research papers
Managing negative linear compressibility and
through a case study of 1,2-bis(4′-pyridyl)ethane cocrystalsaFacuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
*Correspondence e-mail: ewapatyk@amu.edu.pl
Multicomponent crystals have great scientific potential because of their amenability to crystal engineering in terms of composition and structure, and hence their properties can be easily modified. More and more research areas are employing the design of multicomponent materials to improve the known or induce novel physicochemical properties of crystals, and recently they have been explored as materials with abnormal pressure behaviour. The cocrystal of 1,2-bis(4′-pyridyl)ethane and fumaric acid (ETYFUM) exhibits a negative linear compressibility behaviour comparable to that of framework and metal-containing materials, but overcomes many of their deficiencies restricting their use. Herein ETYFUM was investigated at low temperature to reveal negative
behaviour. Additionally, a cocrystal isostructural with ETYFUM, based on 1,2-bis(4′-pyridyl)ethane and succinic acid (ETYSUC), was exposed to high pressure and low temperature, showing that its behaviour is similar in nature to that of ETYFUM, but significantly differs in the magnitude of both effects. It was revealed that the minor structural difference between the acid molecules does not significantly affect the packing under ambient conditions, but has far-reaching consequences when it comes to the deformation of the structure when exposed to external stimuli.Keywords: negative linear compressibility; NLC; cocrystals; negative thermal expansion; NTE; crystal engineering; multicomponent crystals.
CCDC references: 2411299; 2411300; 2411301; 2411302; 2411303; 2411304; 2411305; 2411306; 2411307; 2411308; 2411309; 2411310; 2411311; 2411312; 2411313; 2411314; 2411315; 2411316; 2411317; 2411318; 2411319; 2411320; 2411321; 2411322; 2411323; 2411324; 2411325; 2411326; 2411327; 2411328; 2411329; 2411330; 2411331; 2411332; 2411333; 2411334; 2411335; 2411336; 2411337; 2411338; 2411339; 2411340; 2411341; 2411342; 2411343; 2411344; 2411345; 2411346; 2411347; 2411348
1. Introduction
Multicomponent organic crystals have attracted a lot of interest as their composition, molecular aggregation and intermolecular interactions can be tuned and their synthesis is cost efficient (Ding et al., 2024). They can exhibit fluorescence (Li et al., 2016; Dai et al., 2024), phosphorescence (Zhou et al., 2020; Qu et al., 2023), light-induced dynamic movement (Li et al., 2020), static photonic properties (Li et al., 2020) and temperature- and pressure-induced proton transfer (Bhunia et al., 2010; Jones et al., 2014; Patyk-Kaźmierczak et al., 2024), or can be means to improve physicochemical properties of active pharmaceutical ingredients (Duggirala et al., 2015; Bolla et al., 2022). Recently, a molecular cocrystal was discovered to exhibit significant negative linear compressibility (NLC) behaviour of a magnitude previously associated with framework materials. This 1:1 cocrystal composed of 1,2-bis(4′-pyridyl)ethane (ETY) and fumaric acid (FUM), herein referred to as ETYFUM (Patyk-Kaźmierczak & Kaźmierczak, 2024), has a median compressibility of −24 (1) TPa−1 in the NLC direction and a compressibility capacity (Cairns & Goodwin, 2015), χK, equal to 6.8% (for the 0.1 MPa to 3.58 GPa pressure range). Its main advantage is its facile and environmentally friendly synthesis and the recyclability of the building blocks.
Negative compressibility behaviour is unusual, as it is expected that a crystal will respond to an increase in pressure by decreasing its dimensions. However, in rare cases, abnormal behaviour can be observed when a material expands along one (NLC) or two (negative area compressibility, NAC) principal axes (Baughman et al., 1998; Cairns & Goodwin, 2015). However, to make such a process thermodynamically possible, sufficient compression must take place along the remaining principal axes/axis to achieve overall volume reduction (Baughman et al., 1998; Cairns & Goodwin, 2015). On the other hand, there is no such limitation when it comes to negative (NTE), where linear or volumetric contraction can occur on heating (Miller et al., 2009). Materials exhibiting any of the above-mentioned behaviours have many possible applications. The ability to expand under pressure makes NLC and NAC materials applicable as optical sensors or in telecommunication systems required to function under high pressure (Baughman et al., 1998). Meanwhile, NTE materials can be used to compensate for the positive (PTE) of other materials (Takenaka, 2012).
NTE materials have been intensively studied since the mid 1990s, when the NTE behaviour of a variety of materials was explained in relation to their crystal structures (Korthuis et al., 1995; Sleight, 1995; Mary et al., 1996; Evans et al., 1997; Lind, 2012). There are many reports of inorganic and inorganic–organic hybrid materials exhibiting NTE along one or more principal axes; however, the literature on organic NTE crystals is comparably scarce. A study of the Cambridge Structural Database from 2021 (Lee & Dumitrescu, 2021) has revealed that 37% of the deposited structures investigated at various temperatures exhibit NTE (34% axial NTE and 3% volumetric NTE), which is more than was believed. The largest NTE values found in the study reached ca −350 and −200 MK−1, but such cases can be considered outliers. More commonly, uniaxial NTE is in the range of −100 MK−1 (Lee & Dumitrescu, 2021).
When it comes to NLC materials, reports of significant NLC are scarce, with the most negative median compressibility usually associated with framework materials. The most impressive cases are as follows: Ag3[Co(CN)6] Phase I [KNLC = −76 (9) TPa−1; Δp = 0–0.19 GPa (Goodwin et al., 2008)], InH(BCD)2 [KNLC = −62.4 TPa−1; Δp = 0–0.53 GPa (Zeng et al., 2017)] and Zn[Au(CN)2]2 Phase I [KNLC = −42 (5) TPa−1; Δp = 0–1.8 GPa (Cairns et al., 2013)]. Recently, density functional theory was used to uncover a massive NLC for the 3D covalent organic framework NPN-3 [KNLC = −42.04 TPa−1; Δp = 0–0.9 GPa (Erkartal, 2024)].
It has been shown that some topological motifs show clear predisposition to exhibit NLC (Cairns & Goodwin, 2015). Hence, a search of novel NLC materials often focuses on crystals with structures utilizing such motifs, one of which is the wine rack. There are a number of NLC crystals of wine-rack structures reported in the literature, with some of the most recent and interesting cases including the already discussed ETYFUM (Patyk-Kaźmierczak & Kaźmierczak, 2024), MCF-34 (Zeng et al., 2020), Eu[Ag(CN)2]3·3H2O (Liu et al., 2024) and [C(NH2)3]Er(HCO2)2(C2O4) (Hitchings et al., 2024). MCF-34 is a metal–organic framework with two distinctive wine-rack units oriented in four ways in the and is the first case of a multitype wine-rack material investigated in the context of NLC. Its NLC is also significant, with KNLC = −47.3 (2) TPa−1 in the 0–0.53 GPa range. Meanwhile, Eu[Ag(CN)2]3·3H2O is a framework material that exhibits NLC over a very wide pressure range, 0–8.2 GPa [KNLC = −4.2 (1) TPa−1]. Lastly, [C(NH2)3]Er(HCO2)2(C2O4) is the first reported case of a hybrid perovskite that exhibits NLC even from ambient pressure [KNLC = −10.1 (7) TPa−1 for the 0–2.63 (10) GPa range].
The NAC, NLC and NTE associated with changes along the orthogonal principal axes are easily monitored for materials of orthogonal crystal systems (orthorhombic, tetragonal and cubic). In the case of the remaining crystal systems, NLC, NAC and NTE can still be observed in the abnormal changes of the unit-cell parameters; however, to determine the magnitude and direction of each effect, a calculation of the strain along the principal axes is necessary. For instance, in the case of ETYFUM of a monoclinic system, two unit-cell parameters increase on compression although negative compressibility occurs only along one principal axis (Patyk-Kaźmierczak & Kaźmierczak, 2024).
In this work, we present the case of a cocrystal (ETYSUC) of 1,2-bis(4′-pyridyl)ethane (ETY) and succinic acid (SUC), the NLC behaviour of which is masked by the decrease of all three unit-cell parameters. Under ambient conditions ETYSUC is isostructural with ETYFUM, however, its response to compression is remarkably different. Finally, the NTEs of ETYSUC and ETYFUM are investigated and compared. The difference in temperature and pressure behaviour of ETYSUC and ETYFUM is rationalized in terms of the subtle structural dissimilarities between SUC and FUM molecules.
2. Experimental
2.1. Cocrystal synthesis
ETYSUC and ETYFUM were synthesized by dissolving 1,2-bis(4′-pyridyl)ethane (ETY) and the respective acid (succinic acid – SUC, or fumaric acid – FUM) in a 1:1 molar ratio in hot methanol and leaving the solutions for slow evaporation at room temperature or by solvent-assisted ball milling (see the supporting information for additional details).
2.2. X-ray diffraction experiments
Single-crystal X-ray diffraction experiments were performed using a four-circle X-ray diffractometer equipped with a copper or molybdenum X-ray tube. In all cases, CrysAlisPro (Rigaku Oxford Diffraction, 2020, 2022) was used for data collection, UB-matrix determination, data reduction and absorption correction. High-pressure conditions were provided by mounting the sample crystal in a Merrill–Bassett (Merrill & Bassett, 1974) diamond anvil cell (Fig. S1 of the supporting information). For low-temperature experiments (Figs. S2–S5), a nitrogen-flow attachment from Oxford Cryosystems was used. determination was performed using ShelXS or ShelXT (Sheldrick, 2008, 2015b), while was performed using ShelXL (Sheldrick, 2015a), with the three programs implemented in Olex2 (Dolomanov et al., 2009) as an interface. The crystallographic details for all structures are listed in Tables S1–S16 of the supporting information. Powder X-ray diffraction experiments were performed for ETYSUC crystals obtained from ball-milling synthesis, using the Bruker D8 Advance diffractometer (equipped with a copper X-ray tube). Details on X-ray diffraction experiments and data treatment are provided in the supporting information.
2.3. Principal axis strain and linear coefficient of calculations
The principal axis strain and the linear coefficients of PASCal program (Cliffe & Goodwin, 2012; Lertkiattrakul et al., 2023) available at https://www.pascalapp.co.uk/. For details, see the supporting information.
were calculated using the3. Results and discussion
ETYSUC crystallizes in the monoclinic I2/a [originally reported in C2/c (Braga et al., 2010) but here a non-standard setting was selected to ensure a β angle value closer to 90°]. As mentioned previously, under ambient conditions, it is isostructural with ETYFUM. The only difference between the two structures lies in the structure of the acid molecules because FUM is an unsaturated analogue of SUC. Therefore, it is evident that the difference in the of α-carbon atoms and the presence of two additional hydrogen atoms in the SUC molecule does not significantly affect the preference for the aggregation of the coformers in the cocrystal. However, this seemingly insignificant difference in molecular structures is behind the drastically different pressure and temperature behaviour of ETYFUM and ETYSUC.
3.1. Pressure-induced in ETYSUC
Compression of the ETYSUC crystal up to 2.9 GPa results in a decrease in all three unit-cell parameters, and an increase in the β angle from 108.512 (3) to 113.81 (4)° (Fig. 1). Above 2.9 GPa the trend in the pressure dependence of the unit-cell parameters changes, with the a parameter starting to increase on compression between 2.97 and 3.73 GPa, and the slope for the parameters c and b is altered (Fig. 1). Based on this observation, it was established that above 2.9 GPa ETYSUC undergoes a to Phase I′, without alteration of the crystal symmetry nor a noticeable change in unit-cell parameters. The novel phase is structurally closely related to Phase I and differs only in its response to compression. In comparison, on compression of the ETYFUM crystal up to 3.6 GPa, only monotonic changes are observed and an increase in the length of the a and c lattice parameters and β angle accompanied by a significant decrease of b unit-cell parameter takes place (Fig. 1).
3.2. Negative linear compressibility
It was revealed that ETYSUC exhibits NLC behaviour along a similar, but quite not the same, direction (0.80a − 0.60c, Tables S17 and S18) as ETYFUM (0.73a − 0.68c, Tables S22 and S23), and of a much smaller magnitude. For the 0.1 MPa–2.9 GPa range, the median compressibility, KNLC, is equal to −5.4 (2) TPa−1 and the compressibility capacity (Cairns & Goodwin, 2015), χK, is equal to 1.9% (Table S17, Fig. S14). Such parameters make ETYSUC a material with moderate NLC. The significantly lower magnitude is behind the observed decrease in all three unit-cell parameters, in contrast to two ETYFUM parameters that increase with compression. As the NLC strain axis is to some degree aligned with the diagonal [10−1], its elongation should affect the a and c axes in a similar manner (i.e. leading to an increase in the a and c unit-cell parameters). However, it can be compensated for by an increase of the β angle. The change in β angle for both cocrystals can be considered similar, and in the case of ETYSUC, where the effect of NLC is small, it is sufficient to balance the elongation along the 0.80a − 0.60c direction. Meanwhile, it is insufficient for ETYFUM. After the when the direction of the NLC of ETYSUC slightly changes (to 0.81a − 0.59c; Table S19 and Fig. S8) and becomes aligned closer to the a axis, we start to observe a slight increase of the a parameter on compression (Fig. 1). However, for ETYSUC I′, the low number of experimental points and their inconsistency (probably caused by the crystal strain resulting from several compression/decompression runs) affect the calculated compressibility values and their estimated standard deviations (ESDs; Table S19).
As the structure of ETYSUC does not differ significantly between Phases I and I′, the strain along the principal axes was also calculated for the data of Phases I and I′ joined (Tables S20 and S21, Fig. S9). For the combined data, the NLC direction is 0.78a − 0.63c, and the median compressibility in the NLC direction shifts to −4.2 (4) TPa−1, which is unsurprising, as the pressure range is now wider (0.1 MPa–3.73 GPa). At the same time, compressibility values calculated for experimental points of ETYSUC I do not notably differ from the results received when ETYSUC I data were considered separately. Meanwhile, the KNLC values obtained for Phase I′ became much more reasonable (Tables S20 and S21), supporting the observation of NLC made for Phase I′ on a limited number of data points.
3.2.1. NLC mechanism
The mechanism behind NLC in ETYSUC is the same as in ETYFUM, i.e. originates from the deformation of the wine-rack motif formed by O—H⋯N bonded chains of the ETY and SUC molecules (Fig. 2). Similarly to ETYFUM, there are no classic hinges in the form of metal centres, but the same hinge point can be assigned: an oxygen atom of the carboxylic group interlocked between two hydrogen atoms of the pyridine ring of ETY (Figs. 2 and S10). To track the changes in the geometry of the wine rack on compression it is sufficient to analyse changes occurring in its fragment. In the case of ETYFUM, a triangle was constructed on three adjacent centroids calculated for triads of atoms O1, C4 and C5, each representing a hinge point [Figs. 2(d), 3 and S10]. The height of the triangle is approximately aligned with the direction of NLC in ETYFUM (0.73a − 0.68c), and is related to the parameter d1 (side) and the φ angle of the triangle according to equation (1):
When pressure is applied, the wine rack deforms, becoming flatter, resulting in a decrease in the base of the triangle (parameter d2) and φ angle, while the side of the triangle (d1) remains almost constant (Fig. 3). Therefore, as compression progresses, the height of the triangle will increase, and as we have reported previously for ETYFUM (Patyk-Kaźmierczak & Kaźmierczak, 2024), this change matches the increase in NLC axis X3 calculated with PASCal, confirming the deformation of wine rack is the cause standing behind the NLC behaviour.
In the case of ETYSUC I, when we analyse the same motif as in ETYFUM, the φ angle changes by only 9% between 0.1 MPa and 2.9 GPa (compared with a decrease of more than 22% observed for ETYFUM for the 0.1 MPa–3.58 GPa range and 20% for the 0.1 MPa–2.9 GPa range). The smaller change in the φ angle translates into a weaker NLC effect. However, it should be noted that the direction of NLC in ETYSUC is different compared with ETYFUM and is not as closely aligned with the height of the triangle, which can explain the difference in the change rate of h and NLC axis X3 (Fig. 3). The fact that the NLC behaviour is observed and its mechanism is so strongly related to that observed in ETYFUM confirms that the latter can be used as a blueprint for NLC materials, and also shows the magnitude of the effect can be controlled.
3.2.2. Managing NLC magnitude via steric hindrance
It appears that NLC damping in ETYSUC is mainly caused by a α-carbon (C2A), see Fig. S11. For ETYFUM, the pivoting of the chains can take place more freely as the hydrogen atom at the α-carbon (C8, which is an equivalent of the C2A atom in ETYSUC) is placed between the hydrogen atoms of the pyridine rings (Fig. S11). Meanwhile, atoms H5 and H6 of the pyridine ring are facing two hydrogen atoms at C2A in ETYSUC. Interestingly, when the evolution of the distance between the hydrogen atoms of the pyridine ring of ETY and the hydrogen atoms of FUM and SUC with pressure is considered (Fig. S15), we observe that it is quite similar. However, the rapprochement of the hydrogen atoms of ETY and SUC/FUM takes place not only as a result of direct compression of the crystal but also due to the pivoting of the ETY⋯SUC and ETY⋯FUM chains. Therefore, the same rapprochement of hydrogen atoms is achieved in both structures, but in ETYFUM it is associated with a decrease in the φ angle of 22% while in ETYSUC it is only by 9% (Fig. 3). It is hence clear that the distance between the hydrogen atoms of ETY and the respective acid is the limiting factor halting the pivoting of chains and hence controlling the NLC magnitude.
in the form of hydrogen atoms at theInterestingly, when the transition to ETYSUC I′ occurs, the strain in the form of close proximity between atoms H6 and H2ab at the symmetry-equivalent position at 1/2 + x, −y, z is partially released as the intermolecular distance between the two atoms increases (Fig. S12). It appears that when the distance limit between hydrogen atoms of ETY and SUC was achieved at 2.9 GPa, the structure adapted by changing the direction of NLC, allowing for further non-destructive compression of the crystal and separation of one pair of closely squeezed ETY and SUC hydrogen atoms.
