206 (7)0.0270 (3)
H80.3274 (10)1.268 (4)0.3076 (8)0.033 (4)*
O10.16369 (5)0.8942 (2)0.28624 (5)0.0309 (3)
H1A0.1453 (13)0.746 (5)0.3176 (11)0.069 (6)*
O20.28746 (6)0.8849 (2)0.37845 (5)0.0340 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (6)0.0326 (7)0.0304 (6)0.0022 (5)0.0098 (5)0.0023 (5)
C20.0280 (6)0.0315 (7)0.0267 (6)0.0010 (5)0.0092 (5)0.0046 (5)
C30.0304 (6)0.0225 (6)0.0257 (6)0.0009 (5)0.0150 (5)0.0018 (5)
C40.0247 (6)0.0287 (7)0.0293 (6)0.0038 (5)0.0108 (5)0.0009 (5)
C50.0281 (6)0.0283 (6)0.0246 (6)0.0016 (5)0.0083 (5)0.0021 (5)
C60.0347 (7)0.0241 (6)0.0297 (7)0.0030 (5)0.0163 (6)0.0007 (5)
N10.0277 (5)0.0264 (6)0.0253 (5)0.0019 (4)0.0118 (4)0.0023 (4)
C70.0246 (6)0.0262 (6)0.0255 (6)0.0005 (5)0.0096 (5)0.0003 (5)
C80.0235 (6)0.0278 (7)0.0299 (6)0.0041 (5)0.0093 (5)0.0006 (5)
O10.0259 (5)0.0350 (6)0.0298 (5)0.0073 (4)0.0067 (4)0.0085 (4)
O20.0295 (5)0.0401 (6)0.0292 (5)0.0034 (4)0.0058 (4)0.0084 (4)
Geometric parameters (Å, º) top
C1—H10.986 (15)C5—N11.3375 (16)
C1—C21.3790 (18)C6—C6i1.536 (2)
C1—N11.3366 (16)C6—H6A0.986 (17)
C2—H20.980 (16)C6—H6B0.981 (17)
C2—C31.3903 (18)C7—C81.4886 (18)
C3—C41.3890 (18)C7—O11.3064 (14)
C3—C61.5045 (17)C7—O21.2182 (15)
C4—H40.981 (15)C8—C8ii1.318 (3)
C4—C51.3798 (18)C8—H80.939 (15)
C5—H50.976 (15)O1—H1A1.05 (2)
C2—C1—H1121.5 (9)C3—C6—C6i110.69 (13)
N1—C1—H1115.8 (9)C3—C6—H6A110.3 (10)
N1—C1—C2122.64 (11)C3—C6—H6B110.1 (10)
C1—C2—H2119.0 (9)C6i—C6—H6A107.8 (10)
C1—C2—C3119.46 (11)C6i—C6—H6B108.0 (9)
C3—C2—H2121.5 (9)H6A—C6—H6B109.9 (13)
C2—C3—C6120.94 (11)C1—N1—C5118.14 (11)
C4—C3—C2117.68 (11)O1—C7—C8114.02 (11)
C4—C3—C6121.32 (12)O2—C7—C8121.14 (11)
C3—C4—H4122.8 (9)O2—C7—O1124.83 (11)
C5—C4—C3119.35 (12)C7—C8—H8114.5 (9)
C5—C4—H4117.8 (9)C8ii—C8—C7124.06 (15)
C4—C5—H5119.7 (9)C8ii—C8—H8121.4 (10)
N1—C5—C4122.72 (12)C7—O1—H1A109.8 (11)
N1—C5—H5117.6 (9)
C1—C2—C3—C40.12 (19)C4—C3—C6—C6i91.97 (17)
C1—C2—C3—C6177.12 (12)C4—C5—N1—C10.3 (2)
C2—C1—N1—C50.2 (2)C6—C3—C4—C5177.55 (11)
C2—C3—C4—C50.33 (19)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.17 (17)O1—C7—C8—C8ii2.8 (2)
C3—C4—C5—N10.5 (2)O2—C7—C8—C8ii177.08 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_170k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.360 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6847 (7) ÅCell parameters from 2260 reflections
b = 4.7475 (2) Åθ = 4.3–71.3°
c = 19.6847 (9) ŵ = 0.82 mm1
β = 109.844 (5)°T = 170 K
V = 1466.65 (12) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1403 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.900l = 2324
4135 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2755P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1403 reflectionsΔρmax = 0.18 e Å3
132 parametersΔρmin = 0.22 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15896 (8)0.4045 (3)0.41436 (7)0.0294 (3)
H10.2187 (10)0.465 (3)0.4305 (8)0.030 (4)*
C20.13094 (8)0.2065 (3)0.45236 (7)0.0294 (3)
H20.1717 (10)0.120 (3)0.4963 (8)0.031 (4)*
C30.04540 (8)0.1294 (3)0.42830 (6)0.0251 (3)
C40.00834 (8)0.2573 (3)0.36604 (7)0.0278 (3)
H40.0705 (10)0.214 (4)0.3457 (8)0.035 (4)*
C50.02481 (8)0.4529 (3)0.33085 (7)0.0279 (3)
H50.0136 (10)0.544 (3)0.2873 (8)0.033 (4)*
C60.01177 (9)0.0757 (3)0.47028 (7)0.0287 (3)
H6A0.0391 (11)0.168 (3)0.4382 (9)0.035 (4)*
H6B0.0557 (11)0.219 (4)0.4937 (9)0.041 (4)*
N10.10706 (7)0.5264 (2)0.35429 (6)0.0267 (3)
C70.24186 (8)0.9770 (3)0.32042 (6)0.0258 (3)
C80.27243 (8)1.2002 (3)0.28203 (7)0.0278 (3)
H80.3275 (10)1.269 (4)0.3068 (8)0.040 (4)*
O10.16374 (6)0.8939 (2)0.28628 (5)0.0319 (3)
H1A0.1459 (13)0.750 (4)0.3175 (10)0.077 (7)*
O20.28740 (6)0.8853 (2)0.37846 (5)0.0348 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (6)0.0338 (7)0.0307 (6)0.0027 (5)0.0099 (5)0.0030 (5)
C20.0281 (6)0.0328 (7)0.0271 (6)0.0005 (5)0.0089 (5)0.0047 (5)
C30.0311 (6)0.0232 (6)0.0249 (6)0.0020 (5)0.0145 (5)0.0021 (5)
C40.0259 (6)0.0296 (7)0.0292 (7)0.0035 (5)0.0111 (5)0.0009 (5)
C50.0284 (6)0.0294 (7)0.0253 (6)0.0018 (5)0.0084 (5)0.0025 (5)
C60.0357 (7)0.0248 (7)0.0300 (7)0.0031 (5)0.0170 (6)0.0006 (5)
N10.0288 (6)0.0272 (6)0.0266 (5)0.0025 (4)0.0126 (4)0.0016 (4)
C70.0257 (6)0.0272 (7)0.0256 (6)0.0013 (5)0.0101 (5)0.0005 (5)
C80.0239 (6)0.0289 (7)0.0311 (7)0.0043 (5)0.0099 (5)0.0010 (5)
O10.0273 (5)0.0358 (6)0.0302 (5)0.0072 (4)0.0066 (4)0.0088 (4)
O20.0303 (5)0.0414 (6)0.0295 (5)0.0036 (4)0.0058 (4)0.0089 (4)
Geometric parameters (Å, º) top
C1—H10.981 (15)C5—N11.3373 (16)
C1—C21.3784 (19)C6—C6i1.534 (3)
C1—N11.3370 (17)C6—H6A0.974 (17)
C2—H20.989 (15)C6—H6B0.992 (18)
C2—C31.3915 (18)C7—C81.4887 (18)
C3—C41.3888 (18)C7—O11.3082 (15)
C3—C61.5036 (17)C7—O21.2179 (15)
C4—H40.999 (15)C8—C8ii1.316 (3)
C4—C51.3812 (18)C8—H80.940 (17)
C5—H50.980 (16)O1—H1A1.028 (16)
C2—C1—H1121.2 (9)C3—C6—C6i110.83 (13)
N1—C1—H1116.3 (9)C3—C6—H6A109.9 (10)
N1—C1—C2122.55 (12)C3—C6—H6B110.2 (10)
C1—C2—H2119.8 (9)C6i—C6—H6A108.3 (10)
C1—C2—C3119.49 (12)C6i—C6—H6B107.9 (10)
C3—C2—H2120.7 (9)H6A—C6—H6B109.6 (13)
C2—C3—C6120.94 (12)C1—N1—C5118.22 (11)
C4—C3—C2117.76 (11)O1—C7—C8114.03 (11)
C4—C3—C6121.24 (12)O2—C7—C8121.25 (11)
C3—C4—H4122.3 (9)O2—C7—O1124.72 (12)
C5—C4—C3119.21 (12)C7—C8—H8115.2 (10)
C5—C4—H4118.5 (9)C8ii—C8—C7124.09 (15)
C4—C5—H5118.8 (9)C8ii—C8—H8120.7 (10)
N1—C5—C4122.77 (12)C7—O1—H1A109.5 (12)
N1—C5—H5118.4 (9)
C1—C2—C3—C40.22 (19)C4—C3—C6—C6i92.02 (17)
C1—C2—C3—C6177.10 (12)C4—C5—N1—C10.0 (2)
C2—C1—N1—C50.3 (2)C6—C3—C4—C5177.43 (11)
C2—C3—C4—C50.12 (19)N1—C1—C2—C30.5 (2)
C2—C3—C6—C6i85.21 (18)O1—C7—C8—C8ii2.9 (2)
C3—C4—C5—N10.2 (2)O2—C7—C8—C8ii177.15 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_175k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.359 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6837 (7) ÅCell parameters from 2265 reflections
b = 4.7500 (2) Åθ = 4.3–71.3°
c = 19.6845 (8) ŵ = 0.82 mm1
β = 109.814 (5)°T = 175 K
V = 1467.60 (11) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1406 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.900l = 2324
4152 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.2792P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1406 reflectionsΔρmax = 0.19 e Å3
132 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15881 (8)0.4051 (3)0.41431 (7)0.0297 (3)
H10.2193 (9)0.464 (3)0.4304 (8)0.029 (4)*
C20.13099 (8)0.2068 (3)0.45241 (7)0.0299 (3)
H20.1719 (10)0.120 (3)0.4958 (8)0.036 (4)*
C30.04542 (8)0.1298 (3)0.42833 (6)0.0255 (3)
C40.00821 (8)0.2575 (3)0.36612 (7)0.0280 (3)
H40.0694 (9)0.214 (4)0.3460 (7)0.033 (4)*
C50.02472 (8)0.4529 (3)0.33084 (7)0.0281 (3)
H50.0117 (10)0.544 (4)0.2872 (9)0.038 (4)*
C60.01174 (9)0.0756 (3)0.47028 (7)0.0291 (3)
H6A0.0392 (11)0.167 (3)0.4388 (9)0.033 (4)*
H6B0.0560 (11)0.216 (4)0.4931 (9)0.043 (4)*
N10.10703 (7)0.5268 (2)0.35432 (5)0.0270 (3)
C70.24182 (8)0.9773 (3)0.32037 (6)0.0263 (3)
C80.27237 (8)1.2002 (3)0.28200 (7)0.0282 (3)
H80.3257 (10)1.268 (4)0.3066 (8)0.039 (4)*
O10.16374 (6)0.8941 (2)0.28627 (5)0.0323 (3)
H1A0.1466 (13)0.747 (5)0.3174 (11)0.073 (6)*
O20.28733 (6)0.8856 (2)0.37839 (5)0.0354 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0244 (6)0.0346 (7)0.0307 (6)0.0020 (5)0.0100 (5)0.0030 (5)
C20.0292 (6)0.0328 (7)0.0274 (6)0.0004 (5)0.0093 (5)0.0045 (5)
C30.0311 (6)0.0240 (6)0.0251 (6)0.0012 (5)0.0144 (5)0.0024 (5)
C40.0263 (6)0.0296 (7)0.0295 (6)0.0031 (5)0.0114 (5)0.0003 (5)
C50.0291 (6)0.0302 (7)0.0247 (6)0.0016 (5)0.0087 (5)0.0026 (5)
C60.0361 (7)0.0254 (7)0.0304 (7)0.0032 (5)0.0173 (6)0.0009 (5)
N10.0280 (6)0.0285 (6)0.0267 (5)0.0030 (4)0.0121 (4)0.0019 (4)
C70.0263 (6)0.0275 (6)0.0257 (6)0.0009 (5)0.0097 (5)0.0006 (5)
C80.0249 (6)0.0288 (7)0.0310 (6)0.0043 (5)0.0095 (5)0.0008 (5)
O10.0276 (5)0.0363 (6)0.0309 (5)0.0075 (4)0.0070 (4)0.0089 (4)
O20.0308 (5)0.0423 (6)0.0296 (5)0.0032 (4)0.0058 (4)0.0095 (4)
Geometric parameters (Å, º) top
C1—H10.991 (15)C5—N11.3388 (16)
C1—C21.3789 (19)C6—C6i1.533 (2)
C1—N11.3357 (17)C6—H6A0.970 (17)
C2—H20.986 (16)C6—H6B0.982 (18)
C2—C31.3919 (18)C7—C81.4874 (18)
C3—C41.3876 (18)C7—O11.3080 (15)
C3—C61.5047 (17)C7—O21.2177 (15)
C4—H40.983 (15)C8—C8ii1.315 (3)
C4—C51.3798 (18)C8—H80.916 (16)
C5—H50.969 (16)O1—H1A1.03 (2)
C2—C1—H1121.0 (9)C3—C6—C6i110.78 (13)
N1—C1—H1116.3 (9)C3—C6—H6A110.6 (9)
N1—C1—C2122.73 (12)C3—C6—H6B109.1 (10)
C1—C2—H2119.7 (9)C6i—C6—H6A107.6 (10)
C1—C2—C3119.32 (12)C6i—C6—H6B108.4 (10)
C3—C2—H2121.0 (9)H6A—C6—H6B110.4 (13)
C2—C3—C6120.93 (12)C1—N1—C5118.16 (11)
C4—C3—C2117.77 (11)O1—C7—C8114.05 (11)
C4—C3—C6121.25 (12)O2—C7—C8121.26 (11)
C3—C4—H4122.3 (9)O2—C7—O1124.69 (12)
C5—C4—C3119.37 (12)C7—C8—H8114.9 (10)
C5—C4—H4118.3 (9)C8ii—C8—C7124.15 (15)
C4—C5—H5120.5 (10)C8ii—C8—H8121.0 (10)
N1—C5—C4122.65 (12)C7—O1—H1A109.2 (11)
N1—C5—H5116.8 (10)
C1—C2—C3—C40.29 (19)C4—C3—C6—C6i92.12 (17)
C1—C2—C3—C6177.11 (12)C4—C5—N1—C10.1 (2)
C2—C1—N1—C50.3 (2)C6—C3—C4—C5177.49 (11)
C2—C3—C4—C50.10 (19)N1—C1—C2—C30.5 (2)
C2—C3—C6—C6i85.19 (18)O1—C7—C8—C8ii2.9 (2)
C3—C4—C5—N10.3 (2)O2—C7—C8—C8ii177.16 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_180k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.359 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6837 (6) ÅCell parameters from 2245 reflections
b = 4.7513 (2) Åθ = 4.3–71.3°
c = 19.6812 (8) ŵ = 0.82 mm1
β = 109.784 (4)°T = 180 K
V = 1468.03 (11) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1408 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.786, Tmax = 0.900l = 2324
4151 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.3806P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1408 reflectionsΔρmax = 0.20 e Å3
132 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15874 (8)0.4054 (3)0.41436 (7)0.0306 (3)
H10.2193 (10)0.464 (3)0.4307 (8)0.033 (4)*
C20.13089 (8)0.2072 (3)0.45238 (7)0.0306 (3)
H20.1714 (10)0.123 (3)0.4952 (8)0.032 (4)*
C30.04541 (8)0.1297 (3)0.42839 (6)0.0259 (3)
C40.00821 (8)0.2575 (3)0.36614 (7)0.0285 (3)
H40.0697 (9)0.216 (3)0.3455 (7)0.031 (4)*
C50.02488 (8)0.4529 (3)0.33088 (7)0.0286 (3)
H50.0120 (10)0.545 (4)0.2877 (8)0.034 (4)*
C60.01184 (9)0.0753 (3)0.47031 (7)0.0294 (3)
H6A0.0394 (11)0.168 (3)0.4385 (9)0.038 (4)*
H6B0.0553 (11)0.218 (4)0.4937 (9)0.047 (5)*
N10.10707 (7)0.5270 (2)0.35437 (6)0.0273 (3)
C70.24177 (8)0.9774 (3)0.32038 (6)0.0264 (3)
C80.27240 (8)1.2003 (3)0.28201 (7)0.0285 (3)
H80.3264 (10)1.269 (4)0.3077 (8)0.039 (4)*
O10.16374 (6)0.8944 (2)0.28628 (5)0.0330 (3)
H1A0.1458 (14)0.744 (5)0.3176 (11)0.080 (7)*
O20.28727 (6)0.8861 (2)0.37837 (5)0.0362 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0254 (6)0.0345 (7)0.0322 (7)0.0021 (5)0.0103 (5)0.0034 (5)
C20.0284 (6)0.0344 (7)0.0283 (6)0.0010 (5)0.0088 (5)0.0054 (5)
C30.0316 (6)0.0241 (6)0.0261 (6)0.0014 (5)0.0152 (5)0.0018 (5)
C40.0254 (6)0.0310 (7)0.0298 (6)0.0037 (5)0.0104 (5)0.0007 (5)
C50.0287 (6)0.0307 (7)0.0258 (6)0.0015 (5)0.0083 (5)0.0027 (5)
C60.0361 (7)0.0250 (6)0.0314 (7)0.0033 (5)0.0170 (6)0.0008 (5)
N10.0288 (6)0.0282 (6)0.0272 (5)0.0027 (4)0.0122 (4)0.0021 (4)
C70.0259 (6)0.0278 (6)0.0260 (6)0.0009 (5)0.0094 (5)0.0004 (5)
C80.0243 (6)0.0297 (7)0.0314 (6)0.0042 (5)0.0092 (5)0.0005 (5)
O10.0276 (5)0.0372 (6)0.0315 (5)0.0076 (4)0.0064 (4)0.0091 (4)
O20.0316 (5)0.0431 (6)0.0304 (5)0.0040 (4)0.0059 (4)0.0091 (4)
Geometric parameters (Å, º) top
C1—H10.990 (15)C5—N11.3374 (16)
C1—C21.3775 (19)C6—C6i1.532 (2)
C1—N11.3348 (17)C6—H6A0.977 (17)
C2—H20.971 (15)C6—H6B0.985 (19)
C2—C31.3917 (17)C7—C81.4881 (18)
C3—C41.3886 (18)C7—O11.3073 (15)
C3—C61.5019 (17)C7—O21.2168 (15)
C4—H40.987 (14)C8—C8ii1.316 (3)
C4—C51.3813 (18)C8—H80.931 (16)
C5—H50.968 (16)O1—H1A1.05 (2)
C2—C1—H1120.6 (9)C3—C6—C6i110.90 (13)
N1—C1—H1116.6 (9)C3—C6—H6A110.3 (10)
N1—C1—C2122.73 (12)C3—C6—H6B110.5 (10)
C1—C2—H2119.4 (9)C6i—C6—H6A107.7 (10)
C1—C2—C3119.47 (12)C6i—C6—H6B107.7 (10)
C3—C2—H2121.1 (9)H6A—C6—H6B109.6 (14)
C2—C3—C6121.01 (12)C1—N1—C5118.13 (11)
C4—C3—C2117.63 (11)O1—C7—C8114.05 (11)
C4—C3—C6121.30 (12)O2—C7—C8121.15 (11)
C3—C4—H4123.0 (9)O2—C7—O1124.79 (12)
C5—C4—C3119.31 (11)C7—C8—H8114.2 (10)
C5—C4—H4117.7 (9)C8ii—C8—C7124.05 (15)
C4—C5—H5120.0 (10)C8ii—C8—H8121.7 (10)
N1—C5—C4122.73 (12)C7—O1—H1A109.6 (11)
N1—C5—H5117.2 (10)
C1—C2—C3—C40.28 (19)C4—C3—C6—C6i92.02 (17)
C1—C2—C3—C6177.06 (12)C4—C5—N1—C10.1 (2)
C2—C1—N1—C50.4 (2)C6—C3—C4—C5177.49 (11)
C2—C3—C4—C50.17 (19)N1—C1—C2—C30.6 (2)
C2—C3—C6—C6i85.22 (18)O1—C7—C8—C8ii2.9 (2)
C3—C4—C5—N10.4 (2)O2—C7—C8—C8ii177.21 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_185k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.358 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6800 (7) ÅCell parameters from 2247 reflections
b = 4.7547 (2) Åθ = 4.3–71.3°
c = 19.6846 (8) ŵ = 0.82 mm1
β = 109.773 (5)°T = 185 K
V = 1469.11 (11) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1408 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.900l = 2324
4157 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.079P)2 + 0.3217P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1408 reflectionsΔρmax = 0.18 e Å3
132 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15868 (8)0.4060 (3)0.41429 (7)0.0315 (3)
H10.2190 (10)0.464 (4)0.4305 (8)0.036 (4)*
C20.13079 (8)0.2078 (3)0.45238 (7)0.0316 (3)
H20.1730 (10)0.123 (3)0.4966 (8)0.034 (4)*
C30.04539 (8)0.1298 (3)0.42840 (7)0.0269 (3)
C40.00815 (8)0.2575 (3)0.36611 (7)0.0299 (3)
H40.0692 (10)0.212 (4)0.3455 (8)0.037 (4)*
C50.02494 (8)0.4526 (3)0.33090 (7)0.0297 (3)
H50.0124 (10)0.546 (3)0.2881 (8)0.033 (4)*
C60.01182 (9)0.0753 (3)0.47025 (7)0.0307 (3)
H6A0.0382 (11)0.168 (4)0.4392 (9)0.040 (4)*
H6B0.0559 (11)0.217 (4)0.4939 (9)0.045 (5)*
N10.10699 (7)0.5272 (2)0.35442 (6)0.0286 (3)
C70.24167 (8)0.9776 (3)0.32035 (6)0.0275 (3)
C80.27239 (8)1.2005 (3)0.28204 (7)0.0296 (3)
H80.3267 (10)1.272 (4)0.3074 (9)0.041 (4)*
O10.16376 (6)0.8946 (2)0.28629 (5)0.0341 (3)
H1A0.1449 (14)0.748 (5)0.3182 (11)0.079 (7)*
O20.28721 (6)0.8862 (2)0.37838 (5)0.0375 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (6)0.0358 (7)0.0335 (7)0.0024 (5)0.0106 (5)0.0034 (5)
C20.0308 (7)0.0352 (7)0.0287 (7)0.0009 (6)0.0099 (5)0.0055 (5)
C30.0339 (7)0.0247 (7)0.0266 (6)0.0012 (5)0.0163 (5)0.0019 (5)
C40.0273 (6)0.0317 (7)0.0314 (7)0.0041 (5)0.0110 (5)0.0006 (5)
C50.0300 (7)0.0318 (7)0.0264 (6)0.0017 (5)0.0085 (5)0.0031 (5)
C60.0383 (7)0.0262 (7)0.0324 (7)0.0036 (6)0.0181 (6)0.0011 (5)
N10.0302 (6)0.0296 (6)0.0283 (6)0.0029 (5)0.0130 (4)0.0022 (4)
C70.0271 (6)0.0290 (7)0.0273 (6)0.0012 (5)0.0101 (5)0.0002 (5)
C80.0260 (6)0.0306 (7)0.0325 (7)0.0047 (5)0.0103 (5)0.0006 (5)
O10.0289 (5)0.0387 (6)0.0320 (5)0.0083 (4)0.0067 (4)0.0094 (4)
O20.0328 (5)0.0449 (6)0.0311 (5)0.0039 (4)0.0062 (4)0.0097 (4)
Geometric parameters (Å, º) top
C1—H10.986 (16)C5—N11.3358 (16)
C1—C21.3793 (19)C6—C6i1.534 (3)
C1—N11.3330 (17)C6—H6A0.959 (18)
C2—H21.001 (15)C6—H6B0.990 (19)
C2—C31.3908 (18)C7—C81.4887 (18)
C3—C41.3889 (18)C7—O11.3056 (15)
C3—C61.5018 (17)C7—O21.2179 (15)
C4—H40.984 (15)C8—C8ii1.316 (3)
C4—C51.3798 (19)C8—H80.937 (17)
C5—H50.970 (16)O1—H1A1.05 (2)
C2—C1—H1120.6 (10)C3—C6—C6i110.81 (14)
N1—C1—H1116.7 (10)C3—C6—H6A110.7 (10)
N1—C1—C2122.66 (12)C3—C6—H6B110.2 (10)
C1—C2—H2118.8 (9)C6i—C6—H6A108.0 (11)
C1—C2—C3119.52 (12)C6i—C6—H6B107.5 (10)
C3—C2—H2121.7 (9)H6A—C6—H6B109.5 (14)
C2—C3—C6121.07 (12)C1—N1—C5118.17 (11)
C4—C3—C2117.51 (12)O1—C7—C8114.11 (11)
C4—C3—C6121.36 (12)O2—C7—C8121.11 (12)
C3—C4—H4122.2 (10)O2—C7—O1124.78 (12)
C5—C4—C3119.36 (12)C7—C8—H8115.1 (10)
C5—C4—H4118.4 (10)C8ii—C8—C7123.99 (15)
C4—C5—H5119.8 (9)C8ii—C8—H8120.9 (10)
N1—C5—C4122.78 (12)C7—O1—H1A109.8 (11)
N1—C5—H5117.4 (9)
C1—C2—C3—C40.2 (2)C4—C3—C6—C6i92.19 (18)
C1—C2—C3—C6177.18 (12)C4—C5—N1—C10.3 (2)
C2—C1—N1—C50.1 (2)C6—C3—C4—C5177.60 (12)
C2—C3—C4—C50.22 (19)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.09 (18)O1—C7—C8—C8ii3.0 (2)
C3—C4—C5—N10.5 (2)O2—C7—C8—C8ii177.09 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_190k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.357 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6841 (7) ÅCell parameters from 2220 reflections
b = 4.7564 (2) Åθ = 4.3–71.3°
c = 19.6818 (8) ŵ = 0.82 mm1
β = 109.740 (5)°T = 190 K
V = 1470.09 (11) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1407 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.787, Tmax = 0.900l = 2324
4152 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.3563P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1407 reflectionsΔρmax = 0.18 e Å3
132 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15868 (8)0.4062 (3)0.41435 (7)0.0317 (3)
H10.2186 (10)0.465 (3)0.4298 (8)0.036 (4)*
C20.13081 (8)0.2080 (3)0.45245 (7)0.0319 (3)
H20.1716 (10)0.123 (3)0.4955 (8)0.032 (4)*
C30.04552 (8)0.1304 (3)0.42841 (6)0.0271 (3)
C40.00818 (8)0.2574 (3)0.36617 (7)0.0296 (3)
H40.0687 (10)0.214 (4)0.3461 (8)0.036 (4)*
C50.02501 (8)0.4527 (3)0.33098 (7)0.0302 (3)
H50.0125 (10)0.548 (3)0.2882 (8)0.033 (4)*
C60.01192 (9)0.0750 (3)0.47028 (7)0.0311 (3)
H6A0.0395 (11)0.166 (3)0.4382 (9)0.037 (4)*
H6B0.0552 (11)0.214 (4)0.4936 (9)0.043 (4)*
N10.10696 (7)0.5274 (2)0.35440 (6)0.0285 (3)
C70.24164 (8)0.9776 (3)0.32032 (6)0.0277 (3)
C80.27239 (8)1.2007 (3)0.28202 (7)0.0299 (3)
H80.3258 (11)1.267 (4)0.3066 (9)0.044 (5)*
O10.16379 (6)0.8944 (2)0.28626 (5)0.0345 (3)
H1A0.1460 (13)0.749 (5)0.3180 (11)0.075 (7)*
O20.28715 (6)0.8864 (2)0.37829 (5)0.0381 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (6)0.0363 (8)0.0335 (7)0.0028 (5)0.0103 (5)0.0038 (5)
C20.0306 (7)0.0354 (7)0.0294 (7)0.0003 (6)0.0097 (5)0.0061 (5)
C30.0334 (7)0.0248 (7)0.0272 (6)0.0020 (5)0.0156 (5)0.0024 (5)
C40.0267 (6)0.0314 (7)0.0314 (7)0.0043 (5)0.0110 (5)0.0002 (5)
C50.0309 (7)0.0321 (7)0.0269 (6)0.0019 (6)0.0090 (5)0.0029 (5)
C60.0387 (7)0.0267 (7)0.0326 (7)0.0033 (6)0.0185 (6)0.0009 (5)
N10.0303 (6)0.0288 (6)0.0285 (6)0.0032 (4)0.0126 (4)0.0021 (4)
C70.0277 (6)0.0286 (7)0.0276 (6)0.0011 (5)0.0105 (5)0.0007 (5)
C80.0261 (6)0.0309 (7)0.0331 (7)0.0051 (5)0.0104 (5)0.0014 (5)
O10.0290 (5)0.0392 (6)0.0325 (5)0.0084 (4)0.0066 (4)0.0099 (4)
O20.0328 (5)0.0456 (6)0.0319 (5)0.0043 (4)0.0057 (4)0.0103 (4)
Geometric parameters (Å, º) top
C1—H10.982 (16)C5—N11.3351 (16)
C1—C21.3795 (19)C6—C6i1.533 (3)
C1—N11.3347 (17)C6—H6A0.976 (17)
C2—H20.978 (15)C6—H6B0.973 (18)
C2—C31.3893 (18)C7—C81.4897 (18)
C3—C41.3882 (18)C7—O11.3058 (15)
C3—C61.5032 (17)C7—O21.2170 (16)
C4—H40.974 (15)C8—C8ii1.316 (3)
C4—C51.3815 (18)C8—H80.915 (17)
C5—H50.976 (16)O1—H1A1.04 (2)
C2—C1—H1121.5 (10)C3—C6—C6i110.91 (14)
N1—C1—H1115.8 (10)C3—C6—H6A110.0 (10)
N1—C1—C2122.67 (12)C3—C6—H6B110.2 (10)
C1—C2—H2119.3 (9)C6i—C6—H6A107.5 (10)
C1—C2—C3119.41 (12)C6i—C6—H6B107.5 (10)
C3—C2—H2121.3 (9)H6A—C6—H6B110.7 (14)
C2—C3—C6120.98 (12)C1—N1—C5118.11 (11)
C4—C3—C2117.80 (12)O1—C7—C8114.15 (11)
C4—C3—C6121.16 (12)O2—C7—C8121.05 (12)
C3—C4—H4122.4 (10)O2—C7—O1124.81 (12)
C5—C4—C3119.12 (12)C7—C8—H8114.8 (11)
C5—C4—H4118.4 (9)C8ii—C8—C7123.87 (15)
C4—C5—H5119.8 (9)C8ii—C8—H8121.4 (11)
N1—C5—C4122.89 (12)C7—O1—H1A109.2 (11)
N1—C5—H5117.2 (9)
C1—C2—C3—C40.2 (2)C4—C3—C6—C6i92.13 (18)
C1—C2—C3—C6177.17 (12)C4—C5—N1—C10.2 (2)
C2—C1—N1—C50.2 (2)C6—C3—C4—C5177.57 (12)
C2—C3—C4—C50.18 (19)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.18 (18)O1—C7—C8—C8ii3.0 (2)
C3—C4—C5—N10.4 (2)O2—C7—C8—C8ii177.05 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_200k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.355 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6798 (5) ÅCell parameters from 2183 reflections
b = 4.7618 (1) Åθ = 4.3–71.1°
c = 19.6808 (7) ŵ = 0.82 mm1
β = 109.657 (4)°T = 200 K
V = 1472.07 (8) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1412 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.788, Tmax = 0.900l = 2324
4148 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.3152P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1412 reflectionsΔρmax = 0.17 e Å3
132 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15863 (8)0.4070 (3)0.41435 (7)0.0330 (3)
H10.2186 (10)0.469 (3)0.4302 (8)0.034 (4)*
C20.13071 (8)0.2093 (3)0.45247 (7)0.0332 (3)
H20.1720 (10)0.121 (3)0.4956 (8)0.037 (4)*
C30.04550 (8)0.1308 (3)0.42842 (6)0.0280 (3)
C40.00800 (8)0.2574 (3)0.36621 (7)0.0309 (3)
H40.0689 (9)0.214 (3)0.3466 (7)0.034 (4)*
C50.02504 (8)0.4530 (3)0.33100 (7)0.0311 (3)
H50.0127 (10)0.544 (3)0.2884 (8)0.034 (4)*
C60.01197 (9)0.0745 (3)0.47034 (7)0.0320 (3)
H6A0.0384 (11)0.170 (3)0.4387 (9)0.040 (4)*
H6B0.0554 (11)0.214 (4)0.4939 (9)0.045 (4)*
N10.10696 (7)0.5276 (2)0.35442 (6)0.0298 (3)
C70.24169 (8)0.9780 (3)0.32037 (6)0.0290 (3)
C80.27220 (8)1.2005 (3)0.28194 (7)0.0311 (3)
H80.3260 (10)1.269 (4)0.3071 (8)0.043 (4)*
O10.16376 (6)0.8947 (2)0.28628 (5)0.0360 (3)
H1A0.1457 (13)0.748 (5)0.3175 (11)0.074 (6)*
O20.28700 (6)0.8868 (2)0.37827 (5)0.0398 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (6)0.0389 (7)0.0339 (7)0.0030 (5)0.0107 (5)0.0043 (5)
C20.0318 (6)0.0371 (7)0.0301 (6)0.0005 (6)0.0096 (5)0.0062 (6)
C30.0351 (6)0.0258 (6)0.0278 (6)0.0024 (5)0.0167 (5)0.0022 (5)
C40.0280 (6)0.0333 (7)0.0326 (7)0.0043 (5)0.0117 (5)0.0002 (5)
C50.0323 (7)0.0333 (7)0.0272 (6)0.0012 (5)0.0091 (5)0.0037 (5)
C60.0400 (7)0.0275 (7)0.0332 (7)0.0037 (6)0.0183 (6)0.0009 (5)
N10.0318 (6)0.0306 (6)0.0294 (5)0.0029 (4)0.0132 (4)0.0026 (4)
C70.0288 (6)0.0305 (7)0.0282 (6)0.0009 (5)0.0101 (5)0.0006 (5)
C80.0273 (6)0.0330 (7)0.0333 (6)0.0052 (5)0.0106 (5)0.0014 (5)
O10.0302 (5)0.0407 (6)0.0343 (5)0.0089 (4)0.0073 (4)0.0102 (4)
O20.0350 (5)0.0475 (6)0.0330 (5)0.0043 (4)0.0063 (4)0.0108 (4)
Geometric parameters (Å, º) top
C1—H10.988 (15)C5—N11.3349 (16)
C1—C21.3790 (19)C6—C6i1.530 (3)
C1—N11.3340 (17)C6—H6A0.974 (17)
C2—H20.989 (16)C6—H6B0.978 (18)
C2—C31.3896 (18)C7—C81.4872 (18)
C3—C41.3870 (18)C7—O11.3078 (15)
C3—C61.5032 (17)C7—O21.2160 (15)
C4—H40.979 (14)C8—C8ii1.313 (3)
C4—C51.3815 (18)C8—H80.926 (16)
C5—H50.966 (15)O1—H1A1.04 (2)
C2—C1—H1121.7 (9)C3—C6—C6i110.97 (13)
N1—C1—H1115.7 (9)C3—C6—H6A110.6 (10)
N1—C1—C2122.61 (12)C3—C6—H6B110.5 (10)
C1—C2—H2119.4 (9)C6i—C6—H6A108.3 (10)
C1—C2—C3119.49 (12)C6i—C6—H6B107.2 (10)
C3—C2—H2121.1 (9)H6A—C6—H6B109.1 (14)
C2—C3—C6120.98 (12)C1—N1—C5118.20 (11)
C4—C3—C2117.67 (11)O1—C7—C8113.96 (11)
C4—C3—C6121.30 (12)O2—C7—C8121.32 (12)
C3—C4—H4122.1 (9)O2—C7—O1124.73 (12)
C5—C4—C3119.28 (12)C7—C8—H8114.6 (10)
C5—C4—H4118.7 (9)C8ii—C8—C7124.29 (15)
C4—C5—H5119.1 (9)C8ii—C8—H8121.1 (10)
N1—C5—C4122.75 (12)C7—O1—H1A109.6 (11)
N1—C5—H5118.1 (9)
C1—C2—C3—C40.05 (19)C4—C3—C6—C6i92.20 (18)
C1—C2—C3—C6177.28 (12)C4—C5—N1—C10.1 (2)
C2—C1—N1—C50.2 (2)C6—C3—C4—C5177.51 (11)
C2—C3—C4—C50.18 (19)N1—C1—C2—C30.2 (2)
C2—C3—C6—C6i85.04 (18)O1—C7—C8—C8ii2.9 (2)
C3—C4—C5—N10.2 (2)O2—C7—C8—C8ii177.09 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_200k) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.353 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6840 (7) ÅCell parameters from 1612 reflections
b = 4.7634 (2) Åθ = 3.0–72.2°
c = 19.6972 (7) ŵ = 0.82 mm1
β = 109.674 (4)°T = 200 K
V = 1474.00 (11) Å3Plate, colourless
Z = 40.25 × 0.14 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1426 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1187 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.5384 pixels mm-1θmax = 72.5°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.705, Tmax = 1.000l = 2321
2815 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3901P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
1426 reflectionsΔρmin = 0.15 e Å3
133 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0013 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15859 (8)0.4073 (3)0.41442 (7)0.0332 (3)
H10.2187 (10)0.470 (3)0.4303 (8)0.034 (4)*
C20.13053 (8)0.2088 (3)0.45239 (7)0.0333 (3)
H20.1710 (10)0.121 (4)0.4959 (9)0.044 (4)*
C30.04550 (8)0.1304 (3)0.42840 (7)0.0279 (3)
C40.00802 (8)0.2572 (3)0.36623 (7)0.0311 (3)
H40.0689 (9)0.214 (3)0.3464 (8)0.036 (4)*
C50.02488 (8)0.4529 (3)0.33091 (7)0.0311 (3)
H50.0120 (10)0.544 (3)0.2871 (8)0.040 (4)*
C60.01204 (9)0.0753 (3)0.47039 (7)0.0328 (3)
H6A0.0393 (11)0.172 (4)0.4376 (9)0.046 (5)*
H6B0.0567 (10)0.215 (4)0.4937 (9)0.045 (5)*
N10.10697 (7)0.5281 (2)0.35440 (6)0.0302 (3)
C70.24173 (8)0.9781 (3)0.32046 (7)0.0292 (3)
C80.27219 (8)1.2010 (3)0.28179 (7)0.0312 (3)
H80.3285 (11)1.267 (4)0.3064 (9)0.047 (5)*
O10.16373 (6)0.8949 (2)0.28625 (5)0.0359 (3)
H1A0.1437 (13)0.744 (5)0.3171 (11)0.081 (7)*
O20.28710 (6)0.8865 (2)0.37835 (5)0.0404 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0249 (7)0.0386 (8)0.0356 (7)0.0033 (6)0.0095 (5)0.0041 (6)
C20.0304 (7)0.0375 (8)0.0307 (6)0.0001 (6)0.0086 (5)0.0065 (6)
C30.0328 (7)0.0260 (7)0.0294 (6)0.0022 (5)0.0165 (5)0.0019 (5)
C40.0276 (7)0.0332 (8)0.0328 (7)0.0043 (5)0.0106 (5)0.0001 (6)
C50.0304 (7)0.0326 (7)0.0294 (6)0.0026 (5)0.0089 (5)0.0033 (5)
C60.0391 (8)0.0289 (8)0.0356 (7)0.0035 (6)0.0191 (6)0.0012 (6)
N10.0291 (6)0.0315 (6)0.0320 (6)0.0034 (5)0.0127 (4)0.0022 (5)
C70.0273 (6)0.0310 (7)0.0297 (6)0.0013 (5)0.0099 (5)0.0013 (5)
C80.0265 (6)0.0333 (8)0.0337 (6)0.0052 (5)0.0100 (5)0.0016 (5)
O10.0282 (5)0.0410 (6)0.0351 (5)0.0091 (4)0.0062 (4)0.0101 (4)
O20.0342 (5)0.0485 (7)0.0339 (5)0.0050 (5)0.0053 (4)0.0109 (5)
Geometric parameters (Å, º) top
C1—H10.991 (15)C6—C6i1.533 (3)
C1—C21.381 (2)C6—H6A0.995 (18)
C1—N11.3360 (17)C6—H6B0.988 (18)
C2—H20.988 (17)N1—H1A1.51 (2)
C2—C31.3870 (18)C7—C81.4924 (19)
C3—C41.3875 (18)C7—O11.3091 (15)
C3—C61.5054 (18)C7—O21.2174 (16)
C4—H40.979 (15)C8—C8ii1.308 (3)
C4—C51.3826 (19)C8—H80.953 (17)
C5—H50.978 (16)O1—H1A1.07 (2)
C5—N11.3384 (17)
C2—C1—H1121.8 (9)C3—C6—H6A109.9 (10)
N1—C1—H1115.6 (9)C3—C6—H6B109.4 (10)
N1—C1—C2122.61 (12)C6i—C6—H6A108.7 (10)
C1—C2—H2120.2 (10)C6i—C6—H6B108.1 (10)
C1—C2—C3119.61 (12)H6A—C6—H6B110.0 (14)
C3—C2—H2120.2 (10)C1—N1—C5118.06 (11)
C2—C3—C4117.64 (12)C1—N1—H1A118.6 (8)
C2—C3—C6120.93 (12)C5—N1—H1A123.4 (8)
C4—C3—C6121.37 (12)O1—C7—C8113.75 (11)
C3—C4—H4122.2 (9)O2—C7—C8121.45 (12)
C5—C4—C3119.41 (12)O2—C7—O1124.80 (12)
C5—C4—H4118.4 (9)C7—C8—H8114.9 (10)
C4—C5—H5120.4 (9)C8ii—C8—C7124.22 (16)
N1—C5—C4122.68 (12)C8ii—C8—H8120.9 (10)
N1—C5—H5116.9 (9)C7—O1—H1A111.0 (11)
C3—C6—C6i110.75 (14)
C1—C2—C3—C40.1 (2)C4—C3—C6—C6i92.00 (18)
C1—C2—C3—C6177.14 (13)C4—C5—N1—C10.1 (2)
C2—C1—N1—C50.3 (2)C6—C3—C4—C5177.52 (12)
C2—C3—C4—C50.3 (2)N1—C1—C2—C30.4 (2)
C2—C3—C6—C6i85.18 (19)O1—C7—C8—C8ii2.9 (3)
C3—C4—C5—N10.4 (2)O2—C7—C8—C8ii176.94 (18)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (ETYFUM_250K) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.344 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6906 (9) ÅCell parameters from 1500 reflections
b = 4.7903 (2) Åθ = 4.7–71.7°
c = 19.6824 (9) ŵ = 0.81 mm1
β = 109.367 (5)°T = 250 K
V = 1484.62 (13) Å3Plate, colourless
Z = 40.26 × 0.14 × 0.05 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1432 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1131 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.5384 pixels mm-1θmax = 72.1°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.599, Tmax = 1.000l = 2123
2821 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2145P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
1432 reflectionsΔρmin = 0.13 e Å3
133 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0014 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15817 (9)0.4111 (4)0.41454 (8)0.0401 (4)
H10.2195 (10)0.472 (4)0.4317 (9)0.042 (4)*
C20.13020 (9)0.2131 (4)0.45264 (8)0.0400 (4)
H20.1711 (11)0.128 (4)0.4964 (10)0.051 (5)*
C30.04563 (9)0.1329 (3)0.42853 (7)0.0329 (3)
C40.00744 (9)0.2575 (3)0.36650 (8)0.0378 (4)
H40.0672 (11)0.214 (4)0.3463 (9)0.050 (5)*
C50.02510 (9)0.4530 (3)0.33104 (8)0.0376 (4)
H50.0123 (11)0.546 (4)0.2865 (9)0.050 (5)*
C60.01241 (11)0.0733 (3)0.47042 (8)0.0393 (4)
H6A0.0390 (11)0.170 (4)0.4374 (9)0.049 (5)*
H6B0.0564 (11)0.212 (4)0.4946 (9)0.055 (5)*
N10.10664 (7)0.5296 (3)0.35458 (6)0.0358 (3)
C70.24153 (9)0.9795 (3)0.32030 (7)0.0352 (3)
C80.27201 (9)1.2015 (3)0.28178 (8)0.0369 (4)
H80.3274 (11)1.265 (4)0.3061 (9)0.054 (5)*
O10.16389 (6)0.8960 (2)0.28633 (6)0.0432 (3)
H1A0.1454 (13)0.754 (5)0.3165 (12)0.091 (8)*
O20.28637 (7)0.8895 (3)0.37803 (6)0.0492 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (7)0.0460 (10)0.0432 (8)0.0043 (7)0.0113 (6)0.0066 (7)
C20.0369 (8)0.0443 (9)0.0382 (7)0.0003 (7)0.0116 (6)0.0086 (7)
C30.0382 (8)0.0313 (8)0.0338 (7)0.0029 (6)0.0181 (6)0.0014 (6)
C40.0321 (7)0.0429 (9)0.0387 (7)0.0067 (6)0.0122 (6)0.0000 (7)
C50.0366 (8)0.0409 (9)0.0343 (7)0.0034 (6)0.0104 (6)0.0042 (6)
C60.0482 (9)0.0337 (9)0.0418 (8)0.0060 (7)0.0225 (7)0.0009 (7)
N10.0352 (6)0.0372 (7)0.0373 (6)0.0046 (5)0.0150 (5)0.0037 (5)
C70.0322 (7)0.0384 (8)0.0357 (7)0.0020 (6)0.0123 (6)0.0021 (6)
C80.0306 (7)0.0396 (9)0.0402 (7)0.0072 (6)0.0114 (6)0.0033 (6)
O10.0345 (6)0.0496 (7)0.0416 (6)0.0116 (5)0.0073 (4)0.0127 (5)
O20.0410 (6)0.0601 (8)0.0403 (6)0.0064 (5)0.0053 (5)0.0142 (5)
Geometric parameters (Å, º) top
C1—H11.009 (16)C5—N11.3354 (18)
C1—C21.383 (2)C6—C6i1.530 (3)
C1—N11.3348 (19)C6—H6A1.003 (18)
C2—H20.992 (18)C6—H6B0.99 (2)
C2—C31.386 (2)C7—C81.490 (2)
C3—C41.384 (2)C7—O11.3083 (17)
C3—C61.505 (2)C7—O21.2136 (17)
C4—H40.967 (17)C8—C8ii1.308 (3)
C4—C51.382 (2)C8—H80.940 (18)
C5—H50.997 (17)O1—H1A1.02 (2)
C2—C1—H1120.3 (9)C3—C6—C6i110.93 (16)
N1—C1—H1117.2 (10)C3—C6—H6A110.0 (10)
N1—C1—C2122.47 (14)C3—C6—H6B110.9 (11)
C1—C2—H2119.5 (10)C6i—C6—H6A108.4 (10)
C1—C2—C3119.54 (14)C6i—C6—H6B106.7 (11)
C3—C2—H2120.9 (10)H6A—C6—H6B109.8 (15)
C2—C3—C6120.84 (14)C1—N1—C5118.26 (12)
C4—C3—C2117.64 (13)O1—C7—C8113.93 (12)
C4—C3—C6121.48 (13)O2—C7—C8121.42 (13)
C3—C4—H4122.7 (11)O2—C7—O1124.65 (13)
C5—C4—C3119.61 (13)C7—C8—H8114.6 (11)
C5—C4—H4117.7 (11)C8ii—C8—C7124.17 (17)
C4—C5—H5120.7 (10)C8ii—C8—H8121.2 (11)
N1—C5—C4122.48 (13)C7—O1—H1A110.4 (12)
N1—C5—H5116.8 (10)
C1—C2—C3—C40.1 (2)C4—C3—C6—C6i92.2 (2)
C1—C2—C3—C6177.48 (14)C4—C5—N1—C10.2 (2)
C2—C1—N1—C50.1 (2)C6—C3—C4—C5177.77 (14)
C2—C3—C4—C50.4 (2)N1—C1—C2—C30.2 (2)
C2—C3—C6—C6i85.1 (2)O1—C7—C8—C8ii3.1 (3)
C3—C4—C5—N10.5 (2)O2—C7—C8—C8ii177.1 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_300k_b) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.335 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6920 (4) ÅCell parameters from 1867 reflections
b = 4.8145 (1) Åθ = 4.2–71.3°
c = 19.6756 (5) ŵ = 0.81 mm1
β = 109.059 (3)°T = 300 K
V = 1494.53 (7) Å3Block, colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1428 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 53
Tmin = 0.791, Tmax = 0.901l = 2423
4197 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.1853P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1428 reflectionsΔρmax = 0.17 e Å3
132 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15749 (9)0.4151 (3)0.41473 (8)0.0471 (4)
H10.2171 (10)0.471 (4)0.4319 (9)0.049 (4)*
C20.12995 (9)0.2177 (3)0.45262 (8)0.0471 (4)
H20.1719 (10)0.140 (4)0.4963 (8)0.049 (4)*
C30.04581 (9)0.1356 (3)0.42886 (7)0.0386 (4)
C40.00703 (9)0.2581 (3)0.36669 (8)0.0431 (4)
H40.0675 (10)0.211 (4)0.3462 (8)0.050 (4)*
C50.02554 (9)0.4526 (3)0.33146 (8)0.0439 (4)
H50.0122 (12)0.537 (4)0.2877 (10)0.060 (5)*
C60.01246 (11)0.0710 (3)0.47028 (8)0.0454 (4)
H6A0.0383 (12)0.171 (4)0.4382 (10)0.057 (5)*
H6B0.0563 (12)0.204 (4)0.4935 (10)0.067 (6)*
N10.10645 (7)0.5310 (3)0.35470 (6)0.0414 (3)
C70.24108 (9)0.9810 (3)0.32007 (7)0.0406 (4)
C80.27153 (9)1.2013 (3)0.28176 (8)0.0434 (4)
H80.3258 (11)1.269 (4)0.3071 (9)0.061 (5)*
O10.16399 (6)0.8974 (2)0.28640 (6)0.0504 (3)
H1A0.1481 (13)0.758 (5)0.3167 (11)0.087 (7)*
O20.28561 (7)0.8922 (3)0.37772 (6)0.0575 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0360 (7)0.0556 (9)0.0493 (8)0.0051 (6)0.0136 (6)0.0085 (7)
C20.0431 (7)0.0547 (9)0.0429 (8)0.0001 (7)0.0130 (6)0.0130 (7)
C30.0473 (8)0.0368 (7)0.0381 (7)0.0028 (6)0.0228 (6)0.0012 (5)
C40.0386 (7)0.0468 (8)0.0440 (7)0.0086 (6)0.0139 (6)0.0013 (6)
C50.0435 (8)0.0493 (8)0.0373 (7)0.0035 (6)0.0112 (6)0.0065 (6)
C60.0594 (9)0.0377 (8)0.0476 (8)0.0061 (7)0.0291 (7)0.0018 (6)
N10.0429 (7)0.0435 (7)0.0407 (6)0.0054 (5)0.0178 (5)0.0043 (5)
C70.0396 (7)0.0439 (8)0.0381 (7)0.0029 (6)0.0125 (6)0.0026 (6)
C80.0371 (7)0.0463 (8)0.0464 (8)0.0082 (6)0.0134 (6)0.0035 (6)
O10.0427 (6)0.0572 (7)0.0471 (6)0.0131 (5)0.0089 (5)0.0158 (5)
O20.0491 (6)0.0698 (8)0.0466 (6)0.0090 (5)0.0061 (5)0.0175 (5)
Geometric parameters (Å, º) top
C1—H10.979 (16)C5—N11.3312 (18)
C1—C21.376 (2)C6—C6i1.525 (3)
C1—N11.3324 (19)C6—H6A1.00 (2)
C2—H20.988 (16)C6—H6B0.97 (2)
C2—C31.385 (2)C7—C81.484 (2)
C3—C41.385 (2)C7—O11.3039 (16)
C3—C61.5033 (19)C7—O21.2130 (17)
C4—H40.984 (16)C8—C8ii1.308 (3)
C4—C51.378 (2)C8—H80.938 (18)
C5—H50.973 (18)O1—H1A0.99 (2)
C2—C1—H1119.0 (10)C3—C6—C6i111.15 (15)
N1—C1—H1118.4 (10)C3—C6—H6A111.4 (11)
N1—C1—C2122.64 (13)C3—C6—H6B109.7 (12)
C1—C2—H2117.7 (10)C6i—C6—H6A108.2 (11)
C1—C2—C3119.71 (13)C6i—C6—H6B106.7 (11)
C3—C2—H2122.6 (10)H6A—C6—H6B109.5 (15)
C2—C3—C6121.34 (13)C5—N1—C1117.98 (12)
C4—C3—C2117.36 (13)O1—C7—C8114.05 (12)
C4—C3—C6121.27 (13)O2—C7—C8121.34 (13)
C3—C4—H4122.4 (10)O2—C7—O1124.61 (13)
C5—C4—C3119.46 (13)C7—C8—H8114.2 (11)
C5—C4—H4118.1 (10)C8ii—C8—C7124.69 (17)
C4—C5—H5118.7 (11)C8ii—C8—H8121.1 (11)
N1—C5—C4122.85 (13)C7—O1—H1A108.5 (12)
N1—C5—H5118.4 (11)
C1—C2—C3—C40.4 (2)C4—C3—C6—C6i93.2 (2)
C1—C2—C3—C6177.57 (14)C4—C5—N1—C10.1 (2)
C2—C1—N1—C50.7 (2)C6—C3—C4—C5178.11 (13)
C2—C3—C4—C50.2 (2)N1—C1—C2—C30.8 (3)
C2—C3—C6—C6i84.7 (2)O1—C7—C8—C8ii3.2 (3)
C3—C4—C5—N10.3 (2)O2—C7—C8—C8ii177.0 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
1,2-bis(4-Pyridyl)ethane fumaric acid (etyfum_300k) top
Crystal data top
C12H12N2·C4H4O4F(000) = 632
Mr = 300.31Dx = 1.335 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6911 (10) ÅCell parameters from 1379 reflections
b = 4.8164 (3) Åθ = 3.1–72.4°
c = 19.6669 (10) ŵ = 0.81 mm1
β = 109.032 (6)°T = 300 K
V = 1494.62 (16) Å3Plate, colourless
Z = 40.23 × 0.14 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1440 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1119 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.5384 pixels mm-1θmax = 72.6°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.718, Tmax = 1.000l = 2123
2839 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.4091P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.12 e Å3
1440 reflectionsΔρmin = 0.15 e Å3
133 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15740 (10)0.4149 (4)0.41466 (9)0.0479 (4)
H10.2173 (12)0.478 (4)0.4312 (10)0.061 (5)*
C20.12963 (10)0.2174 (4)0.45261 (9)0.0476 (4)
H20.1707 (12)0.136 (4)0.4964 (10)0.059 (5)*
C30.04574 (10)0.1351 (3)0.42878 (8)0.0391 (4)
C40.00688 (10)0.2576 (4)0.36668 (8)0.0444 (4)
H40.0669 (12)0.216 (4)0.3473 (10)0.060 (5)*
C50.02545 (10)0.4526 (4)0.33139 (8)0.0450 (4)
H50.0118 (12)0.538 (4)0.2874 (10)0.062 (5)*
C60.01267 (12)0.0712 (4)0.47038 (9)0.0465 (4)
H6A0.0388 (13)0.171 (4)0.4372 (11)0.066 (6)*
H6B0.0572 (13)0.209 (5)0.4948 (11)0.072 (6)*
N10.10668 (8)0.5310 (3)0.35474 (7)0.0424 (4)
C70.24122 (9)0.9811 (4)0.32014 (8)0.0411 (4)
C80.27168 (10)1.2013 (4)0.28170 (8)0.0441 (4)
H80.3260 (12)1.273 (4)0.3063 (10)0.058 (5)*
O10.16399 (7)0.8972 (3)0.28643 (6)0.0510 (4)
H1A0.1443 (14)0.756 (5)0.3172 (12)0.092 (8)*
O20.28563 (7)0.8919 (3)0.37767 (6)0.0589 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (8)0.0567 (11)0.0505 (9)0.0060 (8)0.0136 (7)0.0079 (8)
C20.0431 (9)0.0544 (11)0.0443 (8)0.0005 (8)0.0128 (7)0.0108 (8)
C30.0464 (8)0.0361 (9)0.0409 (7)0.0037 (7)0.0225 (6)0.0009 (6)
C40.0390 (8)0.0486 (10)0.0464 (8)0.0087 (7)0.0151 (7)0.0018 (7)
C50.0437 (9)0.0494 (10)0.0405 (8)0.0044 (7)0.0117 (7)0.0069 (7)
C60.0592 (11)0.0388 (10)0.0497 (9)0.0072 (8)0.0293 (8)0.0007 (7)
N10.0419 (7)0.0448 (8)0.0431 (7)0.0051 (6)0.0176 (5)0.0053 (6)
C70.0389 (8)0.0445 (9)0.0411 (8)0.0037 (7)0.0145 (6)0.0030 (7)
C80.0378 (8)0.0472 (10)0.0470 (8)0.0083 (7)0.0135 (6)0.0040 (7)
O10.0415 (6)0.0588 (8)0.0488 (6)0.0133 (5)0.0094 (5)0.0157 (6)
O20.0492 (7)0.0725 (9)0.0480 (7)0.0093 (6)0.0064 (5)0.0173 (6)
Geometric parameters (Å, º) top
C1—H10.99 (2)C5—N11.336 (2)
C1—C21.379 (2)C6—C6i1.526 (3)
C1—N11.329 (2)C6—H6A1.01 (2)
C2—H20.990 (19)C6—H6B0.99 (2)
C2—C31.382 (2)C7—C81.485 (2)
C3—C41.383 (2)C7—O11.3066 (18)
C3—C61.502 (2)C7—O21.2114 (18)
C4—H40.969 (18)C8—C8ii1.308 (3)
C4—C51.378 (2)C8—H80.943 (19)
C5—H50.976 (19)O1—H1A1.03 (3)
C2—C1—H1120.8 (12)C3—C6—C6i111.16 (17)
N1—C1—H1116.4 (12)C3—C6—H6A110.3 (12)
N1—C1—C2122.72 (15)C3—C6—H6B110.7 (12)
C1—C2—H2119.0 (11)C6i—C6—H6A108.5 (12)
C1—C2—C3119.77 (15)C6i—C6—H6B106.3 (12)
C3—C2—H2121.3 (11)H6A—C6—H6B109.8 (17)
C2—C3—C4117.30 (14)C1—N1—C5117.85 (14)
C2—C3—C6121.12 (15)O1—C7—C8114.05 (13)
C4—C3—C6121.54 (15)O2—C7—C8121.47 (14)
C3—C4—H4122.5 (11)O2—C7—O1124.48 (15)
C5—C4—C3119.70 (15)C7—C8—H8115.6 (11)
C5—C4—H4117.8 (11)C8ii—C8—C7124.52 (19)
C4—C5—H5119.5 (12)C8ii—C8—H8119.9 (12)
N1—C5—C4122.66 (15)C7—O1—H1A110.9 (12)
N1—C5—H5117.9 (12)
C1—C2—C3—C40.2 (3)C4—C3—C6—C6i92.8 (2)
C1—C2—C3—C6177.60 (16)C4—C5—N1—C10.3 (3)
C2—C1—N1—C50.6 (3)C6—C3—C4—C5177.91 (15)
C2—C3—C4—C50.2 (2)N1—C1—C2—C30.6 (3)
C2—C3—C6—C6i84.8 (2)O1—C7—C8—C8ii2.9 (3)
C3—C4—C5—N10.1 (3)O2—C7—C8—C8ii177.1 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+5/2, z+1/2.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_064) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.405 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.60 (4) ÅCell parameters from 682 reflections