Steric hindrance can also explain the difference in the direction of NLC between ETYFUM and ETYSUC. A slight rotation of the SUC molecule with respect to ETY (considering the ETY/SUC pair bonded by a C—H⋯O1 bond) helps to keep the hydrogen atoms at the α-carbon further away from the H5 and H6 atoms of ETY. As a result, the O—H⋯N bonded chains move with respect to one another in two planes instead of one, like in ETYFUM (Fig. 4). Hence, the deformation of the wine rack is accompanied by slight rotation of ETY⋯SUC chains, making the resultant NLC direction different to ETYFUM, and no longer aligned with the height of the triangle constructed on the centroids calculated for hinge points.
Lastly, some analogies between steric-hindrance control over NLC magnitude observed by us and previously reported on two hybrid perovskites {of the general formula [A]Er(HCO2)2(C2O4), where A = [(NH2)3C] or [(CH3)2NH2] (Hitchings et al., 2024)} can be drawn. In the work by Hitchings et. al. (2024), only [(NH2)3C]Er(HCO2)2(C2O4) exhibits NLC, despite the wine-rack motif being present in both materials. The reasons behind this include differences in host–guest interactions, resulting from different guest molecules being present in the cavities of the framework. It appears that the presence of (CH3)2NH2 in the openings of the wine rack in [(CH3)2NH2]Er(HCO2)2(C2O4) caused that prevented hinging and NLC. It shows that ensuring the presence of the structural motifs predisposed to NLC might not be enough to successfully design materials of negative compressibility and additional factors such as need to be considered. On the other hand, it opens the possibilities to modify or avoid NLC in the wine-rack framework materials simply by exchanging guest molecules. Of course, the guest-exchange approach is not applicable to non-framework materials, such as ETYFUM or ETYSUC. In this case, the only possibility to introduce is to modify the wine rack by replacing molecules that form it with more bulky analogues. In the case of ETYFUM and ETYSUC, the difference in FUM and SUC molecules is extremely small, yet sufficient to significantly modify the NLC behaviour of the two materials. We believe that further exploration of the effect of larger substituents at α-carbon atoms on NLC would offer more insight into this matter. Nevertheless, our data and results reported by Hitchings et al. (2024) sufficiently show how the introduction of (either in the form of a guest molecule or structural modification of molecules forming the wine rack) can be employed to control the NLC behaviour of the material with structures utilizing the wine-rack motif, leading to either significant damping of NLC or its annihilation.
3.3. Negative thermal expansion
It has been previously shown that the same effects observed on crystal compression can be achieved by exposing the crystal to low temperature. However, the temperature range that can be applied is limited (with temperatures close to absolute zero being very difficult to achieve experimentally). This affects the magnitude of changes that can be induced by cooling. According to the pressure–temperature correspondence rule, usually the same effects can be achieved on compression to approximately 0.2–0.5 GPa as when the temperature is lowered from 300 to 100 K (Kaźmierczak et al., 2021). Therefore, NLCs of ETYFUM and ETYSUC can be a predictor of the abnormal thermal behaviour of the two cocrystals. We have established that indeed they both exhibit NTE along one principal axis, but some differences in their behaviour can be noted.
In the case of ETYFUM, the direction of NTE (0.72a − 0.69c) is almost exactly the same as for NLC (0.73a − 0.68c); however, it is not observed over the entire investigated temperature range (100–300 K), as PTE was recorded between 100 and 150 K along all three primary axes (Tables S28–S30). Interestingly, when the crystal is gradually cooled (with 5 K steps), the NTE behaviour was observed in the 140–300 K range (Tables S28 and S29, Fig. S18). Still, there is no significant difference in the or lattice constants of ETYFUM measured in the 140–300 K and 100–150 K ranges, and the symmetry of the crystal (the and space group) is preserved. Hence, the ETYFUM form that exists between 100 and 150 K is referenced as ETYFUM-lt (as, similarly to compressed ETYSUC, it is only the response to cooling that changes below 150 K). At the same time, NTE in ETYSUC is observed in the whole 100–300 K temperature range (Tables S24 and S25), regardless of the rate of change of temperature, and the direction of NTE in ETYSUC (0.79a − 0.61c) is also close to the direction of NLC (0.80a − 0.60c).
Similar to NLC, NTE is more significant in ETYFUM than in ETYSUC [with linear coefficients of −1 and −16.5 (7) MK−1, respectively]. In addition, an increase in the unit-cell parameters on cooling is only observed in the case of ETYFUM, but, unlike NLC, it is recorded for the c unit-cell parameter only, and exclusively in the 300–200 K temperature range (Fig. 5).
equal to −39.7 (8) MK3.3.1. NTE mechanism and magnitude control
The mechanism behind NTE can be linked to the wine-rack motif in a manner similar to that for NLC. In general, on cooling of the ETYFUM and ETYSUC crystals, the φ angle decreases (Fig. 3, S16) while the d1 parameter remains almost constant, causing the height of the triangle to increase [according to equation (1)], which results in elongation of the crystal along one principal axis (i.e. NTE). Interestingly, the geometry of the wine rack changes in a similar manner on cooling ETYFUM from 150 to 100 K when the crystal exhibits PTE. However, the rate of changes of the φ angle becomes milder while the d1 parameter starts to decrease more rapidly compared with what is observed when cooling ETYFUM from 300 to 140 K and ETYSUC from 300 to 100 K. As a result, when the ETYFUM crystal is cooled from 150 to 100 K, the height of the triangle starts to decrease, which results in PTE. Moreover, in the case of ETYFUM, the increase in h on cooling (in the 300–140 K range) closely matches the change in the NTE axis (X1) calculated using PASCal (Fig. 3) which allows us to correlate NTE behaviour with deformation of the wine rack.
Similarly, as observed in the compression experiments, the height of the triangle is not aligned with the NTE axis as closely in ETYSUC as in ETYFUM. In fact, the effect of the temperature on h is similar for both cocrystals, but the increase of h in ETYSUC differs significantly from the change observed for the NTE axis X3 (see Fig. 3). Hence it appears that the final NTE magnitude might again be affected by displacement of the SUC molecules with respect to ETY, similar to that described for the compressed ETYSUC crystal. Although structural changes on cooling from 300 to 100 K are less noticeable and harder to observe visually, the temperature dependence of C—H⋯O bonds (calculated for the C—H bonds normalized to 1.089 Å to avoid bias caused by of the positions of the hydrogen atoms and the lengths of the C—H bonds varying between structural models) shows that the rotation of SUC molecules with respect to ETY takes place in a manner similar to that observed for the compressed crystal of ETYSUC (Fig. S21). Although the length of both C—H⋯O bonds in ETYFUM decreases at a similar rate, in ETYSUC the length of the C5—H5⋯O1A bond decreases faster than for C6—H6⋯O1A, suggesting that the distance between atoms is affected inconsistently and is not a result of linear contraction, but rather additional rotation of molecules has to take place. As a result, the direction of NTE is affected and deformation of the triangle constructed on centroids calculated for O1, C5 and C6 atoms cannot be directly translated into the magnitude of NTE. It is therefore plausible that the effect coming from the deformation of the wine rack is damped by additional movement of SUC and ETY molecules with respect to one another.
3.4. Effect of pressure and temperature on torsion angles of SUC and FUM
Lastly, we would like to comment on the conformational preference of SUC molecules in ETYSUC crystals. Understandably, the order of the bond between α-carbon atoms affects the flexibility of SUC and FUM molecules. In particular, the double bond in FUM forms a with two double carbon–oxygen bonds of carboxylic groups. As a result, there is tendency for the molecule to be planar, or nearly planar (Pauling, 1960), and it introduces a level of rigidity in the FUM molecules. In SUC the order of all carbon–carbon bonds is one and such restrictions do not apply. Nevertheless, the SUC molecules still take almost completely flat conformation [with an O1a–C1a–C2a–C2a torsion angle of about 6.2 (2)° under ambient conditions]. Despite the ability of SUC molecules to change conformation more freely, it remains resistant to changes in pressure and temperature, and on cooling to 100 K, the torsion angle oscillates in the 6.4 (4)–7.3 (5)° range (Fig. S22). The variation in torsion angle with pressure is more significant (in the 0–12° range, Fig. S22); however, as the quality of structural models is low, these values are accompanied by large ESDs and it is hard to evaluate actual changes in conformation induced by pressure. Meanwhile, the analogous torsion angle of FUM (O1–C7–C8–C8) in ETYFUM is closer to 0° [−3.2 (2)° under ambient conditions] and its response to cooling is even smaller [oscillating between −3.1 (3) and −2.7 (2)° in the 100–300 K range, see Fig. S22]. Similarly to ETYSUC, for high-pressure structural models of ETYFUM, the O1–C7–C8–C8 torsion angle of FUM shows larger variation, with values accompanied by large ESDs, which hinders reliable evaluation of the effect of pressure.
4. Conclusions
Abnormal pressure and temperature behaviour of the organic cocrystal ETYSUC was detected and analysed in the context of the previously reported metal-free NLC material, ETYFUM, which is isostructural to ETYSUC. Interestingly, the NLC and NTE of ETYSUC are completely concealed by the decrease in the unit-cell parameters a, b and c with compression and temperature reduction. Only above 2.9 GPa can an increase of the unit-cell parameter a be observed, and the response of the crystal to pressure changes. Hence, 2.9 GPa is considered a pressure; however, since there is no drastic change in the the high-pressure phase was labelled ETYSUC I′. Despite the similar molecular aggregation of ETYSUC and ETYFUM, the former exhibits NLC and NTE of significantly smaller magnitude. This can be linked to caused by the close positioning of hydrogen atoms at the α-carbon of SUC to hydrogen atoms H5 and H6 of the pyridine ring of ETY, and the different manner in which the O—H⋯N-bonded chains change their respective positions on compression and cooling in ETYSUC compared with ETYFUM. Despite the lower magnitude of NLC, ETYSUC can still be used as an example, confirming that ETYFUM can be used as a blueprint for the design of metal-free NLC materials. At the same time, it provides additional input to the concept by showing how can dampen the NLC and NTE effects and how the molecular structure needs to be considered when coformers are selected, exemplifying the macroscopic behaviour affected by microscopic modifications.
5. Related literature
The following references are cited in the supporting information: Budzianowski & Katrusiak (2004); Bull et al. (2019); Cai & Katrusiak (2014); Harty et al. (2015); Jiang et al. (2022); Knížek (2021); Macrae et al. (2020); Piermarini et al. (1975); Shephard et al. (2022, 2012); Szafrański (2020); Woodall et al. (2013); Yeung et al. (2017); Zhao et al. (2020).
Supporting information
CCDC references: 2411299; 2411300; 2411301; 2411302; 2411303; 2411304; 2411305; 2411306; 2411307; 2411308; 2411309; 2411310; 2411311; 2411312; 2411313; 2411314; 2411315; 2411316; 2411317; 2411318; 2411319; 2411320; 2411321; 2411322; 2411323; 2411324; 2411325; 2411326; 2411327; 2411328; 2411329; 2411330; 2411331; 2411332; 2411333; 2411334; 2411335; 2411336; 2411337; 2411338; 2411339; 2411340; 2411341; 2411342; 2411343; 2411344; 2411345; 2411346; 2411347; 2411348
https://doi.org/10.1107/S2052252524011734/yc5049sup1.cif