b = 4.7781 (4) Åθ = 4.3–19.7°
c = 19.218 (9) ŵ = 0.10 mm1
β = 110.32 (13)°T = 295 K
V = 1429 (4) Å3Plate, colourless
Z = 40.35 × 0.16 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
283 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 16.1544 pixels mm-1θmax = 25.8°, θmin = 4.4°
ω scansh = 77
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.996, Tmax = 0.997l = 2323
1787 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.227 w = 1/[σ2(Fo2) + (0.1079P)2 + 4.6707P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
283 reflectionsΔρmax = 0.17 e Å3
46 parametersΔρmin = 0.21 e Å3
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3938 (16)0.4584 (18)0.1458 (6)0.030 (3)*
C20.3417 (18)0.593 (2)0.0856 (6)0.050 (4)*
H20.28360.54770.06790.060*
C30.3715 (18)0.797 (2)0.0486 (7)0.037 (4)*
H30.33320.88580.00730.044*
C40.4580 (18)0.867 (2)0.0733 (7)0.027 (4)*
C50.509 (2)0.7278 (19)0.1338 (7)0.039 (3)*
H50.56790.76500.15190.047*
C60.4762 (17)0.533 (3)0.1687 (8)0.040 (4)*
H60.51360.44770.21110.048*
C1A0.2571 (17)0.023 (2)0.1771 (8)0.026 (3)*
O1A0.3340 (16)0.0941 (16)0.2114 (6)0.048 (3)*
H1A0.34530.23450.19200.072*
C2A0.2168 (19)0.2037 (18)0.2117 (6)0.031 (3)*
H2AA0.20030.36380.17870.037*
H2AB0.16560.13040.21860.037*
O2A0.2106 (18)0.1355 (14)0.1189 (6)0.049 (3)*
C70.490 (2)1.0714 (18)0.0311 (7)0.033 (3)*
H7A0.54211.15980.06420.039*
H7B0.44761.21600.01090.039*
Geometric parameters (Å, º) top
N1—C21.343 (17)C1A—O1A1.26 (2)
N1—C61.33 (2)C1A—C2A1.54 (2)
C2—H20.9300C1A—O2A1.24 (2)
C2—C31.395 (15)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.57 (4)
C3—C41.39 (2)C2A—H2AA0.9700
C4—C51.35 (3)C2A—H2AB0.9700
C4—C71.48 (2)C7—C7ii1.50 (2)
C5—H50.9300C7—H7A0.9700
C5—C61.37 (2)C7—H7B0.9700
C6—H60.9300
C6—N1—C2115.9 (15)O1A—C1A—C2A118.4 (15)
N1—C2—H2118.8O2A—C1A—O1A123.6 (16)
N1—C2—C3122 (2)O2A—C1A—C2A118 (2)
C3—C2—H2118.8C1A—O1A—H1A109.5
C2—C3—H3119.9C1A—C2A—C2Ai110 (3)
C4—C3—C2120.2 (16)C1A—C2A—H2AA109.8
C4—C3—H3119.9C1A—C2A—H2AB109.8
C3—C4—C7120.0 (16)C2Ai—C2A—H2AA109.8
C5—C4—C3116.2 (19)C2Ai—C2A—H2AB109.8
C5—C4—C7124 (3)H2AA—C2A—H2AB108.2
C4—C5—H5119.5C4—C7—C7ii110.6 (11)
C4—C5—C6121 (3)C4—C7—H7A109.5
C6—C5—H5119.5C4—C7—H7B109.5
N1—C6—C5124.1 (19)C7ii—C7—H7A109.5
N1—C6—H6117.9C7ii—C7—H7B109.5
C5—C6—H6117.9H7A—C7—H7B108.1
N1—C2—C3—C40.5 (18)C4—C5—C6—N12.2 (19)
C2—N1—C6—C51.8 (19)C5—C4—C7—C7ii91 (3)
C2—C3—C4—C50.1 (19)C6—N1—C2—C30.4 (16)
C2—C3—C4—C7176.3 (8)O1A—C1A—C2A—C2Ai2 (2)
C3—C4—C5—C61.2 (17)O2A—C1A—C2A—C2Ai174.3 (13)
C3—C4—C7—C7ii85 (3)C7—C4—C5—C6177.4 (10)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_094) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.433 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.56 (3) ÅCell parameters from 763 reflections
b = 4.7226 (3) Åθ = 4.3–21.9°
c = 19.187 (7) ŵ = 0.10 mm1
β = 110.99 (11)°T = 295 K
V = 1401 (3) Å3Plate, colourless
Z = 40.35 × 0.16 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
307 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 16.1544 pixels mm-1θmax = 26.2°, θmin = 4.4°
ω scansh = 77
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.996, Tmax = 0.997l = 2322
2114 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.087H-atom parameters constrained
wR(F2) = 0.265 w = 1/[σ2(Fo2) + (0.1368P)2 + 1.254P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
307 reflectionsΔρmax = 0.19 e Å3
46 parametersΔρmin = 0.28 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3930 (17)0.463 (2)0.1454 (6)0.038 (4)*
C20.3402 (19)0.601 (2)0.0865 (7)0.052 (4)*
H20.28150.55830.06970.062*
C30.369 (3)0.806 (3)0.0487 (8)0.041 (5)*
H30.32970.90280.00840.050*
C40.462 (3)0.866 (2)0.0742 (9)0.025 (4)*
C50.512 (2)0.7280 (19)0.1345 (8)0.044 (3)*
H50.57060.76420.15380.052*
C60.4770 (17)0.529 (2)0.1698 (8)0.039 (5)*
H60.51420.43920.21230.047*
C1A0.2565 (17)0.021 (2)0.1764 (8)0.029 (4)*
O1A0.3338 (16)0.0969 (16)0.2116 (6)0.047 (3)*
H1A0.34830.21420.18680.071*
C2A0.219 (2)0.2040 (17)0.2123 (7)0.035 (3)*
H2AA0.16700.13210.21730.042*
H2AB0.20400.36760.17960.042*
O2A0.2101 (18)0.1399 (13)0.1177 (6)0.049 (3)*
C70.493 (2)1.0741 (18)0.0314 (7)0.035 (3)*
H7A0.54651.16000.06370.042*
H7B0.45021.22260.01240.042*
Geometric parameters (Å, º) top
N1—C21.326 (17)C1A—O1A1.27 (2)
N1—C61.34 (2)C1A—C2A1.51 (2)
C2—H20.9300C1A—O2A1.25 (2)
C2—C31.390 (16)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.50 (4)
C3—C41.48 (6)C2A—H2AA0.9700
C4—C51.32 (3)C2A—H2AB0.9700
C4—C71.479 (16)C7—C7ii1.48 (2)
C5—H50.9300C7—H7A0.9700
C5—C61.393 (16)C7—H7B0.9700
C6—H60.9300
C2—N1—C6117.9 (15)O1A—C1A—C2A117.0 (15)
N1—C2—H2118.5O2A—C1A—O1A122.2 (16)
N1—C2—C3123 (2)O2A—C1A—C2A121 (2)
C3—C2—H2118.5C1A—O1A—H1A109.5
C2—C3—H3120.9C1A—C2A—H2AA108.9
C2—C3—C4118 (2)C1A—C2A—H2AB108.9
C4—C3—H3120.9C2Ai—C2A—C1A114 (3)
C3—C4—C7118 (2)C2Ai—C2A—H2AA108.9
C5—C4—C3115.9 (17)C2Ai—C2A—H2AB108.9
C5—C4—C7126 (3)H2AA—C2A—H2AB107.7
C4—C5—H5119.1C4—C7—C7ii108.8 (11)
C4—C5—C6122 (3)C4—C7—H7A109.9
C6—C5—H5119.1C4—C7—H7B109.9
N1—C6—C5123.0 (18)C7ii—C7—H7A109.9
N1—C6—H6118.5C7ii—C7—H7B109.9
C5—C6—H6118.5H7A—C7—H7B108.3
N1—C2—C3—C42 (2)C4—C5—C6—N10.6 (19)
C2—N1—C6—C52 (2)C5—C4—C7—C7ii95 (3)
C2—C3—C4—C54 (2)C6—N1—C2—C31.1 (18)
C2—C3—C4—C7176.9 (8)O1A—C1A—C2A—C2Ai3 (2)
C3—C4—C5—C62 (2)O2A—C1A—C2A—C2Ai172.1 (15)
C3—C4—C7—C7ii86 (3)C7—C4—C5—C6178.1 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (etysuc_100K) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.369 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6147 (11) ÅCell parameters from 991 reflections
b = 4.8463 (4) Åθ = 5.6–71.8°
c = 19.3274 (11) ŵ = 0.82 mm1
β = 109.551 (7)°T = 100 K
V = 1466.51 (19) Å3Plate, colourless
Z = 40.14 × 0.09 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1405 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source997 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.5384 pixels mm-1θmax = 71.9°, θmin = 5.7°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.898, Tmax = 1.000l = 1723
2776 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.1064P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.187(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.35 e Å3
1405 reflectionsΔρmin = 0.31 e Å3
137 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0021 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39213 (14)0.4635 (5)0.14561 (10)0.0303 (6)
C20.34035 (18)0.5944 (7)0.08632 (13)0.0322 (7)
C30.36893 (18)0.7944 (7)0.04871 (14)0.0324 (7)
C40.45523 (17)0.8634 (6)0.07289 (12)0.0288 (7)
C50.50902 (17)0.7271 (6)0.13411 (13)0.0304 (7)
C60.47548 (17)0.5314 (6)0.16897 (13)0.0309 (7)
C1A0.25373 (17)0.0232 (6)0.17679 (12)0.0284 (6)
O1A0.33311 (12)0.0961 (4)0.21234 (9)0.0332 (6)
C2A0.22030 (17)0.2066 (6)0.21238 (13)0.0288 (7)
O2A0.20946 (12)0.1301 (4)0.11904 (9)0.0348 (6)
C70.48946 (18)1.0716 (6)0.03140 (13)0.0316 (7)
H20.2762 (19)0.532 (6)0.0677 (14)0.028 (7)*
H1A0.353 (3)0.232 (9)0.182 (2)0.071 (12)*
H2AA0.208 (2)0.369 (8)0.1766 (18)0.048 (9)*
H2AB0.166 (2)0.148 (8)0.2147 (18)0.050 (10)*
H7A0.545 (2)1.166 (7)0.0671 (16)0.030 (7)*
H60.515 (2)0.428 (7)0.2157 (16)0.036 (8)*
H30.328 (2)0.898 (8)0.0045 (17)0.048 (9)*
H7B0.443 (2)1.223 (8)0.0088 (18)0.047 (9)*
H50.570 (2)0.757 (7)0.1541 (15)0.036 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0359 (12)0.0365 (15)0.0240 (10)0.0004 (10)0.0176 (9)0.0012 (9)
C20.0347 (13)0.0410 (19)0.0269 (11)0.0003 (13)0.0182 (11)0.0019 (11)
C30.0360 (14)0.0405 (19)0.0271 (12)0.0003 (13)0.0188 (11)0.0039 (11)
C40.0373 (14)0.0340 (17)0.0225 (11)0.0002 (12)0.0198 (10)0.0016 (10)
C50.0346 (14)0.0363 (17)0.0261 (12)0.0007 (13)0.0178 (11)0.0006 (11)
C60.0366 (14)0.0361 (17)0.0244 (11)0.0010 (12)0.0161 (11)0.0016 (11)
C1A0.0345 (13)0.0319 (17)0.0241 (11)0.0010 (12)0.0170 (10)0.0005 (10)
O1A0.0339 (10)0.0404 (13)0.0275 (9)0.0063 (9)0.0132 (8)0.0051 (8)
C2A0.0313 (13)0.0319 (17)0.0274 (12)0.0014 (11)0.0154 (11)0.0027 (11)
O2A0.0370 (10)0.0426 (13)0.0283 (9)0.0016 (9)0.0157 (8)0.0048 (9)
C70.0384 (14)0.0350 (18)0.0285 (12)0.0016 (12)0.0205 (11)0.0005 (11)
Geometric parameters (Å, º) top
N1—C21.340 (4)C1A—O1A1.315 (3)
N1—C61.346 (3)C1A—C2A1.509 (4)
C2—C31.387 (4)C1A—O2A1.227 (3)
C2—H21.05 (3)O1A—H1A1.00 (4)
C3—C41.392 (4)C2A—C2Ai1.518 (5)
C3—H31.03 (4)C2A—H2AA1.02 (4)
C4—C51.388 (4)C2A—H2AB0.97 (4)
C4—C71.513 (4)C7—C7ii1.537 (5)
C5—C61.384 (4)C7—H7A1.05 (3)
C5—H50.97 (3)C7—H7B1.05 (4)
C6—H61.05 (3)
C2—N1—C6117.7 (2)O1A—C1A—C2A114.7 (2)
N1—C2—C3123.0 (3)O2A—C1A—O1A123.6 (3)
N1—C2—H2116.3 (16)O2A—C1A—C2A121.7 (2)
C3—C2—H2120.6 (16)C1A—O1A—H1A110 (2)
C2—C3—C4119.1 (3)C1A—C2A—C2Ai114.9 (3)
C2—C3—H3122 (2)C1A—C2A—H2AA106.3 (19)
C4—C3—H3119 (2)C1A—C2A—H2AB107 (2)
C3—C4—C7120.7 (2)C2Ai—C2A—H2AA111 (2)
C5—C4—C3118.0 (2)C2Ai—C2A—H2AB111 (2)
C5—C4—C7121.3 (2)H2AA—C2A—H2AB106 (3)
C4—C5—H5124.0 (19)C4—C7—C7ii110.0 (3)
C6—C5—C4119.4 (2)C4—C7—H7A110.0 (16)
C6—C5—H5116.5 (19)C4—C7—H7B109.2 (19)
N1—C6—C5122.7 (2)C7ii—C7—H7A109.7 (16)
N1—C6—H6116.9 (17)C7ii—C7—H7B108.6 (18)
C5—C6—H6120.3 (17)H7A—C7—H7B109 (3)
N1—C2—C3—C40.3 (4)C4—C5—C6—N10.7 (4)
C2—N1—C6—C50.5 (4)C5—C4—C7—C7ii92.0 (3)
C2—C3—C4—C50.0 (4)C6—N1—C2—C30.1 (4)
C2—C3—C4—C7177.4 (2)O1A—C1A—C2A—C2Ai6.8 (4)
C3—C4—C5—C60.5 (4)O2A—C1A—C2A—C2Ai173.5 (3)
C3—C4—C7—C7ii85.3 (4)C7—C4—C5—C6177.8 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_140K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.363 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6128 (4) ÅCell parameters from 2580 reflections
b = 4.8607 (1) Åθ = 4.3–71.4°
c = 19.3367 (5) ŵ = 0.82 mm1
β = 109.370 (3)°T = 140 K
V = 1473.05 (7) Å3Plate, colourless
Z = 40.45 × 0.41 × 0.14 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1405 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.9°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.768, Tmax = 0.923l = 2323
4200 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.5548P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1405 reflectionsΔρmax = 0.21 e Å3
136 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39249 (6)0.4633 (2)0.14537 (5)0.0209 (3)
C20.34083 (7)0.5912 (3)0.08599 (7)0.0232 (3)
C30.36929 (8)0.7906 (3)0.04867 (7)0.0228 (3)
C40.45529 (8)0.8616 (2)0.07264 (6)0.0195 (3)
C50.50888 (7)0.7268 (3)0.13387 (7)0.0214 (3)
C60.47531 (8)0.5314 (3)0.16862 (7)0.0217 (3)
C1A0.25381 (7)0.0232 (2)0.17648 (6)0.0191 (3)
O1A0.33304 (5)0.09416 (19)0.21198 (5)0.0261 (3)
C2A0.22052 (7)0.2066 (3)0.21244 (6)0.0213 (3)
O2A0.21009 (5)0.12863 (19)0.11954 (5)0.0265 (3)
C70.48918 (8)1.0697 (3)0.03154 (7)0.0221 (3)
H2AA0.2098 (10)0.361 (4)0.1792 (9)0.032 (4)*
H2AB0.1637 (10)0.143 (3)0.2131 (9)0.030 (4)*
H60.5115 (9)0.433 (3)0.2105 (8)0.027 (4)*
H20.2804 (9)0.536 (3)0.0694 (8)0.024 (4)*
H30.3304 (9)0.881 (3)0.0082 (8)0.022 (4)*
H7A0.5416 (10)1.151 (3)0.0645 (9)0.027 (4)*
H50.5699 (9)0.763 (3)0.1523 (8)0.024 (4)*
H7B0.4465 (11)1.214 (4)0.0116 (9)0.036 (4)*
H1A0.3537 (13)0.241 (5)0.1825 (12)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0223 (5)0.0215 (6)0.0204 (5)0.0028 (4)0.0091 (4)0.0014 (4)
C20.0178 (6)0.0276 (7)0.0245 (6)0.0018 (5)0.0075 (5)0.0020 (5)
C30.0204 (6)0.0265 (7)0.0207 (6)0.0008 (5)0.0057 (5)0.0040 (5)
C40.0238 (6)0.0180 (6)0.0199 (6)0.0020 (4)0.0114 (5)0.0021 (4)
C50.0191 (6)0.0225 (6)0.0228 (6)0.0031 (5)0.0071 (5)0.0017 (5)
C60.0222 (6)0.0222 (6)0.0191 (6)0.0005 (5)0.0047 (5)0.0020 (5)
C1A0.0196 (6)0.0186 (6)0.0197 (6)0.0004 (5)0.0071 (5)0.0010 (4)
O1A0.0211 (5)0.0301 (5)0.0240 (5)0.0079 (4)0.0034 (4)0.0081 (4)
C2A0.0185 (6)0.0205 (6)0.0239 (7)0.0031 (5)0.0059 (5)0.0019 (5)
O2A0.0231 (5)0.0287 (5)0.0247 (5)0.0013 (3)0.0039 (4)0.0080 (4)
C70.0262 (6)0.0187 (6)0.0242 (6)0.0028 (5)0.0119 (5)0.0006 (5)
Geometric parameters (Å, º) top
N1—C21.3370 (16)C1A—O1A1.3128 (14)
N1—C61.3396 (15)C1A—C2A1.5139 (16)
C2—C31.3820 (17)C1A—O2A1.2133 (15)
C2—H20.985 (15)O1A—H1A1.04 (2)
C3—C41.3913 (17)C2A—C2Ai1.518 (2)
C3—H30.942 (15)C2A—H2AA0.964 (18)
C4—C51.3872 (17)C2A—H2AB0.997 (16)
C4—C71.5060 (16)C7—C7ii1.538 (2)
C5—C61.3833 (17)C7—H7A0.977 (16)
C5—H50.972 (14)C7—H7B0.981 (18)
C6—H60.960 (16)
C2—N1—C6117.94 (10)O1A—C1A—C2A114.17 (10)
N1—C2—C3122.76 (11)O2A—C1A—O1A123.93 (11)
N1—C2—H2116.6 (9)O2A—C1A—C2A121.90 (10)
C3—C2—H2120.7 (9)C1A—O1A—H1A110.5 (12)
C2—C3—C4119.43 (11)C1A—C2A—C2Ai115.25 (12)
C2—C3—H3120.1 (9)C1A—C2A—H2AA106.3 (10)
C4—C3—H3120.4 (9)C1A—C2A—H2AB105.6 (9)
C3—C4—C7120.87 (11)C2Ai—C2A—H2AA109.9 (10)
C5—C4—C3117.69 (11)C2Ai—C2A—H2AB112.7 (9)
C5—C4—C7121.40 (11)H2AA—C2A—H2AB106.4 (13)
C4—C5—H5121.7 (9)C4—C7—C7ii110.45 (12)
C6—C5—C4119.39 (11)C4—C7—H7A109.7 (10)
C6—C5—H5118.9 (9)C4—C7—H7B109.9 (10)
N1—C6—C5122.78 (11)C7ii—C7—H7A107.7 (10)
N1—C6—H6116.5 (9)C7ii—C7—H7B109.4 (10)
C5—C6—H6120.7 (9)H7A—C7—H7B109.6 (13)
N1—C2—C3—C40.74 (19)C4—C5—C6—N10.56 (19)
C2—N1—C6—C50.02 (18)C5—C4—C7—C7ii92.45 (16)
C2—C3—C4—C50.14 (18)C6—N1—C2—C30.67 (19)
C2—C3—C4—C7177.52 (11)O1A—C1A—C2A—C2Ai7.09 (19)
C3—C4—C5—C60.47 (18)O2A—C1A—C2A—C2Ai173.30 (13)
C3—C4—C7—C7ii85.12 (16)C7—C4—C5—C6178.12 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_141) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.481 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.55 (3) ÅCell parameters from 771 reflections
b = 4.6266 (3) Åθ = 4.4–22.1°
c = 19.089 (6) ŵ = 0.11 mm1
β = 111.96 (9)°T = 295 K
V = 1356 (2) Å3Plank, colourless
Z = 40.37 × 0.16 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
282 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 16.1544 pixels mm-1θmax = 26.3°, θmin = 2.3°
ω scansh = 66
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.996, Tmax = 0.996l = 2321
1943 measured reflections
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.091H-atom parameters constrained
wR(F2) = 0.274 w = 1/[σ2(Fo2) + (0.1778P)2 + 0.1765P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
282 reflectionsΔρmax = 0.22 e Å3
46 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3945 (17)0.4679 (19)0.1472 (6)0.036 (4)*
C20.3397 (17)0.6075 (18)0.0866 (6)0.042 (3)*
H20.28050.56600.06960.051*
C30.3690 (16)0.813 (2)0.0486 (7)0.041 (4)*
H30.32990.90830.00690.049*
C40.4572 (14)0.873 (2)0.0737 (6)0.021 (3)*
C50.5135 (16)0.7284 (19)0.1349 (5)0.040 (3)*
H50.57310.76330.15230.048*
C60.4792 (18)0.528 (2)0.1702 (8)0.043 (5)*
H60.51730.43110.21210.051*
C1A0.2570 (15)0.028 (2)0.1769 (6)0.022 (3)*
O1A0.3358 (15)0.1010 (15)0.2125 (6)0.052 (3)*
H1A0.35390.18830.18390.077*
C2A0.2193 (19)0.2023 (19)0.2116 (6)0.037 (3)*
H2AA0.16640.12880.21590.045*
H2AB0.20360.36850.17830.045*
O2A0.2072 (14)0.1469 (12)0.1168 (4)0.044 (2)*
C70.489 (2)1.0781 (19)0.0303 (7)0.035 (3)*
H7A0.54001.17750.06430.042*
H7B0.44411.22160.00670.042*
Geometric parameters (Å, º) top
N1—C21.338 (16)C1A—O1A1.270 (19)
N1—C61.33 (2)C1A—C2A1.51 (2)
C2—H20.9300C1A—O2A1.262 (15)
C2—C31.387 (15)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.50 (3)
C3—C41.38 (2)C2A—H2AA0.9700
C4—C51.365 (16)C2A—H2AB0.9700
C4—C71.479 (15)C7—C7ii1.52 (3)
C5—H50.9300C7—H7A0.9700
C5—C61.385 (16)C7—H7B0.9700
C6—H60.9300
C6—N1—C2118.2 (16)O1A—C1A—C2A117.7 (12)
N1—C2—H2119.2O2A—C1A—O1A124.1 (14)
N1—C2—C3122 (2)O2A—C1A—C2A118.0 (18)
C3—C2—H2119.2C1A—O1A—H1A109.5
C2—C3—H3120.4C1A—C2A—H2AA108.9
C4—C3—C2119.1 (16)C1A—C2A—H2AB108.9
C4—C3—H3120.4C2Ai—C2A—C1A113 (3)
C3—C4—C7118.9 (14)C2Ai—C2A—H2AA108.9
C5—C4—C3119.5 (14)C2Ai—C2A—H2AB108.9
C5—C4—C7121.5 (18)H2AA—C2A—H2AB107.7
C4—C5—H5121.0C4—C7—C7ii111.1 (9)
C4—C5—C6118.0 (18)C4—C7—H7A109.4
C6—C5—H5121.0C4—C7—H7B109.4
N1—C6—C5123.5 (16)C7ii—C7—H7A109.4
N1—C6—H6118.2C7ii—C7—H7B109.4
C5—C6—H6118.2H7A—C7—H7B108.0
N1—C2—C3—C40.4 (17)C4—C5—C6—N10.7 (18)
C2—N1—C6—C50 (2)C5—C4—C7—C7ii86 (3)
C2—C3—C4—C50.4 (18)C6—N1—C2—C30.7 (17)
C2—C3—C4—C7176.2 (8)O1A—C1A—C2A—C2Ai4 (2)
C3—C4—C5—C60.9 (16)O2A—C1A—C2A—C2Ai171.7 (15)
C3—C4—C7—C7ii90 (3)C7—C4—C5—C6176.6 (9)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_145K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.362 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6153 (5) ÅCell parameters from 2569 reflections
b = 4.8619 (1) Åθ = 4.3–71.4°
c = 19.3400 (5) ŵ = 0.82 mm1
β = 109.350 (3)°T = 145 K
V = 1474.07 (7) Å3Plate, colourless
Z = 40.45 × 0.41 × 0.14 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1405 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.9°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.769, Tmax = 0.923l = 2323
4199 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5583P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1405 reflectionsΔρmax = 0.20 e Å3
136 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39247 (6)0.4632 (2)0.14530 (5)0.0217 (3)
C20.34088 (8)0.5908 (3)0.08600 (7)0.0239 (3)
C30.36930 (8)0.7901 (3)0.04859 (7)0.0236 (3)
C40.45529 (8)0.8615 (2)0.07261 (6)0.0200 (3)
C50.50885 (7)0.7265 (3)0.13389 (7)0.0220 (3)
C60.47532 (8)0.5314 (3)0.16861 (7)0.0223 (3)
C1A0.25379 (7)0.0232 (2)0.17647 (6)0.0194 (3)
O1A0.33310 (5)0.09372 (19)0.21193 (5)0.0267 (3)
C2A0.22053 (7)0.2066 (3)0.21248 (7)0.0220 (3)
O2A0.21016 (5)0.12828 (19)0.11956 (5)0.0274 (3)
C70.48914 (8)1.0694 (3)0.03150 (7)0.0225 (3)
H2AA0.2096 (10)0.361 (4)0.1785 (9)0.034 (4)*
H30.3300 (9)0.883 (3)0.0077 (8)0.021 (3)*
H60.5109 (9)0.435 (3)0.2106 (8)0.023 (4)*
H2AB0.1643 (10)0.144 (3)0.2139 (9)0.030 (4)*
H20.2803 (9)0.534 (3)0.0698 (8)0.024 (4)*
H7A0.5415 (10)1.152 (3)0.0651 (9)0.030 (4)*
H50.5703 (9)0.760 (3)0.1518 (8)0.023 (4)*
H7B0.4463 (10)1.214 (4)0.0111 (9)0.032 (4)*
H1A0.3544 (13)0.242 (5)0.1825 (12)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0227 (5)0.0220 (6)0.0217 (5)0.0028 (4)0.0092 (4)0.0015 (4)
C20.0187 (6)0.0274 (7)0.0257 (6)0.0020 (5)0.0076 (5)0.0018 (5)
C30.0215 (6)0.0268 (7)0.0217 (6)0.0014 (5)0.0062 (5)0.0044 (5)
C40.0243 (6)0.0182 (6)0.0204 (6)0.0015 (4)0.0115 (5)0.0019 (4)
C50.0198 (6)0.0231 (6)0.0231 (6)0.0032 (5)0.0071 (5)0.0015 (5)
C60.0228 (6)0.0230 (6)0.0193 (6)0.0010 (5)0.0048 (5)0.0022 (5)
C1A0.0197 (6)0.0185 (6)0.0206 (6)0.0005 (5)0.0073 (5)0.0009 (5)
O1A0.0215 (5)0.0303 (5)0.0251 (5)0.0082 (4)0.0034 (4)0.0083 (4)
C2A0.0189 (6)0.0214 (7)0.0248 (7)0.0030 (5)0.0061 (5)0.0027 (5)
O2A0.0238 (5)0.0297 (5)0.0253 (5)0.0018 (3)0.0038 (4)0.0084 (4)
C70.0266 (6)0.0192 (6)0.0241 (6)0.0032 (5)0.0117 (5)0.0007 (5)
Geometric parameters (Å, º) top
N1—C21.3354 (16)C1A—O1A1.3136 (14)
N1—C61.3405 (15)C1A—C2A1.5145 (16)
C2—C31.3829 (17)C1A—O2A1.2120 (15)
C2—H20.989 (14)O1A—H1A1.05 (2)
C3—C41.3920 (17)C2A—C2Ai1.517 (2)
C3—H30.955 (15)C2A—H2AA0.973 (18)
C4—C51.3886 (17)C2A—H2AB0.991 (16)
C4—C71.5054 (16)C7—C7ii1.537 (2)
C5—C61.3819 (17)C7—H7A0.982 (17)
C5—H50.977 (14)C7—H7B0.985 (17)
C6—H60.953 (15)
C2—N1—C6117.99 (10)O1A—C1A—C2A114.09 (10)
N1—C2—C3122.80 (11)O2A—C1A—O1A123.98 (11)
N1—C2—H2116.0 (9)O2A—C1A—C2A121.93 (10)
C3—C2—H2121.2 (9)C1A—O1A—H1A110.9 (12)
C2—C3—C4119.39 (11)C1A—C2A—C2Ai115.28 (12)
C2—C3—H3120.3 (9)C1A—C2A—H2AA105.8 (10)
C4—C3—H3120.2 (9)C1A—C2A—H2AB106.2 (10)
C3—C4—C7120.86 (11)C2Ai—C2A—H2AA110.4 (10)
C5—C4—C3117.63 (11)C2Ai—C2A—H2AB111.9 (9)
C5—C4—C7121.47 (11)H2AA—C2A—H2AB106.7 (13)
C4—C5—H5121.5 (9)C4—C7—C7ii110.55 (12)
C6—C5—C4119.45 (11)C4—C7—H7A109.1 (10)
C6—C5—H5119.0 (9)C4—C7—H7B110.1 (9)
N1—C6—C5122.75 (11)C7ii—C7—H7A108.3 (10)
N1—C6—H6116.3 (9)C7ii—C7—H7B109.0 (10)
C5—C6—H6120.9 (9)H7A—C7—H7B109.8 (13)
N1—C2—C3—C40.63 (19)C4—C5—C6—N10.59 (19)
C2—N1—C6—C50.02 (18)C5—C4—C7—C7ii92.42 (16)
C2—C3—C4—C50.03 (18)C6—N1—C2—C30.60 (19)
C2—C3—C4—C7177.54 (11)O1A—C1A—C2A—C2Ai7.19 (19)
C3—C4—C5—C60.54 (18)O2A—C1A—C2A—C2Ai173.42 (13)
C3—C4—C7—C7ii85.06 (16)C7—C4—C5—C6178.10 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_150K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.361 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6155 (4) ÅCell parameters from 2565 reflections
b = 4.8646 (1) Åθ = 4.3–71.3°
c = 19.3384 (5) ŵ = 0.82 mm1
β = 109.321 (3)°T = 150 K
V = 1475.05 (7) Å3Plate, colourless
Z = 40.45 × 0.41 × 0.14 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1406 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.9°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.769, Tmax = 0.923l = 2323
4196 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.4183P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1406 reflectionsΔρmax = 0.20 e Å3
136 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39248 (6)0.4630 (2)0.14532 (5)0.0222 (3)
C20.34094 (7)0.5903 (3)0.08596 (7)0.0246 (3)
C30.36932 (7)0.7898 (3)0.04861 (7)0.0241 (3)
C40.45529 (8)0.8613 (2)0.07261 (6)0.0206 (3)
C50.50881 (7)0.7265 (3)0.13383 (7)0.0227 (3)
C60.47532 (8)0.5312 (3)0.16858 (7)0.0229 (3)
C1A0.25392 (7)0.0230 (2)0.17656 (6)0.0201 (3)
O1A0.33313 (5)0.09365 (19)0.21189 (5)0.0276 (3)
C2A0.22049 (7)0.2064 (3)0.21251 (7)0.0224 (3)
O2A0.21024 (5)0.1282 (2)0.11962 (5)0.0284 (3)
C70.48914 (8)1.0693 (3)0.03159 (7)0.0231 (3)
H2AA0.2102 (10)0.358 (4)0.1788 (9)0.032 (4)*
H2AB0.1634 (10)0.144 (3)0.2130 (8)0.029 (4)*
H60.5107 (9)0.435 (3)0.2107 (8)0.025 (4)*
H20.2800 (10)0.535 (3)0.0686 (9)0.028 (4)*
H30.3301 (9)0.881 (3)0.0081 (8)0.023 (4)*
H7A0.5419 (10)1.150 (3)0.0648 (9)0.031 (4)*
H50.5700 (9)0.761 (3)0.1518 (8)0.023 (4)*
H7B0.4456 (11)1.212 (4)0.0109 (9)0.038 (4)*
H1A0.3543 (13)0.237 (5)0.1823 (12)0.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0229 (5)0.0229 (6)0.0220 (5)0.0029 (4)0.0090 (4)0.0015 (4)
C20.0194 (6)0.0285 (7)0.0260 (6)0.0024 (5)0.0078 (5)0.0025 (5)
C30.0210 (6)0.0281 (7)0.0219 (6)0.0008 (5)0.0055 (5)0.0046 (5)
C40.0247 (6)0.0187 (6)0.0214 (6)0.0016 (4)0.0119 (5)0.0020 (4)
C50.0193 (6)0.0240 (7)0.0246 (6)0.0033 (5)0.0069 (5)0.0016 (5)
C60.0227 (6)0.0237 (6)0.0208 (6)0.0004 (5)0.0052 (5)0.0026 (5)
C1A0.0204 (6)0.0196 (6)0.0210 (6)0.0006 (5)0.0076 (5)0.0009 (5)
O1A0.0221 (5)0.0316 (6)0.0258 (5)0.0087 (4)0.0033 (4)0.0084 (4)
C2A0.0194 (6)0.0219 (7)0.0249 (7)0.0038 (5)0.0059 (5)0.0023 (5)
O2A0.0248 (5)0.0306 (5)0.0265 (5)0.0014 (4)0.0041 (4)0.0091 (4)
C70.0271 (6)0.0200 (6)0.0247 (6)0.0027 (5)0.0121 (5)0.0009 (5)
Geometric parameters (Å, º) top
N1—C21.3358 (16)C1A—O1A1.3123 (14)
N1—C61.3408 (15)C1A—C2A1.5141 (16)
C2—C31.3823 (17)C1A—O2A1.2133 (15)
C2—H20.992 (15)O1A—H1A1.04 (2)
C3—C41.3921 (17)C2A—C2Ai1.518 (2)
C3—H30.947 (15)C2A—H2AA0.962 (18)
C4—C51.3875 (17)C2A—H2AB0.999 (15)
C4—C71.5050 (16)C7—C7ii1.539 (2)
C5—C61.3824 (17)C7—H7A0.982 (17)
C5—H50.974 (13)C7—H7B0.986 (18)
C6—H60.954 (15)
C2—N1—C6117.94 (10)O1A—C1A—C2A114.26 (10)
N1—C2—C3122.82 (11)O2A—C1A—O1A123.91 (11)
N1—C2—H2117.2 (9)O2A—C1A—C2A121.82 (10)
C3—C2—H2119.9 (9)C1A—O1A—H1A110.7 (11)
C2—C3—C4119.40 (11)C1A—C2A—C2Ai115.20 (12)
C2—C3—H3120.0 (9)C1A—C2A—H2AA105.3 (10)
C4—C3—H3120.6 (9)C1A—C2A—H2AB106.0 (9)
C3—C4—C7120.89 (11)C2Ai—C2A—H2AA110.3 (10)
C5—C4—C3117.62 (11)C2Ai—C2A—H2AB113.0 (9)
C5—C4—C7121.44 (11)H2AA—C2A—H2AB106.3 (13)
C4—C5—H5121.5 (9)C4—C7—C7ii110.52 (12)
C6—C5—C4119.47 (11)C4—C7—H7A109.5 (10)
C6—C5—H5119.0 (9)C4—C7—H7B109.5 (10)
N1—C6—C5122.73 (11)C7ii—C7—H7A107.5 (10)
N1—C6—H6116.1 (9)C7ii—C7—H7B108.6 (10)
C5—C6—H6121.2 (9)H7A—C7—H7B111.2 (14)
N1—C2—C3—C40.8 (2)C4—C5—C6—N10.56 (19)
C2—N1—C6—C50.11 (18)C5—C4—C7—C7ii92.51 (16)
C2—C3—C4—C50.07 (18)C6—N1—C2—C30.78 (19)
C2—C3—C4—C7177.54 (11)O1A—C1A—C2A—C2Ai7.00 (19)
C3—C4—C5—C60.55 (18)O2A—C1A—C2A—C2Ai173.52 (13)
C3—C4—C7—C7ii85.01 (17)C7—C4—C5—C6178.16 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (etysuc_150K) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.360 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6252 (13) ÅCell parameters from 1036 reflections
b = 4.8647 (4) Åθ = 4.9–71.0°
c = 19.3379 (11) ŵ = 0.82 mm1
β = 109.278 (8)°T = 150 K
V = 1476.3 (2) Å3Plate, colourless
Z = 40.14 × 0.09 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1416 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source954 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.5384 pixels mm-1θmax = 71.9°, θmin = 4.9°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.903, Tmax = 1.000l = 1723
2791 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1111P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.25 e Å3
1416 reflectionsΔρmin = 0.25 e Å3
137 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0029 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39256 (15)0.4616 (5)0.14538 (11)0.0380 (6)
C20.34048 (18)0.5894 (7)0.08568 (14)0.0392 (7)
C30.36912 (19)0.7911 (7)0.04844 (15)0.0400 (8)
C40.45518 (18)0.8607 (6)0.07254 (13)0.0354 (7)
C50.50865 (18)0.7270 (7)0.13396 (14)0.0376 (7)
C60.47557 (19)0.5309 (7)0.16895 (14)0.0395 (7)
C1A0.25352 (17)0.0224 (6)0.17656 (13)0.0351 (7)
O1A0.33312 (13)0.0934 (5)0.21189 (10)0.0434 (6)
C2A0.22084 (18)0.2054 (7)0.21293 (15)0.0379 (7)
O2A0.21002 (13)0.1287 (5)0.11946 (9)0.0450 (6)
C70.4890 (2)1.0700 (6)0.03152 (14)0.0391 (7)
H20.276 (2)0.529 (6)0.0682 (15)0.038 (8)*
H1A0.357 (3)0.230 (9)0.181 (2)0.087 (14)*
H2AA0.209 (3)0.367 (9)0.179 (2)0.071 (11)*
H2AB0.164 (2)0.159 (7)0.2148 (16)0.045 (8)*
H7A0.546 (2)1.165 (8)0.0676 (19)0.056 (9)*
H60.515 (2)0.431 (6)0.2177 (16)0.042 (8)*
H30.329 (2)0.891 (7)0.0009 (17)0.054 (9)*
H7B0.442 (2)1.214 (8)0.0068 (18)0.053 (9)*
H50.571 (2)0.751 (7)0.1524 (15)0.045 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0416 (13)0.0440 (15)0.0354 (11)0.0011 (11)0.0220 (10)0.0017 (10)
C20.0382 (15)0.0495 (19)0.0352 (12)0.0008 (14)0.0191 (12)0.0051 (12)
C30.0414 (15)0.0485 (19)0.0359 (13)0.0010 (14)0.0205 (12)0.0042 (13)
C40.0409 (15)0.0408 (17)0.0326 (12)0.0009 (13)0.0229 (11)0.0007 (12)
C50.0393 (16)0.0445 (18)0.0346 (13)0.0017 (14)0.0198 (12)0.0016 (12)
C60.0429 (16)0.0454 (18)0.0344 (12)0.0003 (14)0.0186 (12)0.0018 (12)
C1A0.0362 (14)0.0428 (17)0.0301 (11)0.0004 (13)0.0160 (11)0.0002 (12)
O1A0.0411 (12)0.0534 (14)0.0362 (9)0.0079 (10)0.0135 (9)0.0081 (9)
C2A0.0375 (15)0.0427 (18)0.0390 (13)0.0025 (13)0.0199 (12)0.0038 (13)
O2A0.0432 (12)0.0554 (15)0.0386 (10)0.0012 (10)0.0162 (9)0.0084 (10)
C70.0481 (17)0.0400 (18)0.0379 (13)0.0016 (14)0.0260 (13)0.0018 (12)
Geometric parameters (Å, º) top
N1—C21.345 (4)C1A—O1A1.319 (3)
N1—C61.346 (4)C1A—C2A1.507 (4)
C2—C31.391 (4)C1A—O2A1.218 (3)
C2—H21.05 (3)O1A—H1A1.05 (5)
C3—C41.392 (4)C2A—C2Ai1.505 (6)
C3—H31.06 (3)C2A—H2AA1.00 (4)
C4—C51.388 (4)C2A—H2AB0.99 (3)
C4—C71.508 (4)C7—C7ii1.542 (5)
C5—C61.384 (4)C7—H7A1.08 (4)
C5—H50.99 (3)C7—H7B1.04 (4)
C6—H61.07 (3)
C2—N1—C6118.2 (2)O1A—C1A—C2A113.9 (2)
N1—C2—C3122.5 (3)O2A—C1A—O1A123.5 (3)
N1—C2—H2116.4 (16)O2A—C1A—C2A122.5 (3)
C3—C2—H2121.1 (16)C1A—O1A—H1A112 (2)
C2—C3—C4119.2 (3)C1A—C2A—H2AA108 (2)
C2—C3—H3123 (2)C1A—C2A—H2AB110.4 (19)
C4—C3—H3117.5 (19)C2Ai—C2A—C1A116.0 (3)
C3—C4—C7120.5 (3)C2Ai—C2A—H2AA109 (2)
C5—C4—C3118.0 (2)C2Ai—C2A—H2AB110.9 (17)
C5—C4—C7121.5 (3)H2AA—C2A—H2AB102 (3)
C4—C5—H5123.5 (18)C4—C7—C7ii110.2 (3)
C6—C5—C4119.7 (3)C4—C7—H7A110.4 (18)
C6—C5—H5116.5 (18)C4—C7—H7B110.0 (18)
N1—C6—C5122.4 (3)C7ii—C7—H7A108.2 (19)
N1—C6—H6116.6 (16)C7ii—C7—H7B105.8 (18)
C5—C6—H6121.0 (17)H7A—C7—H7B112 (3)
N1—C2—C3—C41.4 (4)C4—C5—C6—N10.5 (4)
C2—N1—C6—C50.1 (4)C5—C4—C7—C7ii92.7 (4)
C2—C3—C4—C51.0 (4)C6—N1—C2—C30.8 (4)
C2—C3—C4—C7177.4 (3)O1A—C1A—C2A—C2Ai6.6 (4)
C3—C4—C5—C60.1 (4)O2A—C1A—C2A—C2Ai173.8 (3)
C3—C4—C7—C7ii85.7 (4)C7—C4—C5—C6178.3 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_155K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.360 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6176 (4) ÅCell parameters from 2558 reflections
b = 4.8671 (1) Åθ = 4.3–71.3°
c = 19.3394 (5) ŵ = 0.82 mm1
β = 109.301 (3)°T = 155 K
V = 1476.25 (7) Å3Plate, colourless
Z = 40.45 × 0.4 × 0.14 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1408 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.9°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.769, Tmax = 0.923l = 2323
4200 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.4039P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1408 reflectionsΔρmax = 0.21 e Å3
136 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39255 (6)0.4628 (2)0.14530 (6)0.0226 (3)
C20.34103 (7)0.5899 (3)0.08596 (7)0.0250 (3)
C30.36934 (8)0.7896 (3)0.04856 (7)0.0248 (3)
C40.45527 (8)0.8610 (2)0.07256 (6)0.0208 (3)
C50.50879 (7)0.7266 (3)0.13383 (7)0.0229 (3)
C60.47526 (8)0.5314 (3)0.16854 (7)0.0233 (3)
C1A0.25392 (7)0.0231 (2)0.17650 (6)0.0202 (3)
O1A0.33315 (5)0.09332 (19)0.21185 (5)0.0282 (3)
C2A0.22058 (7)0.2063 (3)0.21252 (7)0.0230 (3)
O2A0.21031 (5)0.1279 (2)0.11965 (5)0.0289 (3)
C70.48911 (8)1.0692 (3)0.03156 (7)0.0235 (3)
H2AA0.2094 (10)0.359 (4)0.1793 (10)0.037 (4)*
H60.5112 (9)0.435 (3)0.2105 (8)0.027 (4)*
H30.3299 (9)0.882 (3)0.0075 (8)0.025 (4)*
H2AB0.1637 (11)0.141 (4)0.2128 (9)0.036 (4)*
H20.2800 (10)0.534 (3)0.0692 (9)0.029 (4)*
H7A0.5419 (11)1.148 (3)0.0654 (10)0.032 (4)*
H50.5702 (9)0.761 (3)0.1517 (8)0.025 (4)*
H7B0.4465 (11)1.211 (4)0.0107 (9)0.038 (4)*
H1A0.3540 (14)0.239 (5)0.1817 (12)0.073 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0238 (5)0.0233 (6)0.0222 (5)0.0032 (4)0.0096 (4)0.0015 (4)
C20.0191 (6)0.0296 (7)0.0261 (6)0.0022 (5)0.0073 (5)0.0031 (5)
C30.0222 (6)0.0286 (7)0.0227 (6)0.0008 (5)0.0063 (5)0.0051 (5)
C40.0254 (6)0.0191 (6)0.0212 (6)0.0020 (4)0.0121 (5)0.0019 (4)
C50.0198 (6)0.0242 (7)0.0245 (6)0.0033 (5)0.0073 (5)0.0016 (5)
C60.0235 (6)0.0242 (6)0.0209 (6)0.0012 (5)0.0056 (5)0.0019 (5)
C1A0.0202 (6)0.0199 (6)0.0210 (6)0.0007 (5)0.0073 (5)0.0009 (5)
O1A0.0227 (5)0.0324 (6)0.0259 (5)0.0086 (4)0.0033 (4)0.0087 (4)
C2A0.0199 (6)0.0223 (7)0.0259 (7)0.0037 (5)0.0063 (5)0.0023 (5)
O2A0.0254 (5)0.0314 (5)0.0264 (5)0.0017 (4)0.0040 (4)0.0090 (4)
C70.0277 (6)0.0203 (6)0.0252 (7)0.0036 (5)0.0123 (5)0.0005 (5)
Geometric parameters (Å, º) top
N1—C21.3355 (16)C1A—O1A1.3125 (14)
N1—C61.3395 (16)C1A—C2A1.5143 (16)
C2—C31.3832 (18)C1A—O2A1.2116 (15)
C2—H20.994 (15)O1A—H1A1.05 (3)
C3—C41.3918 (17)C2A—C2Ai1.517 (2)
C3—H30.958 (16)C2A—H2AA0.958 (19)
C4—C51.3880 (17)C2A—H2AB0.999 (17)
C4—C71.5056 (16)C7—C7ii1.539 (2)
C5—C61.3823 (17)C7—H7A0.983 (17)
C5—H50.978 (14)C7—H7B0.977 (19)
C6—H60.957 (15)
C2—N1—C6117.90 (11)O1A—C1A—C2A114.15 (10)
N1—C2—C3122.86 (11)O2A—C1A—O1A123.99 (11)
N1—C2—H2116.7 (10)O2A—C1A—C2A121.86 (10)
C3—C2—H2120.4 (9)C1A—O1A—H1A110.3 (12)
C2—C3—C4119.33 (11)C1A—C2A—C2Ai115.34 (12)
C2—C3—H3120.3 (9)C1A—C2A—H2AA106.4 (10)
C4—C3—H3120.3 (9)C1A—C2A—H2AB105.1 (10)
C3—C4—C7120.88 (11)C2Ai—C2A—H2AA110.1 (10)
C5—C4—C3117.66 (11)C2Ai—C2A—H2AB113.3 (10)
C5—C4—C7121.42 (11)H2AA—C2A—H2AB106.0 (14)
C4—C5—H5121.3 (9)C4—C7—C7ii110.47 (12)
C6—C5—C4119.41 (11)C4—C7—H7A108.6 (10)
C6—C5—H5119.2 (9)C4—C7—H7B110.4 (10)
N1—C6—C5122.82 (11)C7ii—C7—H7A107.9 (10)
N1—C6—H6116.5 (9)C7ii—C7—H7B108.1 (10)
C5—C6—H6120.7 (9)H7A—C7—H7B111.3 (14)
N1—C2—C3—C40.8 (2)C4—C5—C6—N10.57 (19)
C2—N1—C6—C50.03 (19)C5—C4—C7—C7ii92.60 (16)
C2—C3—C4—C50.19 (18)C6—N1—C2—C30.75 (19)
C2—C3—C4—C7177.57 (11)O1A—C1A—C2A—C2Ai7.09 (19)
C3—C4—C5—C60.47 (18)O2A—C1A—C2A—C2Ai173.51 (14)
C3—C4—C7—C7ii85.08 (17)C7—C4—C5—C6178.22 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_160K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.359 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6174 (3) ÅCell parameters from 2560 reflections
b = 4.8695 (1) Åθ = 4.3–71.2°
c = 19.3375 (4) ŵ = 0.82 mm1
β = 109.268 (2)°T = 160 K
V = 1477.11 (5) Å3Plate, colourless
Z = 40.45 × 0.4 × 0.14 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1407 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.5°, θmin = 4.9°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.770, Tmax = 0.923l = 2323
4202 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.4169P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1407 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39257 (6)0.4625 (2)0.14527 (6)0.0233 (3)
C20.34112 (8)0.5896 (3)0.08592 (7)0.0255 (3)
C30.36942 (8)0.7891 (3)0.04857 (7)0.0253 (3)
C40.45526 (8)0.8606 (2)0.07255 (6)0.0213 (3)
C50.50880 (8)0.7266 (3)0.13382 (7)0.0237 (3)
C60.47525 (8)0.5315 (3)0.16856 (7)0.0240 (3)
C1A0.25394 (7)0.0226 (2)0.17650 (6)0.0210 (3)
O1A0.33317 (5)0.0932 (2)0.21183 (5)0.0289 (3)
C2A0.22055 (7)0.2064 (3)0.21259 (7)0.0235 (3)
O2A0.21036 (5)0.1279 (2)0.11967 (5)0.0298 (3)
C70.48913 (8)1.0692 (3)0.03152 (7)0.0242 (3)
H2AA0.2096 (10)0.357 (4)0.1788 (10)0.039 (4)*
H60.5112 (9)0.435 (3)0.2108 (8)0.023 (3)*
H20.2804 (9)0.531 (3)0.0684 (8)0.026 (4)*
H30.3298 (10)0.879 (3)0.0078 (9)0.029 (4)*
H7A0.5425 (10)1.150 (3)0.0656 (9)0.030 (4)*
H2AB0.1636 (10)0.148 (4)0.2130 (9)0.036 (4)*
H50.5699 (9)0.764 (3)0.1519 (8)0.026 (4)*
H7B0.4454 (11)1.210 (4)0.0103 (9)0.038 (4)*
H1A0.3544 (14)0.237 (5)0.1819 (12)0.077 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0238 (5)0.0241 (6)0.0231 (5)0.0031 (4)0.0095 (4)0.0019 (4)
C20.0198 (6)0.0299 (7)0.0273 (6)0.0023 (5)0.0081 (5)0.0028 (5)
C30.0225 (6)0.0297 (7)0.0232 (6)0.0005 (5)0.0067 (5)0.0050 (5)
C40.0254 (6)0.0199 (6)0.0219 (6)0.0022 (4)0.0123 (5)0.0019 (4)
C50.0207 (6)0.0255 (7)0.0248 (6)0.0041 (5)0.0075 (5)0.0016 (5)
C60.0239 (6)0.0252 (7)0.0215 (6)0.0016 (5)0.0055 (5)0.0026 (5)
C1A0.0210 (6)0.0205 (6)0.0220 (6)0.0006 (5)0.0078 (5)0.0008 (5)
O1A0.0230 (5)0.0334 (6)0.0269 (5)0.0090 (4)0.0034 (4)0.0090 (4)
C2A0.0201 (6)0.0234 (7)0.0260 (7)0.0038 (5)0.0063 (5)0.0027 (5)
O2A0.0257 (5)0.0325 (6)0.0277 (5)0.0019 (4)0.0040 (4)0.0094 (4)
C70.0284 (6)0.0210 (7)0.0264 (7)0.0035 (5)0.0133 (5)0.0004 (5)
Geometric parameters (Å, º) top
N1—C21.3355 (16)C1A—O1A1.3133 (14)
N1—C61.3398 (16)C1A—C2A1.5145 (16)
C2—C31.3823 (18)C1A—O2A1.2122 (15)
C2—H20.995 (15)O1A—H1A1.04 (3)
C3—C41.3909 (17)C2A—C2Ai1.516 (2)
C3—H30.949 (16)C2A—H2AA0.959 (19)
C4—C51.3876 (17)C2A—H2AB0.991 (16)
C4—C71.5074 (16)C7—C7ii1.537 (2)
C5—C61.3827 (17)C7—H7A0.995 (16)
C5—H50.975 (14)C7—H7B0.985 (18)
C6—H60.960 (15)
C2—N1—C6117.86 (11)O1A—C1A—C2A114.18 (10)
N1—C2—C3122.89 (11)O2A—C1A—O1A123.89 (11)
N1—C2—H2116.7 (9)O2A—C1A—C2A121.93 (10)
C3—C2—H2120.4 (9)C1A—O1A—H1A110.6 (12)
C2—C3—C4119.34 (11)C1A—C2A—C2Ai115.28 (12)
C2—C3—H3119.6 (9)C1A—C2A—H2AA105.5 (10)
C4—C3—H3121.1 (9)C1A—C2A—H2AB106.7 (10)
C3—C4—C7120.87 (11)C2Ai—C2A—H2AA110.7 (10)
C5—C4—C3117.71 (11)C2Ai—C2A—H2AB113.0 (10)
C5—C4—C7121.38 (11)H2AA—C2A—H2AB105.0 (14)
C4—C5—H5121.2 (9)C4—C7—C7ii110.39 (13)
C6—C5—C4119.36 (11)C4—C7—H7A108.9 (10)
C6—C5—H5119.4 (9)C4—C7—H7B109.7 (10)
N1—C6—C5122.83 (11)C7ii—C7—H7A107.9 (10)
N1—C6—H6116.4 (8)C7ii—C7—H7B108.0 (10)
C5—C6—H6120.7 (8)H7A—C7—H7B112.0 (14)
N1—C2—C3—C40.9 (2)C4—C5—C6—N10.66 (19)
C2—N1—C6—C50.07 (19)C5—C4—C7—C7ii92.68 (16)
C2—C3—C4—C50.23 (18)C6—N1—C2—C30.70 (19)
C2—C3—C4—C7177.59 (11)O1A—C1A—C2A—C2Ai6.90 (19)
C3—C4—C5—C60.48 (18)O2A—C1A—C2A—C2Ai173.49 (14)
C3—C4—C7—C7ii85.06 (17)C7—C4—C5—C6178.29 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_165K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.358 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6187 (3) ÅCell parameters from 2530 reflections
b = 4.8720 (1) Åθ = 4.3–71.2°
c = 19.3377 (4) ŵ = 0.82 mm1
β = 109.242 (2)°T = 165 K
V = 1478.23 (5) Å3Plate, colourless
Z = 40.47 × 0.41 × 0.12 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1408 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.764, Tmax = 0.922l = 2323
4208 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.5292P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1408 reflectionsΔρmax = 0.20 e Å3
136 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39267 (7)0.4622 (2)0.14520 (6)0.0234 (3)
C20.34117 (8)0.5892 (3)0.08589 (7)0.0258 (3)
C30.36949 (8)0.7885 (3)0.04849 (7)0.0258 (3)
C40.45516 (8)0.8604 (3)0.07246 (7)0.0216 (3)
C50.50870 (8)0.7267 (3)0.13383 (7)0.0241 (3)
C60.47521 (8)0.5315 (3)0.16847 (7)0.0241 (3)
C1A0.25400 (7)0.0224 (3)0.17653 (7)0.0213 (3)
O1A0.33311 (6)0.0928 (2)0.21179 (5)0.0293 (3)
C2A0.22058 (8)0.2064 (3)0.21254 (7)0.0242 (3)
O2A0.21041 (6)0.1278 (2)0.11974 (5)0.0303 (3)
C70.48907 (9)1.0690 (3)0.03141 (7)0.0245 (3)
H2AA0.2089 (11)0.358 (4)0.1786 (10)0.039 (5)*
H2AB0.1644 (10)0.145 (4)0.2137 (9)0.033 (4)*
H60.5114 (10)0.436 (3)0.2103 (8)0.027 (4)*
H20.2806 (10)0.532 (3)0.0699 (9)0.026 (4)*
H30.3297 (10)0.880 (3)0.0079 (9)0.028 (4)*
H7A0.5413 (11)1.152 (4)0.0650 (10)0.032 (4)*
H50.5700 (9)0.760 (3)0.1517 (8)0.027 (4)*
H7B0.4453 (11)1.212 (4)0.0108 (10)0.038 (4)*
H1A0.3549 (14)0.237 (5)0.1833 (12)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0242 (6)0.0243 (6)0.0228 (6)0.0032 (4)0.0093 (4)0.0017 (4)
C20.0195 (6)0.0307 (7)0.0272 (7)0.0031 (5)0.0078 (5)0.0033 (5)
C30.0230 (6)0.0300 (7)0.0235 (7)0.0010 (5)0.0062 (5)0.0054 (5)
C40.0261 (6)0.0202 (6)0.0221 (6)0.0022 (5)0.0128 (5)0.0017 (5)
C50.0209 (6)0.0258 (7)0.0253 (7)0.0034 (5)0.0074 (5)0.0009 (5)
C60.0242 (6)0.0254 (7)0.0209 (6)0.0012 (5)0.0051 (5)0.0025 (5)
C1A0.0214 (6)0.0205 (6)0.0225 (6)0.0005 (5)0.0078 (5)0.0007 (5)
O1A0.0232 (5)0.0339 (6)0.0271 (5)0.0097 (4)0.0033 (4)0.0094 (4)
C2A0.0208 (6)0.0237 (7)0.0268 (7)0.0038 (5)0.0061 (5)0.0030 (5)
O2A0.0260 (5)0.0330 (6)0.0284 (5)0.0019 (4)0.0040 (4)0.0102 (4)
C70.0290 (7)0.0206 (7)0.0268 (7)0.0038 (5)0.0134 (6)0.0007 (5)
Geometric parameters (Å, º) top
N1—C21.3355 (17)C1A—O1A1.3116 (15)
N1—C61.3385 (16)C1A—C2A1.5135 (17)
C2—C31.3828 (18)C1A—O2A1.2125 (16)
C2—H20.991 (15)O1A—H1A1.03 (2)
C3—C41.3892 (18)C2A—C2Ai1.517 (2)
C3—H30.955 (16)C2A—H2AA0.965 (19)
C4—C51.3886 (18)C2A—H2AB0.987 (16)
C4—C71.5086 (17)C7—C7ii1.533 (2)
C5—C61.3815 (18)C7—H7A0.983 (18)
C5—H50.976 (14)C7—H7B0.992 (19)
C6—H60.955 (16)
C2—N1—C6117.88 (11)O1A—C1A—C2A114.23 (11)
N1—C2—C3122.83 (11)O2A—C1A—O1A123.87 (11)
N1—C2—H2115.7 (9)O2A—C1A—C2A121.90 (11)
C3—C2—H2121.4 (9)C1A—O1A—H1A111.7 (12)