contains datablocks etyfum_100k, etyfum_130k, etyfum_140k_b, etyfum_145k_b, etyfum_150k_b, etyfum_150k, etyfum_155k_b, etyfum_160k_b, etyfum_165k_b, etyfum_170k_b, etyfum_175k_b, etyfum_180k_b, etyfum_185k_b, etyfum_190k_b, etyfum_200k_b, etyfum_200k, ETYFUM_250K, etyfum_300k_b, etyfum_300k, ETYSUC_064, ETYSUC_094, etysuc_100K, ETYSUC_140K_B, ETYSUC_141, ETYSUC_145K_B, ETYSUC_150K_B, etysuc_150K, ETYSUC_155K_B, ETYSUC_160K_B, ETYSUC_165K_B, ETYSUC_170K_B, ETYSUC_175K_B, ETYSUC_180K_B, ETYSUC_185K_B, ETYSUC_190K_B, ETYSUC_193, ETYSUC_200K_B, etysuc_200K, ETYSUC_246, etysuc_250K, ETYSUC_276, ETYSUC_287, ETYSUC_290, ETYSUC_297, ETYSUC_300K_B, etysuc_300K, ETYSUC_329, ETYSUC_347, ETYSUC_373, etysuc. DOI:Structure factors: contains datablock etyfum_300k. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_300ksup2.hkl
Structure factors: contains datablock ETYFUM_250K. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYFUM_250Ksup3.hkl
Structure factors: contains datablock etyfum_200k. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_200ksup4.hkl
Structure factors: contains datablock etyfum_150k. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_150ksup5.hkl
Structure factors: contains datablock etyfum_130k. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_130ksup6.hkl
Structure factors: contains datablock etyfum_100k. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_100ksup7.hkl
Structure factors: contains datablock etyfum_300k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_300k_bsup8.hkl
Structure factors: contains datablock etyfum_200k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_200k_bsup9.hkl
Structure factors: contains datablock etyfum_190k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_190k_bsup10.hkl
Structure factors: contains datablock etyfum_185k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_185k_bsup11.hkl
Structure factors: contains datablock etyfum_180k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_180k_bsup12.hkl
Structure factors: contains datablock etyfum_175k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_175k_bsup13.hkl
Structure factors: contains datablock etyfum_170k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_170k_bsup14.hkl
Structure factors: contains datablock etyfum_165k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_165k_bsup15.hkl
Structure factors: contains datablock etyfum_160k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_160k_bsup16.hkl
Structure factors: contains datablock etyfum_155k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_155k_bsup17.hkl
Structure factors: contains datablock etyfum_150k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_150k_bsup18.hkl
Structure factors: contains datablock etyfum_145k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_145k_bsup19.hkl
Structure factors: contains datablock etyfum_140k_b. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etyfum_140k_bsup20.hkl
Structure factors: contains datablock etysuc. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etysucsup21.hkl
Structure factors: contains datablock ETYSUC_064. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_064sup22.hkl
Structure factors: contains datablock ETYSUC_094. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_094sup23.hkl
Structure factors: contains datablock ETYSUC_141. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_141sup24.hkl
Structure factors: contains datablock ETYSUC_193. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_193sup25.hkl
Structure factors: contains datablock ETYSUC_246. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_246sup26.hkl
Structure factors: contains datablock ETYSUC_276. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_276sup27.hkl
Structure factors: contains datablock ETYSUC_287. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_287sup28.hkl
Structure factors: contains datablock ETYSUC_290. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_290sup29.hkl
Structure factors: contains datablock ETYSUC_297. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_297sup30.hkl
Structure factors: contains datablock ETYSUC_329. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_329sup31.hkl
Structure factors: contains datablock ETYSUC_347. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_347sup32.hkl
Structure factors: contains datablock ETYSUC_373. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_373sup33.hkl
Structure factors: contains datablock etysuc_300K. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etysuc_300Ksup34.hkl
Structure factors: contains datablock etysuc_250K. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etysuc_250Ksup35.hkl
Structure factors: contains datablock etysuc_200K. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etysuc_200Ksup36.hkl
Structure factors: contains datablock etysuc_150K. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etysuc_150Ksup37.hkl
Structure factors: contains datablock etysuc_100K. DOI: https://doi.org/10.1107/S2052252524011734/yc5049etysuc_100Ksup38.hkl
Structure factors: contains datablock ETYSUC_300K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_300K_Bsup39.hkl
Structure factors: contains datablock ETYSUC_200K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_200K_Bsup40.hkl
Structure factors: contains datablock ETYSUC_190K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_190K_Bsup41.hkl
Structure factors: contains datablock ETYSUC_185K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_185K_Bsup42.hkl
Structure factors: contains datablock ETYSUC_180K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_180K_Bsup43.hkl
Structure factors: contains datablock ETYSUC_175K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_175K_Bsup44.hkl
Structure factors: contains datablock ETYSUC_170K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_170K_Bsup45.hkl
Structure factors: contains datablock ETYSUC_165K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_165K_Bsup46.hkl
Structure factors: contains datablock ETYSUC_160K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_160K_Bsup47.hkl
Structure factors: contains datablock ETYSUC_155K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_155K_Bsup48.hkl
Structure factors: contains datablock ETYSUC_150K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_150K_Bsup49.hkl
Structure factors: contains datablock ETYSUC_145K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_145K_Bsup50.hkl
Structure factors: contains datablock ETYSUC_140K_B. DOI: https://doi.org/10.1107/S2052252524011734/yc5049ETYSUC_140K_Bsup51.hkl
Supporting data, figures and tables. DOI: https://doi.org/10.1107/S2052252524011734/yc5049sup52.pdf
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.372 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6633 (6) Å | Cell parameters from 1744 reflections |
b = 4.7294 (2) Å | θ = 4.8–71.9° |
c = 19.6488 (7) Å | µ = 0.83 mm−1 |
β = 110.091 (4)° | T = 100 K |
V = 1454.24 (10) Å3 | Plate, colourless |
Z = 4 | 0.25 × 0.15 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1405 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1210 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.5°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.699, Tmax = 1.000 | l = −23→20 |
2766 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | All H-atom parameters refined |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0434P)2 + 0.7718P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1405 reflections | Δρmax = 0.19 e Å−3 |
132 parameters | Δρmin = −0.20 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15976 (8) | 0.3997 (3) | 0.41402 (7) | 0.0213 (3) | |
H1 | 0.2201 (10) | 0.463 (3) | 0.4307 (8) | 0.025 (4)* | |
C2 | 0.13130 (8) | 0.2004 (3) | 0.45205 (6) | 0.0212 (3) | |
H2 | 0.1711 (9) | 0.111 (3) | 0.4949 (8) | 0.025 (4)* | |
C3 | 0.04530 (8) | 0.1264 (3) | 0.42803 (6) | 0.0186 (3) | |
C4 | −0.00877 (8) | 0.2575 (3) | 0.36580 (6) | 0.0204 (3) | |
H4 | −0.0706 (9) | 0.215 (3) | 0.3462 (8) | 0.027 (4)* | |
C5 | 0.02444 (8) | 0.4538 (3) | 0.33045 (7) | 0.0202 (3) | |
H5 | −0.0126 (9) | 0.547 (3) | 0.2862 (8) | 0.024 (4)* | |
C6 | 0.01141 (8) | −0.0783 (3) | 0.47017 (7) | 0.0208 (3) | |
H6A | −0.0407 (10) | −0.175 (3) | 0.4374 (8) | 0.025 (4)* | |
H6B | 0.0565 (9) | −0.221 (4) | 0.4942 (8) | 0.027 (4)* | |
N1 | 0.10748 (6) | 0.5249 (2) | 0.35404 (5) | 0.0198 (3) | |
C7 | 0.24227 (7) | 0.9748 (3) | 0.32059 (6) | 0.0192 (3) | |
C8 | 0.27288 (8) | 1.1997 (3) | 0.28212 (7) | 0.0200 (3) | |
H8 | 0.3295 (10) | 1.270 (4) | 0.3075 (8) | 0.030 (4)* | |
O1 | 0.16360 (5) | 0.89259 (19) | 0.28604 (5) | 0.0224 (2) | |
H1A | 0.1446 (13) | 0.747 (4) | 0.3166 (10) | 0.070 (7)* | |
O2 | 0.28847 (5) | 0.8816 (2) | 0.37897 (4) | 0.0244 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0174 (6) | 0.0225 (7) | 0.0237 (6) | −0.0011 (5) | 0.0066 (5) | −0.0001 (5) |
C2 | 0.0212 (6) | 0.0210 (7) | 0.0203 (6) | 0.0006 (5) | 0.0057 (5) | 0.0018 (5) |
C3 | 0.0219 (6) | 0.0158 (6) | 0.0198 (6) | −0.0011 (5) | 0.0094 (5) | −0.0027 (5) |
C4 | 0.0184 (6) | 0.0199 (6) | 0.0233 (6) | −0.0015 (5) | 0.0077 (5) | −0.0018 (5) |
C5 | 0.0199 (6) | 0.0191 (6) | 0.0205 (6) | 0.0001 (5) | 0.0056 (5) | 0.0009 (5) |
C6 | 0.0231 (6) | 0.0177 (6) | 0.0229 (6) | −0.0016 (5) | 0.0097 (5) | 0.0001 (5) |
N1 | 0.0194 (5) | 0.0188 (5) | 0.0219 (5) | −0.0019 (4) | 0.0079 (4) | −0.0002 (4) |
C7 | 0.0180 (6) | 0.0185 (6) | 0.0214 (6) | 0.0001 (5) | 0.0071 (5) | −0.0004 (5) |
C8 | 0.0169 (6) | 0.0194 (6) | 0.0240 (6) | −0.0023 (5) | 0.0072 (5) | −0.0006 (5) |
O1 | 0.0178 (4) | 0.0232 (5) | 0.0238 (4) | −0.0049 (4) | 0.0041 (3) | 0.0054 (4) |
O2 | 0.0212 (5) | 0.0267 (5) | 0.0226 (5) | −0.0016 (4) | 0.0040 (4) | 0.0046 (4) |
C1—H1 | 0.991 (15) | C5—N1 | 1.3424 (15) |
C1—C2 | 1.3837 (18) | C6—C6i | 1.541 (2) |
C1—N1 | 1.3390 (16) | C6—H6A | 0.997 (16) |
C2—H2 | 0.973 (15) | C6—H6B | 0.998 (16) |
C2—C3 | 1.3906 (17) | C7—C8 | 1.4925 (18) |
C3—C4 | 1.3907 (17) | C7—O1 | 1.3111 (14) |
C3—C6 | 1.5046 (17) | C7—O2 | 1.2231 (15) |
C4—H4 | 0.989 (15) | C8—C8ii | 1.319 (2) |
C4—C5 | 1.3835 (18) | C8—H8 | 0.963 (16) |
C5—H5 | 0.981 (15) | O1—H1A | 1.031 (16) |
C2—C1—H1 | 121.5 (9) | C3—C6—C6i | 110.28 (13) |
N1—C1—H1 | 116.0 (9) | C3—C6—H6A | 110.4 (9) |
N1—C1—C2 | 122.43 (11) | C3—C6—H6B | 109.3 (9) |
C1—C2—H2 | 120.4 (9) | C6i—C6—H6A | 108.9 (9) |
C1—C2—C3 | 119.50 (11) | C6i—C6—H6B | 107.8 (9) |
C3—C2—H2 | 120.1 (9) | H6A—C6—H6B | 110.1 (13) |
C2—C3—C6 | 120.86 (11) | C1—N1—C5 | 118.36 (11) |
C4—C3—C2 | 117.85 (11) | O1—C7—C8 | 113.82 (10) |
C4—C3—C6 | 121.23 (11) | O2—C7—C8 | 121.14 (11) |
C3—C4—H4 | 121.8 (9) | O2—C7—O1 | 125.03 (11) |
C5—C4—C3 | 119.36 (11) | C7—C8—H8 | 115.4 (9) |
C5—C4—H4 | 118.8 (9) | C8ii—C8—C7 | 123.78 (15) |
C4—C5—H5 | 120.5 (9) | C8ii—C8—H8 | 120.8 (10) |
N1—C5—C4 | 122.50 (11) | C7—O1—H1A | 110.4 (11) |
N1—C5—H5 | 117.0 (9) | ||
C1—C2—C3—C4 | 0.24 (18) | C4—C3—C6—C6i | −91.45 (16) |
C1—C2—C3—C6 | −176.88 (11) | C4—C5—N1—C1 | 0.15 (18) |
C2—C1—N1—C5 | 0.19 (19) | C6—C3—C4—C5 | 177.18 (11) |
C2—C3—C4—C5 | 0.08 (18) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.57 (17) | O1—C7—C8—C8ii | −2.7 (2) |
C3—C4—C5—N1 | −0.28 (19) | O2—C7—C8—C8ii | 177.32 (15) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.366 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6728 (5) Å | Cell parameters from 1742 reflections |
b = 4.7388 (1) Å | θ = 4.8–72.3° |
c = 19.6680 (6) Å | µ = 0.83 mm−1 |
β = 110.024 (3)° | T = 130 K |
V = 1460.01 (7) Å3 | Plate, colourless |
Z = 4 | 0.25 × 0.15 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1415 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1211 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.022 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.699, Tmax = 1.000 | l = −23→21 |
2783 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | All H-atom parameters refined |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1415 reflections | Δρmax = 0.17 e Å−3 |
132 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15940 (8) | 0.4021 (3) | 0.41404 (7) | 0.0246 (3) | |
H1 | 0.2200 (10) | 0.458 (3) | 0.4299 (8) | 0.027 (4)* | |
C2 | 0.13110 (8) | 0.2029 (3) | 0.45222 (7) | 0.0248 (3) | |
H2 | 0.1719 (10) | 0.115 (3) | 0.4955 (8) | 0.027 (4)* | |
C3 | 0.04532 (8) | 0.1273 (3) | 0.42815 (6) | 0.0211 (3) | |
C4 | −0.00858 (8) | 0.2573 (3) | 0.36589 (7) | 0.0234 (3) | |
H4 | −0.0695 (10) | 0.216 (4) | 0.3474 (8) | 0.028 (4)* | |
C5 | 0.02448 (8) | 0.4536 (3) | 0.33049 (7) | 0.0230 (3) | |
H5 | −0.0129 (9) | 0.545 (3) | 0.2863 (8) | 0.023 (4)* | |
C6 | 0.01167 (9) | −0.0770 (3) | 0.47037 (7) | 0.0240 (3) | |
H6A | −0.0405 (10) | −0.170 (4) | 0.4375 (8) | 0.028 (4)* | |
H6B | 0.0566 (11) | −0.218 (4) | 0.4942 (9) | 0.036 (4)* | |
N1 | 0.10727 (7) | 0.5256 (2) | 0.35408 (6) | 0.0224 (3) | |
C7 | 0.24201 (8) | 0.9757 (3) | 0.32043 (7) | 0.0218 (3) | |
C8 | 0.27274 (8) | 1.1999 (3) | 0.28204 (7) | 0.0233 (3) | |
H8 | 0.3293 (11) | 1.270 (4) | 0.3076 (9) | 0.034 (4)* | |
O1 | 0.16362 (5) | 0.8931 (2) | 0.28613 (5) | 0.0264 (3) | |
H1A | 0.1425 (12) | 0.741 (5) | 0.3167 (11) | 0.062 (6)* | |
O2 | 0.28801 (6) | 0.8831 (2) | 0.37871 (5) | 0.0287 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0186 (6) | 0.0277 (7) | 0.0268 (6) | −0.0023 (5) | 0.0069 (5) | 0.0014 (5) |
C2 | 0.0240 (6) | 0.0262 (7) | 0.0232 (6) | 0.0001 (5) | 0.0067 (5) | 0.0029 (5) |
C3 | 0.0249 (6) | 0.0188 (6) | 0.0224 (6) | −0.0014 (5) | 0.0118 (5) | −0.0020 (5) |
C4 | 0.0200 (6) | 0.0237 (7) | 0.0265 (6) | −0.0025 (5) | 0.0082 (5) | −0.0012 (5) |
C5 | 0.0218 (6) | 0.0236 (7) | 0.0228 (6) | −0.0011 (5) | 0.0067 (5) | 0.0017 (5) |
C6 | 0.0268 (7) | 0.0204 (7) | 0.0270 (7) | −0.0021 (5) | 0.0122 (5) | 0.0005 (5) |
N1 | 0.0219 (5) | 0.0224 (6) | 0.0238 (5) | −0.0023 (4) | 0.0091 (4) | 0.0003 (4) |
C7 | 0.0198 (6) | 0.0224 (7) | 0.0231 (6) | −0.0007 (5) | 0.0073 (5) | 0.0001 (5) |
C8 | 0.0190 (6) | 0.0235 (7) | 0.0267 (6) | −0.0037 (5) | 0.0069 (5) | 0.0000 (5) |
O1 | 0.0205 (5) | 0.0292 (5) | 0.0269 (5) | −0.0058 (4) | 0.0048 (4) | 0.0071 (4) |
O2 | 0.0241 (5) | 0.0330 (6) | 0.0256 (5) | −0.0022 (4) | 0.0042 (4) | 0.0067 (4) |
C1—H1 | 0.987 (16) | C6—C6i | 1.534 (3) |
C1—C2 | 1.3859 (19) | C6—H6A | 0.992 (16) |
C1—N1 | 1.3366 (17) | C6—H6B | 0.993 (18) |
C2—H2 | 0.982 (16) | N1—H1A | 1.49 (2) |
C2—C3 | 1.3908 (18) | C7—C8 | 1.4919 (19) |
C3—C4 | 1.3904 (18) | C7—O1 | 1.3086 (15) |
C3—C6 | 1.5036 (18) | C7—O2 | 1.2218 (16) |
C4—H4 | 0.974 (15) | C8—C8ii | 1.317 (3) |
C4—C5 | 1.3843 (18) | C8—H8 | 0.964 (17) |
C5—H5 | 0.981 (15) | O1—H1A | 1.07 (2) |
C5—N1 | 1.3410 (16) | ||
C2—C1—H1 | 121.0 (9) | C3—C6—H6A | 109.7 (9) |
N1—C1—H1 | 116.6 (9) | C3—C6—H6B | 109.3 (10) |
N1—C1—C2 | 122.48 (12) | C6i—C6—H6A | 108.2 (9) |
C1—C2—H2 | 119.7 (9) | C6i—C6—H6B | 107.9 (10) |
C1—C2—C3 | 119.49 (12) | H6A—C6—H6B | 111.1 (14) |
C3—C2—H2 | 120.8 (9) | C1—N1—C5 | 118.38 (11) |
C2—C3—C6 | 120.83 (12) | C1—N1—H1A | 119.2 (7) |
C4—C3—C2 | 117.70 (12) | C5—N1—H1A | 122.4 (7) |
C4—C3—C6 | 121.39 (11) | O1—C7—C8 | 114.05 (11) |
C3—C4—H4 | 121.2 (9) | O2—C7—C8 | 121.09 (11) |
C5—C4—C3 | 119.48 (12) | O2—C7—O1 | 124.86 (12) |
C5—C4—H4 | 119.3 (9) | C7—C8—H8 | 115.3 (10) |
C4—C5—H5 | 120.1 (9) | C8ii—C8—C7 | 123.79 (15) |
N1—C5—C4 | 122.47 (12) | C8ii—C8—H8 | 120.9 (10) |
N1—C5—H5 | 117.4 (9) | C7—O1—H1A | 112.0 (10) |
C3—C6—C6i | 110.66 (14) | ||
C1—C2—C3—C4 | 0.10 (19) | C4—C3—C6—C6i | −91.34 (17) |
C1—C2—C3—C6 | −176.85 (12) | C4—C5—N1—C1 | 0.03 (19) |
C2—C1—N1—C5 | 0.3 (2) | C6—C3—C4—C5 | 177.12 (12) |
C2—C3—C4—C5 | 0.19 (19) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.49 (18) | O1—C7—C8—C8ii | −2.7 (2) |
C3—C4—C5—N1 | −0.3 (2) | O2—C7—C8—C8ii | 177.36 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.366 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6842 (6) Å | Cell parameters from 2289 reflections |
b = 4.7293 (1) Å | θ = 4.3–71.2° |
c = 19.6920 (7) Å | µ = 0.83 mm−1 |
β = 110.036 (4)° | T = 140 K |
V = 1459.75 (9) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1385 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1257 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.6°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.788, Tmax = 0.899 | l = −23→24 |
4110 measured reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | All H-atom parameters refined |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.083P)2 + 0.1471P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1385 reflections | Δρmax = 0.20 e Å−3 |
132 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15924 (7) | 0.4026 (3) | 0.41421 (7) | 0.0257 (3) | |
H1 | 0.2195 (9) | 0.461 (3) | 0.4295 (7) | 0.024 (3)* | |
C2 | 0.13120 (7) | 0.2037 (3) | 0.45233 (6) | 0.0257 (3) | |
H2 | 0.1704 (10) | 0.115 (3) | 0.4947 (7) | 0.028 (4)* | |
C3 | 0.04530 (7) | 0.1279 (2) | 0.42825 (6) | 0.0223 (3) | |
C4 | −0.00863 (7) | 0.2575 (3) | 0.36593 (6) | 0.0243 (3) | |
H4 | −0.0686 (8) | 0.215 (3) | 0.3464 (7) | 0.024 (3)* | |
C5 | 0.02460 (7) | 0.4525 (3) | 0.33072 (6) | 0.0241 (3) | |
H5 | −0.0121 (9) | 0.548 (3) | 0.2874 (7) | 0.022 (3)* | |
C6 | 0.01158 (8) | −0.0771 (3) | 0.47021 (6) | 0.0252 (3) | |
H6A | −0.0407 (11) | −0.171 (3) | 0.4383 (9) | 0.034 (4)* | |
H6B | 0.0552 (10) | −0.220 (4) | 0.4940 (8) | 0.033 (4)* | |
N1 | 0.10716 (6) | 0.5255 (2) | 0.35427 (5) | 0.0235 (3) | |
C7 | 0.24203 (7) | 0.9762 (2) | 0.32039 (6) | 0.0228 (3) | |
C8 | 0.27258 (7) | 1.2002 (3) | 0.28217 (6) | 0.0246 (3) | |
H8 | 0.3259 (10) | 1.268 (4) | 0.3066 (8) | 0.037 (4)* | |
O1 | 0.16362 (5) | 0.89356 (18) | 0.28620 (4) | 0.0276 (3) | |
H1A | 0.1479 (14) | 0.748 (4) | 0.3179 (9) | 0.071 (6)* | |
O2 | 0.28778 (5) | 0.88381 (19) | 0.37861 (5) | 0.0298 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0212 (6) | 0.0295 (7) | 0.0275 (6) | −0.0015 (5) | 0.0096 (5) | 0.0017 (5) |
C2 | 0.0244 (6) | 0.0289 (6) | 0.0238 (6) | 0.0010 (5) | 0.0084 (5) | 0.0028 (5) |
C3 | 0.0272 (6) | 0.0205 (6) | 0.0231 (6) | −0.0009 (4) | 0.0134 (5) | −0.0029 (4) |
C4 | 0.0222 (6) | 0.0254 (6) | 0.0267 (6) | −0.0030 (5) | 0.0101 (5) | −0.0013 (5) |
C5 | 0.0247 (6) | 0.0249 (6) | 0.0224 (6) | −0.0008 (5) | 0.0079 (5) | 0.0015 (5) |
C6 | 0.0308 (6) | 0.0221 (6) | 0.0265 (6) | −0.0021 (5) | 0.0145 (5) | 0.0005 (5) |
N1 | 0.0254 (5) | 0.0240 (6) | 0.0235 (5) | −0.0020 (4) | 0.0116 (4) | 0.0011 (4) |
C7 | 0.0231 (6) | 0.0237 (6) | 0.0229 (6) | −0.0007 (5) | 0.0096 (4) | −0.0009 (5) |
C8 | 0.0212 (6) | 0.0252 (6) | 0.0281 (6) | −0.0038 (5) | 0.0094 (5) | 0.0002 (5) |
O1 | 0.0233 (5) | 0.0311 (5) | 0.0266 (5) | −0.0059 (3) | 0.0063 (4) | 0.0075 (3) |
O2 | 0.0260 (5) | 0.0349 (5) | 0.0260 (5) | −0.0026 (4) | 0.0059 (4) | 0.0073 (3) |
C1—H1 | 0.985 (14) | C5—N1 | 1.3393 (15) |
C1—C2 | 1.3812 (17) | C6—C6i | 1.539 (2) |
C1—N1 | 1.3353 (16) | C6—H6A | 0.987 (17) |
C2—H2 | 0.962 (15) | C6—H6B | 0.987 (16) |
C2—C3 | 1.3936 (16) | C7—C8 | 1.4871 (17) |
C3—C4 | 1.3910 (16) | C7—O1 | 1.3092 (13) |
C3—C6 | 1.5025 (16) | C7—O2 | 1.2201 (14) |
C4—H4 | 0.963 (13) | C8—C8ii | 1.319 (2) |
C4—C5 | 1.3791 (17) | C8—H8 | 0.912 (16) |
C5—H5 | 0.973 (13) | O1—H1A | 1.022 (16) |
C2—C1—H1 | 121.7 (8) | C3—C6—C6i | 110.65 (12) |
N1—C1—H1 | 115.8 (8) | C3—C6—H6A | 110.8 (9) |
N1—C1—C2 | 122.54 (11) | C3—C6—H6B | 110.5 (9) |
C1—C2—H2 | 120.8 (9) | C6i—C6—H6A | 107.4 (9) |
C1—C2—C3 | 119.39 (11) | C6i—C6—H6B | 107.5 (9) |
C3—C2—H2 | 119.8 (9) | H6A—C6—H6B | 109.9 (12) |
C2—C3—C6 | 120.94 (11) | C1—N1—C5 | 118.32 (10) |
C4—C3—C2 | 117.75 (11) | O1—C7—C8 | 114.07 (10) |
C4—C3—C6 | 121.24 (11) | O2—C7—C8 | 121.21 (10) |
C3—C4—H4 | 121.9 (8) | O2—C7—O1 | 124.72 (11) |
C5—C4—C3 | 119.23 (11) | C7—C8—H8 | 115.2 (10) |
C5—C4—H4 | 118.9 (8) | C8ii—C8—C7 | 123.94 (14) |
C4—C5—H5 | 120.6 (8) | C8ii—C8—H8 | 120.9 (10) |
N1—C5—C4 | 122.77 (11) | C7—O1—H1A | 107.9 (12) |
N1—C5—H5 | 116.7 (8) | ||
C1—C2—C3—C4 | 0.23 (17) | C4—C3—C6—C6i | −91.82 (16) |
C1—C2—C3—C6 | −177.03 (11) | C4—C5—N1—C1 | 0.31 (18) |
C2—C1—N1—C5 | 0.22 (19) | C6—C3—C4—C5 | 177.51 (10) |
C2—C3—C4—C5 | 0.26 (17) | N1—C1—C2—C3 | −0.49 (19) |
C2—C3—C6—C6i | 85.34 (16) | O1—C7—C8—C8ii | −3.3 (2) |
C3—C4—C5—N1 | −0.55 (19) | O2—C7—C8—C8ii | 177.06 (15) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.365 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6876 (7) Å | Cell parameters from 2278 reflections |
b = 4.7329 (2) Å | θ = 4.3–71.2° |
c = 19.6859 (9) Å | µ = 0.82 mm−1 |
β = 110.002 (5)° | T = 145 K |
V = 1461.02 (12) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1394 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1262 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.6°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.849, Tmax = 0.930 | l = −23→24 |
4130 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.079P)2 + 0.3412P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1394 reflections | Δρmax = 0.19 e Å−3 |
132 parameters | Δρmin = −0.22 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15925 (8) | 0.4027 (3) | 0.41426 (7) | 0.0267 (3) | |
C2 | 0.13110 (8) | 0.2044 (3) | 0.45239 (7) | 0.0268 (3) | |
C3 | 0.04539 (8) | 0.1282 (3) | 0.42826 (6) | 0.0233 (3) | |
C4 | −0.00851 (8) | 0.2575 (3) | 0.36592 (7) | 0.0251 (3) | |
C5 | 0.02465 (8) | 0.4528 (3) | 0.33077 (7) | 0.0251 (3) | |
C6 | 0.01164 (8) | −0.0771 (3) | 0.47028 (7) | 0.0261 (3) | |
N1 | 0.10719 (7) | 0.5258 (2) | 0.35427 (5) | 0.0243 (3) | |
C7 | 0.24189 (7) | 0.9764 (3) | 0.32046 (6) | 0.0237 (3) | |
C8 | 0.27263 (8) | 1.2002 (3) | 0.28214 (7) | 0.0254 (3) | |
O1 | 0.16369 (5) | 0.89356 (19) | 0.28625 (5) | 0.0286 (3) | |
O2 | 0.28776 (6) | 0.8840 (2) | 0.37861 (5) | 0.0310 (3) | |
H5 | −0.0132 (9) | 0.546 (3) | 0.2874 (8) | 0.025 (4)* | |
H2 | 0.1721 (10) | 0.117 (3) | 0.4957 (8) | 0.030 (4)* | |
H6A | −0.0399 (10) | −0.169 (3) | 0.4388 (9) | 0.030 (4)* | |
H8 | 0.3266 (10) | 1.269 (4) | 0.3065 (8) | 0.033 (4)* | |
H6B | 0.0553 (10) | −0.219 (4) | 0.4942 (8) | 0.037 (4)* | |
H1 | 0.2198 (9) | 0.459 (3) | 0.4301 (8) | 0.026 (4)* | |
H4 | −0.0701 (9) | 0.215 (3) | 0.3460 (7) | 0.027 (4)* | |
H1A | 0.1455 (13) | 0.752 (4) | 0.3175 (10) | 0.073 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0220 (6) | 0.0303 (7) | 0.0286 (6) | −0.0014 (5) | 0.0098 (5) | 0.0024 (5) |
C2 | 0.0258 (6) | 0.0298 (7) | 0.0250 (6) | 0.0014 (5) | 0.0088 (5) | 0.0035 (5) |
C3 | 0.0289 (6) | 0.0212 (6) | 0.0240 (6) | −0.0008 (5) | 0.0144 (5) | −0.0026 (4) |
C4 | 0.0228 (6) | 0.0258 (7) | 0.0280 (6) | −0.0022 (5) | 0.0105 (5) | −0.0006 (5) |
C5 | 0.0258 (6) | 0.0263 (6) | 0.0233 (6) | −0.0004 (5) | 0.0086 (5) | 0.0017 (5) |
C6 | 0.0313 (7) | 0.0230 (6) | 0.0278 (7) | −0.0033 (5) | 0.0150 (5) | −0.0001 (5) |
N1 | 0.0264 (6) | 0.0244 (6) | 0.0244 (5) | −0.0020 (4) | 0.0117 (4) | 0.0015 (4) |
C7 | 0.0239 (6) | 0.0247 (6) | 0.0239 (6) | −0.0007 (5) | 0.0098 (5) | −0.0010 (5) |
C8 | 0.0221 (6) | 0.0258 (6) | 0.0287 (6) | −0.0039 (5) | 0.0093 (5) | −0.0002 (5) |
O1 | 0.0245 (5) | 0.0315 (5) | 0.0278 (5) | −0.0063 (4) | 0.0065 (4) | 0.0077 (4) |
O2 | 0.0274 (5) | 0.0363 (6) | 0.0270 (5) | −0.0029 (4) | 0.0063 (4) | 0.0069 (4) |
C1—C2 | 1.3806 (18) | C5—H5 | 0.978 (15) |
C1—N1 | 1.3367 (16) | C6—C6i | 1.538 (2) |
C1—H1 | 0.987 (15) | C6—H6A | 0.974 (16) |
C2—C3 | 1.3916 (17) | C6—H6B | 0.984 (18) |
C2—H2 | 0.983 (15) | C7—C8 | 1.4895 (18) |
C3—C4 | 1.3909 (17) | C7—O1 | 1.3073 (14) |
C3—C6 | 1.5049 (17) | C7—O2 | 1.2200 (15) |
C4—C5 | 1.3789 (18) | C8—C8ii | 1.319 (3) |
C4—H4 | 0.987 (14) | C8—H8 | 0.923 (16) |
C5—N1 | 1.3396 (15) | O1—H1A | 1.023 (16) |
C2—C1—H1 | 120.9 (9) | C3—C6—C6i | 110.56 (13) |
N1—C1—C2 | 122.51 (11) | C3—C6—H6A | 110.7 (9) |
N1—C1—H1 | 116.6 (9) | C3—C6—H6B | 110.4 (10) |
C1—C2—C3 | 119.45 (11) | C6i—C6—H6A | 107.4 (9) |
C1—C2—H2 | 119.5 (9) | C6i—C6—H6B | 107.4 (9) |
C3—C2—H2 | 121.1 (9) | H6A—C6—H6B | 110.3 (13) |
C2—C3—C6 | 120.93 (11) | C1—N1—C5 | 118.26 (11) |
C4—C3—C2 | 117.78 (11) | O1—C7—C8 | 114.11 (11) |
C4—C3—C6 | 121.23 (11) | O2—C7—C8 | 121.07 (11) |
C3—C4—H4 | 122.2 (9) | O2—C7—O1 | 124.82 (11) |
C5—C4—C3 | 119.22 (12) | C7—C8—H8 | 115.5 (10) |
C5—C4—H4 | 118.6 (9) | C8ii—C8—C7 | 123.82 (15) |
C4—C5—H5 | 119.4 (9) | C8ii—C8—H8 | 120.7 (10) |
N1—C5—C4 | 122.77 (11) | C7—O1—H1A | 109.6 (12) |
N1—C5—H5 | 117.8 (9) | ||
C1—C2—C3—C4 | 0.06 (19) | C4—C3—C6—C6i | −91.81 (17) |
C1—C2—C3—C6 | −177.17 (11) | C4—C5—N1—C1 | 0.14 (19) |
C2—C1—N1—C5 | 0.1 (2) | C6—C3—C4—C5 | 177.41 (11) |
C2—C3—C4—C5 | 0.19 (18) | N1—C1—C2—C3 | −0.2 (2) |
C2—C3—C6—C6i | 85.33 (17) | O1—C7—C8—C8ii | −2.9 (2) |
C3—C4—C5—N1 | −0.3 (2) | O2—C7—C8—C8ii | 177.02 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.364 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6834 (8) Å | Cell parameters from 2251 reflections |
b = 4.7362 (2) Å | θ = 4.3–71.2° |
c = 19.6927 (10) Å | µ = 0.82 mm−1 |
β = 109.981 (6)° | T = 150 K |
V = 1462.37 (13) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1396 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1277 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.899 | l = −23→24 |