C2—C3—C4119.38 (12)C1A—C2A—C2Ai115.26 (13)
C2—C3—H3119.8 (9)C1A—C2A—H2AA105.9 (11)
C4—C3—H3120.8 (9)C1A—C2A—H2AB106.3 (10)
C3—C4—C7120.92 (12)C2Ai—C2A—H2AA110.9 (11)
C5—C4—C3117.68 (11)C2Ai—C2A—H2AB112.3 (10)
C5—C4—C7121.37 (11)H2AA—C2A—H2AB105.5 (14)
C4—C5—H5121.5 (9)C4—C7—C7ii110.39 (13)
C6—C5—C4119.35 (11)C4—C7—H7A109.2 (10)
C6—C5—H5119.0 (9)C4—C7—H7B109.5 (10)
N1—C6—C5122.87 (12)C7ii—C7—H7A108.4 (10)
N1—C6—H6116.8 (9)C7ii—C7—H7B108.9 (10)
C5—C6—H6120.3 (9)H7A—C7—H7B110.4 (14)
N1—C2—C3—C40.6 (2)C4—C5—C6—N10.5 (2)
C2—N1—C6—C50.08 (19)C5—C4—C7—C7ii92.68 (17)
C2—C3—C4—C50.17 (19)C6—N1—C2—C30.5 (2)
C2—C3—C4—C7177.64 (12)O1A—C1A—C2A—C2Ai7.0 (2)
C3—C4—C5—C60.39 (19)O2A—C1A—C2A—C2Ai173.33 (14)
C3—C4—C7—C7ii85.04 (18)C7—C4—C5—C6178.18 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_170K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.357 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6197 (3) ÅCell parameters from 2535 reflections
b = 4.8747 (1) Åθ = 4.3–71.1°
c = 19.3362 (4) ŵ = 0.82 mm1
β = 109.217 (2)°T = 170 K
V = 1479.25 (5) Å3Plate, colourless
Z = 40.47 × 0.41 × 0.12 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1410 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.764, Tmax = 0.922l = 2323
4216 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.5464P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1410 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39265 (7)0.4621 (2)0.14520 (6)0.0241 (3)
C20.34123 (8)0.5886 (3)0.08586 (7)0.0267 (3)
C30.36946 (8)0.7881 (3)0.04850 (7)0.0260 (3)
C40.45527 (8)0.8604 (3)0.07250 (7)0.0220 (3)
C50.50868 (8)0.7265 (3)0.13380 (7)0.0244 (3)
C60.47521 (8)0.5314 (3)0.16842 (7)0.0248 (3)
C1A0.25406 (7)0.0224 (3)0.17653 (7)0.0216 (3)
O1A0.33317 (6)0.0926 (2)0.21175 (5)0.0302 (3)
C2A0.22059 (8)0.2063 (3)0.21254 (7)0.0246 (3)
O2A0.21047 (6)0.1276 (2)0.11974 (5)0.0312 (3)
C70.48902 (9)1.0686 (3)0.03146 (7)0.0253 (3)
H2AA0.2091 (11)0.358 (4)0.1789 (10)0.038 (4)*
H2AB0.1640 (11)0.145 (4)0.2137 (9)0.036 (4)*
H60.5102 (10)0.434 (3)0.2102 (8)0.027 (4)*
H20.2805 (10)0.528 (3)0.0686 (9)0.030 (4)*
H30.3306 (10)0.879 (3)0.0075 (9)0.029 (4)*
H7A0.5423 (11)1.149 (4)0.0654 (10)0.034 (4)*
H50.5699 (9)0.763 (3)0.1521 (8)0.028 (4)*
H7B0.4454 (11)1.210 (4)0.0101 (10)0.039 (4)*
H1A0.3541 (14)0.238 (5)0.1833 (13)0.073 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0251 (6)0.0247 (6)0.0238 (6)0.0035 (4)0.0099 (4)0.0018 (4)
C20.0207 (6)0.0316 (8)0.0282 (7)0.0027 (5)0.0083 (5)0.0032 (5)
C30.0231 (6)0.0303 (7)0.0236 (7)0.0011 (5)0.0064 (5)0.0059 (5)
C40.0263 (6)0.0207 (7)0.0223 (6)0.0022 (5)0.0124 (5)0.0017 (5)
C50.0211 (6)0.0263 (7)0.0259 (7)0.0042 (5)0.0077 (5)0.0017 (5)
C60.0246 (6)0.0263 (7)0.0217 (6)0.0013 (5)0.0054 (5)0.0027 (5)
C1A0.0217 (6)0.0208 (6)0.0227 (6)0.0007 (5)0.0079 (5)0.0004 (5)
O1A0.0240 (5)0.0350 (6)0.0279 (5)0.0095 (4)0.0035 (4)0.0094 (4)
C2A0.0211 (6)0.0240 (7)0.0275 (7)0.0038 (5)0.0066 (5)0.0030 (5)
O2A0.0269 (5)0.0343 (6)0.0286 (5)0.0023 (4)0.0039 (4)0.0102 (4)
C70.0297 (7)0.0215 (7)0.0278 (7)0.0036 (5)0.0138 (6)0.0005 (5)
Geometric parameters (Å, º) top
N1—C21.3348 (17)C1A—O1A1.3116 (15)
N1—C61.3390 (16)C1A—C2A1.5140 (17)
C2—C31.3824 (18)C1A—O2A1.2125 (16)
C2—H20.998 (16)O1A—H1A1.03 (3)
C3—C41.3921 (18)C2A—C2Ai1.518 (2)
C3—H30.951 (16)C2A—H2AA0.961 (19)
C4—C51.3880 (18)C2A—H2AB0.994 (17)
C4—C71.5059 (17)C7—C7ii1.534 (2)
C5—C61.3809 (18)C7—H7A0.992 (18)
C5—H50.978 (15)C7—H7B0.987 (19)
C6—H60.953 (16)
C2—N1—C6117.85 (11)O1A—C1A—C2A114.24 (11)
N1—C2—C3122.88 (12)O2A—C1A—O1A123.90 (11)
N1—C2—H2116.3 (10)O2A—C1A—C2A121.85 (11)
C3—C2—H2120.8 (10)C1A—O1A—H1A111.2 (12)
C2—C3—C4119.38 (12)C1A—C2A—C2Ai115.26 (13)
C2—C3—H3120.6 (9)C1A—C2A—H2AA106.0 (11)
C4—C3—H3120.0 (9)C1A—C2A—H2AB106.4 (10)
C3—C4—C7120.89 (12)C2Ai—C2A—H2AA110.6 (11)
C5—C4—C3117.56 (11)C2Ai—C2A—H2AB112.3 (10)
C5—C4—C7121.51 (11)H2AA—C2A—H2AB105.6 (14)
C4—C5—H5121.3 (9)C4—C7—C7ii110.55 (13)
C6—C5—C4119.44 (11)C4—C7—H7A108.9 (10)
C6—C5—H5119.3 (9)C4—C7—H7B110.0 (10)
N1—C6—C5122.89 (12)C7ii—C7—H7A107.6 (10)
N1—C6—H6115.5 (9)C7ii—C7—H7B107.9 (10)
C5—C6—H6121.6 (9)H7A—C7—H7B111.9 (14)
N1—C2—C3—C40.8 (2)C4—C5—C6—N10.5 (2)
C2—N1—C6—C50.09 (19)C5—C4—C7—C7ii92.62 (17)
C2—C3—C4—C50.18 (19)C6—N1—C2—C30.8 (2)
C2—C3—C4—C7177.53 (12)O1A—C1A—C2A—C2Ai7.0 (2)
C3—C4—C5—C60.46 (19)O2A—C1A—C2A—C2Ai173.39 (14)
C3—C4—C7—C7ii85.01 (18)C7—C4—C5—C6178.16 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_175K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.356 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6216 (4) ÅCell parameters from 2515 reflections
b = 4.8770 (1) Åθ = 4.3–71.1°
c = 19.3388 (4) ŵ = 0.81 mm1
β = 109.193 (2)°T = 175 K
V = 1480.53 (6) Å3Plate, colourless
Z = 40.47 × 0.41 × 0.12 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1411 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.764, Tmax = 0.922l = 2323
4215 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.4278P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1411 reflectionsΔρmax = 0.21 e Å3
136 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39271 (7)0.4620 (2)0.14514 (6)0.0251 (3)
C20.34133 (8)0.5882 (3)0.08582 (7)0.0276 (3)
C30.36955 (8)0.7876 (3)0.04847 (7)0.0276 (3)
C40.45519 (8)0.8602 (3)0.07244 (7)0.0230 (3)
C50.50859 (8)0.7267 (3)0.13375 (7)0.0254 (3)
C60.47515 (8)0.5313 (3)0.16840 (7)0.0257 (3)
C1A0.25413 (7)0.0223 (3)0.17660 (7)0.0227 (3)
O1A0.33319 (6)0.0923 (2)0.21169 (5)0.0315 (3)
C2A0.22060 (8)0.2062 (3)0.21258 (7)0.0255 (3)
O2A0.21058 (6)0.1272 (2)0.11980 (5)0.0324 (3)
C70.48896 (9)1.0686 (3)0.03151 (7)0.0263 (3)
H2AA0.2086 (11)0.355 (4)0.1785 (10)0.039 (4)*
H60.5110 (10)0.432 (3)0.2105 (9)0.028 (4)*
H2AB0.1643 (11)0.145 (4)0.2142 (9)0.038 (4)*
H20.2810 (10)0.532 (3)0.0692 (9)0.027 (4)*
H30.3308 (10)0.878 (3)0.0079 (9)0.030 (4)*
H7A0.5416 (11)1.149 (4)0.0654 (10)0.035 (4)*
H50.5692 (9)0.763 (3)0.1516 (8)0.029 (4)*
H7B0.4458 (11)1.210 (4)0.0104 (9)0.038 (4)*
H1A0.3542 (14)0.236 (5)0.1830 (13)0.074 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0260 (6)0.0261 (6)0.0247 (6)0.0036 (4)0.0102 (4)0.0021 (4)
C20.0211 (6)0.0329 (7)0.0289 (7)0.0024 (5)0.0083 (5)0.0033 (5)
C30.0239 (6)0.0323 (7)0.0252 (7)0.0012 (5)0.0063 (5)0.0058 (5)
C40.0273 (6)0.0217 (6)0.0234 (6)0.0024 (5)0.0130 (5)0.0018 (5)
C50.0218 (6)0.0275 (7)0.0270 (7)0.0040 (5)0.0079 (5)0.0016 (5)
C60.0255 (6)0.0270 (7)0.0232 (6)0.0016 (5)0.0061 (5)0.0030 (5)
C1A0.0229 (6)0.0222 (6)0.0236 (6)0.0009 (5)0.0082 (5)0.0005 (5)
O1A0.0248 (5)0.0368 (6)0.0289 (5)0.0103 (4)0.0032 (4)0.0100 (4)
C2A0.0216 (6)0.0258 (7)0.0278 (7)0.0041 (5)0.0063 (5)0.0033 (5)
O2A0.0276 (5)0.0356 (6)0.0300 (5)0.0023 (4)0.0039 (4)0.0106 (4)
C70.0307 (7)0.0227 (7)0.0286 (7)0.0039 (5)0.0140 (6)0.0007 (5)
Geometric parameters (Å, º) top
N1—C21.3342 (17)C1A—O1A1.3106 (15)
N1—C61.3375 (16)C1A—C2A1.5136 (17)
C2—C31.3821 (18)C1A—O2A1.2123 (16)
C2—H20.985 (15)O1A—H1A1.02 (3)
C3—C41.3902 (18)C2A—C2Ai1.518 (2)
C3—H30.946 (17)C2A—H2AA0.957 (19)
C4—C51.3876 (18)C2A—H2AB0.992 (17)
C4—C71.5055 (17)C7—C7ii1.537 (2)
C5—C61.3824 (18)C7—H7A0.985 (18)
C5—H50.968 (15)C7—H7B0.981 (18)
C6—H60.966 (16)
C2—N1—C6117.90 (11)O1A—C1A—C2A114.32 (11)
N1—C2—C3122.86 (11)O2A—C1A—O1A123.88 (11)
N1—C2—H2116.6 (10)O2A—C1A—C2A121.79 (11)
C3—C2—H2120.6 (9)C1A—O1A—H1A111.1 (12)
C2—C3—C4119.43 (12)C1A—C2A—C2Ai115.27 (13)
C2—C3—H3120.5 (9)C1A—C2A—H2AA105.6 (11)
C4—C3—H3120.1 (9)C1A—C2A—H2AB106.7 (10)
C3—C4—C7120.97 (12)C2Ai—C2A—H2AA111.4 (11)
C5—C4—C3117.55 (11)C2Ai—C2A—H2AB111.9 (10)
C5—C4—C7121.44 (11)H2AA—C2A—H2AB105.4 (14)
C4—C5—H5121.1 (10)C4—C7—C7ii110.52 (13)
C6—C5—C4119.44 (11)C4—C7—H7A108.7 (10)
C6—C5—H5119.4 (9)C4—C7—H7B110.1 (10)
N1—C6—C5122.82 (12)C7ii—C7—H7A108.0 (10)
N1—C6—H6116.0 (9)C7ii—C7—H7B108.0 (10)
C5—C6—H6121.2 (9)H7A—C7—H7B111.5 (14)
N1—C2—C3—C40.8 (2)C4—C5—C6—N10.5 (2)
C2—N1—C6—C50.11 (19)C5—C4—C7—C7ii92.74 (17)
C2—C3—C4—C50.16 (19)C6—N1—C2—C30.7 (2)
C2—C3—C4—C7177.63 (12)O1A—C1A—C2A—C2Ai7.0 (2)
C3—C4—C5—C60.43 (19)O2A—C1A—C2A—C2Ai173.53 (14)
C3—C4—C7—C7ii84.96 (18)C7—C4—C5—C6178.20 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_180K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.355 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6256 (3) ÅCell parameters from 2502 reflections
b = 4.8792 (1) Åθ = 4.3–71.4°
c = 19.3393 (4) ŵ = 0.81 mm1
β = 109.164 (2)°T = 180 K
V = 1481.86 (5) Å3Plate, colourless
Z = 40.47 × 0.41 × 0.12 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1413 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.3°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.764, Tmax = 0.922l = 2323
4217 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.4509P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1413 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39267 (7)0.4615 (2)0.14508 (6)0.0254 (3)
C20.34137 (8)0.5878 (3)0.08577 (7)0.0281 (3)
C30.36959 (8)0.7871 (3)0.04852 (7)0.0280 (3)
C40.45525 (8)0.8601 (3)0.07246 (7)0.0232 (3)
C50.50855 (8)0.7267 (3)0.13374 (7)0.0260 (3)
C60.47519 (8)0.5315 (3)0.16837 (7)0.0261 (3)
C1A0.25405 (7)0.0221 (3)0.17654 (7)0.0230 (3)
O1A0.33328 (6)0.0920 (2)0.21165 (5)0.0319 (3)
C2A0.22071 (8)0.2063 (3)0.21262 (7)0.0260 (3)
O2A0.21061 (6)0.1272 (2)0.11985 (5)0.0330 (3)
C70.48890 (9)1.0683 (3)0.03147 (7)0.0267 (3)
H2AA0.2094 (11)0.357 (4)0.1793 (10)0.041 (5)*
H60.5106 (10)0.437 (3)0.2100 (8)0.028 (4)*
H20.2807 (10)0.528 (4)0.0683 (9)0.033 (4)*
H2AB0.1643 (11)0.142 (4)0.2146 (9)0.039 (4)*
H30.3301 (10)0.878 (3)0.0079 (9)0.031 (4)*
H7A0.5414 (11)1.149 (3)0.0650 (10)0.032 (4)*
H50.5697 (9)0.763 (3)0.1521 (8)0.029 (4)*
H7B0.4463 (11)1.211 (4)0.0112 (9)0.039 (4)*
H1A0.3547 (14)0.236 (5)0.1830 (12)0.072 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0256 (6)0.0267 (6)0.0249 (6)0.0034 (4)0.0098 (4)0.0023 (4)
C20.0212 (6)0.0332 (8)0.0300 (7)0.0026 (5)0.0086 (5)0.0037 (5)
C30.0241 (6)0.0333 (7)0.0255 (7)0.0007 (5)0.0068 (5)0.0062 (5)
C40.0271 (6)0.0218 (7)0.0240 (6)0.0018 (5)0.0127 (5)0.0015 (5)
C50.0226 (6)0.0278 (7)0.0275 (7)0.0041 (5)0.0081 (5)0.0008 (5)
C60.0254 (6)0.0275 (7)0.0233 (6)0.0019 (5)0.0051 (5)0.0032 (5)
C1A0.0231 (6)0.0225 (6)0.0238 (6)0.0012 (5)0.0082 (5)0.0000 (5)
O1A0.0253 (5)0.0370 (6)0.0292 (5)0.0105 (4)0.0033 (4)0.0103 (4)
C2A0.0225 (6)0.0256 (7)0.0288 (7)0.0044 (5)0.0067 (5)0.0036 (5)
O2A0.0277 (5)0.0364 (6)0.0308 (6)0.0029 (4)0.0040 (4)0.0111 (4)
C70.0317 (7)0.0228 (7)0.0289 (7)0.0039 (5)0.0145 (6)0.0009 (5)
Geometric parameters (Å, º) top
N1—C21.3345 (17)C1A—O1A1.3134 (15)
N1—C61.3401 (16)C1A—C2A1.5132 (17)
C2—C31.3807 (18)C1A—O2A1.2112 (16)
C2—H20.997 (16)O1A—H1A1.03 (3)
C3—C41.3915 (18)C2A—C2Ai1.515 (2)
C3—H30.951 (17)C2A—H2AA0.955 (19)
C4—C51.3869 (18)C2A—H2AB1.001 (17)
C4—C71.5050 (17)C7—C7ii1.535 (3)
C5—C61.3811 (18)C7—H7A0.983 (17)
C5—H50.977 (15)C7—H7B0.979 (19)
C6—H60.945 (16)
C2—N1—C6117.78 (11)O1A—C1A—C2A114.19 (11)
N1—C2—C3122.88 (11)O2A—C1A—O1A123.84 (11)
N1—C2—H2116.6 (10)O2A—C1A—C2A121.97 (11)
C3—C2—H2120.5 (10)C1A—O1A—H1A111.4 (12)
C2—C3—C4119.50 (12)C1A—C2A—C2Ai115.42 (13)
C2—C3—H3119.8 (9)C1A—C2A—H2AA106.1 (11)
C4—C3—H3120.6 (10)C1A—C2A—H2AB106.0 (10)
C3—C4—C7120.94 (12)C2Ai—C2A—H2AA110.4 (11)
C5—C4—C3117.48 (11)C2Ai—C2A—H2AB111.7 (10)
C5—C4—C7121.54 (11)H2AA—C2A—H2AB106.7 (14)
C4—C5—H5121.5 (9)C4—C7—C7ii110.62 (13)
C6—C5—C4119.49 (11)C4—C7—H7A109.0 (10)
C6—C5—H5119.0 (9)C4—C7—H7B110.3 (10)
N1—C6—C5122.86 (12)C7ii—C7—H7A107.8 (10)
N1—C6—H6116.4 (9)C7ii—C7—H7B108.8 (10)
C5—C6—H6120.7 (9)H7A—C7—H7B110.2 (14)
N1—C2—C3—C40.8 (2)C4—C5—C6—N10.5 (2)
C2—N1—C6—C50.01 (19)C5—C4—C7—C7ii92.66 (17)
C2—C3—C4—C50.20 (19)C6—N1—C2—C30.7 (2)
C2—C3—C4—C7177.56 (12)O1A—C1A—C2A—C2Ai7.2 (2)
C3—C4—C5—C60.42 (19)O2A—C1A—C2A—C2Ai173.40 (14)
C3—C4—C7—C7ii85.01 (18)C7—C4—C5—C6178.17 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_185K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.354 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6268 (3) ÅCell parameters from 2486 reflections
b = 4.8810 (1) Åθ = 4.3–71.3°
c = 19.3397 (4) ŵ = 0.81 mm1
β = 109.141 (2)°T = 185 K
V = 1482.75 (5) Å3Plate, colourless
Z = 40.47 × 0.41 × 0.12 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1414 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.764, Tmax = 0.922l = 2323
4221 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.4553P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1414 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39275 (7)0.4616 (2)0.14508 (6)0.0261 (3)
C20.34140 (8)0.5875 (3)0.08572 (7)0.0290 (3)
C30.36958 (8)0.7870 (3)0.04841 (7)0.0288 (3)
C40.45518 (8)0.8597 (3)0.07240 (6)0.0240 (3)
C50.50858 (8)0.7268 (3)0.13374 (7)0.0265 (3)
C60.47516 (8)0.5313 (3)0.16839 (7)0.0267 (3)
C1A0.25411 (7)0.0223 (2)0.17656 (7)0.0237 (3)
O1A0.33320 (6)0.0916 (2)0.21161 (5)0.0328 (3)
C2A0.22064 (8)0.2062 (3)0.21264 (7)0.0269 (3)
O2A0.21071 (6)0.1270 (2)0.11987 (5)0.0341 (3)
C70.48894 (9)1.0682 (3)0.03150 (7)0.0274 (3)
H2AA0.2088 (11)0.356 (4)0.1794 (10)0.041 (4)*
H2AB0.1655 (11)0.141 (4)0.2152 (9)0.042 (5)*
H30.3298 (10)0.876 (3)0.0071 (9)0.032 (4)*
H60.5118 (10)0.437 (4)0.2113 (9)0.036 (4)*
H20.2809 (10)0.529 (3)0.0689 (9)0.031 (4)*
H7A0.5408 (11)1.147 (4)0.0646 (10)0.037 (4)*
H50.5694 (9)0.761 (3)0.1521 (8)0.030 (4)*
H7B0.4465 (11)1.210 (4)0.0107 (10)0.043 (4)*
H1A0.3539 (14)0.233 (5)0.1818 (12)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0265 (6)0.0277 (6)0.0253 (6)0.0040 (4)0.0103 (4)0.0019 (4)
C20.0223 (6)0.0347 (8)0.0301 (7)0.0026 (5)0.0087 (5)0.0043 (5)
C30.0250 (6)0.0339 (7)0.0265 (7)0.0010 (5)0.0072 (5)0.0065 (5)
C40.0285 (6)0.0229 (6)0.0237 (6)0.0026 (5)0.0130 (5)0.0024 (5)
C50.0230 (6)0.0286 (7)0.0277 (7)0.0045 (5)0.0080 (5)0.0016 (5)
C60.0264 (6)0.0281 (7)0.0237 (6)0.0022 (5)0.0057 (5)0.0026 (5)
C1A0.0238 (6)0.0235 (6)0.0240 (6)0.0008 (5)0.0079 (5)0.0004 (5)
O1A0.0261 (5)0.0384 (6)0.0296 (5)0.0105 (4)0.0033 (4)0.0105 (4)
C2A0.0231 (6)0.0267 (7)0.0294 (7)0.0044 (5)0.0068 (5)0.0033 (5)
O2A0.0292 (5)0.0378 (6)0.0312 (6)0.0027 (4)0.0042 (4)0.0114 (4)
C70.0325 (7)0.0238 (7)0.0291 (7)0.0040 (5)0.0145 (6)0.0005 (5)
Geometric parameters (Å, º) top
N1—C21.3349 (17)C1A—O1A1.3110 (15)
N1—C61.3385 (16)C1A—C2A1.5146 (17)
C2—C31.3820 (18)C1A—O2A1.2106 (15)
C2—H20.993 (15)O1A—H1A1.03 (2)
C3—C41.3907 (18)C2A—C2Ai1.516 (2)
C3—H30.957 (17)C2A—H2AA0.952 (19)
C4—C51.3878 (18)C2A—H2AB0.986 (17)
C4—C71.5058 (17)C7—C7ii1.535 (3)
C5—C61.3829 (18)C7—H7A0.969 (18)
C5—H50.970 (14)C7—H7B0.978 (19)
C6—H60.970 (17)
C2—N1—C6117.90 (11)O1A—C1A—C2A114.19 (11)
N1—C2—C3122.87 (11)O2A—C1A—O1A123.92 (11)
N1—C2—H2116.3 (10)O2A—C1A—C2A121.89 (11)
C3—C2—H2120.8 (10)C1A—O1A—H1A110.3 (12)
C2—C3—C4119.39 (12)C1A—C2A—C2Ai115.32 (13)
C2—C3—H3119.7 (9)C1A—C2A—H2AA106.4 (11)
C4—C3—H3120.9 (9)C1A—C2A—H2AB105.9 (11)
C3—C4—C7120.95 (12)C2Ai—C2A—H2AA110.6 (11)
C5—C4—C3117.62 (11)C2Ai—C2A—H2AB111.2 (10)
C5—C4—C7121.39 (11)H2AA—C2A—H2AB106.9 (14)
C4—C5—H5122.0 (9)C4—C7—C7ii110.56 (13)
C6—C5—C4119.39 (11)C4—C7—H7A109.0 (10)
C6—C5—H5118.5 (9)C4—C7—H7B110.6 (10)
N1—C6—C5122.81 (12)C7ii—C7—H7A107.7 (10)
N1—C6—H6117.0 (10)C7ii—C7—H7B108.1 (11)
C5—C6—H6120.2 (10)H7A—C7—H7B110.8 (14)
N1—C2—C3—C40.9 (2)C4—C5—C6—N10.4 (2)
C2—N1—C6—C50.10 (19)C5—C4—C7—C7ii92.87 (17)
C2—C3—C4—C50.27 (19)C6—N1—C2—C30.8 (2)
C2—C3—C4—C7177.62 (12)O1A—C1A—C2A—C2Ai7.1 (2)
C3—C4—C5—C60.34 (19)O2A—C1A—C2A—C2Ai173.59 (14)
C3—C4—C7—C7ii84.94 (18)C7—C4—C5—C6178.22 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_190K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.353 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6279 (3) ÅCell parameters from 2456 reflections
b = 4.8825 (1) Åθ = 4.3–71.4°
c = 19.3411 (4) ŵ = 0.81 mm1
β = 109.105 (2)°T = 190 K
V = 1483.73 (5) Å3Plate, colourless
Z = 40.44 × 0.42 × 0.15 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1415 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.764, Tmax = 0.904l = 2323
4224 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.3322P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1415 reflectionsΔρmax = 0.18 e Å3
136 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39280 (7)0.4613 (2)0.14505 (6)0.0269 (3)
C20.34156 (8)0.5870 (3)0.08574 (7)0.0294 (3)
C30.36960 (8)0.7862 (3)0.04838 (7)0.0293 (3)
C40.45525 (8)0.8595 (3)0.07243 (6)0.0245 (3)
C50.50855 (8)0.7268 (3)0.13368 (7)0.0272 (3)
C60.47514 (8)0.5314 (3)0.16839 (7)0.0274 (3)
C1A0.25426 (7)0.0221 (2)0.17664 (6)0.0241 (3)
O1A0.33328 (6)0.0914 (2)0.21161 (5)0.0333 (3)
C2A0.22072 (8)0.2061 (3)0.21271 (7)0.0272 (3)
O2A0.21078 (6)0.1270 (2)0.11995 (5)0.0347 (3)
C70.48893 (9)1.0681 (3)0.03147 (7)0.0277 (3)
H60.5114 (10)0.438 (3)0.2106 (9)0.033 (4)*
H30.3297 (10)0.875 (3)0.0070 (9)0.035 (4)*
H20.2809 (10)0.529 (3)0.0682 (9)0.032 (4)*
H2AA0.2099 (11)0.358 (4)0.1791 (10)0.044 (5)*
H2AB0.1653 (10)0.147 (4)0.2141 (9)0.039 (4)*
H7A0.5414 (10)1.151 (3)0.0651 (9)0.035 (4)*
H50.5698 (9)0.763 (3)0.1523 (8)0.031 (4)*
H7B0.4466 (12)1.209 (4)0.0112 (10)0.047 (5)*
H1A0.3527 (14)0.235 (5)0.1821 (12)0.078 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0273 (6)0.0284 (6)0.0264 (6)0.0039 (4)0.0108 (4)0.0024 (4)
C20.0220 (6)0.0349 (8)0.0315 (7)0.0028 (5)0.0091 (5)0.0041 (5)
C30.0250 (6)0.0348 (7)0.0271 (7)0.0011 (5)0.0072 (5)0.0065 (5)
C40.0287 (6)0.0237 (6)0.0246 (6)0.0025 (5)0.0137 (5)0.0018 (5)
C50.0236 (6)0.0297 (7)0.0284 (7)0.0047 (5)0.0085 (5)0.0010 (5)
C60.0270 (6)0.0292 (7)0.0241 (6)0.0017 (5)0.0061 (5)0.0034 (5)
C1A0.0242 (6)0.0242 (6)0.0241 (6)0.0008 (5)0.0082 (5)0.0001 (5)
O1A0.0265 (5)0.0388 (6)0.0303 (5)0.0109 (4)0.0035 (4)0.0107 (4)
C2A0.0234 (6)0.0272 (7)0.0302 (7)0.0041 (5)0.0076 (5)0.0033 (5)
O2A0.0291 (5)0.0384 (6)0.0321 (6)0.0024 (4)0.0040 (4)0.0119 (4)
C70.0333 (7)0.0235 (7)0.0298 (7)0.0042 (5)0.0152 (6)0.0006 (5)
Geometric parameters (Å, º) top
N1—C21.3337 (17)C1A—O1A1.3103 (15)
N1—C61.3383 (16)C1A—C2A1.5146 (17)
C2—C31.3807 (18)C1A—O2A1.2117 (15)
C2—H20.995 (15)O1A—H1A1.02 (3)
C3—C41.3925 (17)C2A—C2Ai1.514 (2)
C3—H30.960 (17)C2A—H2AA0.965 (19)
C4—C51.3860 (18)C2A—H2AB0.974 (17)
C4—C71.5065 (16)C7—C7ii1.534 (2)
C5—C61.3834 (18)C7—H7A0.987 (17)
C5—H50.978 (14)C7—H7B0.97 (2)
C6—H60.957 (16)
C2—N1—C6117.86 (11)O1A—C1A—C2A114.23 (10)
N1—C2—C3122.98 (11)O2A—C1A—O1A123.94 (11)
N1—C2—H2117.0 (10)O2A—C1A—C2A121.82 (11)
C3—C2—H2120.0 (10)C1A—O1A—H1A109.7 (12)
C2—C3—C4119.32 (12)C1A—C2A—H2AA105.8 (11)
C2—C3—H3119.7 (10)C1A—C2A—H2AB106.7 (10)
C4—C3—H3120.9 (10)C2Ai—C2A—C1A115.34 (13)
C3—C4—C7120.90 (11)C2Ai—C2A—H2AA110.1 (11)
C5—C4—C3117.61 (11)C2Ai—C2A—H2AB112.2 (10)
C5—C4—C7121.45 (11)H2AA—C2A—H2AB106.1 (14)
C4—C5—H5121.9 (9)C4—C7—C7ii110.56 (13)
C6—C5—C4119.41 (11)C4—C7—H7A109.3 (10)
C6—C5—H5118.7 (9)C4—C7—H7B110.3 (11)
N1—C6—C5122.81 (12)C7ii—C7—H7A108.1 (10)
N1—C6—H6117.1 (9)C7ii—C7—H7B108.5 (11)