4133 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0796P)2 + 0.3683P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1396 reflections | Δρmax = 0.20 e Å−3 |
132 parameters | Δρmin = −0.23 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15914 (8) | 0.4031 (3) | 0.41428 (7) | 0.0267 (3) | |
H1 | 0.2190 (9) | 0.462 (3) | 0.4305 (8) | 0.025 (4)* | |
C2 | 0.13113 (8) | 0.2048 (3) | 0.45243 (7) | 0.0267 (3) | |
H2 | 0.1725 (10) | 0.115 (3) | 0.4958 (8) | 0.030 (4)* | |
C3 | 0.04531 (8) | 0.1282 (3) | 0.42827 (6) | 0.0227 (3) | |
C4 | −0.00846 (8) | 0.2576 (3) | 0.36597 (7) | 0.0250 (3) | |
H4 | −0.0697 (9) | 0.214 (4) | 0.3465 (7) | 0.029 (4)* | |
C5 | 0.02469 (8) | 0.4526 (3) | 0.33073 (7) | 0.0252 (3) | |
H5 | −0.0130 (10) | 0.548 (3) | 0.2867 (8) | 0.029 (4)* | |
C6 | 0.01172 (8) | −0.0769 (3) | 0.47035 (7) | 0.0260 (3) | |
H6A | −0.0403 (10) | −0.168 (3) | 0.4388 (9) | 0.027 (4)* | |
H6B | 0.0553 (11) | −0.219 (4) | 0.4943 (8) | 0.036 (4)* | |
N1 | 0.10713 (6) | 0.5258 (2) | 0.35428 (5) | 0.0240 (3) | |
C7 | 0.24189 (7) | 0.9766 (3) | 0.32046 (6) | 0.0233 (3) | |
C8 | 0.27255 (8) | 1.1999 (3) | 0.28208 (7) | 0.0250 (3) | |
H8 | 0.3266 (10) | 1.270 (4) | 0.3069 (8) | 0.035 (4)* | |
O1 | 0.16365 (5) | 0.8935 (2) | 0.28623 (5) | 0.0288 (3) | |
H1A | 0.1460 (13) | 0.749 (4) | 0.3170 (10) | 0.073 (6)* | |
O2 | 0.28764 (6) | 0.8841 (2) | 0.37852 (5) | 0.0314 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0223 (6) | 0.0296 (7) | 0.0291 (6) | −0.0023 (5) | 0.0101 (5) | 0.0018 (5) |
C2 | 0.0260 (6) | 0.0296 (7) | 0.0248 (6) | 0.0010 (5) | 0.0092 (5) | 0.0038 (5) |
C3 | 0.0278 (6) | 0.0210 (6) | 0.0232 (6) | −0.0016 (5) | 0.0136 (5) | −0.0028 (4) |
C4 | 0.0231 (6) | 0.0259 (7) | 0.0275 (6) | −0.0027 (5) | 0.0105 (5) | −0.0007 (5) |
C5 | 0.0255 (6) | 0.0268 (6) | 0.0231 (6) | −0.0016 (5) | 0.0081 (5) | 0.0013 (5) |
C6 | 0.0317 (7) | 0.0229 (6) | 0.0276 (7) | −0.0027 (5) | 0.0157 (6) | 0.0003 (5) |
N1 | 0.0257 (6) | 0.0244 (6) | 0.0240 (5) | −0.0020 (4) | 0.0113 (4) | 0.0012 (4) |
C7 | 0.0236 (6) | 0.0242 (6) | 0.0236 (6) | −0.0005 (5) | 0.0099 (5) | −0.0012 (5) |
C8 | 0.0220 (6) | 0.0262 (6) | 0.0276 (6) | −0.0034 (5) | 0.0097 (5) | 0.0006 (5) |
O1 | 0.0247 (5) | 0.0323 (6) | 0.0275 (5) | −0.0066 (4) | 0.0066 (4) | 0.0078 (4) |
O2 | 0.0281 (5) | 0.0369 (6) | 0.0266 (5) | −0.0030 (4) | 0.0062 (4) | 0.0079 (4) |
C1—H1 | 0.979 (15) | C5—N1 | 1.3383 (16) |
C1—C2 | 1.3801 (18) | C6—C6i | 1.536 (2) |
C1—N1 | 1.3366 (16) | C6—H6A | 0.978 (16) |
C2—H2 | 0.991 (15) | C6—H6B | 0.986 (18) |
C2—C3 | 1.3936 (17) | C7—C8 | 1.4884 (18) |
C3—C4 | 1.3904 (17) | C7—O1 | 1.3084 (14) |
C3—C6 | 1.5039 (17) | C7—O2 | 1.2188 (15) |
C4—H4 | 0.982 (15) | C8—C8ii | 1.318 (2) |
C4—C5 | 1.3796 (18) | C8—H8 | 0.927 (16) |
C5—H5 | 0.989 (15) | O1—H1A | 1.024 (16) |
C2—C1—H1 | 120.9 (9) | C3—C6—C6i | 110.63 (13) |
N1—C1—H1 | 116.4 (9) | C3—C6—H6A | 110.6 (9) |
N1—C1—C2 | 122.62 (11) | C3—C6—H6B | 110.7 (10) |
C1—C2—H2 | 119.7 (9) | C6i—C6—H6A | 106.9 (9) |
C1—C2—C3 | 119.39 (11) | C6i—C6—H6B | 107.4 (9) |
C3—C2—H2 | 120.9 (9) | H6A—C6—H6B | 110.5 (13) |
C2—C3—C6 | 120.85 (11) | C1—N1—C5 | 118.25 (11) |
C4—C3—C2 | 117.67 (11) | O1—C7—C8 | 114.05 (10) |
C4—C3—C6 | 121.42 (11) | O2—C7—C8 | 121.21 (11) |
C3—C4—H4 | 121.5 (9) | O2—C7—O1 | 124.74 (11) |
C5—C4—C3 | 119.36 (11) | C7—C8—H8 | 115.3 (10) |
C5—C4—H4 | 119.1 (9) | C8ii—C8—C7 | 124.04 (15) |
C4—C5—H5 | 120.2 (9) | C8ii—C8—H8 | 120.6 (10) |
N1—C5—C4 | 122.71 (12) | C7—O1—H1A | 109.6 (12) |
N1—C5—H5 | 117.1 (9) | ||
C1—C2—C3—C4 | 0.03 (19) | C4—C3—C6—C6i | −91.67 (17) |
C1—C2—C3—C6 | −177.11 (11) | C4—C5—N1—C1 | 0.3 (2) |
C2—C1—N1—C5 | 0.1 (2) | C6—C3—C4—C5 | 177.47 (11) |
C2—C3—C4—C5 | 0.34 (18) | N1—C1—C2—C3 | −0.3 (2) |
C2—C3—C6—C6i | 85.37 (17) | O1—C7—C8—C8ii | −2.7 (2) |
C3—C4—C5—N1 | −0.5 (2) | O2—C7—C8—C8ii | 177.11 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.362 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6852 (7) Å | Cell parameters from 1712 reflections |
b = 4.7457 (2) Å | θ = 3.0–72.2° |
c = 19.6763 (7) Å | µ = 0.82 mm−1 |
β = 109.949 (4)° | T = 150 K |
V = 1464.54 (11) Å3 | Plate, colourless |
Z = 4 | 0.25 × 0.14 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1418 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1195 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.022 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.3°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.697, Tmax = 1.000 | l = −23→21 |
2787 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | All H-atom parameters refined |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4337P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1418 reflections | Δρmax = 0.14 e Å−3 |
132 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15923 (8) | 0.4036 (3) | 0.41420 (7) | 0.0267 (3) | |
H1 | 0.2200 (10) | 0.465 (3) | 0.4303 (8) | 0.028 (4)* | |
C2 | 0.13099 (8) | 0.2043 (3) | 0.45227 (7) | 0.0267 (3) | |
H2 | 0.1724 (10) | 0.118 (4) | 0.4959 (9) | 0.035 (4)* | |
C3 | 0.04536 (8) | 0.1284 (3) | 0.42826 (7) | 0.0227 (3) | |
C4 | −0.00846 (8) | 0.2573 (3) | 0.36597 (7) | 0.0252 (3) | |
H4 | −0.0696 (10) | 0.213 (4) | 0.3465 (8) | 0.031 (4)* | |
C5 | 0.02471 (8) | 0.4534 (3) | 0.33064 (7) | 0.0252 (3) | |
H5 | −0.0131 (10) | 0.545 (3) | 0.2860 (8) | 0.027 (4)* | |
C6 | 0.01161 (9) | −0.0765 (3) | 0.47027 (7) | 0.0262 (3) | |
H6A | −0.0404 (11) | −0.175 (4) | 0.4376 (9) | 0.034 (4)* | |
H6B | 0.0561 (10) | −0.217 (4) | 0.4938 (8) | 0.031 (4)* | |
N1 | 0.10719 (7) | 0.5262 (2) | 0.35421 (6) | 0.0243 (3) | |
C7 | 0.24181 (8) | 0.9763 (3) | 0.32043 (7) | 0.0235 (3) | |
C8 | 0.27255 (8) | 1.2004 (3) | 0.28200 (7) | 0.0249 (3) | |
H8 | 0.3282 (11) | 1.271 (4) | 0.3067 (9) | 0.035 (4)* | |
O1 | 0.16365 (6) | 0.8934 (2) | 0.28618 (5) | 0.0285 (3) | |
H1A | 0.1432 (14) | 0.747 (5) | 0.3169 (12) | 0.076 (7)* | |
O2 | 0.28780 (6) | 0.8842 (2) | 0.37865 (5) | 0.0316 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0204 (6) | 0.0303 (8) | 0.0288 (7) | −0.0023 (5) | 0.0077 (5) | 0.0016 (5) |
C2 | 0.0253 (7) | 0.0288 (7) | 0.0255 (6) | 0.0001 (5) | 0.0079 (5) | 0.0037 (5) |
C3 | 0.0262 (6) | 0.0209 (7) | 0.0238 (6) | −0.0013 (5) | 0.0123 (5) | −0.0022 (5) |
C4 | 0.0219 (6) | 0.0265 (7) | 0.0274 (6) | −0.0027 (5) | 0.0086 (5) | −0.0009 (5) |
C5 | 0.0248 (7) | 0.0258 (7) | 0.0243 (6) | −0.0017 (5) | 0.0074 (5) | 0.0024 (5) |
C6 | 0.0301 (7) | 0.0223 (7) | 0.0292 (7) | −0.0027 (5) | 0.0138 (6) | 0.0006 (5) |
N1 | 0.0246 (6) | 0.0240 (6) | 0.0256 (5) | −0.0027 (4) | 0.0101 (4) | 0.0012 (4) |
C7 | 0.0215 (6) | 0.0241 (7) | 0.0248 (6) | −0.0006 (5) | 0.0079 (5) | 0.0004 (5) |
C8 | 0.0205 (6) | 0.0255 (7) | 0.0282 (6) | −0.0035 (5) | 0.0077 (5) | 0.0010 (5) |
O1 | 0.0224 (5) | 0.0319 (6) | 0.0281 (5) | −0.0067 (4) | 0.0045 (4) | 0.0077 (4) |
O2 | 0.0265 (5) | 0.0371 (6) | 0.0276 (5) | −0.0028 (4) | 0.0046 (4) | 0.0075 (4) |
C1—H1 | 0.998 (16) | C6—C6i | 1.535 (3) |
C1—C2 | 1.3850 (19) | C6—H6A | 1.002 (17) |
C1—N1 | 1.3366 (17) | C6—H6B | 0.987 (17) |
C2—H2 | 0.989 (17) | N1—H1A | 1.52 (2) |
C2—C3 | 1.3906 (18) | C7—C8 | 1.4936 (19) |
C3—C4 | 1.3900 (18) | C7—O1 | 1.3076 (15) |
C3—C6 | 1.5045 (18) | C7—O2 | 1.2216 (16) |
C4—H4 | 0.982 (15) | C8—C8ii | 1.314 (3) |
C4—C5 | 1.3849 (19) | C8—H8 | 0.951 (17) |
C5—H5 | 0.991 (15) | O1—H1A | 1.05 (2) |
C5—N1 | 1.3389 (17) | ||
C2—C1—H1 | 121.7 (9) | C3—C6—H6A | 110.8 (10) |
N1—C1—H1 | 115.8 (9) | C3—C6—H6B | 109.3 (9) |
N1—C1—C2 | 122.45 (12) | C6i—C6—H6A | 108.7 (10) |
C1—C2—H2 | 119.2 (10) | C6i—C6—H6B | 107.9 (9) |
C1—C2—C3 | 119.52 (12) | H6A—C6—H6B | 109.5 (14) |
C3—C2—H2 | 121.2 (10) | C1—N1—C5 | 118.34 (11) |
C2—C3—C6 | 120.97 (12) | C1—N1—H1A | 118.9 (8) |
C4—C3—C2 | 117.73 (12) | C5—N1—H1A | 122.7 (8) |
C4—C3—C6 | 121.25 (12) | O1—C7—C8 | 114.05 (11) |
C3—C4—H4 | 121.5 (10) | O2—C7—C8 | 121.02 (12) |
C5—C4—C3 | 119.33 (12) | O2—C7—O1 | 124.93 (12) |
C5—C4—H4 | 119.2 (9) | C7—C8—H8 | 115.9 (10) |
C4—C5—H5 | 119.9 (9) | C8ii—C8—C7 | 123.84 (15) |
N1—C5—C4 | 122.62 (12) | C8ii—C8—H8 | 120.2 (10) |
N1—C5—H5 | 117.4 (9) | C7—O1—H1A | 111.4 (12) |
C3—C6—C6i | 110.61 (14) | ||
C1—C2—C3—C4 | 0.3 (2) | C4—C3—C6—C6i | −91.86 (17) |
C1—C2—C3—C6 | −176.93 (12) | C4—C5—N1—C1 | 0.1 (2) |
C2—C1—N1—C5 | 0.3 (2) | C6—C3—C4—C5 | 177.34 (12) |
C2—C3—C4—C5 | 0.07 (19) | N1—C1—C2—C3 | −0.6 (2) |
C2—C3—C6—C6i | 85.33 (18) | O1—C7—C8—C8ii | −2.8 (2) |
C3—C4—C5—N1 | −0.3 (2) | O2—C7—C8—C8ii | 177.09 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.364 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6821 (8) Å | Cell parameters from 2236 reflections |
b = 4.7392 (2) Å | θ = 4.3–71.2° |
c = 19.6849 (9) Å | µ = 0.82 mm−1 |
β = 109.948 (5)° | T = 155 K |
V = 1462.91 (12) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1397 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1272 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.899 | l = −23→24 |
4149 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | All H-atom parameters refined |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0828P)2 + 0.2849P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1397 reflections | Δρmax = 0.18 e Å−3 |
132 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15908 (8) | 0.4036 (3) | 0.41427 (7) | 0.0277 (3) | |
H1 | 0.2197 (10) | 0.461 (3) | 0.4296 (8) | 0.028 (4)* | |
C2 | 0.13106 (8) | 0.2050 (3) | 0.45238 (7) | 0.0279 (3) | |
H2 | 0.1720 (10) | 0.116 (3) | 0.4959 (8) | 0.032 (4)* | |
C3 | 0.04536 (8) | 0.1285 (3) | 0.42826 (6) | 0.0236 (3) | |
C4 | −0.00836 (8) | 0.2576 (3) | 0.36596 (7) | 0.0258 (3) | |
H4 | −0.0699 (9) | 0.215 (4) | 0.3461 (7) | 0.032 (4)* | |
C5 | 0.02476 (8) | 0.4529 (3) | 0.33076 (7) | 0.0261 (3) | |
H5 | −0.0116 (10) | 0.548 (3) | 0.2874 (8) | 0.031 (4)* | |
C6 | 0.01167 (9) | −0.0767 (3) | 0.47024 (7) | 0.0269 (3) | |
H6A | −0.0394 (11) | −0.170 (3) | 0.4391 (9) | 0.032 (4)* | |
H6B | 0.0554 (11) | −0.218 (4) | 0.4944 (9) | 0.039 (4)* | |
N1 | 0.10716 (6) | 0.5263 (2) | 0.35434 (5) | 0.0249 (3) | |
C7 | 0.24191 (7) | 0.9767 (3) | 0.32042 (6) | 0.0242 (3) | |
C8 | 0.27259 (8) | 1.2003 (3) | 0.28207 (7) | 0.0262 (3) | |
H8 | 0.3266 (10) | 1.265 (4) | 0.3068 (8) | 0.033 (4)* | |
O1 | 0.16368 (5) | 0.8937 (2) | 0.28625 (5) | 0.0298 (3) | |
H1A | 0.1463 (14) | 0.744 (5) | 0.3176 (11) | 0.073 (6)* | |
O2 | 0.28758 (6) | 0.8844 (2) | 0.37851 (5) | 0.0324 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0232 (6) | 0.0311 (7) | 0.0295 (6) | −0.0021 (5) | 0.0100 (5) | 0.0023 (5) |
C2 | 0.0274 (6) | 0.0305 (7) | 0.0259 (6) | 0.0008 (5) | 0.0091 (5) | 0.0037 (5) |
C3 | 0.0295 (6) | 0.0211 (6) | 0.0240 (6) | −0.0009 (5) | 0.0143 (5) | −0.0021 (4) |
C4 | 0.0238 (6) | 0.0267 (7) | 0.0281 (6) | −0.0031 (5) | 0.0103 (5) | −0.0009 (5) |
C5 | 0.0267 (6) | 0.0275 (6) | 0.0237 (6) | −0.0012 (5) | 0.0081 (5) | 0.0019 (5) |
C6 | 0.0327 (7) | 0.0238 (6) | 0.0283 (7) | −0.0022 (5) | 0.0158 (6) | 0.0007 (5) |
N1 | 0.0268 (6) | 0.0253 (6) | 0.0247 (5) | −0.0022 (4) | 0.0115 (4) | 0.0018 (4) |
C7 | 0.0244 (6) | 0.0244 (6) | 0.0246 (6) | −0.0007 (5) | 0.0096 (5) | −0.0005 (5) |
C8 | 0.0230 (6) | 0.0271 (6) | 0.0291 (6) | −0.0039 (5) | 0.0097 (5) | 0.0004 (5) |
O1 | 0.0249 (5) | 0.0333 (6) | 0.0289 (5) | −0.0071 (4) | 0.0064 (4) | 0.0079 (4) |
O2 | 0.0289 (5) | 0.0379 (6) | 0.0277 (5) | −0.0028 (4) | 0.0062 (4) | 0.0077 (4) |
C1—H1 | 0.990 (15) | C5—N1 | 1.3383 (16) |
C1—C2 | 1.3809 (18) | C6—C6i | 1.537 (2) |
C1—N1 | 1.3352 (17) | C6—H6A | 0.969 (17) |
C2—H2 | 0.989 (15) | C6—H6B | 0.986 (18) |
C2—C3 | 1.3919 (18) | C7—C8 | 1.4896 (18) |
C3—C4 | 1.3897 (18) | C7—O1 | 1.3081 (14) |
C3—C6 | 1.5038 (17) | C7—O2 | 1.2185 (15) |
C4—H4 | 0.986 (15) | C8—C8ii | 1.317 (3) |
C4—C5 | 1.3796 (18) | C8—H8 | 0.919 (16) |
C5—H5 | 0.972 (16) | O1—H1A | 1.04 (2) |
C2—C1—H1 | 121.5 (9) | C3—C6—C6i | 110.64 (13) |
N1—C1—H1 | 115.8 (9) | C3—C6—H6A | 111.0 (10) |
N1—C1—C2 | 122.62 (11) | C3—C6—H6B | 110.6 (10) |
C1—C2—H2 | 119.9 (9) | C6i—C6—H6A | 107.5 (10) |
C1—C2—C3 | 119.40 (11) | C6i—C6—H6B | 107.0 (10) |
C3—C2—H2 | 120.7 (9) | H6A—C6—H6B | 110.0 (14) |
C2—C3—C6 | 120.92 (11) | C1—N1—C5 | 118.24 (11) |
C4—C3—C2 | 117.68 (11) | O1—C7—C8 | 114.10 (11) |
C4—C3—C6 | 121.34 (11) | O2—C7—C8 | 121.20 (11) |
C3—C4—H4 | 122.1 (9) | O2—C7—O1 | 124.70 (11) |
C5—C4—C3 | 119.36 (12) | C7—C8—H8 | 114.5 (10) |
C5—C4—H4 | 118.5 (9) | C8ii—C8—C7 | 123.86 (15) |
C4—C5—H5 | 120.9 (9) | C8ii—C8—H8 | 121.6 (10) |
N1—C5—C4 | 122.70 (12) | C7—O1—H1A | 109.3 (11) |
N1—C5—H5 | 116.4 (9) | ||
C1—C2—C3—C4 | 0.20 (19) | C4—C3—C6—C6i | −91.90 (17) |
C1—C2—C3—C6 | −177.07 (11) | C4—C5—N1—C1 | 0.3 (2) |
C2—C1—N1—C5 | 0.1 (2) | C6—C3—C4—C5 | 177.45 (11) |
C2—C3—C4—C5 | 0.19 (19) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.27 (17) | O1—C7—C8—C8ii | −2.9 (2) |
C3—C4—C5—N1 | −0.5 (2) | O2—C7—C8—C8ii | 177.10 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.362 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6868 (6) Å | Cell parameters from 2266 reflections |
b = 4.7394 (1) Å | θ = 4.3–71.4° |
c = 19.6945 (7) Å | µ = 0.82 mm−1 |
β = 109.936 (4)° | T = 160 K |
V = 1464.21 (9) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1397 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1271 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.900 | l = −23→24 |
4147 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0767P)2 + 0.3236P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1397 reflections | Δρmax = 0.20 e Å−3 |
132 parameters | Δρmin = −0.22 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15905 (8) | 0.4038 (3) | 0.41424 (7) | 0.0284 (3) | |
H1 | 0.2198 (10) | 0.462 (3) | 0.4310 (8) | 0.031 (4)* | |
C2 | 0.13103 (8) | 0.2053 (3) | 0.45230 (7) | 0.0287 (3) | |
H2 | 0.1719 (10) | 0.117 (3) | 0.4957 (8) | 0.032 (4)* | |
C3 | 0.04543 (8) | 0.1288 (3) | 0.42832 (6) | 0.0242 (3) | |
C4 | −0.00837 (8) | 0.2577 (3) | 0.36606 (7) | 0.0269 (3) | |
H4 | −0.0696 (9) | 0.215 (4) | 0.3458 (7) | 0.032 (4)* | |
C5 | 0.02473 (8) | 0.4529 (3) | 0.33079 (7) | 0.0266 (3) | |
H5 | −0.0125 (9) | 0.547 (3) | 0.2877 (8) | 0.028 (4)* | |
C6 | 0.01170 (9) | −0.0764 (3) | 0.47029 (7) | 0.0279 (3) | |
H6A | −0.0384 (11) | −0.170 (3) | 0.4396 (9) | 0.032 (4)* | |
H6B | 0.0553 (11) | −0.220 (4) | 0.4940 (9) | 0.042 (4)* | |
N1 | 0.10711 (6) | 0.5264 (2) | 0.35434 (5) | 0.0254 (3) | |
C7 | 0.24193 (7) | 0.9766 (3) | 0.32042 (6) | 0.0249 (3) | |
C8 | 0.27257 (8) | 1.2001 (3) | 0.28213 (7) | 0.0267 (3) | |
H8 | 0.3276 (10) | 1.268 (4) | 0.3064 (8) | 0.037 (4)* | |
O1 | 0.16370 (5) | 0.8939 (2) | 0.28625 (5) | 0.0305 (3) | |
H1A | 0.1458 (13) | 0.750 (4) | 0.3174 (10) | 0.072 (6)* | |
O2 | 0.28751 (6) | 0.8847 (2) | 0.37845 (5) | 0.0332 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0231 (6) | 0.0327 (7) | 0.0303 (6) | −0.0025 (5) | 0.0102 (5) | 0.0023 (5) |
C2 | 0.0278 (6) | 0.0314 (7) | 0.0266 (6) | 0.0007 (5) | 0.0090 (5) | 0.0045 (5) |
C3 | 0.0296 (6) | 0.0218 (6) | 0.0251 (6) | −0.0006 (5) | 0.0145 (5) | −0.0022 (5) |
C4 | 0.0248 (6) | 0.0281 (7) | 0.0288 (6) | −0.0031 (5) | 0.0102 (5) | −0.0007 (5) |
C5 | 0.0267 (6) | 0.0283 (6) | 0.0244 (6) | −0.0015 (5) | 0.0083 (5) | 0.0019 (5) |
C6 | 0.0335 (7) | 0.0242 (6) | 0.0298 (7) | −0.0030 (5) | 0.0159 (6) | 0.0001 (5) |
N1 | 0.0272 (6) | 0.0258 (6) | 0.0255 (5) | −0.0021 (4) | 0.0119 (4) | 0.0019 (4) |
C7 | 0.0246 (6) | 0.0256 (6) | 0.0255 (6) | −0.0006 (5) | 0.0099 (5) | −0.0004 (5) |
C8 | 0.0229 (6) | 0.0275 (7) | 0.0304 (6) | −0.0042 (5) | 0.0100 (5) | 0.0003 (5) |
O1 | 0.0255 (5) | 0.0345 (6) | 0.0295 (5) | −0.0069 (4) | 0.0066 (4) | 0.0081 (4) |
O2 | 0.0287 (5) | 0.0394 (6) | 0.0286 (5) | −0.0033 (4) | 0.0062 (4) | 0.0082 (4) |
C1—H1 | 0.992 (15) | C5—N1 | 1.3384 (16) |
C1—C2 | 1.3801 (18) | C6—C6i | 1.535 (2) |
C1—N1 | 1.3353 (16) | C6—H6A | 0.956 (17) |
C2—H2 | 0.987 (15) | C6—H6B | 0.990 (18) |
C2—C3 | 1.3910 (17) | C7—C8 | 1.4884 (18) |
C3—C4 | 1.3900 (18) | C7—O1 | 1.3082 (14) |
C3—C6 | 1.5041 (17) | C7—O2 | 1.2172 (15) |
C4—H4 | 0.984 (15) | C8—C8ii | 1.320 (3) |
C4—C5 | 1.3802 (18) | C8—H8 | 0.935 (16) |
C5—H5 | 0.972 (15) | O1—H1A | 1.028 (16) |
C2—C1—H1 | 120.4 (9) | C3—C6—C6i | 110.74 (13) |
N1—C1—H1 | 117.0 (9) | C3—C6—H6A | 111.1 (10) |
N1—C1—C2 | 122.57 (11) | C3—C6—H6B | 110.5 (10) |
C1—C2—H2 | 119.8 (9) | C6i—C6—H6A | 107.8 (10) |
C1—C2—C3 | 119.50 (11) | C6i—C6—H6B | 107.6 (10) |
C3—C2—H2 | 120.7 (9) | H6A—C6—H6B | 108.9 (13) |
C2—C3—C6 | 121.03 (11) | C1—N1—C5 | 118.26 (11) |
C4—C3—C2 | 117.67 (11) | O1—C7—C8 | 114.05 (10) |
C4—C3—C6 | 121.25 (12) | O2—C7—C8 | 121.18 (11) |
C3—C4—H4 | 122.4 (9) | O2—C7—O1 | 124.77 (11) |
C5—C4—C3 | 119.32 (12) | C7—C8—H8 | 115.6 (10) |
C5—C4—H4 | 118.3 (9) | C8ii—C8—C7 | 123.94 (15) |
C4—C5—H5 | 120.0 (9) | C8ii—C8—H8 | 120.5 (10) |
N1—C5—C4 | 122.69 (12) | C7—O1—H1A | 109.5 (11) |
N1—C5—H5 | 117.3 (9) | ||
C1—C2—C3—C4 | 0.21 (19) | C4—C3—C6—C6i | −91.85 (17) |
C1—C2—C3—C6 | −177.04 (12) | C4—C5—N1—C1 | 0.4 (2) |
C2—C1—N1—C5 | 0.1 (2) | C6—C3—C4—C5 | 177.48 (11) |
C2—C3—C4—C5 | 0.24 (18) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.30 (17) | O1—C7—C8—C8ii | −3.0 (2) |
C3—C4—C5—N1 | −0.5 (2) | O2—C7—C8—C8ii | 177.19 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.362 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6819 (6) Å | Cell parameters from 2250 reflections |
b = 4.7422 (2) Å | θ = 4.3–71.3° |
c = 19.6945 (8) Å | µ = 0.82 mm−1 |
β = 109.915 (4)° | T = 165 K |
V = 1464.84 (11) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1399 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1263 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.6°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.900 | l = −23→24 |
4144 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | All H-atom parameters refined |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0769P)2 + 0.3081P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1399 reflections | Δρmax = 0.18 e Å−3 |
132 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15893 (8) | 0.4041 (3) | 0.41434 (7) | 0.0286 (3) | |
H1 | 0.2189 (9) | 0.465 (3) | 0.4303 (8) | 0.029 (4)* | |
C2 | 0.13091 (8) | 0.2059 (3) | 0.45237 (7) | 0.0287 (3) | |
H2 | 0.1722 (10) | 0.120 (3) | 0.4953 (8) | 0.033 (4)* | |
C3 | 0.04537 (8) | 0.1290 (3) | 0.42829 (6) | 0.0248 (3) | |
C4 | −0.00834 (8) | 0.2577 (3) | 0.36604 (7) | 0.0271 (3) | |
H4 | −0.0696 (9) | 0.217 (4) | 0.3458 (7) | 0.032 (4)* | |
C5 | 0.02475 (8) | 0.4527 (3) | 0.33078 (7) | 0.0272 (3) | |
H5 | −0.0128 (10) | 0.545 (3) | 0.2873 (8) | 0.030 (4)* | |
C6 | 0.01169 (9) | −0.0763 (3) | 0.47026 (7) | 0.0281 (3) | |
H6A | −0.0402 (11) | −0.169 (3) | 0.4380 (9) | 0.036 (4)* | |
H6B | 0.0553 (10) | −0.218 (4) | 0.4934 (8) | 0.039 (4)* | |
N1 | 0.10706 (7) | 0.5265 (2) | 0.35431 (5) | 0.0258 (3) | |
C7 | 0.24177 (7) | 0.9770 (3) | 0.32042 (6) | 0.0251 (3) | |
C8 | 0.27247 (8) | 1.2001 (3) | 0.28206 (7) | 0.0270 (3) | |
H8 | 0.3274 (10) | 1.268 (4) | 0.3076 (8) | 0.033 (4)* | |
O1 | 0.16369 (5) | 0.8942 (2) | 0.28624 (5) | 0.0309 (3) | |
H1A | 0.1453 (13) | 0.746 (5) | 0.3176 (11) | 0.069 (6)* | |
O2 | 0.28746 (6) | 0.8849 (2) | 0.37845 (5) | 0.0340 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0233 (6) | 0.0326 (7) | 0.0304 (6) | −0.0022 (5) | 0.0098 (5) | 0.0023 (5) |
C2 | 0.0280 (6) | 0.0315 (7) | 0.0267 (6) | 0.0010 (5) | 0.0092 (5) | 0.0046 (5) |
C3 | 0.0304 (6) | 0.0225 (6) | 0.0257 (6) | −0.0009 (5) | 0.0150 (5) | −0.0018 (5) |
C4 | 0.0247 (6) | 0.0287 (7) | 0.0293 (6) | −0.0038 (5) | 0.0108 (5) | −0.0009 (5) |
C5 | 0.0281 (6) | 0.0283 (6) | 0.0246 (6) | −0.0016 (5) | 0.0083 (5) | 0.0021 (5) |
C6 | 0.0347 (7) | 0.0241 (6) | 0.0297 (7) | −0.0030 (5) | 0.0163 (6) | 0.0007 (5) |
N1 | 0.0277 (5) | 0.0264 (6) | 0.0253 (5) | −0.0019 (4) | 0.0118 (4) | 0.0023 (4) |
C7 | 0.0246 (6) | 0.0262 (6) | 0.0255 (6) | −0.0005 (5) | 0.0096 (5) | −0.0003 (5) |
C8 | 0.0235 (6) | 0.0278 (7) | 0.0299 (6) | −0.0041 (5) | 0.0093 (5) | 0.0006 (5) |
O1 | 0.0259 (5) | 0.0350 (6) | 0.0298 (5) | −0.0073 (4) | 0.0067 (4) | 0.0085 (4) |
O2 | 0.0295 (5) | 0.0401 (6) | 0.0292 (5) | −0.0034 (4) | 0.0058 (4) | 0.0084 (4) |
C1—H1 | 0.986 (15) | C5—N1 | 1.3375 (16) |
C1—C2 | 1.3790 (18) | C6—C6i | 1.536 (2) |
C1—N1 | 1.3366 (16) | C6—H6A | 0.986 (17) |
C2—H2 | 0.980 (16) | C6—H6B | 0.981 (17) |
C2—C3 | 1.3903 (18) | C7—C8 | 1.4886 (18) |
C3—C4 | 1.3890 (18) | C7—O1 | 1.3064 (14) |
C3—C6 | 1.5045 (17) | C7—O2 | 1.2182 (15) |
C4—H4 | 0.981 (15) | C8—C8ii | 1.318 (3) |
C4—C5 | 1.3798 (18) | C8—H8 | 0.939 (15) |
C5—H5 | 0.976 (15) | O1—H1A | 1.05 (2) |
C2—C1—H1 | 121.5 (9) | C3—C6—C6i | 110.69 (13) |
N1—C1—H1 | 115.8 (9) | C3—C6—H6A | 110.3 (10) |
N1—C1—C2 | 122.64 (11) | C3—C6—H6B | 110.1 (10) |
C1—C2—H2 | 119.0 (9) | C6i—C6—H6A | 107.8 (10) |
C1—C2—C3 | 119.46 (11) | C6i—C6—H6B | 108.0 (9) |
C3—C2—H2 | 121.5 (9) | H6A—C6—H6B | 109.9 (13) |
C2—C3—C6 | 120.94 (11) | C1—N1—C5 | 118.14 (11) |
C4—C3—C2 | 117.68 (11) | O1—C7—C8 | 114.02 (11) |
C4—C3—C6 | 121.32 (12) | O2—C7—C8 | 121.14 (11) |
C3—C4—H4 | 122.8 (9) | O2—C7—O1 | 124.83 (11) |
C5—C4—C3 | 119.35 (12) | C7—C8—H8 | 114.5 (9) |
C5—C4—H4 | 117.8 (9) | C8ii—C8—C7 | 124.06 (15) |
C4—C5—H5 | 119.7 (9) | C8ii—C8—H8 | 121.4 (10) |
N1—C5—C4 | 122.72 (12) | C7—O1—H1A | 109.8 (11) |
N1—C5—H5 | 117.6 (9) | ||
C1—C2—C3—C4 | 0.12 (19) | C4—C3—C6—C6i | −91.97 (17) |
C1—C2—C3—C6 | −177.12 (12) | C4—C5—N1—C1 | 0.3 (2) |
C2—C1—N1—C5 | 0.2 (2) | C6—C3—C4—C5 | 177.55 (11) |
C2—C3—C4—C5 | 0.33 (19) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.17 (17) | O1—C7—C8—C8ii | −2.8 (2) |
C3—C4—C5—N1 | −0.5 (2) | O2—C7—C8—C8ii | 177.08 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.360 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6847 (7) Å | Cell parameters from 2260 reflections |
b = 4.7475 (2) Å | θ = 4.3–71.3° |
c = 19.6847 (9) Å | µ = 0.82 mm−1 |
β = 109.844 (5)° | T = 170 K |
V = 1466.65 (12) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1403 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1260 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.900 | l = −23→24 |
4135 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2755P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1403 reflections | Δρmax = 0.18 e Å−3 |
132 parameters | Δρmin = −0.22 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15896 (8) | 0.4045 (3) | 0.41436 (7) | 0.0294 (3) | |
H1 | 0.2187 (10) | 0.465 (3) | 0.4305 (8) | 0.030 (4)* | |
C2 | 0.13094 (8) | 0.2065 (3) | 0.45236 (7) | 0.0294 (3) | |
H2 | 0.1717 (10) | 0.120 (3) | 0.4963 (8) | 0.031 (4)* | |
C3 | 0.04540 (8) | 0.1294 (3) | 0.42830 (6) | 0.0251 (3) | |
C4 | −0.00834 (8) | 0.2573 (3) | 0.36604 (7) | 0.0278 (3) | |
H4 | −0.0705 (10) | 0.214 (4) | 0.3457 (8) | 0.035 (4)* | |
C5 | 0.02481 (8) | 0.4529 (3) | 0.33085 (7) | 0.0279 (3) | |
H5 | −0.0136 (10) | 0.544 (3) | 0.2873 (8) | 0.033 (4)* | |
C6 | 0.01177 (9) | −0.0757 (3) | 0.47028 (7) | 0.0287 (3) | |
H6A | −0.0391 (11) | −0.168 (3) | 0.4382 (9) | 0.035 (4)* | |
H6B | 0.0557 (11) | −0.219 (4) | 0.4937 (9) | 0.041 (4)* | |
N1 | 0.10706 (7) | 0.5264 (2) | 0.35429 (6) | 0.0267 (3) | |
C7 | 0.24186 (8) | 0.9770 (3) | 0.32042 (6) | 0.0258 (3) | |
C8 | 0.27243 (8) | 1.2002 (3) | 0.28203 (7) | 0.0278 (3) | |
H8 | 0.3275 (10) | 1.269 (4) | 0.3068 (8) | 0.040 (4)* | |
O1 | 0.16374 (6) | 0.8939 (2) | 0.28628 (5) | 0.0319 (3) | |
H1A | 0.1459 (13) | 0.750 (4) | 0.3175 (10) | 0.077 (7)* | |
O2 | 0.28740 (6) | 0.8853 (2) | 0.37846 (5) | 0.0348 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0240 (6) | 0.0338 (7) | 0.0307 (6) | −0.0027 (5) | 0.0099 (5) | 0.0030 (5) |
C2 | 0.0281 (6) | 0.0328 (7) | 0.0271 (6) | 0.0005 (5) | 0.0089 (5) | 0.0047 (5) |
C3 | 0.0311 (6) | 0.0232 (6) | 0.0249 (6) | −0.0020 (5) | 0.0145 (5) | −0.0021 (5) |
C4 | 0.0259 (6) | 0.0296 (7) | 0.0292 (7) | −0.0035 (5) | 0.0111 (5) | −0.0009 (5) |
C5 | 0.0284 (6) | 0.0294 (7) | 0.0253 (6) | −0.0018 (5) | 0.0084 (5) | 0.0025 (5) |
C6 | 0.0357 (7) | 0.0248 (7) | 0.0300 (7) | −0.0031 (5) | 0.0170 (6) | 0.0006 (5) |
N1 | 0.0288 (6) | 0.0272 (6) | 0.0266 (5) | −0.0025 (4) | 0.0126 (4) | 0.0016 (4) |
C7 | 0.0257 (6) | 0.0272 (7) | 0.0256 (6) | −0.0013 (5) | 0.0101 (5) | −0.0005 (5) |
C8 | 0.0239 (6) | 0.0289 (7) | 0.0311 (7) | −0.0043 (5) | 0.0099 (5) | 0.0010 (5) |
O1 | 0.0273 (5) | 0.0358 (6) | 0.0302 (5) | −0.0072 (4) | 0.0066 (4) | 0.0088 (4) |
O2 | 0.0303 (5) | 0.0414 (6) | 0.0295 (5) | −0.0036 (4) | 0.0058 (4) | 0.0089 (4) |
C1—H1 | 0.981 (15) | C5—N1 | 1.3373 (16) |
C1—C2 | 1.3784 (19) | C6—C6i | 1.534 (3) |
C1—N1 | 1.3370 (17) | C6—H6A | 0.974 (17) |
C2—H2 | 0.989 (15) | C6—H6B | 0.992 (18) |
C2—C3 | 1.3915 (18) | C7—C8 | 1.4887 (18) |
C3—C4 | 1.3888 (18) | C7—O1 | 1.3082 (15) |
C3—C6 | 1.5036 (17) | C7—O2 | 1.2179 (15) |
C4—H4 | 0.999 (15) | C8—C8ii | 1.316 (3) |
C4—C5 | 1.3812 (18) | C8—H8 | 0.940 (17) |
C5—H5 | 0.980 (16) | O1—H1A | 1.028 (16) |
C2—C1—H1 | 121.2 (9) | C3—C6—C6i | 110.83 (13) |