C5—C6—H6120.1 (9)H7A—C7—H7B110.1 (14)
N1—C2—C3—C40.8 (2)C4—C5—C6—N10.6 (2)
C2—N1—C6—C50.01 (19)C5—C4—C7—C7ii92.87 (17)
C2—C3—C4—C50.19 (19)C6—N1—C2—C30.7 (2)
C2—C3—C4—C7177.63 (12)O1A—C1A—C2A—C2Ai7.0 (2)
C3—C4—C5—C60.47 (19)O2A—C1A—C2A—C2Ai173.53 (14)
C3—C4—C7—C7ii84.87 (18)C7—C4—C5—C6178.28 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_193) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.513 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.53 (2) ÅCell parameters from 735 reflections
b = 4.5612 (3) Åθ = 4.4–22.2°
c = 19.065 (7) ŵ = 0.11 mm1
β = 112.63 (10)°T = 295 K
V = 1327 (2) Å3Plate, colourless
Z = 40.35 × 0.16 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
292 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 16.1544 pixels mm-1θmax = 26.1°, θmin = 4.4°
ω scansh = 66
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.996, Tmax = 0.996l = 2122
1144 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.089H-atom parameters constrained
wR(F2) = 0.291 w = 1/[σ2(Fo2) + (0.1697P)2 + 2.2082P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
292 reflectionsΔρmax = 0.26 e Å3
46 parametersΔρmin = 0.27 e Å3
8 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3929 (18)0.470 (2)0.1460 (7)0.037 (4)*
C20.3382 (18)0.617 (2)0.0870 (7)0.042 (4)*
H20.27830.58160.07070.050*
C30.3685 (18)0.825 (2)0.0486 (9)0.037 (5)*
H30.32930.92540.00690.044*
C40.4586 (17)0.879 (2)0.0740 (7)0.022 (4)*
C50.5141 (17)0.727 (2)0.1351 (6)0.035 (4)*
H50.57420.75720.15280.042*
C60.4793 (19)0.524 (2)0.1708 (9)0.029 (4)*
H60.51720.42380.21310.035*
C1A0.2532 (16)0.032 (2)0.1765 (7)0.023 (4)*
O1A0.3355 (16)0.0994 (18)0.2119 (6)0.048 (3)*
H1A0.35050.21310.18580.073*
C2A0.217 (2)0.201 (2)0.2116 (7)0.033 (3)*
H2AA0.20040.36930.17780.040*
H2AB0.16510.12820.21730.040*
O2A0.2068 (16)0.1499 (14)0.1155 (5)0.040 (3)*
C70.491 (2)1.084 (2)0.0307 (8)0.033 (3)*
H7A0.54371.17890.06470.040*
H7B0.44691.23390.00750.040*
Geometric parameters (Å, º) top
N1—C21.323 (17)C1A—O1A1.30 (2)
N1—C61.34 (2)C1A—C2A1.50 (2)
C2—H20.9300C1A—O2A1.243 (15)
C2—C31.405 (16)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.51 (4)
C3—C41.40 (2)C2A—H2AA0.9700
C4—C51.364 (17)C2A—H2AB0.9700
C4—C71.47 (2)C7—C7ii1.53 (3)
C5—H50.9300C7—H7A0.9700
C5—C61.394 (16)C7—H7B0.9700
C6—H60.9300
C2—N1—C6119.5 (17)O1A—C1A—C2A116.8 (15)
N1—C2—H2119.3O2A—C1A—O1A122.0 (17)
N1—C2—C3121 (2)O2A—C1A—C2A121 (2)
C3—C2—H2119.3C1A—O1A—H1A109.5
C2—C3—H3120.5C1A—C2A—C2Ai112 (3)
C4—C3—C2118.9 (18)C1A—C2A—H2AA109.1
C4—C3—H3120.5C1A—C2A—H2AB109.1
C3—C4—C7118.8 (16)C2Ai—C2A—H2AA109.1
C5—C4—C3118.9 (17)C2Ai—C2A—H2AB109.1
C5—C4—C7122 (2)H2AA—C2A—H2AB107.9
C4—C5—H5120.5C4—C7—C7ii109.7 (11)
C4—C5—C6119 (2)C4—C7—H7A109.7
C6—C5—H5120.5C4—C7—H7B109.7
N1—C6—C5122.2 (17)C7ii—C7—H7A109.7
N1—C6—H6118.9C7ii—C7—H7B109.7
C5—C6—H6118.9H7A—C7—H7B108.2
N1—C2—C3—C40.7 (19)C4—C5—C6—N11.4 (19)
C2—N1—C6—C52 (2)C5—C4—C7—C7ii87 (3)
C2—C3—C4—C50 (2)C6—N1—C2—C31 (2)
C2—C3—C4—C7176.2 (9)O1A—C1A—C2A—C2Ai6 (2)
C3—C4—C5—C60.7 (18)O2A—C1A—C2A—C2Ai175.9 (16)
C3—C4—C7—C7ii89 (3)C7—C4—C5—C6176.4 (10)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_200K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.351 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6313 (5) ÅCell parameters from 2436 reflections
b = 4.8871 (1) Åθ = 4.3–71.2°
c = 19.3441 (6) ŵ = 0.81 mm1
β = 109.050 (3)°T = 200 K
V = 1486.16 (8) Å3Plate, colourless
Z = 40.47 × 0.41 × 0.12 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1415 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1920
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.765, Tmax = 0.923l = 2323
4155 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0832P)2 + 0.3962P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1415 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39283 (7)0.4609 (2)0.14504 (6)0.0277 (3)
C20.34173 (8)0.5861 (3)0.08575 (7)0.0309 (3)
C30.36980 (8)0.7854 (3)0.04834 (7)0.0301 (3)
C40.45519 (8)0.8592 (3)0.07240 (7)0.0251 (3)
C50.50841 (8)0.7268 (3)0.13365 (7)0.0280 (3)
C60.47520 (8)0.5314 (3)0.16830 (7)0.0282 (3)
C1A0.25425 (8)0.0218 (3)0.17665 (7)0.0248 (3)
O1A0.33335 (6)0.0907 (2)0.21154 (5)0.0347 (3)
C2A0.22084 (8)0.2064 (3)0.21272 (7)0.0284 (3)
O2A0.21097 (6)0.1266 (2)0.11999 (5)0.0361 (3)
C70.48890 (9)1.0677 (3)0.03143 (7)0.0287 (3)
H2AA0.2094 (12)0.358 (4)0.1793 (10)0.049 (5)*
H30.3306 (10)0.874 (4)0.0080 (9)0.035 (4)*
H60.5103 (10)0.439 (3)0.2107 (9)0.031 (4)*
H2AB0.1652 (11)0.144 (4)0.2146 (9)0.045 (5)*
H20.2804 (10)0.528 (4)0.0686 (9)0.035 (4)*
H50.5689 (10)0.761 (4)0.1519 (8)0.034 (4)*
H7A0.5397 (11)1.152 (4)0.0648 (10)0.040 (4)*
H7B0.4454 (12)1.208 (4)0.0105 (10)0.047 (5)*
H1A0.3525 (15)0.231 (6)0.1816 (13)0.082 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (6)0.0292 (6)0.0271 (6)0.0042 (4)0.0109 (5)0.0024 (4)
C20.0233 (6)0.0365 (8)0.0325 (7)0.0031 (5)0.0086 (5)0.0047 (5)
C30.0262 (6)0.0351 (8)0.0279 (7)0.0012 (5)0.0075 (5)0.0071 (5)
C40.0301 (6)0.0238 (7)0.0251 (6)0.0029 (5)0.0139 (5)0.0016 (5)
C50.0237 (6)0.0304 (7)0.0296 (7)0.0051 (5)0.0083 (5)0.0012 (5)
C60.0271 (7)0.0301 (7)0.0249 (6)0.0013 (5)0.0053 (5)0.0041 (5)
C1A0.0248 (6)0.0241 (7)0.0255 (6)0.0009 (5)0.0081 (5)0.0003 (5)
O1A0.0273 (5)0.0408 (6)0.0315 (5)0.0110 (4)0.0033 (4)0.0116 (4)
C2A0.0243 (6)0.0281 (7)0.0315 (7)0.0049 (5)0.0073 (6)0.0036 (5)
O2A0.0303 (5)0.0400 (6)0.0333 (6)0.0032 (4)0.0042 (4)0.0130 (4)
C70.0347 (7)0.0237 (7)0.0313 (7)0.0044 (5)0.0157 (6)0.0004 (5)
Geometric parameters (Å, º) top
N1—C21.3325 (17)C1A—O1A1.3115 (15)
N1—C61.3400 (16)C1A—C2A1.5140 (17)
C2—C31.3822 (19)C1A—O2A1.2113 (16)
C2—H21.005 (16)O1A—H1A1.01 (3)
C3—C41.3899 (18)C2A—C2Ai1.513 (2)
C3—H30.943 (17)C2A—H2AA0.96 (2)
C4—C51.3861 (18)C2A—H2AB0.986 (18)
C4—C71.5068 (17)C7—C7ii1.532 (3)
C5—C61.3813 (18)C7—H7A0.972 (19)
C5—H50.966 (15)C7—H7B0.98 (2)
C6—H60.952 (16)
C2—N1—C6117.76 (11)O1A—C1A—C2A114.18 (11)
N1—C2—C3123.00 (12)O2A—C1A—O1A123.84 (11)
N1—C2—H2116.6 (10)O2A—C1A—C2A121.97 (11)
C3—C2—H2120.4 (10)C1A—O1A—H1A109.3 (13)
C2—C3—C4119.36 (12)C1A—C2A—H2AA106.3 (11)
C2—C3—H3119.7 (10)C1A—C2A—H2AB106.2 (11)
C4—C3—H3120.9 (10)C2Ai—C2A—C1A115.41 (13)
C3—C4—C7120.95 (12)C2Ai—C2A—H2AA110.4 (11)
C5—C4—C3117.56 (12)C2Ai—C2A—H2AB111.7 (10)
C5—C4—C7121.45 (12)H2AA—C2A—H2AB106.3 (15)
C4—C5—H5122.1 (10)C4—C7—C7ii110.67 (13)
C6—C5—C4119.50 (12)C4—C7—H7A109.3 (11)
C6—C5—H5118.3 (10)C4—C7—H7B109.8 (11)
N1—C6—C5122.80 (12)C7ii—C7—H7A109.1 (11)
N1—C6—H6116.0 (9)C7ii—C7—H7B108.0 (11)
C5—C6—H6121.1 (9)H7A—C7—H7B110.0 (15)
N1—C2—C3—C40.7 (2)C4—C5—C6—N10.4 (2)
C2—N1—C6—C50.2 (2)C5—C4—C7—C7ii92.94 (18)
C2—C3—C4—C50.1 (2)C6—N1—C2—C30.8 (2)
C2—C3—C4—C7177.63 (12)O1A—C1A—C2A—C2Ai7.4 (2)
C3—C4—C5—C60.49 (19)O2A—C1A—C2A—C2Ai173.46 (15)
C3—C4—C7—C7ii84.66 (18)C7—C4—C5—C6178.17 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (etysuc_200K) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.350 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6408 (10) ÅCell parameters from 966 reflections
b = 4.8878 (3) Åθ = 4.8–71.1°
c = 19.3501 (10) ŵ = 0.81 mm1
β = 109.048 (6)°T = 200 K
V = 1487.70 (16) Å3Plate, colourless
Z = 40.14 × 0.09 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1422 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source953 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.5384 pixels mm-1θmax = 72.3°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.903, Tmax = 1.000l = 1723
2799 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059All H-atom parameters refined
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.0957P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1422 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39276 (14)0.4598 (5)0.14495 (11)0.0422 (6)
C20.34167 (19)0.5868 (7)0.08572 (15)0.0468 (7)
C30.37015 (19)0.7855 (7)0.04835 (14)0.0455 (8)
C40.45518 (18)0.8590 (6)0.07235 (13)0.0398 (7)
C50.50852 (19)0.7266 (7)0.13358 (14)0.0438 (7)
C60.47532 (19)0.5308 (7)0.16831 (14)0.0455 (7)
C1A0.25420 (18)0.0211 (6)0.17683 (13)0.0419 (7)
O1A0.33338 (12)0.0906 (5)0.21152 (10)0.0503 (6)
C2A0.22086 (18)0.2068 (7)0.21296 (15)0.0422 (7)
O2A0.21082 (13)0.1269 (5)0.11979 (10)0.0528 (6)
C70.4884 (2)1.0678 (7)0.03120 (15)0.0449 (7)
H1A0.353 (3)0.229 (9)0.184 (2)0.089 (13)*
H60.5077 (18)0.440 (6)0.2108 (15)0.036 (7)*
H20.281 (2)0.522 (6)0.0666 (15)0.044 (8)*
H2AA0.207 (2)0.365 (7)0.1786 (18)0.057 (9)*
H2AB0.167 (2)0.151 (7)0.2130 (17)0.056 (9)*
H30.328 (2)0.886 (7)0.0045 (18)0.060 (9)*
H7A0.541 (2)1.169 (7)0.0647 (16)0.046 (8)*
H50.5651 (19)0.765 (7)0.1507 (15)0.047 (8)*
H7B0.443 (2)1.210 (9)0.008 (2)0.074 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0443 (12)0.0512 (16)0.0364 (10)0.0029 (11)0.0205 (9)0.0038 (11)
C20.0447 (15)0.056 (2)0.0430 (13)0.0053 (15)0.0191 (12)0.0029 (13)
C30.0470 (15)0.055 (2)0.0393 (13)0.0023 (14)0.0205 (12)0.0054 (13)
C40.0505 (15)0.0411 (17)0.0366 (12)0.0007 (13)0.0262 (11)0.0005 (11)
C50.0444 (15)0.0514 (19)0.0405 (13)0.0021 (14)0.0206 (12)0.0018 (13)
C60.0530 (16)0.0497 (19)0.0363 (13)0.0036 (14)0.0181 (12)0.0056 (13)
C1A0.0489 (15)0.0458 (18)0.0364 (12)0.0017 (14)0.0211 (12)0.0005 (12)
O1A0.0457 (11)0.0616 (15)0.0435 (10)0.0127 (10)0.0142 (9)0.0112 (10)
C2A0.0416 (14)0.0458 (18)0.0430 (13)0.0039 (13)0.0187 (12)0.0035 (13)
O2A0.0480 (11)0.0654 (16)0.0447 (11)0.0020 (11)0.0146 (9)0.0134 (10)
C70.0557 (17)0.0453 (18)0.0419 (13)0.0060 (15)0.0273 (13)0.0021 (13)
Geometric parameters (Å, º) top
N1—C21.336 (4)C1A—O1A1.313 (3)
N1—C61.344 (4)C1A—C2A1.513 (4)
C2—C31.384 (4)C1A—O2A1.219 (3)
C2—H21.00 (3)O1A—H1A0.98 (5)
C3—C41.385 (4)C2A—C2Ai1.506 (6)
C3—H31.03 (3)C2A—H2AA1.00 (4)
C4—C51.387 (4)C2A—H2AB0.94 (3)
C4—C71.506 (4)C7—C7ii1.534 (5)
C5—C61.384 (4)C7—H7A1.03 (3)
C5—H50.91 (3)C7—H7B1.02 (4)
C6—H60.93 (3)
C2—N1—C6117.6 (2)O1A—C1A—C2A114.3 (2)
N1—C2—C3122.9 (3)O2A—C1A—O1A123.5 (3)
N1—C2—H2116.8 (17)O2A—C1A—C2A122.2 (3)
C3—C2—H2120.1 (17)C1A—O1A—H1A111 (2)
C2—C3—C4119.6 (3)C1A—C2A—H2AA107.7 (18)
C2—C3—H3120.7 (19)C1A—C2A—H2AB106 (2)
C4—C3—H3119.6 (19)C2Ai—C2A—C1A115.3 (3)
C3—C4—C5117.7 (3)C2Ai—C2A—H2AA111 (2)
C3—C4—C7120.6 (3)C2Ai—C2A—H2AB113.6 (19)
C5—C4—C7121.7 (3)H2AA—C2A—H2AB102 (3)
C4—C5—H5120.8 (19)C4—C7—C7ii110.7 (3)
C6—C5—C4119.5 (3)C4—C7—H7A112.1 (17)
C6—C5—H5120 (2)C4—C7—H7B111 (2)
N1—C6—C5122.8 (3)C7ii—C7—H7A108.9 (17)
N1—C6—H6114.0 (17)C7ii—C7—H7B107 (2)
C5—C6—H6123.2 (17)H7A—C7—H7B108 (3)
N1—C2—C3—C40.1 (5)C4—C5—C6—N10.6 (5)
C2—N1—C6—C50.2 (4)C5—C4—C7—C7ii92.1 (4)
C2—C3—C4—C50.2 (4)C6—N1—C2—C30.1 (4)
C2—C3—C4—C7177.9 (3)O1A—C1A—C2A—C2Ai7.3 (5)
C3—C4—C5—C60.6 (4)O2A—C1A—C2A—C2Ai173.6 (3)
C3—C4—C7—C7ii85.5 (4)C7—C4—C5—C6178.2 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_246) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.537 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.48 (4) ÅCell parameters from 521 reflections
b = 4.5205 (4) Åθ = 4.3–22.2°
c = 19.083 (12) ŵ = 0.11 mm1
β = 113.24 (16)°T = 295 K
V = 1307 (4) Å3Plate, colourless
Z = 40.35 × 0.16 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
259 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 16.1544 pixels mm-1θmax = 26.3°, θmin = 2.3°
ω scansh = 66
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.996, Tmax = 0.996l = 2223
1924 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0939P)2 + 3.0865P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
259 reflectionsΔρmax = 0.14 e Å3
46 parametersΔρmin = 0.17 e Å3
9 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3908 (15)0.4702 (19)0.1462 (6)0.037 (4)*
C20.3356 (17)0.6243 (17)0.0868 (6)0.036 (3)*
H20.27510.59220.06940.043*
C30.3682 (16)0.833 (2)0.0507 (7)0.035 (4)*
H30.32890.94220.01030.042*
C40.4582 (16)0.880 (2)0.0741 (7)0.027 (4)*
C50.5149 (18)0.7226 (17)0.1357 (6)0.029 (3)*
H50.57570.74860.15360.035*
C60.4776 (15)0.522 (2)0.1704 (8)0.028 (4)*
H60.51540.41790.21280.034*
C1A0.2531 (14)0.0297 (19)0.1759 (6)0.022 (3)*
O1A0.3353 (14)0.1014 (14)0.2122 (5)0.040 (3)*
H1A0.34370.26760.19910.060*
C2A0.2174 (18)0.2041 (16)0.2109 (6)0.028 (2)*
H2AA0.20170.37590.17770.033*
H2AB0.16410.13150.21490.033*
O2A0.2083 (14)0.1553 (11)0.1161 (5)0.038 (2)*
C70.4925 (17)1.0856 (16)0.0302 (6)0.028 (2)*
H7A0.45011.24240.00730.034*
H7B0.54741.17500.06430.034*
Geometric parameters (Å, º) top
N1—C21.336 (16)C1A—O1A1.30 (2)
N1—C61.34 (2)C1A—C2A1.489 (18)
C2—H20.9300C1A—O2A1.228 (12)
C2—C31.394 (15)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.51 (3)
C3—C41.39 (2)C2A—H2AA0.9700
C4—C51.38 (2)C2A—H2AB0.9700
C4—C71.503 (14)C7—C7ii1.488 (18)
C5—H50.9300C7—H7A0.9700
C5—C61.400 (15)C7—H7B0.9700
C6—H60.9300
C2—N1—C6118.6 (14)O1A—C1A—C2A117.0 (12)
N1—C2—H2119.8O2A—C1A—O1A120.0 (13)
N1—C2—C3120.4 (19)O2A—C1A—C2A123.1 (18)
C3—C2—H2119.8C1A—O1A—H1A109.5
C2—C3—H3119.4C1A—C2A—C2Ai113 (2)
C4—C3—C2121.1 (15)C1A—C2A—H2AA109.1
C4—C3—H3119.4C1A—C2A—H2AB109.1
C3—C4—C7120.4 (15)C2Ai—C2A—H2AA109.1
C5—C4—C3118.3 (14)C2Ai—C2A—H2AB109.1
C5—C4—C7121 (2)H2AA—C2A—H2AB107.8
C4—C5—H5121.2C4—C7—H7A109.9
C4—C5—C6118 (2)C4—C7—H7B109.9
C6—C5—H5121.2C7ii—C7—C4108.9 (10)
N1—C6—C5124.0 (16)C7ii—C7—H7A109.9
N1—C6—H6118.0C7ii—C7—H7B109.9
C5—C6—H6118.0H7A—C7—H7B108.3
N1—C2—C3—C41.7 (16)C4—C5—C6—N11.4 (15)
C2—N1—C6—C51.9 (18)C5—C4—C7—C7ii87 (2)
C2—C3—C4—C52.2 (18)C6—N1—C2—C30.3 (15)
C2—C3—C4—C7174.5 (7)O1A—C1A—C2A—C2Ai6.4 (19)
C3—C4—C5—C60.6 (14)O2A—C1A—C2A—C2Ai172.8 (13)
C3—C4—C7—C7ii89 (2)C7—C4—C5—C6176.0 (8)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (etysuc_250K) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.341 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6494 (14) ÅCell parameters from 976 reflections
b = 4.9069 (4) Åθ = 4.8–71.8°
c = 19.3575 (13) ŵ = 0.81 mm1
β = 108.812 (9)°T = 250 K
V = 1497.0 (2) Å3Plate, colourless
Z = 40.14 × 0.09 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1432 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source961 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.5384 pixels mm-1θmax = 72.3°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.904, Tmax = 1.000l = 1723
2831 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053All H-atom parameters refined
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0878P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1432 reflectionsΔρmax = 0.17 e Å3
136 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39345 (13)0.4590 (5)0.14466 (10)0.0468 (6)
C20.34218 (17)0.5824 (6)0.08521 (13)0.0517 (7)
C30.37049 (17)0.7810 (6)0.04821 (13)0.0509 (7)
C40.45496 (15)0.8564 (5)0.07198 (12)0.0434 (6)
C50.50795 (16)0.7272 (6)0.13321 (13)0.0487 (6)
C60.47496 (16)0.5312 (6)0.16822 (13)0.0485 (6)
C1A0.25454 (15)0.0195 (5)0.17687 (12)0.0453 (6)
O1A0.33347 (11)0.0883 (4)0.21111 (9)0.0553 (5)
C2A0.22099 (17)0.2062 (6)0.21302 (14)0.0480 (6)
O2A0.21144 (12)0.1247 (4)0.12033 (9)0.0596 (6)
C70.48817 (19)1.0654 (6)0.03107 (14)0.0493 (7)
H20.2823 (18)0.525 (6)0.0684 (14)0.053 (7)*
H1A0.351 (2)0.230 (8)0.181 (2)0.101 (13)*
H2AA0.2075 (19)0.360 (7)0.1791 (16)0.061 (8)*
H2AB0.171 (2)0.135 (7)0.2174 (16)0.068 (9)*
H7A0.541 (2)1.148 (7)0.0642 (16)0.064 (8)*
H60.511 (2)0.443 (7)0.2117 (16)0.068 (9)*
H30.3290 (19)0.864 (6)0.0038 (16)0.066 (8)*
H7B0.441 (2)1.203 (7)0.0066 (17)0.071 (9)*
H50.5648 (17)0.767 (6)0.1513 (13)0.048 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0494 (11)0.0542 (13)0.0431 (10)0.0057 (10)0.0238 (9)0.0034 (9)
C20.0460 (14)0.0669 (19)0.0466 (12)0.0044 (13)0.0212 (11)0.0070 (12)
C30.0525 (14)0.0600 (18)0.0449 (12)0.0011 (13)0.0221 (11)0.0103 (12)
C40.0526 (14)0.0460 (14)0.0398 (11)0.0021 (11)0.0263 (10)0.0006 (10)
C50.0453 (14)0.0585 (17)0.0461 (12)0.0067 (12)0.0199 (11)0.0001 (12)
C60.0520 (14)0.0531 (16)0.0437 (12)0.0025 (12)0.0199 (11)0.0059 (11)
C1A0.0497 (13)0.0507 (15)0.0407 (11)0.0003 (12)0.0218 (11)0.0010 (11)
O1A0.0496 (10)0.0673 (14)0.0479 (9)0.0127 (9)0.0141 (8)0.0134 (9)
C2A0.0459 (13)0.0525 (16)0.0486 (13)0.0041 (12)0.0195 (11)0.0068 (12)
O2A0.0544 (11)0.0703 (14)0.0528 (10)0.0033 (10)0.0154 (8)0.0173 (10)
C70.0599 (16)0.0493 (16)0.0481 (12)0.0070 (13)0.0305 (12)0.0011 (12)
Geometric parameters (Å, º) top
N1—C21.337 (3)C1A—O1A1.311 (3)
N1—C61.333 (3)C1A—C2A1.510 (4)
C2—C31.379 (4)C1A—O2A1.213 (3)
C2—H20.99 (3)O1A—H1A1.01 (4)
C3—C41.382 (4)C2A—C2Ai1.509 (5)
C3—H31.00 (3)C2A—H2AA0.98 (3)
C4—C51.382 (4)C2A—H2AB0.93 (3)
C4—C71.506 (3)C7—C7ii1.523 (5)
C5—C61.388 (4)C7—H7A0.99 (3)
C5—H50.92 (3)C7—H7B1.03 (3)
C6—H60.96 (3)
C6—N1—C2118.1 (2)O1A—C1A—C2A114.5 (2)
N1—C2—C3122.5 (3)O2A—C1A—O1A123.5 (2)
N1—C2—H2116.9 (16)O2A—C1A—C2A122.0 (2)
C3—C2—H2120.7 (16)C1A—O1A—H1A109 (2)
C2—C3—C4119.9 (2)C1A—C2A—H2AA107.1 (17)
C2—C3—H3118.6 (18)C1A—C2A—H2AB104 (2)
C4—C3—H3121.6 (18)C2Ai—C2A—C1A115.4 (3)
C3—C4—C5117.5 (2)C2Ai—C2A—H2AA110.9 (18)
C3—C4—C7120.9 (2)C2Ai—C2A—H2AB109.8 (19)
C5—C4—C7121.5 (2)H2AA—C2A—H2AB109 (3)
C4—C5—C6119.5 (2)C4—C7—C7ii111.1 (3)
C4—C5—H5121.5 (16)C4—C7—H7A109.6 (18)
C6—C5—H5119.0 (16)C4—C7—H7B109.3 (17)
N1—C6—C5122.5 (2)C7ii—C7—H7A106.4 (18)
N1—C6—H6117.1 (18)C7ii—C7—H7B105.6 (17)
C5—C6—H6120.4 (18)H7A—C7—H7B115 (3)
N1—C2—C3—C40.8 (4)C4—C5—C6—N10.7 (4)
C2—N1—C6—C50.3 (4)C5—C4—C7—C7ii92.8 (4)
C2—C3—C4—C50.3 (4)C6—N1—C2—C30.4 (4)
C2—C3—C4—C7177.8 (2)O1A—C1A—C2A—C2Ai7.1 (4)
C3—C4—C5—C60.4 (4)O2A—C1A—C2A—C2Ai173.6 (3)
C3—C4—C7—C7ii85.2 (4)C7—C4—C5—C6178.5 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_276) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.558 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.469 (14) ÅCell parameters from 1908 reflections
b = 4.4857 (2) Åθ = 4.7–26.6°
c = 19.042 (4) ŵ = 0.11 mm1
β = 113.63 (5)°T = 295 K
V = 1288.7 (12) Å3Plate, colourless
Z = 40.31 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
361 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 16.1544 pixels mm-1θmax = 26.8°, θmin = 4.7°
ω scansh = 66
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.995, Tmax = 0.996l = 2323
4834 measured reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.088H-atom parameters constrained
wR(F2) = 0.281 w = 1/[σ2(Fo2) + (0.1571P)2 + 5.0593P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
361 reflectionsΔρmax = 0.22 e Å3
46 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3930 (13)0.4763 (14)0.1477 (5)0.035 (2)*
C20.3371 (15)0.6263 (16)0.0870 (5)0.043 (2)*
H20.27640.59310.06950.051*
C30.370 (2)0.834 (2)0.0496 (6)0.039 (3)*
H30.32980.93400.00690.047*
C40.4538 (19)0.8894 (18)0.0732 (5)0.032 (3)*
C50.5124 (15)0.7271 (16)0.1358 (5)0.036 (2)*
H50.57320.75730.15320.043*
C60.4799 (15)0.5268 (19)0.1705 (6)0.042 (3)*
H60.51940.41930.21180.050*
C1A0.2536 (12)0.0328 (15)0.1754 (5)0.029 (2)*
O1A0.3341 (11)0.1019 (12)0.2122 (4)0.050 (2)*
H1A0.34630.24680.19200.074*
C2A0.2141 (16)0.1989 (15)0.2110 (5)0.035 (2)*
H2AA0.19300.36870.17700.042*
H2AB0.16410.11380.21880.042*
O2A0.2066 (11)0.1581 (11)0.1150 (3)0.0424 (19)*
C70.4897 (15)1.0882 (15)0.0304 (5)0.033 (2)*
H7A0.54341.18270.06590.039*
H7B0.44691.24360.00530.039*
Geometric parameters (Å, º) top
N1—C21.335 (14)C1A—O1A1.265 (17)
N1—C61.338 (19)C1A—C2A1.523 (19)
C2—H20.9300C1A—O2A1.234 (10)
C2—C31.40 (2)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.55 (3)
C3—C41.30 (5)C2A—H2AA0.9700
C4—C51.40 (2)C2A—H2AB0.9700
C4—C71.48 (2)C7—C7ii1.55 (2)
C5—H50.9300C7—H7A0.9700
C5—C61.347 (19)C7—H7B0.9700
C6—H60.9300
C2—N1—C6118.2 (13)O1A—C1A—C2A117.4 (10)
N1—C2—H2119.9O2A—C1A—O1A122.1 (11)
N1—C2—C3120.2 (19)O2A—C1A—C2A120.4 (15)
C3—C2—H2119.9C1A—O1A—H1A109.5
C2—C3—H3119.2C1A—C2A—C2Ai109 (2)
C4—C3—C2121.6 (15)C1A—C2A—H2AA109.8
C4—C3—H3119.2C1A—C2A—H2AB109.8
C3—C4—C5118.1 (14)C2Ai—C2A—H2AA109.8
C3—C4—C7122.1 (13)C2Ai—C2A—H2AB109.8
C5—C4—C7119 (2)H2AA—C2A—H2AB108.3
C4—C5—H5120.3C4—C7—C7ii111.0 (9)
C6—C5—C4119 (2)C4—C7—H7A109.4
C6—C5—H5120.3C4—C7—H7B109.4
N1—C6—C5122.5 (13)C7ii—C7—H7A109.4
N1—C6—H6118.7C7ii—C7—H7B109.4
C5—C6—H6118.7H7A—C7—H7B108.0
N1—C2—C3—C41 (2)C4—C5—C6—N10.3 (15)
C2—N1—C6—C51.7 (15)C5—C4—C7—C7ii83.7 (19)
C2—C3—C4—C52 (2)C6—N1—C2—C31.0 (14)
C2—C3—C4—C7174.6 (8)O1A—C1A—C2A—C2Ai0.2 (17)
C3—C4—C5—C61.8 (19)O2A—C1A—C2A—C2Ai175.8 (12)
C3—C4—C7—C7ii88 (3)C7—C4—C5—C6174.2 (8)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_287) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.560 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.462 (12) ÅCell parameters from 1891 reflections
b = 4.4828 (2) Åθ = 4.3–24.7°
c = 19.038 (3) ŵ = 0.11 mm1
β = 113.66 (5)°T = 295 K
V = 1286.9 (10) Å3Plate, colourless
Z = 40.31 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
366 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 16.1544 pixels mm-1θmax = 26.6°, θmin = 2.3°
ω scansh = 66
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.995, Tmax = 0.996l = 2222
3855 measured reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.086H-atom parameters constrained
wR(F2) = 0.270 w = 1/[σ2(Fo2) + (0.1902P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
366 reflectionsΔρmax = 0.19 e Å3
46 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3937 (9)0.4757 (11)0.1473 (4)0.041 (2)*
C20.3349 (11)0.6280 (11)0.0866 (4)0.046 (2)*
H20.27400.60020.06990.056*
C30.3721 (16)0.8371 (14)0.0490 (4)0.039 (2)*
H30.33390.93680.00540.046*
C40.4549 (14)0.8887 (13)0.0734 (4)0.033 (2)*
C50.5141 (10)0.7263 (13)0.1363 (4)0.043 (2)*
H50.57490.75810.15390.052*
C60.4822 (12)0.5255 (15)0.1707 (4)0.044 (2)*
H60.52170.41690.21180.053*
C1A0.2532 (9)0.0357 (12)0.1742 (4)0.0325 (18)*
O1A0.3335 (8)0.1023 (9)0.2116 (3)0.0503 (17)*
H1A0.34190.27610.20280.075*
C2A0.2139 (11)0.1979 (12)0.2110 (4)0.0392 (19)*
H2AA0.19220.36760.17690.047*
H2AB0.16430.11190.21920.047*
O2A0.2059 (9)0.1615 (8)0.1149 (2)0.0470 (16)*
C70.4898 (11)1.0905 (12)0.0300 (4)0.0399 (19)*
H7A0.54351.18730.06510.048*
H7B0.44641.24390.00450.048*
Geometric parameters (Å, º) top
N1—C21.357 (12)C1A—O1A1.261 (14)
N1—C61.359 (17)C1A—C2A1.539 (15)
C2—H20.9300C1A—O2A1.222 (9)
C2—C31.456 (19)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.56 (2)
C3—C41.27 (3)C2A—H2AA0.9700
C4—C51.406 (15)C2A—H2AB0.9700
C4—C71.488 (16)C7—C7ii1.544 (17)
C5—H50.9300C7—H7A0.9700
C5—C61.338 (15)C7—H7B0.9700
C6—H60.9300
C2—N1—C6120.1 (9)O1A—C1A—C2A116.2 (7)
N1—C2—H2121.8O2A—C1A—O1A123.1 (9)
N1—C2—C3116.4 (15)O2A—C1A—C2A120.4 (12)
C3—C2—H2121.8C1A—O1A—H1A109.5
C2—C3—H3118.7C1A—C2A—C2Ai109.8 (15)
C4—C3—C2122.5 (11)C1A—C2A—H2AA109.7
C4—C3—H3118.7C1A—C2A—H2AB109.7
C3—C4—C5119.5 (11)C2Ai—C2A—H2AA109.7
C3—C4—C7120.2 (9)C2Ai—C2A—H2AB109.7
C5—C4—C7119.8 (16)H2AA—C2A—H2AB108.2
C4—C5—H5120.3C4—C7—C7ii109.8 (7)
C6—C5—C4119.4 (15)C4—C7—H7A109.7
C6—C5—H5120.3C4—C7—H7B109.7
N1—C6—H6119.0C7ii—C7—H7A109.7
C5—C6—N1122.0 (10)C7ii—C7—H7B109.7
C5—C6—H6119.0H7A—C7—H7B108.2
N1—C2—C3—C43.7 (15)C4—C5—C6—N10.8 (12)
C2—N1—C6—C51.1 (12)C5—C4—C7—C7ii83.5 (14)
C2—C3—C4—C54.0 (18)C6—N1—C2—C31.0 (10)
C2—C3—C4—C7176.2 (6)O1A—C1A—C2A—C2Ai0.3 (12)
C3—C4—C5—C61.8 (15)O2A—C1A—C2A—C2Ai175.2 (9)
C3—C4—C7—C7ii88.7 (18)C7—C4—C5—C6174.0 (6)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_290) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.569 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.446 (10) ÅCell parameters from 1681 reflections
b = 4.46879 (18) Åθ = 4.7–23.7°
c = 19.038 (3) ŵ = 0.11 mm1
β = 113.81 (4)°T = 295 K
V = 1280.2 (9) Å3Plate, colourless
Z = 40.31 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
211 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.076
phi and ω scansθmax = 26.6°, θmin = 2.3°
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
h = 66
Tmin = 0.995, Tmax = 0.996k = 55
2572 measured reflectionsl = 2222
314 independent reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.115P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
314 reflectionsΔρmax = 0.15 e Å3
46 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3917 (9)0.4737 (10)0.1475 (3)0.0314 (19)*
C20.3356 (10)0.6271 (11)0.0870 (3)0.0317 (19)*
H20.27480.59280.06940.038*
C30.3673 (15)0.8396 (13)0.0496 (4)0.030 (2)*
H30.32760.94780.00830.036*
C40.4573 (12)0.8866 (12)0.0744 (4)0.0220 (19)*
C50.5129 (9)0.7243 (11)0.1357 (3)0.0260 (17)*
H50.57400.75180.15390.031*
C60.4795 (11)0.5249 (14)0.1698 (4)0.030 (2)*
H60.51910.41610.21110.036*
C1A0.2533 (9)0.0369 (12)0.1756 (3)0.0254 (17)*
O1A0.3356 (8)0.1007 (9)0.2122 (3)0.0430 (15)*
H1A0.35000.23020.18890.065*
C2A0.2145 (11)0.2005 (11)0.2110 (3)0.0316 (18)*
H2AA0.19490.37150.17690.038*
H2AB0.16350.11920.21790.038*
O2A0.2053 (8)0.1593 (7)0.1145 (2)0.0341 (14)*
C70.4898 (10)1.0890 (12)0.0305 (3)0.0273 (16)*
H7A0.54321.18940.06510.033*
H7B0.44521.24030.00520.033*
Geometric parameters (Å, º) top
N1—C21.339 (11)C1A—O1A1.280 (14)
N1—C61.350 (16)C1A—C2A1.528 (13)
C2—H20.9300C1A—O2A1.238 (8)
C2—C31.407 (14)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.54 (2)
C3—C41.38 (3)C2A—H2AA0.9700
C4—C51.365 (13)C2A—H2AB0.9700
C4—C71.472 (14)C7—C7ii1.552 (16)
C5—H50.9300C7—H7A0.9700
C5—C61.343 (13)C7—H7B0.9700
C6—H60.9300
C2—N1—C6117.6 (8)O1A—C1A—C2A116.9 (7)
N1—C2—H2119.6O2A—C1A—O1A123.2 (8)
N1—C2—C3120.9 (13)O2A—C1A—C2A119.9 (11)
C3—C2—H2119.6C1A—O1A—H1A109.5
C2—C3—H3120.1C1A—C2A—C2Ai109.7 (15)
C4—C3—C2119.8 (9)C1A—C2A—H2AA109.7
C4—C3—H3120.1C1A—C2A—H2AB109.7
C3—C4—C7119.1 (9)C2Ai—C2A—H2AA109.7
C5—C4—C3118.0 (10)C2Ai—C2A—H2AB109.7
C5—C4—C7122.7 (16)H2AA—C2A—H2AB108.2
C4—C5—H5119.9C4—C7—C7ii110.4 (6)
C6—C5—C4120.1 (14)C4—C7—H7A109.6
C6—C5—H5119.9C4—C7—H7B109.6
N1—C6—H6118.2C7ii—C7—H7A109.6
C5—C6—N1123.6 (9)C7ii—C7—H7B109.6
C5—C6—H6118.2H7A—C7—H7B108.1
N1—C2—C3—C41.4 (12)C4—C5—C6—N10.7 (10)
C2—N1—C6—C51.4 (11)C5—C4—C7—C7ii83.1 (13)
C2—C3—C4—C50.6 (14)C6—N1—C2—C31.7 (10)
C2—C3—C4—C7174.4 (5)O1A—C1A—C2A—C2Ai3.6 (12)
C3—C4—C5—C60.2 (12)O2A—C1A—C2A—C2Ai175.8 (9)
C3—C4—C7—C7ii91.6 (16)C7—C4—C5—C6174.6 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_297) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.569 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.33 (7) ÅCell parameters from 570 reflections
b = 4.4824 (9) Åθ = 2.3–25.8°
c = 19.06 (2) ŵ = 0.11 mm1
β = 113.4 (3)°T = 295 K
V = 1280 (7) Å3Plate, colourless
Z = 40.19 × 0.09 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
252 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 8.0169 pixels mm-1θmax = 25.9°, θmin = 2.3°
ω scansh = 67
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.997, Tmax = 0.998l = 2320
1082 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.227 w = 1/[σ2(Fo2) + (0.1503P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
252 reflectionsΔρmax = 0.23 e Å3
46 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3904 (15)0.4735 (19)0.1463 (6)0.027 (4)*
C20.3339 (18)0.6262 (18)0.0869 (7)0.037 (3)*
H20.27280.59370.07010.045*
C30.367 (3)0.839 (2)0.0488 (8)0.018 (3)*
H30.32700.94430.00700.022*
C40.461 (3)0.890 (2)0.0754 (9)0.023 (4)*
C50.513 (2)0.7255 (17)0.1344 (7)0.030 (3)*
H50.57500.74670.15210.036*
C60.4783 (17)0.523 (2)0.1703 (8)0.021 (4)*
H60.51720.41740.21240.025*
C1A0.2543 (15)0.0376 (19)0.1760 (7)0.017 (3)*
O1A0.3373 (15)0.1017 (14)0.2131 (6)0.042 (3)*
H1A0.35190.23230.19020.063*
C2A0.214 (2)0.2038 (17)0.2101 (7)0.026 (3)*
H2AA0.19640.37570.17640.031*
H2AB0.16140.12680.21580.031*
O2A0.2057 (14)0.1568 (11)0.1147 (5)0.029 (2)*
C70.4883 (19)1.0932 (15)0.0298 (7)0.019 (2)*
H7A0.54011.20650.06240.022*
H7B0.44041.23200.00330.022*
Geometric parameters (Å, º) top
N1—C21.331 (17)C1A—O1A1.29 (2)
N1—C61.34 (2)C1A—C2A1.54 (2)
C2—H20.9300C1A—O2A1.242 (15)
C2—C31.42 (2)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.56 (4)
C3—C41.44 (6)C2A—H2AA0.9700
C4—C51.33 (3)C2A—H2AB0.9700
C4—C71.445 (19)C7—C7ii1.57 (2)
C5—H50.9300C7—H7A0.9700
C5—C61.39 (2)C7—H7B0.9700
C6—H60.9300
C2—N1—C6119.4 (14)O1A—C1A—C2A117.4 (13)
N1—C2—H2119.8O2A—C1A—O1A124.0 (14)
N1—C2—C3120 (2)O2A—C1A—C2A118.6 (19)
C3—C2—H2119.8C1A—O1A—H1A109.5
C2—C3—H3120.2C1A—C2A—C2Ai108 (3)
C2—C3—C4119.6 (19)C1A—C2A—H2AA110.0
C4—C3—H3120.2C1A—C2A—H2AB110.0
C3—C4—C7115.5 (19)C2Ai—C2A—H2AA110.0
C5—C4—C3116 (2)C2Ai—C2A—H2AB110.0
C5—C4—C7128 (3)H2AA—C2A—H2AB108.4
C4—C5—H5119.1C4—C7—C7ii108.7 (10)
C4—C5—C6122 (3)C4—C7—H7A110.0
C6—C5—H5119.1C4—C7—H7B110.0
N1—C6—C5122.3 (16)C7ii—C7—H7A110.0
N1—C6—H6118.9C7ii—C7—H7B110.0
C5—C6—H6118.9H7A—C7—H7B108.3
N1—C2—C3—C40.5 (19)C4—C5—C6—N12.2 (16)
C2—N1—C6—C51.1 (18)C5—C4—C7—C7ii79 (2)
C2—C3—C4—C51 (2)C6—N1—C2—C30.3 (16)
C2—C3—C4—C7175.6 (7)O1A—C1A—C2A—C2Ai5.4 (19)
C3—C4—C5—C62.3 (18)O2A—C1A—C2A—C2Ai175.2 (13)
C3—C4—C7—C7ii94 (3)C7—C4—C5—C6175.5 (9)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
1,2-bis(4,4'-pyridyl)ethane succinic acid (ETYSUC_300K_B) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.331 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6688 (5) ÅCell parameters from 2102 reflections
b = 4.9269 (1) Åθ = 4.2–71.3°
c = 19.3733 (6) ŵ = 0.80 mm1
β = 108.522 (3)°T = 300 K
V = 1508.63 (8) Å3Plate, colourless
Z = 40.47 × 0.41 × 0.12 mm
Data collection top
New Xcalibur, EosS2
diffractometer
1432 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.0294 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.767, Tmax = 0.923l = 2323
4278 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048All H-atom parameters refined
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0941P)2 + 0.2773P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1432 reflectionsΔρmax = 0.18 e Å3
136 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39371 (7)0.4567 (3)0.14447 (6)0.0392 (4)
C20.34303 (9)0.5779 (3)0.08497 (8)0.0445 (4)
C30.37067 (9)0.7760 (3)0.04769 (8)0.0439 (4)
C40.45497 (9)0.8548 (3)0.07190 (7)0.0359 (4)
C50.50763 (9)0.7268 (3)0.13309 (8)0.0406 (4)
C60.47474 (9)0.5319 (3)0.16770 (8)0.0410 (4)
C1A0.25508 (8)0.0185 (3)0.17694 (7)0.0358 (4)
O1A0.33364 (6)0.0854 (2)0.21075 (6)0.0502 (4)
C2A0.22127 (9)0.2053 (3)0.21334 (8)0.0416 (4)
O2A0.21238 (7)0.1226 (3)0.12090 (6)0.0552 (4)
C70.48799 (11)1.0641 (3)0.03117 (8)0.0421 (4)
H2AA0.2064 (14)0.349 (5)0.1773 (13)0.081 (7)*
H60.5105 (12)0.444 (4)0.2103 (11)0.055 (5)*
H20.2836 (11)0.516 (4)0.0690 (10)0.047 (4)*
H30.3293 (11)0.862 (4)0.0057 (10)0.051 (5)*
H50.5675 (11)0.771 (4)0.1524 (9)0.050 (5)*
H2AB0.1681 (13)0.140 (4)0.2154 (10)0.064 (6)*
H7A0.5394 (13)1.152 (4)0.0645 (12)0.061 (5)*
H7B0.4450 (13)1.199 (4)0.0110 (10)0.061 (5)*
H1A0.3514 (14)0.220 (5)0.1823 (12)0.082 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0402 (7)0.0403 (7)0.0395 (7)0.0069 (5)0.0158 (5)0.0052 (5)
C20.0326 (7)0.0538 (9)0.0471 (8)0.0066 (6)0.0124 (6)0.0093 (7)
C30.0379 (7)0.0502 (9)0.0427 (8)0.0000 (6)0.0116 (6)0.0127 (6)
C40.0429 (7)0.0331 (7)0.0375 (7)0.0048 (5)0.0209 (6)0.0016 (5)
C50.0362 (7)0.0437 (8)0.0414 (8)0.0083 (6)0.0117 (6)0.0003 (6)
C60.0400 (8)0.0438 (8)0.0365 (7)0.0051 (6)0.0085 (6)0.0068 (6)
C1A0.0355 (7)0.0350 (7)0.0368 (7)0.0029 (5)0.0116 (6)0.0024 (5)
O1A0.0402 (6)0.0577 (7)0.0470 (7)0.0166 (5)0.0057 (5)0.0178 (5)
C2A0.0358 (7)0.0417 (8)0.0456 (9)0.0075 (6)0.0104 (6)0.0080 (6)
O2A0.0455 (6)0.0614 (8)0.0520 (7)0.0058 (5)0.0062 (5)0.0223 (5)
C70.0530 (9)0.0340 (8)0.0461 (8)0.0062 (6)0.0254 (7)0.0016 (6)
Geometric parameters (Å, º) top
N1—C21.3341 (19)C1A—O1A1.3067 (17)
N1—C61.3334 (18)C1A—C2A1.5110 (19)
C2—C31.378 (2)C1A—O2A1.2071 (17)
C2—H20.986 (17)O1A—H1A0.97 (3)
C3—C41.388 (2)C2A—C2Ai1.505 (3)
C3—H30.979 (19)C2A—H2AA0.97 (3)
C4—C51.383 (2)C2A—H2AB0.95 (2)
C4—C71.5049 (18)C7—C7ii1.525 (3)
C5—C61.381 (2)C7—H7A0.99 (2)
C5—H50.973 (17)C7—H7B0.96 (2)
C6—H60.953 (19)
C6—N1—C2117.58 (12)O1A—C1A—C2A114.39 (12)
N1—C2—C3122.99 (13)O2A—C1A—O1A123.67 (13)
N1—C2—H2115.5 (11)O2A—C1A—C2A121.93 (12)
C3—C2—H2121.5 (11)C1A—O1A—H1A109.1 (13)
C2—C3—C4119.50 (13)C1A—C2A—H2AA104.2 (14)
C2—C3—H3118.5 (10)C1A—C2A—H2AB105.3 (13)
C4—C3—H3122.0 (10)C2Ai—C2A—C1A115.74 (15)
C3—C4—C7120.94 (13)C2Ai—C2A—H2AA113.9 (14)
C5—C4—C3117.44 (12)C2Ai—C2A—H2AB112.3 (12)
C5—C4—C7121.58 (13)H2AA—C2A—H2AB104.3 (17)
C4—C5—H5121.4 (11)C4—C7—C7ii111.32 (15)
C6—C5—C4119.45 (13)C4—C7—H7A110.0 (12)
C6—C5—H5119.1 (11)C4—C7—H7B109.6 (12)
N1—C6—C5123.03 (13)C7ii—C7—H7A107.8 (12)
N1—C6—H6117.0 (11)C7ii—C7—H7B108.2 (12)
C5—C6—H6119.9 (11)H7A—C7—H7B109.9 (16)
N1—C2—C3—C40.5 (3)C4—C5—C6—N10.8 (2)
C2—N1—C6—C50.0 (2)C5—C4—C7—C7ii93.3 (2)
C2—C3—C4—C50.3 (2)C6—N1—C2—C30.6 (2)
C2—C3—C4—C7178.01 (14)O1A—C1A—C2A—C2Ai6.8 (2)
C3—C4—C5—C60.9 (2)O2A—C1A—C2A—C2Ai173.94 (18)
C3—C4—C7—C7ii84.4 (2)C7—C4—C5—C6178.58 (13)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (etysuc_300K) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.331 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6610 (13) ÅCell parameters from 927 reflections
b = 4.9284 (4) Åθ = 4.8–71.2°
c = 19.3767 (13) ŵ = 0.80 mm1
β = 108.520 (8)°T = 300 K
V = 1508.7 (2) Å3Plate, colourless
Z = 40.14 × 0.09 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1444 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source914 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.5384 pixels mm-1θmax = 72.4°, θmin = 4.8°
ω scansh = 2019
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.907, Tmax = 1.000l = 1723
2850 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052All H-atom parameters refined
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0756P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1444 reflectionsΔρmax = 0.15 e Å3
136 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39363 (13)0.4555 (4)0.14440 (10)0.0534 (6)
C20.34321 (17)0.5778 (6)0.08502 (14)0.0585 (7)
C30.37098 (17)0.7766 (6)0.04758 (14)0.0585 (7)
C40.45509 (15)0.8547 (5)0.07181 (12)0.0484 (6)
C50.50740 (16)0.7267 (6)0.13288 (13)0.0556 (7)
C60.47485 (16)0.5319 (6)0.16778 (13)0.0554 (7)
C1A0.25494 (15)0.0190 (5)0.17705 (12)0.0518 (6)
O1A0.33364 (11)0.0860 (4)0.21075 (9)0.0644 (6)
C2A0.22126 (17)0.2046 (6)0.21356 (14)0.0551 (6)
O2A0.21224 (12)0.1221 (4)0.12072 (10)0.0698 (6)
C70.4876 (2)1.0643 (6)0.03101 (15)0.0572 (7)
H2AA0.1660 (18)0.137 (6)0.2160 (15)0.071 (8)*
H60.5124 (18)0.432 (6)0.2115 (15)0.070 (8)*
H20.2858 (16)0.512 (5)0.0684 (12)0.051 (7)*
H1A0.357 (2)0.231 (7)0.1813 (18)0.106 (12)*
H30.3295 (19)0.862 (6)0.0031 (16)0.077 (9)*
H7A0.441 (2)1.200 (7)0.0057 (18)0.090 (11)*
H7B0.537 (2)1.154 (7)0.0634 (17)0.084 (10)*
H2AB0.212 (2)0.365 (7)0.1817 (18)0.092 (11)*
H50.5674 (17)0.759 (5)0.1504 (13)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0559 (12)0.0606 (13)0.0497 (11)0.0061 (10)0.0253 (9)0.0059 (10)
C20.0491 (14)0.0748 (19)0.0553 (14)0.0081 (13)0.0221 (11)0.0071 (13)
C30.0570 (15)0.0690 (18)0.0536 (13)0.0005 (13)0.0233 (11)0.0128 (13)
C40.0579 (14)0.0494 (13)0.0473 (12)0.0041 (11)0.0302 (11)0.0015 (11)
C50.0530 (15)0.0643 (17)0.0537 (13)0.0099 (13)0.0230 (11)0.0019 (12)
C60.0581 (15)0.0601 (16)0.0500 (13)0.0062 (13)0.0200 (11)0.0057 (12)
C1A0.0553 (14)0.0593 (16)0.0465 (12)0.0015 (12)0.0243 (11)0.0028 (12)
O1A0.0552 (11)0.0797 (14)0.0566 (10)0.0167 (9)0.0155 (8)0.0164 (10)
C2A0.0523 (14)0.0589 (17)0.0572 (13)0.0053 (13)0.0216 (11)0.0094 (13)
O2A0.0620 (11)0.0829 (14)0.0621 (11)0.0070 (10)0.0162 (9)0.0210 (10)
C70.0719 (17)0.0545 (16)0.0567 (14)0.0088 (14)0.0366 (13)0.0024 (13)
Geometric parameters (Å, º) top
N1—C21.334 (3)C1A—O1A1.308 (3)
N1—C61.337 (3)C1A—C2A1.511 (3)
C2—C31.383 (4)C1A—O2A1.209 (3)
C2—H20.96 (3)O1A—H1A1.06 (4)
C3—C41.384 (4)C2A—C2Ai1.501 (5)
C3—H31.01 (3)C2A—H2AA0.99 (3)
C4—C51.379 (4)C2A—H2AB0.98 (4)
C4—C71.502 (3)C7—C7ii1.527 (5)
C5—C61.381 (4)C7—H7A1.02 (3)
C5—H50.96 (3)C7—H7B0.97 (3)
C6—H61.01 (3)
C2—N1—C6117.2 (2)O1A—C1A—C2A114.4 (2)
N1—C2—C3123.3 (3)O2A—C1A—O1A123.6 (2)
N1—C2—H2114.9 (15)O2A—C1A—C2A122.0 (2)
C3—C2—H2121.8 (15)C1A—O1A—H1A112.2 (18)
C2—C3—C4119.4 (2)C1A—C2A—H2AA105.4 (17)
C2—C3—H3119.4 (18)C1A—C2A—H2AB107.5 (19)
C4—C3—H3121.2 (18)C2Ai—C2A—C1A115.9 (3)
C3—C4—C7120.6 (2)C2Ai—C2A—H2AA112.2 (16)
C5—C4—C3117.4 (2)C2Ai—C2A—H2AB106 (2)
C5—C4—C7122.0 (2)H2AA—C2A—H2AB110 (3)
C4—C5—C6119.9 (2)C4—C7—C7ii111.2 (3)
C4—C5—H5122.0 (16)C4—C7—H7A110.9 (19)
C6—C5—H5117.9 (16)C4—C7—H7B110.5 (19)
N1—C6—C5122.9 (2)C7ii—C7—H7A104.3 (19)
N1—C6—H6116.1 (16)C7ii—C7—H7B108.1 (19)
C5—C6—H6121.0 (16)H7A—C7—H7B112 (3)
N1—C2—C3—C40.3 (4)C4—C5—C6—N11.1 (4)
C2—N1—C6—C50.6 (4)C5—C4—C7—C7ii92.8 (4)
C2—C3—C4—C50.3 (4)C6—N1—C2—C30.1 (4)
C2—C3—C4—C7178.2 (2)O1A—C1A—C2A—C2Ai6.4 (4)
C3—C4—C5—C60.9 (4)O2A—C1A—C2A—C2Ai174.7 (3)
C3—C4—C7—C7ii85.1 (4)C7—C4—C5—C6178.8 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_329) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.595 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.429 (12) ÅCell parameters from 1430 reflections
b = 4.4214 (3) Åθ = 4.7–24.4°
c = 19.020 (4) ŵ = 0.12 mm1
β = 114.32 (5)°T = 295 K
V = 1258.9 (11) Å3Plate, colourless
Z = 40.31 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
353 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 16.1544 pixels mm-1θmax = 26.8°, θmin = 2.4°
ω scansh = 66
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.995, Tmax = 0.997l = 2323
4135 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0646P)2 + 5.1287P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
353 reflectionsΔρmax = 0.18 e Å3
46 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3927 (10)0.4769 (11)0.1481 (4)0.0318 (18)*
C20.3342 (11)0.6335 (12)0.0879 (4)0.0347 (18)*
H20.27310.60120.07130.042*
C30.3657 (15)0.8452 (14)0.0504 (4)0.030 (2)*
H30.32500.95650.00960.035*
C40.4568 (13)0.8925 (13)0.0732 (4)0.0229 (18)*
C50.5153 (12)0.7247 (12)0.1358 (3)0.0289 (17)*
H50.57680.74830.15370.035*
C60.4790 (11)0.5230 (14)0.1704 (4)0.029 (2)*
H60.51820.41210.21220.035*
C1A0.2529 (10)0.0385 (12)0.1755 (4)0.0229 (16)*