N1—C1—H1 | 116.3 (9) | C3—C6—H6A | 109.9 (10) |
N1—C1—C2 | 122.55 (12) | C3—C6—H6B | 110.2 (10) |
C1—C2—H2 | 119.8 (9) | C6i—C6—H6A | 108.3 (10) |
C1—C2—C3 | 119.49 (12) | C6i—C6—H6B | 107.9 (10) |
C3—C2—H2 | 120.7 (9) | H6A—C6—H6B | 109.6 (13) |
C2—C3—C6 | 120.94 (12) | C1—N1—C5 | 118.22 (11) |
C4—C3—C2 | 117.76 (11) | O1—C7—C8 | 114.03 (11) |
C4—C3—C6 | 121.24 (12) | O2—C7—C8 | 121.25 (11) |
C3—C4—H4 | 122.3 (9) | O2—C7—O1 | 124.72 (12) |
C5—C4—C3 | 119.21 (12) | C7—C8—H8 | 115.2 (10) |
C5—C4—H4 | 118.5 (9) | C8ii—C8—C7 | 124.09 (15) |
C4—C5—H5 | 118.8 (9) | C8ii—C8—H8 | 120.7 (10) |
N1—C5—C4 | 122.77 (12) | C7—O1—H1A | 109.5 (12) |
N1—C5—H5 | 118.4 (9) | ||
C1—C2—C3—C4 | 0.22 (19) | C4—C3—C6—C6i | −92.02 (17) |
C1—C2—C3—C6 | −177.10 (12) | C4—C5—N1—C1 | 0.0 (2) |
C2—C1—N1—C5 | 0.3 (2) | C6—C3—C4—C5 | 177.43 (11) |
C2—C3—C4—C5 | 0.12 (19) | N1—C1—C2—C3 | −0.5 (2) |
C2—C3—C6—C6i | 85.21 (18) | O1—C7—C8—C8ii | −2.9 (2) |
C3—C4—C5—N1 | −0.2 (2) | O2—C7—C8—C8ii | 177.15 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.359 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6837 (7) Å | Cell parameters from 2265 reflections |
b = 4.7500 (2) Å | θ = 4.3–71.3° |
c = 19.6845 (8) Å | µ = 0.82 mm−1 |
β = 109.814 (5)° | T = 175 K |
V = 1467.60 (11) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1406 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1267 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.900 | l = −23→24 |
4152 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0778P)2 + 0.2792P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1406 reflections | Δρmax = 0.19 e Å−3 |
132 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15881 (8) | 0.4051 (3) | 0.41431 (7) | 0.0297 (3) | |
H1 | 0.2193 (9) | 0.464 (3) | 0.4304 (8) | 0.029 (4)* | |
C2 | 0.13099 (8) | 0.2068 (3) | 0.45241 (7) | 0.0299 (3) | |
H2 | 0.1719 (10) | 0.120 (3) | 0.4958 (8) | 0.036 (4)* | |
C3 | 0.04542 (8) | 0.1298 (3) | 0.42833 (6) | 0.0255 (3) | |
C4 | −0.00821 (8) | 0.2575 (3) | 0.36612 (7) | 0.0280 (3) | |
H4 | −0.0694 (9) | 0.214 (4) | 0.3460 (7) | 0.033 (4)* | |
C5 | 0.02472 (8) | 0.4529 (3) | 0.33084 (7) | 0.0281 (3) | |
H5 | −0.0117 (10) | 0.544 (4) | 0.2872 (9) | 0.038 (4)* | |
C6 | 0.01174 (9) | −0.0756 (3) | 0.47028 (7) | 0.0291 (3) | |
H6A | −0.0392 (11) | −0.167 (3) | 0.4388 (9) | 0.033 (4)* | |
H6B | 0.0560 (11) | −0.216 (4) | 0.4931 (9) | 0.043 (4)* | |
N1 | 0.10703 (7) | 0.5268 (2) | 0.35432 (5) | 0.0270 (3) | |
C7 | 0.24182 (8) | 0.9773 (3) | 0.32037 (6) | 0.0263 (3) | |
C8 | 0.27237 (8) | 1.2002 (3) | 0.28200 (7) | 0.0282 (3) | |
H8 | 0.3257 (10) | 1.268 (4) | 0.3066 (8) | 0.039 (4)* | |
O1 | 0.16374 (6) | 0.8941 (2) | 0.28627 (5) | 0.0323 (3) | |
H1A | 0.1466 (13) | 0.747 (5) | 0.3174 (11) | 0.073 (6)* | |
O2 | 0.28733 (6) | 0.8856 (2) | 0.37839 (5) | 0.0354 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0244 (6) | 0.0346 (7) | 0.0307 (6) | −0.0020 (5) | 0.0100 (5) | 0.0030 (5) |
C2 | 0.0292 (6) | 0.0328 (7) | 0.0274 (6) | 0.0004 (5) | 0.0093 (5) | 0.0045 (5) |
C3 | 0.0311 (6) | 0.0240 (6) | 0.0251 (6) | −0.0012 (5) | 0.0144 (5) | −0.0024 (5) |
C4 | 0.0263 (6) | 0.0296 (7) | 0.0295 (6) | −0.0031 (5) | 0.0114 (5) | −0.0003 (5) |
C5 | 0.0291 (6) | 0.0302 (7) | 0.0247 (6) | −0.0016 (5) | 0.0087 (5) | 0.0026 (5) |
C6 | 0.0361 (7) | 0.0254 (7) | 0.0304 (7) | −0.0032 (5) | 0.0173 (6) | 0.0009 (5) |
N1 | 0.0280 (6) | 0.0285 (6) | 0.0267 (5) | −0.0030 (4) | 0.0121 (4) | 0.0019 (4) |
C7 | 0.0263 (6) | 0.0275 (6) | 0.0257 (6) | −0.0009 (5) | 0.0097 (5) | −0.0006 (5) |
C8 | 0.0249 (6) | 0.0288 (7) | 0.0310 (6) | −0.0043 (5) | 0.0095 (5) | 0.0008 (5) |
O1 | 0.0276 (5) | 0.0363 (6) | 0.0309 (5) | −0.0075 (4) | 0.0070 (4) | 0.0089 (4) |
O2 | 0.0308 (5) | 0.0423 (6) | 0.0296 (5) | −0.0032 (4) | 0.0058 (4) | 0.0095 (4) |
C1—H1 | 0.991 (15) | C5—N1 | 1.3388 (16) |
C1—C2 | 1.3789 (19) | C6—C6i | 1.533 (2) |
C1—N1 | 1.3357 (17) | C6—H6A | 0.970 (17) |
C2—H2 | 0.986 (16) | C6—H6B | 0.982 (18) |
C2—C3 | 1.3919 (18) | C7—C8 | 1.4874 (18) |
C3—C4 | 1.3876 (18) | C7—O1 | 1.3080 (15) |
C3—C6 | 1.5047 (17) | C7—O2 | 1.2177 (15) |
C4—H4 | 0.983 (15) | C8—C8ii | 1.315 (3) |
C4—C5 | 1.3798 (18) | C8—H8 | 0.916 (16) |
C5—H5 | 0.969 (16) | O1—H1A | 1.03 (2) |
C2—C1—H1 | 121.0 (9) | C3—C6—C6i | 110.78 (13) |
N1—C1—H1 | 116.3 (9) | C3—C6—H6A | 110.6 (9) |
N1—C1—C2 | 122.73 (12) | C3—C6—H6B | 109.1 (10) |
C1—C2—H2 | 119.7 (9) | C6i—C6—H6A | 107.6 (10) |
C1—C2—C3 | 119.32 (12) | C6i—C6—H6B | 108.4 (10) |
C3—C2—H2 | 121.0 (9) | H6A—C6—H6B | 110.4 (13) |
C2—C3—C6 | 120.93 (12) | C1—N1—C5 | 118.16 (11) |
C4—C3—C2 | 117.77 (11) | O1—C7—C8 | 114.05 (11) |
C4—C3—C6 | 121.25 (12) | O2—C7—C8 | 121.26 (11) |
C3—C4—H4 | 122.3 (9) | O2—C7—O1 | 124.69 (12) |
C5—C4—C3 | 119.37 (12) | C7—C8—H8 | 114.9 (10) |
C5—C4—H4 | 118.3 (9) | C8ii—C8—C7 | 124.15 (15) |
C4—C5—H5 | 120.5 (10) | C8ii—C8—H8 | 121.0 (10) |
N1—C5—C4 | 122.65 (12) | C7—O1—H1A | 109.2 (11) |
N1—C5—H5 | 116.8 (10) | ||
C1—C2—C3—C4 | 0.29 (19) | C4—C3—C6—C6i | −92.12 (17) |
C1—C2—C3—C6 | −177.11 (12) | C4—C5—N1—C1 | 0.1 (2) |
C2—C1—N1—C5 | 0.3 (2) | C6—C3—C4—C5 | 177.49 (11) |
C2—C3—C4—C5 | 0.10 (19) | N1—C1—C2—C3 | −0.5 (2) |
C2—C3—C6—C6i | 85.19 (18) | O1—C7—C8—C8ii | −2.9 (2) |
C3—C4—C5—N1 | −0.3 (2) | O2—C7—C8—C8ii | 177.16 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.359 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6837 (6) Å | Cell parameters from 2245 reflections |
b = 4.7513 (2) Å | θ = 4.3–71.3° |
c = 19.6812 (8) Å | µ = 0.82 mm−1 |
β = 109.784 (4)° | T = 180 K |
V = 1468.03 (11) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1408 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1279 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.786, Tmax = 0.900 | l = −23→24 |
4151 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0771P)2 + 0.3806P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1408 reflections | Δρmax = 0.20 e Å−3 |
132 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15874 (8) | 0.4054 (3) | 0.41436 (7) | 0.0306 (3) | |
H1 | 0.2193 (10) | 0.464 (3) | 0.4307 (8) | 0.033 (4)* | |
C2 | 0.13089 (8) | 0.2072 (3) | 0.45238 (7) | 0.0306 (3) | |
H2 | 0.1714 (10) | 0.123 (3) | 0.4952 (8) | 0.032 (4)* | |
C3 | 0.04541 (8) | 0.1297 (3) | 0.42839 (6) | 0.0259 (3) | |
C4 | −0.00821 (8) | 0.2575 (3) | 0.36614 (7) | 0.0285 (3) | |
H4 | −0.0697 (9) | 0.216 (3) | 0.3455 (7) | 0.031 (4)* | |
C5 | 0.02488 (8) | 0.4529 (3) | 0.33088 (7) | 0.0286 (3) | |
H5 | −0.0120 (10) | 0.545 (4) | 0.2877 (8) | 0.034 (4)* | |
C6 | 0.01184 (9) | −0.0753 (3) | 0.47031 (7) | 0.0294 (3) | |
H6A | −0.0394 (11) | −0.168 (3) | 0.4385 (9) | 0.038 (4)* | |
H6B | 0.0553 (11) | −0.218 (4) | 0.4937 (9) | 0.047 (5)* | |
N1 | 0.10707 (7) | 0.5270 (2) | 0.35437 (6) | 0.0273 (3) | |
C7 | 0.24177 (8) | 0.9774 (3) | 0.32038 (6) | 0.0264 (3) | |
C8 | 0.27240 (8) | 1.2003 (3) | 0.28201 (7) | 0.0285 (3) | |
H8 | 0.3264 (10) | 1.269 (4) | 0.3077 (8) | 0.039 (4)* | |
O1 | 0.16374 (6) | 0.8944 (2) | 0.28628 (5) | 0.0330 (3) | |
H1A | 0.1458 (14) | 0.744 (5) | 0.3176 (11) | 0.080 (7)* | |
O2 | 0.28727 (6) | 0.8861 (2) | 0.37837 (5) | 0.0362 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0254 (6) | 0.0345 (7) | 0.0322 (7) | −0.0021 (5) | 0.0103 (5) | 0.0034 (5) |
C2 | 0.0284 (6) | 0.0344 (7) | 0.0283 (6) | 0.0010 (5) | 0.0088 (5) | 0.0054 (5) |
C3 | 0.0316 (6) | 0.0241 (6) | 0.0261 (6) | −0.0014 (5) | 0.0152 (5) | −0.0018 (5) |
C4 | 0.0254 (6) | 0.0310 (7) | 0.0298 (6) | −0.0037 (5) | 0.0104 (5) | −0.0007 (5) |
C5 | 0.0287 (6) | 0.0307 (7) | 0.0258 (6) | −0.0015 (5) | 0.0083 (5) | 0.0027 (5) |
C6 | 0.0361 (7) | 0.0250 (6) | 0.0314 (7) | −0.0033 (5) | 0.0170 (6) | 0.0008 (5) |
N1 | 0.0288 (6) | 0.0282 (6) | 0.0272 (5) | −0.0027 (4) | 0.0122 (4) | 0.0021 (4) |
C7 | 0.0259 (6) | 0.0278 (6) | 0.0260 (6) | −0.0009 (5) | 0.0094 (5) | −0.0004 (5) |
C8 | 0.0243 (6) | 0.0297 (7) | 0.0314 (6) | −0.0042 (5) | 0.0092 (5) | 0.0005 (5) |
O1 | 0.0276 (5) | 0.0372 (6) | 0.0315 (5) | −0.0076 (4) | 0.0064 (4) | 0.0091 (4) |
O2 | 0.0316 (5) | 0.0431 (6) | 0.0304 (5) | −0.0040 (4) | 0.0059 (4) | 0.0091 (4) |
C1—H1 | 0.990 (15) | C5—N1 | 1.3374 (16) |
C1—C2 | 1.3775 (19) | C6—C6i | 1.532 (2) |
C1—N1 | 1.3348 (17) | C6—H6A | 0.977 (17) |
C2—H2 | 0.971 (15) | C6—H6B | 0.985 (19) |
C2—C3 | 1.3917 (17) | C7—C8 | 1.4881 (18) |
C3—C4 | 1.3886 (18) | C7—O1 | 1.3073 (15) |
C3—C6 | 1.5019 (17) | C7—O2 | 1.2168 (15) |
C4—H4 | 0.987 (14) | C8—C8ii | 1.316 (3) |
C4—C5 | 1.3813 (18) | C8—H8 | 0.931 (16) |
C5—H5 | 0.968 (16) | O1—H1A | 1.05 (2) |
C2—C1—H1 | 120.6 (9) | C3—C6—C6i | 110.90 (13) |
N1—C1—H1 | 116.6 (9) | C3—C6—H6A | 110.3 (10) |
N1—C1—C2 | 122.73 (12) | C3—C6—H6B | 110.5 (10) |
C1—C2—H2 | 119.4 (9) | C6i—C6—H6A | 107.7 (10) |
C1—C2—C3 | 119.47 (12) | C6i—C6—H6B | 107.7 (10) |
C3—C2—H2 | 121.1 (9) | H6A—C6—H6B | 109.6 (14) |
C2—C3—C6 | 121.01 (12) | C1—N1—C5 | 118.13 (11) |
C4—C3—C2 | 117.63 (11) | O1—C7—C8 | 114.05 (11) |
C4—C3—C6 | 121.30 (12) | O2—C7—C8 | 121.15 (11) |
C3—C4—H4 | 123.0 (9) | O2—C7—O1 | 124.79 (12) |
C5—C4—C3 | 119.31 (11) | C7—C8—H8 | 114.2 (10) |
C5—C4—H4 | 117.7 (9) | C8ii—C8—C7 | 124.05 (15) |
C4—C5—H5 | 120.0 (10) | C8ii—C8—H8 | 121.7 (10) |
N1—C5—C4 | 122.73 (12) | C7—O1—H1A | 109.6 (11) |
N1—C5—H5 | 117.2 (10) | ||
C1—C2—C3—C4 | 0.28 (19) | C4—C3—C6—C6i | −92.02 (17) |
C1—C2—C3—C6 | −177.06 (12) | C4—C5—N1—C1 | 0.1 (2) |
C2—C1—N1—C5 | 0.4 (2) | C6—C3—C4—C5 | 177.49 (11) |
C2—C3—C4—C5 | 0.17 (19) | N1—C1—C2—C3 | −0.6 (2) |
C2—C3—C6—C6i | 85.22 (18) | O1—C7—C8—C8ii | −2.9 (2) |
C3—C4—C5—N1 | −0.4 (2) | O2—C7—C8—C8ii | 177.21 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.358 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6800 (7) Å | Cell parameters from 2247 reflections |
b = 4.7547 (2) Å | θ = 4.3–71.3° |
c = 19.6846 (8) Å | µ = 0.82 mm−1 |
β = 109.773 (5)° | T = 185 K |
V = 1469.11 (11) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1408 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1260 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.900 | l = −23→24 |
4157 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | All H-atom parameters refined |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.079P)2 + 0.3217P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1408 reflections | Δρmax = 0.18 e Å−3 |
132 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15868 (8) | 0.4060 (3) | 0.41429 (7) | 0.0315 (3) | |
H1 | 0.2190 (10) | 0.464 (4) | 0.4305 (8) | 0.036 (4)* | |
C2 | 0.13079 (8) | 0.2078 (3) | 0.45238 (7) | 0.0316 (3) | |
H2 | 0.1730 (10) | 0.123 (3) | 0.4966 (8) | 0.034 (4)* | |
C3 | 0.04539 (8) | 0.1298 (3) | 0.42840 (7) | 0.0269 (3) | |
C4 | −0.00815 (8) | 0.2575 (3) | 0.36611 (7) | 0.0299 (3) | |
H4 | −0.0692 (10) | 0.212 (4) | 0.3455 (8) | 0.037 (4)* | |
C5 | 0.02494 (8) | 0.4526 (3) | 0.33090 (7) | 0.0297 (3) | |
H5 | −0.0124 (10) | 0.546 (3) | 0.2881 (8) | 0.033 (4)* | |
C6 | 0.01182 (9) | −0.0753 (3) | 0.47025 (7) | 0.0307 (3) | |
H6A | −0.0382 (11) | −0.168 (4) | 0.4392 (9) | 0.040 (4)* | |
H6B | 0.0559 (11) | −0.217 (4) | 0.4939 (9) | 0.045 (5)* | |
N1 | 0.10699 (7) | 0.5272 (2) | 0.35442 (6) | 0.0286 (3) | |
C7 | 0.24167 (8) | 0.9776 (3) | 0.32035 (6) | 0.0275 (3) | |
C8 | 0.27239 (8) | 1.2005 (3) | 0.28204 (7) | 0.0296 (3) | |
H8 | 0.3267 (10) | 1.272 (4) | 0.3074 (9) | 0.041 (4)* | |
O1 | 0.16376 (6) | 0.8946 (2) | 0.28629 (5) | 0.0341 (3) | |
H1A | 0.1449 (14) | 0.748 (5) | 0.3182 (11) | 0.079 (7)* | |
O2 | 0.28721 (6) | 0.8862 (2) | 0.37838 (5) | 0.0375 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0258 (6) | 0.0358 (7) | 0.0335 (7) | −0.0024 (5) | 0.0106 (5) | 0.0034 (5) |
C2 | 0.0308 (7) | 0.0352 (7) | 0.0287 (7) | 0.0009 (6) | 0.0099 (5) | 0.0055 (5) |
C3 | 0.0339 (7) | 0.0247 (7) | 0.0266 (6) | −0.0012 (5) | 0.0163 (5) | −0.0019 (5) |
C4 | 0.0273 (6) | 0.0317 (7) | 0.0314 (7) | −0.0041 (5) | 0.0110 (5) | −0.0006 (5) |
C5 | 0.0300 (7) | 0.0318 (7) | 0.0264 (6) | −0.0017 (5) | 0.0085 (5) | 0.0031 (5) |
C6 | 0.0383 (7) | 0.0262 (7) | 0.0324 (7) | −0.0036 (6) | 0.0181 (6) | 0.0011 (5) |
N1 | 0.0302 (6) | 0.0296 (6) | 0.0283 (6) | −0.0029 (5) | 0.0130 (4) | 0.0022 (4) |
C7 | 0.0271 (6) | 0.0290 (7) | 0.0273 (6) | −0.0012 (5) | 0.0101 (5) | −0.0002 (5) |
C8 | 0.0260 (6) | 0.0306 (7) | 0.0325 (7) | −0.0047 (5) | 0.0103 (5) | 0.0006 (5) |
O1 | 0.0289 (5) | 0.0387 (6) | 0.0320 (5) | −0.0083 (4) | 0.0067 (4) | 0.0094 (4) |
O2 | 0.0328 (5) | 0.0449 (6) | 0.0311 (5) | −0.0039 (4) | 0.0062 (4) | 0.0097 (4) |