O1A0.3345 (8)0.1029 (9)0.2123 (3)0.0407 (14)*
H1A0.34660.25290.19320.061*
C2A0.2174 (12)0.1999 (12)0.2109 (4)0.0311 (16)*
H2AA0.20000.37400.17690.037*
H2AB0.16430.12330.21510.037*
O2A0.2040 (8)0.1621 (8)0.1137 (2)0.0348 (13)*
C70.4911 (11)1.0957 (12)0.0302 (3)0.0253 (15)*
H7A0.54601.19150.06530.030*
H7B0.44771.25260.00460.030*
Geometric parameters (Å, º) top
N1—C21.345 (12)C1A—O1A1.262 (15)
N1—C61.318 (17)C1A—C2A1.492 (14)
C2—H20.9300C1A—O2A1.245 (9)
C2—C31.398 (16)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.497 (19)
C3—C41.39 (3)C2A—H2AA0.9700
C4—C51.396 (14)C2A—H2AB0.9700
C4—C71.474 (16)C7—C7ii1.548 (18)
C5—H50.9300C7—H7A0.9700
C5—C61.380 (16)C7—H7B0.9700
C6—H60.9300
C6—N1—C2119.4 (10)O1A—C1A—C2A115.6 (8)
N1—C2—H2120.2O2A—C1A—O1A123.3 (9)
N1—C2—C3119.6 (14)O2A—C1A—C2A121.1 (12)
C3—C2—H2120.2C1A—O1A—H1A109.5
C2—C3—H3119.4C1A—C2A—C2Ai113.9 (16)
C4—C3—C2121.2 (10)C1A—C2A—H2AA108.8
C4—C3—H3119.4C1A—C2A—H2AB108.8
C3—C4—C5117.3 (11)C2Ai—C2A—H2AA108.8
C3—C4—C7121.8 (10)C2Ai—C2A—H2AB108.8
C5—C4—C7120.8 (17)H2AA—C2A—H2AB107.7
C4—C5—H5121.0C4—C7—C7ii108.1 (7)
C6—C5—C4118.0 (16)C4—C7—H7A110.1
C6—C5—H5121.0C4—C7—H7B110.1
N1—C6—C5124.4 (10)C7ii—C7—H7A110.1
N1—C6—H6117.8C7ii—C7—H7B110.1
C5—C6—H6117.8H7A—C7—H7B108.4
N1—C2—C3—C41.5 (12)C4—C5—C6—N10.2 (11)
C2—N1—C6—C50.0 (12)C5—C4—C7—C7ii83.7 (14)
C2—C3—C4—C51.3 (14)C6—N1—C2—C30.8 (11)
C2—C3—C4—C7174.7 (5)O1A—C1A—C2A—C2Ai6.3 (15)
C3—C4—C5—C60.5 (12)O2A—C1A—C2A—C2Ai173.9 (11)
C3—C4—C7—C7ii92.2 (17)C7—C4—C5—C6175.6 (6)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_347) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.598 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.44 (9) ÅCell parameters from 540 reflections
b = 4.4104 (11) Åθ = 2.3–23.9°
c = 18.97 (3) ŵ = 0.12 mm1
β = 114.0 (4)°T = 295 K
V = 1256 (8) Å3Plate, colourless
Z = 40.19 × 0.09 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
289 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 8.0169 pixels mm-1θmax = 26.3°, θmin = 2.4°
ω scansh = 77
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 55
Tmin = 0.998, Tmax = 0.998l = 2323
1431 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0916P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
289 reflectionsΔρmax = 0.16 e Å3
46 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3902 (14)0.4749 (15)0.1471 (6)0.036 (3)*
C20.3362 (15)0.6336 (15)0.0878 (6)0.035 (3)*
H20.27530.59970.07030.042*
C30.365 (2)0.8463 (19)0.0503 (7)0.030 (4)*
H30.32420.96110.01040.036*
C40.459 (2)0.8884 (18)0.0740 (8)0.023 (3)*
C50.5172 (17)0.7238 (15)0.1366 (6)0.031 (3)*
H50.57860.74580.15490.038*
C60.4772 (15)0.5198 (17)0.1710 (7)0.020 (3)*
H60.51480.40930.21360.023*
C1A0.2514 (13)0.0398 (18)0.1737 (7)0.025 (3)*
O1A0.3342 (13)0.0998 (13)0.2125 (5)0.038 (2)*
H1A0.34860.24410.19280.057*
C2A0.2161 (16)0.2007 (13)0.2103 (6)0.024 (2)*
H2AA0.19840.37620.17660.029*
H2AB0.16340.12360.21540.029*
O2A0.2051 (12)0.1628 (10)0.1143 (4)0.0365 (19)*
C70.4921 (16)1.0933 (15)0.0296 (6)0.024 (2)*
H7A0.54701.18970.06390.029*
H7B0.44851.25020.00460.029*
Geometric parameters (Å, º) top
N1—C21.315 (16)C1A—O1A1.28 (2)
N1—C61.33 (2)C1A—C2A1.508 (16)
C2—H20.9300C1A—O2A1.202 (14)
C2—C31.37 (2)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.53 (3)
C3—C41.44 (5)C2A—H2AA0.9700
C4—C51.39 (3)C2A—H2AB0.9700
C4—C71.482 (18)C7—C7ii1.499 (16)
C5—H50.9300C7—H7A0.9700
C5—C61.420 (19)C7—H7B0.9700
C6—H60.9300
C2—N1—C6118.1 (13)O1A—C1A—C2A113.4 (12)
N1—C2—H2118.2O2A—C1A—O1A124.3 (13)
N1—C2—C3124 (2)O2A—C1A—C2A122.3 (17)
C3—C2—H2118.2C1A—O1A—H1A109.5
C2—C3—H3120.7C1A—C2A—C2Ai113 (2)
C2—C3—C4118.7 (19)C1A—C2A—H2AA109.0
C4—C3—H3120.7C1A—C2A—H2AB109.0
C3—C4—C7119.9 (18)C2Ai—C2A—H2AA109.0
C5—C4—C3118.6 (15)C2Ai—C2A—H2AB109.0
C5—C4—C7121 (3)H2AA—C2A—H2AB107.8
C4—C5—H5122.0C4—C7—C7ii107.9 (9)
C4—C5—C6116 (2)C4—C7—H7A110.1
C6—C5—H5122.0C4—C7—H7B110.1
N1—C6—C5125.0 (14)C7ii—C7—H7A110.1
N1—C6—H6117.5C7ii—C7—H7B110.1
C5—C6—H6117.5H7A—C7—H7B108.4
N1—C2—C3—C43.5 (15)C4—C5—C6—N11.0 (13)
C2—N1—C6—C51.2 (15)C5—C4—C7—C7ii85 (2)
C2—C3—C4—C53.5 (17)C6—N1—C2—C31.2 (14)
C2—C3—C4—C7173.7 (6)O1A—C1A—C2A—C2Ai5.6 (16)
C3—C4—C5—C61.4 (13)O2A—C1A—C2A—C2Ai173.7 (11)
C3—C4—C7—C7ii92 (2)C7—C4—C5—C6175.8 (6)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (ETYSUC_373) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.612 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.46 (6) ÅCell parameters from 521 reflections
b = 4.3839 (7) Åθ = 2.3–24.1°
c = 18.94 (2) ŵ = 0.12 mm1
β = 114.3 (3)°T = 295 K
V = 1246 (6) Å3Plate, colourless
Z = 40.19 × 0.09 × 0.02 mm
Data collection top
New Xcalibur, EosS2
diffractometer
253 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 8.0169 pixels mm-1θmax = 26.2°, θmin = 2.4°
ω scansh = 77
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)
k = 45
Tmin = 0.997, Tmax = 0.998l = 2322
1000 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.271 w = 1/[σ2(Fo2) + (0.1895P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
253 reflectionsΔρmax = 0.24 e Å3
46 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3896 (17)0.474 (2)0.1471 (8)0.036 (4)*
C20.3342 (19)0.636 (2)0.0873 (7)0.033 (3)*
H20.27330.60070.07000.039*
C30.362 (3)0.852 (2)0.0502 (9)0.030 (5)*
H30.32100.97260.01150.036*
C40.462 (3)0.888 (2)0.0743 (9)0.017 (4)*
C50.518 (2)0.720 (2)0.1365 (8)0.035 (4)*
H50.57950.73610.15510.042*
C60.4771 (18)0.522 (2)0.1704 (9)0.019 (4)*
H60.51480.41280.21360.023*
C1A0.2523 (17)0.041 (3)0.1763 (9)0.028 (4)*
O1A0.3362 (17)0.1000 (19)0.2124 (7)0.046 (4)*
H1A0.34900.24570.19180.069*
C2A0.221 (2)0.2004 (19)0.2121 (8)0.028 (3)*
H2AA0.16600.13170.21400.033*
H2AB0.20680.37650.17820.033*
O2A0.2064 (16)0.1624 (15)0.1152 (6)0.036 (3)*
C70.492 (2)1.093 (2)0.0303 (8)0.027 (3)*
H7A0.54671.19340.06420.033*
H7B0.44721.24790.00540.033*
Geometric parameters (Å, º) top
N1—C21.331 (18)C1A—O1A1.29 (2)
N1—C61.34 (2)C1A—C2A1.46 (2)
C2—H20.9300C1A—O2A1.215 (16)
C2—C31.36 (3)O1A—H1A0.8200
C3—H30.9300C2A—C2Ai1.42 (4)
C3—C41.53 (6)C2A—H2AA0.9700
C4—C51.37 (3)C2A—H2AB0.9700
C4—C71.44 (2)C7—C7ii1.51 (2)
C5—H50.9300C7—H7A0.9700
C5—C61.40 (3)C7—H7B0.9700
C6—H60.9300
C2—N1—C6117.7 (15)O1A—C1A—C2A113.8 (15)
N1—C2—H2118.2O2A—C1A—O1A121.7 (17)
N1—C2—C3124 (3)O2A—C1A—C2A124 (2)
C3—C2—H2118.2C1A—O1A—H1A109.5
C2—C3—H3121.1C1A—C2A—H2AA107.7
C2—C3—C4118 (2)C1A—C2A—H2AB107.7
C4—C3—H3121.1C2Ai—C2A—C1A118 (3)
C5—C4—C3117 (2)C2Ai—C2A—H2AA107.7
C5—C4—C7124 (3)C2Ai—C2A—H2AB107.7
C7—C4—C3118 (2)H2AA—C2A—H2AB107.1
C4—C5—H5121.7C4—C7—C7ii108.1 (11)
C4—C5—C6117 (3)C4—C7—H7A110.1
C6—C5—H5121.7C4—C7—H7B110.1
N1—C6—C5126.8 (17)C7ii—C7—H7A110.1
N1—C6—H6116.6C7ii—C7—H7B110.1
C5—C6—H6116.6H7A—C7—H7B108.4
N1—C2—C3—C45.4 (18)C4—C5—C6—N12.1 (17)
C2—N1—C6—C53 (2)C5—C4—C7—C7ii84 (3)
C2—C3—C4—C55.6 (19)C6—N1—C2—C31.5 (19)
C2—C3—C4—C7173.7 (8)O1A—C1A—C2A—C2Ai12 (3)
C3—C4—C5—C62.0 (15)O2A—C1A—C2A—C2Ai173.1 (18)
C3—C4—C7—C7ii95 (3)C7—C4—C5—C6177.2 (9)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
4,4'-Ethane-1,2-diyldipyridine succinic acid (etysuc) top
Crystal data top
C12H12N2·C4H6O4F(000) = 640
Mr = 302.32Dx = 1.331 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.6711 (3) ÅCell parameters from 6372 reflections
b = 4.9272 (1) Åθ = 4.2–76.1°
c = 19.3744 (4) ŵ = 0.80 mm1
β = 108.512 (2)°T = 295 K
V = 1509.10 (5) Å3Block, colourless
Z = 40.2 × 0.1 × 0.04 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1554 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1318 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.5384 pixels mm-1θmax = 76.2°, θmin = 4.8°
ω scansh = 2120
Absorption correction: gaussian
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 55
Tmin = 0.813, Tmax = 1.000l = 2423
12238 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.6357P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.17 e Å3
1554 reflectionsΔρmin = 0.16 e Å3
137 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0011 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39365 (7)0.4565 (2)0.14452 (6)0.0400 (3)
C20.34297 (8)0.5776 (3)0.08506 (7)0.0454 (4)
C30.37070 (8)0.7758 (3)0.04771 (7)0.0449 (4)
C40.45499 (8)0.8545 (3)0.07183 (6)0.0367 (3)
C50.50755 (8)0.7272 (3)0.13315 (7)0.0411 (3)
C60.47475 (8)0.5319 (3)0.16781 (7)0.0418 (3)
C1A0.25506 (8)0.0182 (3)0.17701 (6)0.0371 (3)
O1A0.33368 (6)0.0856 (2)0.21085 (5)0.0512 (3)
C2A0.22111 (8)0.2052 (3)0.21334 (7)0.0426 (3)
O2A0.21229 (6)0.1228 (2)0.12076 (5)0.0560 (3)
C70.48802 (10)1.0641 (3)0.03119 (8)0.0431 (3)
H20.2839 (10)0.511 (4)0.0670 (9)0.053 (4)*
H2AA0.1674 (12)0.142 (4)0.2166 (9)0.066 (5)*
H50.5678 (10)0.770 (4)0.1524 (9)0.058 (5)*
H2AB0.2082 (12)0.356 (4)0.1782 (11)0.074 (6)*
H7A0.4435 (11)1.197 (4)0.0092 (9)0.064 (5)*
H60.5103 (10)0.443 (4)0.2112 (9)0.055 (5)*
H7B0.5407 (12)1.157 (4)0.0658 (10)0.064 (5)*
H30.3296 (11)0.862 (4)0.0042 (9)0.060 (5)*
H1A0.3537 (12)0.227 (5)0.1830 (11)0.085 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0415 (6)0.0421 (7)0.0389 (5)0.0071 (5)0.0162 (4)0.0052 (5)
C20.0350 (6)0.0563 (9)0.0453 (7)0.0069 (6)0.0131 (5)0.0093 (6)
C30.0404 (7)0.0524 (9)0.0418 (7)0.0016 (6)0.0130 (5)0.0121 (6)
C40.0442 (6)0.0348 (7)0.0373 (6)0.0040 (5)0.0219 (5)0.0001 (5)
C50.0367 (6)0.0454 (8)0.0415 (6)0.0090 (5)0.0129 (5)0.0008 (6)
C60.0416 (7)0.0458 (8)0.0363 (6)0.0053 (6)0.0101 (5)0.0062 (5)
C1A0.0373 (6)0.0380 (7)0.0369 (6)0.0028 (5)0.0128 (5)0.0026 (5)
O1A0.0422 (5)0.0595 (7)0.0467 (5)0.0165 (5)0.0068 (4)0.0180 (5)
C2A0.0374 (6)0.0435 (8)0.0454 (7)0.0080 (6)0.0111 (5)0.0086 (6)
O2A0.0461 (5)0.0645 (7)0.0513 (6)0.0060 (5)0.0065 (4)0.0219 (5)
C70.0558 (8)0.0362 (8)0.0454 (7)0.0067 (6)0.0275 (6)0.0022 (6)
Geometric parameters (Å, º) top
N1—C21.3339 (17)C1A—O1A1.3086 (15)
N1—C61.3350 (16)C1A—C2A1.5101 (18)
C2—C31.3793 (19)C1A—O2A1.2118 (15)
C2—H20.991 (16)O1A—H1A1.00 (2)
C3—C41.3880 (18)C2A—C2Ai1.507 (3)
C3—H30.998 (18)C2A—H2AA0.967 (19)
C4—C51.3827 (18)C2A—H2AB0.98 (2)
C4—C71.5050 (17)C7—C7ii1.525 (3)
C5—C61.3816 (18)C7—H7A0.982 (19)
C5—H50.977 (16)C7—H7B1.027 (19)
C6—H60.966 (17)
C2—N1—C6117.59 (11)O1A—C1A—C2A114.56 (11)
N1—C2—C3122.95 (12)O2A—C1A—O1A123.52 (12)
N1—C2—H2116.2 (10)O2A—C1A—C2A121.92 (11)
C3—C2—H2120.8 (10)C1A—O1A—H1A111.1 (11)
C2—C3—C4119.56 (12)C1A—C2A—H2AA106.8 (11)
C2—C3—H3119.4 (10)C1A—C2A—H2AB105.0 (11)
C4—C3—H3121.0 (10)C2Ai—C2A—C1A115.51 (14)
C3—C4—C7121.01 (12)C2Ai—C2A—H2AA111.1 (11)
C5—C4—C3117.39 (11)C2Ai—C2A—H2AB111.4 (11)
C5—C4—C7121.57 (12)H2AA—C2A—H2AB106.5 (15)
C4—C5—H5121.6 (10)C4—C7—C7ii111.22 (14)
C6—C5—C4119.54 (12)C4—C7—H7A109.5 (10)
C6—C5—H5118.9 (10)C4—C7—H7B110.0 (10)
N1—C6—C5122.97 (12)C7ii—C7—H7A106.6 (11)
N1—C6—H6116.3 (10)C7ii—C7—H7B108.5 (10)
C5—C6—H6120.7 (10)H7A—C7—H7B111.0 (15)
N1—C2—C3—C40.4 (2)C4—C5—C6—N10.5 (2)
C2—N1—C6—C50.1 (2)C5—C4—C7—C7ii93.58 (19)
C2—C3—C4—C50.1 (2)C6—N1—C2—C30.4 (2)
C2—C3—C4—C7178.18 (13)O1A—C1A—C2A—C2Ai6.5 (2)
C3—C4—C5—C60.5 (2)O2A—C1A—C2A—C2Ai174.09 (16)
C3—C4—C7—C7ii84.5 (2)C7—C4—C5—C6178.63 (12)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
 

Acknowledgements

The roles of the authors were as follows. EPK: conceptualization, investigation, formal analysis, resources, data curation, writing (original draft, review and editing), visualization, supervision, project administration and funding acquisition; KS: investigation and visualization; MK: software, data curation, writing (review and editing) and visualization.

Funding information

The following funding is acknowledged: Narodowe Centrum Nauki (grant No. 2020/39/D/ST4/00260).

References

First citationBaughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. (1998). Science, 279, 1522–1524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBhunia, M. K., Das, S. K. & Bhaumik, A. (2010). Chem. Phys. Lett. 498, 145–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationBolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514–11603.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBraga, D., Dichiarante, E., Palladino, G., Grepioni, F., Chierotti, M. R., Gobetto, R. & Pellegrino, L. (2010). CrystEngComm, 12, 3534–3536.  Web of Science CSD CrossRef CAS Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. McMillan, pp. 101–112. Dordrecht: Springer Netherlands.  Google Scholar
First citationBull, C. L., Funnell, N. P., Ridley, C. J., Pulham, C. R., Coster, P. L., Tellam, J. P. & Marshall, W. G. (2019). CrystEngComm, 21, 5872–5881.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, W. & Katrusiak, A. (2014). Nat. Commun. 5, 4337.  Web of Science CSD CrossRef PubMed Google Scholar
First citationCairns, A. B., Catafesta, J., Levelut, C., Rouquette, J., van der Lee, A., Peters, L., Thompson, A. L., Dmitriev, V., Haines, J. & Goodwin, A. L. (2013). Nat. Mater. 12, 212–216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCairns, A. B. & Goodwin, A. L. (2015). Phys. Chem. Chem. Phys. 17, 20449–20465.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321–1329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDai, C., Ren, Z., Hu, W., Liu, Q. & Pang, Z. (2024). Dyes Pigments, 224, 112014.  Web of Science CrossRef Google Scholar
First citationDing, Y., Zhao, Y. & Liu, Y. (2024). Aggregate, e626.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuggirala, N. K., Perry, M. L., Almarsson, Ö. & Zaworotko, M. J. (2015). Chem. Commun. 52, 640–655.  Web of Science CrossRef Google Scholar
First citationErkartal, M. (2024). J. Phys. Chem. C, 128, 588–596.  Web of Science CrossRef CAS Google Scholar
First citationEvans, J. S. O., Mary, T. A. & Sleight, A. W. (1997). J. Solid State Chem. 133, 580–583.  Web of Science CrossRef CAS Google Scholar
First citationGoodwin, A. L., Keen, D. A. & Tucker, M. G. (2008). Proc. Natl Acad. Sci. USA, 105, 18708–18713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarty, E. L., Ha, A. R., Warren, M. R., Thompson, A. L., Allan, D. R., Goodwin, A. L. & Funnell, N. P. (2015). Chem. Commun. 51, 10608–10611.  Web of Science CSD CrossRef CAS Google Scholar
First citationHitchings, J., Scatena, T., Allan, R. R., Cairns, D. B. & Saines, A. (2024). Chem. Commun. 60, 3271–3274.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, D., Wen, T., Guo, Y., Liang, J., Jiang, Z., Li, C., Liu, K., Yang, W. & Wang, Y. (2022). Chem. Mater. 34, 2764–2770.  Web of Science CrossRef CAS Google Scholar
First citationJones, C. L., Wilson, C. C. & Thomas, L. H. (2014). CrystEngComm, 16, 5849–5858.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaźmierczak, M., Patyk-Kaźmierczak, E. & Katrusiak, A. (2021). Cryst. Growth Des. 21, 2196–2204.  Google Scholar
First citationKnížek, K. (2021). KDiff, Kalvados Software Package. Prague, Czech Republic.  Google Scholar
First citationKorthuis, V., Khosrovani, N., Sleight, A. W., Roberts, N., Dupree, R. & Warren, W. W. Jr (1995). Chem. Mater. 7, 412–417.  CrossRef CAS Web of Science Google Scholar
First citationLee, A. van der & Dumitrescu, D. G. (2021). Chem. Sci. 12, 8537–8547.  Web of Science PubMed Google Scholar
First citationLertkiattrakul, M., Evans, M. L. & Cliffe, M. J. (2023). J. Open Source Softw. 8, 5556.  CrossRef Google Scholar
First citationLi, S., Lin, Y. & Yan, D. (2016). J. Mater. Chem. C. 4, 2527–2534.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S., Lu, B., Fang, X. & Yan, D. (2020). Angew. Chem. Int. Ed. 59, 22623–22630.  Web of Science CSD CrossRef CAS Google Scholar
First citationLind, C. (2012). Materials, 5, 1125–1154.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Y., Fu, B., Wu, M., He, W., Liu, D., Liu, F., Wang, L., Liu, H., Wang, K. & Cai, W. (2024). Phys. Chem. Chem. Phys. 26, 1722–1728.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMary, T. A., Evans, J. S. O., Vogt, T. & Sleight, A. W. (1996). Science, 272, 90–92.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMerrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294.  CrossRef Web of Science Google Scholar
First citationMiller, W., Smith, C. W., Mackenzie, D. S. & Evans, K. E. (2009). J. Mater. Sci. 44, 5441–5451.  Web of Science CrossRef CAS Google Scholar
First citationPatyk-Kaźmierczak, E., Izquierdo-Ruiz, F., Lobato, A., Kaźmierczak, M., Moszczyńska, I., Olejniczak, A. & Recio, J. M. (2024). IUCrJ, 11, 168–181.  Web of Science CSD CrossRef PubMed IUCr Journals Google Scholar
First citationPatyk-Kaźmierczak, E. & Kaźmierczak, M. (2024). Chem. Commun. 60, 10310–10313.  Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry. Cornell University Press.  Google Scholar
First citationPiermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780.  CrossRef CAS Web of Science Google Scholar
First citationQu, S., Shen, K., Wu, B., He, Y., Zhao, Z., Yin, C., An, Z., Yan, S. & Shi, H. (2023). Cryst. Growth Des. 23, 31–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2020). CrysAlisPro. Rigaku Corporation, Wroclaw, Poland.  Google Scholar
First citationRigaku Oxford Diffraction (2022). CrysAlisPro. Rigaku Corporation, Wroclaw, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShephard, J. J., Berryman, V. E. J., Ochiai, T., Walter, O., Price, A. N., Warren, M. R., Arnold, P. L., Kaltsoyannis, N. & Parsons, S. (2022). Nat. Commun. 13, 5923.  Web of Science CSD CrossRef PubMed Google Scholar
First citationShepherd, H. J., Palamarciuc, T., Rosa, P., Guionneau, P., Molnár, G., Létard, J.-F. & Bousseksou, A. (2012). Angew. Chem. Int. Ed. 51, 3910–3914.  Web of Science CSD CrossRef CAS Google Scholar
First citationSleight, A. W. (1995). Endeavour, 19, 64–68.  CrossRef CAS Web of Science Google Scholar
First citationSzafrański, M. (2020). J. Phys. Chem. C, 124, 11631–11638.  Google Scholar
First citationTakenaka, K. (2012). Sci. Technol. Adv. Mater. 13, 013001.  Web of Science CrossRef PubMed Google Scholar
First citationWoodall, C. H., Beavers, C. M., Christensen, J., Hatcher, L. E., Intissar, M., Parlett, A., Teat, S. J., Reber, C. & Raithby, P. R. (2013). Angew. Chem. Int. Ed. 52, 9691–9694.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeung, H. H.-M., Kilmurray, R., Hobday, C. L., McKellar, S. C., Cheetham, A. K., Allan, D. R. & Moggach, S. A. (2017). Phys. Chem. Chem. Phys. 19, 3544–3549.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZeng, Q., Wang, K. & Zou, B. (2017). J. Am. Chem. Soc. 139, 15648–15651.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZeng, Q., Wang, K. & Zou, B. (2020). ACS Materials Lett. 2, 291–295.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Y., Fan, C., Pei, C., Geng, X., Xing, G., Ben, T. & Qiu, S. (2020). J. Am. Chem. Soc. 142, 3593–3599.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, B., Zhao, Q., Tang, L. & Yan, D. (2020). Chem. Commun. 56, 7698–7701.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525