C1—H1 | 0.986 (16) | C5—N1 | 1.3358 (16) |
C1—C2 | 1.3793 (19) | C6—C6i | 1.534 (3) |
C1—N1 | 1.3330 (17) | C6—H6A | 0.959 (18) |
C2—H2 | 1.001 (15) | C6—H6B | 0.990 (19) |
C2—C3 | 1.3908 (18) | C7—C8 | 1.4887 (18) |
C3—C4 | 1.3889 (18) | C7—O1 | 1.3056 (15) |
C3—C6 | 1.5018 (17) | C7—O2 | 1.2179 (15) |
C4—H4 | 0.984 (15) | C8—C8ii | 1.316 (3) |
C4—C5 | 1.3798 (19) | C8—H8 | 0.937 (17) |
C5—H5 | 0.970 (16) | O1—H1A | 1.05 (2) |
C2—C1—H1 | 120.6 (10) | C3—C6—C6i | 110.81 (14) |
N1—C1—H1 | 116.7 (10) | C3—C6—H6A | 110.7 (10) |
N1—C1—C2 | 122.66 (12) | C3—C6—H6B | 110.2 (10) |
C1—C2—H2 | 118.8 (9) | C6i—C6—H6A | 108.0 (11) |
C1—C2—C3 | 119.52 (12) | C6i—C6—H6B | 107.5 (10) |
C3—C2—H2 | 121.7 (9) | H6A—C6—H6B | 109.5 (14) |
C2—C3—C6 | 121.07 (12) | C1—N1—C5 | 118.17 (11) |
C4—C3—C2 | 117.51 (12) | O1—C7—C8 | 114.11 (11) |
C4—C3—C6 | 121.36 (12) | O2—C7—C8 | 121.11 (12) |
C3—C4—H4 | 122.2 (10) | O2—C7—O1 | 124.78 (12) |
C5—C4—C3 | 119.36 (12) | C7—C8—H8 | 115.1 (10) |
C5—C4—H4 | 118.4 (10) | C8ii—C8—C7 | 123.99 (15) |
C4—C5—H5 | 119.8 (9) | C8ii—C8—H8 | 120.9 (10) |
N1—C5—C4 | 122.78 (12) | C7—O1—H1A | 109.8 (11) |
N1—C5—H5 | 117.4 (9) | ||
C1—C2—C3—C4 | 0.2 (2) | C4—C3—C6—C6i | −92.19 (18) |
C1—C2—C3—C6 | −177.18 (12) | C4—C5—N1—C1 | 0.3 (2) |
C2—C1—N1—C5 | 0.1 (2) | C6—C3—C4—C5 | 177.60 (12) |
C2—C3—C4—C5 | 0.22 (19) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.09 (18) | O1—C7—C8—C8ii | −3.0 (2) |
C3—C4—C5—N1 | −0.5 (2) | O2—C7—C8—C8ii | 177.09 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.357 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6841 (7) Å | Cell parameters from 2220 reflections |
b = 4.7564 (2) Å | θ = 4.3–71.3° |
c = 19.6818 (8) Å | µ = 0.82 mm−1 |
β = 109.740 (5)° | T = 190 K |
V = 1470.09 (11) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1407 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1255 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.787, Tmax = 0.900 | l = −23→24 |
4152 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0769P)2 + 0.3563P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1407 reflections | Δρmax = 0.18 e Å−3 |
132 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15868 (8) | 0.4062 (3) | 0.41435 (7) | 0.0317 (3) | |
H1 | 0.2186 (10) | 0.465 (3) | 0.4298 (8) | 0.036 (4)* | |
C2 | 0.13081 (8) | 0.2080 (3) | 0.45245 (7) | 0.0319 (3) | |
H2 | 0.1716 (10) | 0.123 (3) | 0.4955 (8) | 0.032 (4)* | |
C3 | 0.04552 (8) | 0.1304 (3) | 0.42841 (6) | 0.0271 (3) | |
C4 | −0.00818 (8) | 0.2574 (3) | 0.36617 (7) | 0.0296 (3) | |
H4 | −0.0687 (10) | 0.214 (4) | 0.3461 (8) | 0.036 (4)* | |
C5 | 0.02501 (8) | 0.4527 (3) | 0.33098 (7) | 0.0302 (3) | |
H5 | −0.0125 (10) | 0.548 (3) | 0.2882 (8) | 0.033 (4)* | |
C6 | 0.01192 (9) | −0.0750 (3) | 0.47028 (7) | 0.0311 (3) | |
H6A | −0.0395 (11) | −0.166 (3) | 0.4382 (9) | 0.037 (4)* | |
H6B | 0.0552 (11) | −0.214 (4) | 0.4936 (9) | 0.043 (4)* | |
N1 | 0.10696 (7) | 0.5274 (2) | 0.35440 (6) | 0.0285 (3) | |
C7 | 0.24164 (8) | 0.9776 (3) | 0.32032 (6) | 0.0277 (3) | |
C8 | 0.27239 (8) | 1.2007 (3) | 0.28202 (7) | 0.0299 (3) | |
H8 | 0.3258 (11) | 1.267 (4) | 0.3066 (9) | 0.044 (5)* | |
O1 | 0.16379 (6) | 0.8944 (2) | 0.28626 (5) | 0.0345 (3) | |
H1A | 0.1460 (13) | 0.749 (5) | 0.3180 (11) | 0.075 (7)* | |
O2 | 0.28715 (6) | 0.8864 (2) | 0.37829 (5) | 0.0381 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0255 (6) | 0.0363 (8) | 0.0335 (7) | −0.0028 (5) | 0.0103 (5) | 0.0038 (5) |
C2 | 0.0306 (7) | 0.0354 (7) | 0.0294 (7) | 0.0003 (6) | 0.0097 (5) | 0.0061 (5) |
C3 | 0.0334 (7) | 0.0248 (7) | 0.0272 (6) | −0.0020 (5) | 0.0156 (5) | −0.0024 (5) |
C4 | 0.0267 (6) | 0.0314 (7) | 0.0314 (7) | −0.0043 (5) | 0.0110 (5) | −0.0002 (5) |
C5 | 0.0309 (7) | 0.0321 (7) | 0.0269 (6) | −0.0019 (6) | 0.0090 (5) | 0.0029 (5) |
C6 | 0.0387 (7) | 0.0267 (7) | 0.0326 (7) | −0.0033 (6) | 0.0185 (6) | 0.0009 (5) |
N1 | 0.0303 (6) | 0.0288 (6) | 0.0285 (6) | −0.0032 (4) | 0.0126 (4) | 0.0021 (4) |
C7 | 0.0277 (6) | 0.0286 (7) | 0.0276 (6) | −0.0011 (5) | 0.0105 (5) | 0.0007 (5) |
C8 | 0.0261 (6) | 0.0309 (7) | 0.0331 (7) | −0.0051 (5) | 0.0104 (5) | 0.0014 (5) |
O1 | 0.0290 (5) | 0.0392 (6) | 0.0325 (5) | −0.0084 (4) | 0.0066 (4) | 0.0099 (4) |
O2 | 0.0328 (5) | 0.0456 (6) | 0.0319 (5) | −0.0043 (4) | 0.0057 (4) | 0.0103 (4) |
C1—H1 | 0.982 (16) | C5—N1 | 1.3351 (16) |
C1—C2 | 1.3795 (19) | C6—C6i | 1.533 (3) |
C1—N1 | 1.3347 (17) | C6—H6A | 0.976 (17) |
C2—H2 | 0.978 (15) | C6—H6B | 0.973 (18) |
C2—C3 | 1.3893 (18) | C7—C8 | 1.4897 (18) |
C3—C4 | 1.3882 (18) | C7—O1 | 1.3058 (15) |
C3—C6 | 1.5032 (17) | C7—O2 | 1.2170 (16) |
C4—H4 | 0.974 (15) | C8—C8ii | 1.316 (3) |
C4—C5 | 1.3815 (18) | C8—H8 | 0.915 (17) |
C5—H5 | 0.976 (16) | O1—H1A | 1.04 (2) |
C2—C1—H1 | 121.5 (10) | C3—C6—C6i | 110.91 (14) |
N1—C1—H1 | 115.8 (10) | C3—C6—H6A | 110.0 (10) |
N1—C1—C2 | 122.67 (12) | C3—C6—H6B | 110.2 (10) |
C1—C2—H2 | 119.3 (9) | C6i—C6—H6A | 107.5 (10) |
C1—C2—C3 | 119.41 (12) | C6i—C6—H6B | 107.5 (10) |
C3—C2—H2 | 121.3 (9) | H6A—C6—H6B | 110.7 (14) |
C2—C3—C6 | 120.98 (12) | C1—N1—C5 | 118.11 (11) |
C4—C3—C2 | 117.80 (12) | O1—C7—C8 | 114.15 (11) |
C4—C3—C6 | 121.16 (12) | O2—C7—C8 | 121.05 (12) |
C3—C4—H4 | 122.4 (10) | O2—C7—O1 | 124.81 (12) |
C5—C4—C3 | 119.12 (12) | C7—C8—H8 | 114.8 (11) |
C5—C4—H4 | 118.4 (9) | C8ii—C8—C7 | 123.87 (15) |
C4—C5—H5 | 119.8 (9) | C8ii—C8—H8 | 121.4 (11) |
N1—C5—C4 | 122.89 (12) | C7—O1—H1A | 109.2 (11) |
N1—C5—H5 | 117.2 (9) | ||
C1—C2—C3—C4 | 0.2 (2) | C4—C3—C6—C6i | −92.13 (18) |
C1—C2—C3—C6 | −177.17 (12) | C4—C5—N1—C1 | 0.2 (2) |
C2—C1—N1—C5 | 0.2 (2) | C6—C3—C4—C5 | 177.57 (12) |
C2—C3—C4—C5 | 0.18 (19) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.18 (18) | O1—C7—C8—C8ii | −3.0 (2) |
C3—C4—C5—N1 | −0.4 (2) | O2—C7—C8—C8ii | 177.05 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.355 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6798 (5) Å | Cell parameters from 2183 reflections |
b = 4.7618 (1) Å | θ = 4.3–71.1° |
c = 19.6808 (7) Å | µ = 0.82 mm−1 |
β = 109.657 (4)° | T = 200 K |
V = 1472.07 (8) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1412 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1264 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.788, Tmax = 0.900 | l = −23→24 |
4148 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0765P)2 + 0.3152P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1412 reflections | Δρmax = 0.17 e Å−3 |
132 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15863 (8) | 0.4070 (3) | 0.41435 (7) | 0.0330 (3) | |
H1 | 0.2186 (10) | 0.469 (3) | 0.4302 (8) | 0.034 (4)* | |
C2 | 0.13071 (8) | 0.2093 (3) | 0.45247 (7) | 0.0332 (3) | |
H2 | 0.1720 (10) | 0.121 (3) | 0.4956 (8) | 0.037 (4)* | |
C3 | 0.04550 (8) | 0.1308 (3) | 0.42842 (6) | 0.0280 (3) | |
C4 | −0.00800 (8) | 0.2574 (3) | 0.36621 (7) | 0.0309 (3) | |
H4 | −0.0689 (9) | 0.214 (3) | 0.3466 (7) | 0.034 (4)* | |
C5 | 0.02504 (8) | 0.4530 (3) | 0.33100 (7) | 0.0311 (3) | |
H5 | −0.0127 (10) | 0.544 (3) | 0.2884 (8) | 0.034 (4)* | |
C6 | 0.01197 (9) | −0.0745 (3) | 0.47034 (7) | 0.0320 (3) | |
H6A | −0.0384 (11) | −0.170 (3) | 0.4387 (9) | 0.040 (4)* | |
H6B | 0.0554 (11) | −0.214 (4) | 0.4939 (9) | 0.045 (4)* | |
N1 | 0.10696 (7) | 0.5276 (2) | 0.35442 (6) | 0.0298 (3) | |
C7 | 0.24169 (8) | 0.9780 (3) | 0.32037 (6) | 0.0290 (3) | |
C8 | 0.27220 (8) | 1.2005 (3) | 0.28194 (7) | 0.0311 (3) | |
H8 | 0.3260 (10) | 1.269 (4) | 0.3071 (8) | 0.043 (4)* | |
O1 | 0.16376 (6) | 0.8947 (2) | 0.28628 (5) | 0.0360 (3) | |
H1A | 0.1457 (13) | 0.748 (5) | 0.3175 (11) | 0.074 (6)* | |
O2 | 0.28700 (6) | 0.8868 (2) | 0.37827 (5) | 0.0398 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0266 (6) | 0.0389 (7) | 0.0339 (7) | −0.0030 (5) | 0.0107 (5) | 0.0043 (5) |
C2 | 0.0318 (6) | 0.0371 (7) | 0.0301 (6) | 0.0005 (6) | 0.0096 (5) | 0.0062 (6) |
C3 | 0.0351 (6) | 0.0258 (6) | 0.0278 (6) | −0.0024 (5) | 0.0167 (5) | −0.0022 (5) |
C4 | 0.0280 (6) | 0.0333 (7) | 0.0326 (7) | −0.0043 (5) | 0.0117 (5) | −0.0002 (5) |
C5 | 0.0323 (7) | 0.0333 (7) | 0.0272 (6) | −0.0012 (5) | 0.0091 (5) | 0.0037 (5) |
C6 | 0.0400 (7) | 0.0275 (7) | 0.0332 (7) | −0.0037 (6) | 0.0183 (6) | 0.0009 (5) |
N1 | 0.0318 (6) | 0.0306 (6) | 0.0294 (5) | −0.0029 (4) | 0.0132 (4) | 0.0026 (4) |
C7 | 0.0288 (6) | 0.0305 (7) | 0.0282 (6) | −0.0009 (5) | 0.0101 (5) | 0.0006 (5) |
C8 | 0.0273 (6) | 0.0330 (7) | 0.0333 (6) | −0.0052 (5) | 0.0106 (5) | 0.0014 (5) |
O1 | 0.0302 (5) | 0.0407 (6) | 0.0343 (5) | −0.0089 (4) | 0.0073 (4) | 0.0102 (4) |
O2 | 0.0350 (5) | 0.0475 (6) | 0.0330 (5) | −0.0043 (4) | 0.0063 (4) | 0.0108 (4) |
C1—H1 | 0.988 (15) | C5—N1 | 1.3349 (16) |
C1—C2 | 1.3790 (19) | C6—C6i | 1.530 (3) |
C1—N1 | 1.3340 (17) | C6—H6A | 0.974 (17) |
C2—H2 | 0.989 (16) | C6—H6B | 0.978 (18) |
C2—C3 | 1.3896 (18) | C7—C8 | 1.4872 (18) |
C3—C4 | 1.3870 (18) | C7—O1 | 1.3078 (15) |
C3—C6 | 1.5032 (17) | C7—O2 | 1.2160 (15) |
C4—H4 | 0.979 (14) | C8—C8ii | 1.313 (3) |
C4—C5 | 1.3815 (18) | C8—H8 | 0.926 (16) |
C5—H5 | 0.966 (15) | O1—H1A | 1.04 (2) |
C2—C1—H1 | 121.7 (9) | C3—C6—C6i | 110.97 (13) |
N1—C1—H1 | 115.7 (9) | C3—C6—H6A | 110.6 (10) |
N1—C1—C2 | 122.61 (12) | C3—C6—H6B | 110.5 (10) |
C1—C2—H2 | 119.4 (9) | C6i—C6—H6A | 108.3 (10) |
C1—C2—C3 | 119.49 (12) | C6i—C6—H6B | 107.2 (10) |
C3—C2—H2 | 121.1 (9) | H6A—C6—H6B | 109.1 (14) |
C2—C3—C6 | 120.98 (12) | C1—N1—C5 | 118.20 (11) |
C4—C3—C2 | 117.67 (11) | O1—C7—C8 | 113.96 (11) |
C4—C3—C6 | 121.30 (12) | O2—C7—C8 | 121.32 (12) |
C3—C4—H4 | 122.1 (9) | O2—C7—O1 | 124.73 (12) |
C5—C4—C3 | 119.28 (12) | C7—C8—H8 | 114.6 (10) |
C5—C4—H4 | 118.7 (9) | C8ii—C8—C7 | 124.29 (15) |
C4—C5—H5 | 119.1 (9) | C8ii—C8—H8 | 121.1 (10) |
N1—C5—C4 | 122.75 (12) | C7—O1—H1A | 109.6 (11) |
N1—C5—H5 | 118.1 (9) | ||
C1—C2—C3—C4 | 0.05 (19) | C4—C3—C6—C6i | −92.20 (18) |
C1—C2—C3—C6 | −177.28 (12) | C4—C5—N1—C1 | 0.1 (2) |
C2—C1—N1—C5 | 0.2 (2) | C6—C3—C4—C5 | 177.51 (11) |
C2—C3—C4—C5 | 0.18 (19) | N1—C1—C2—C3 | −0.2 (2) |
C2—C3—C6—C6i | 85.04 (18) | O1—C7—C8—C8ii | −2.9 (2) |
C3—C4—C5—N1 | −0.2 (2) | O2—C7—C8—C8ii | 177.09 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.353 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6840 (7) Å | Cell parameters from 1612 reflections |
b = 4.7634 (2) Å | θ = 3.0–72.2° |
c = 19.6972 (7) Å | µ = 0.82 mm−1 |
β = 109.674 (4)° | T = 200 K |
V = 1474.00 (11) Å3 | Plate, colourless |
Z = 4 | 0.25 × 0.14 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1426 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1187 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.5°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.705, Tmax = 1.000 | l = −23→21 |
2815 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3901P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1426 reflections | Δρmin = −0.15 e Å−3 |
133 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0013 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15859 (8) | 0.4073 (3) | 0.41442 (7) | 0.0332 (3) | |
H1 | 0.2187 (10) | 0.470 (3) | 0.4303 (8) | 0.034 (4)* | |
C2 | 0.13053 (8) | 0.2088 (3) | 0.45239 (7) | 0.0333 (3) | |
H2 | 0.1710 (10) | 0.121 (4) | 0.4959 (9) | 0.044 (4)* | |
C3 | 0.04550 (8) | 0.1304 (3) | 0.42840 (7) | 0.0279 (3) | |
C4 | −0.00802 (8) | 0.2572 (3) | 0.36623 (7) | 0.0311 (3) | |
H4 | −0.0689 (9) | 0.214 (3) | 0.3464 (8) | 0.036 (4)* | |
C5 | 0.02488 (8) | 0.4529 (3) | 0.33091 (7) | 0.0311 (3) | |
H5 | −0.0120 (10) | 0.544 (3) | 0.2871 (8) | 0.040 (4)* | |
C6 | 0.01204 (9) | −0.0753 (3) | 0.47039 (7) | 0.0328 (3) | |
H6A | −0.0393 (11) | −0.172 (4) | 0.4376 (9) | 0.046 (5)* | |
H6B | 0.0567 (10) | −0.215 (4) | 0.4937 (9) | 0.045 (5)* | |
N1 | 0.10697 (7) | 0.5281 (2) | 0.35440 (6) | 0.0302 (3) | |
C7 | 0.24173 (8) | 0.9781 (3) | 0.32046 (7) | 0.0292 (3) | |
C8 | 0.27219 (8) | 1.2010 (3) | 0.28179 (7) | 0.0312 (3) | |
H8 | 0.3285 (11) | 1.267 (4) | 0.3064 (9) | 0.047 (5)* | |
O1 | 0.16373 (6) | 0.8949 (2) | 0.28625 (5) | 0.0359 (3) | |
H1A | 0.1437 (13) | 0.744 (5) | 0.3171 (11) | 0.081 (7)* | |
O2 | 0.28710 (6) | 0.8865 (2) | 0.37835 (5) | 0.0404 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0249 (7) | 0.0386 (8) | 0.0356 (7) | −0.0033 (6) | 0.0095 (5) | 0.0041 (6) |
C2 | 0.0304 (7) | 0.0375 (8) | 0.0307 (6) | −0.0001 (6) | 0.0086 (5) | 0.0065 (6) |
C3 | 0.0328 (7) | 0.0260 (7) | 0.0294 (6) | −0.0022 (5) | 0.0165 (5) | −0.0019 (5) |
C4 | 0.0276 (7) | 0.0332 (8) | 0.0328 (7) | −0.0043 (5) | 0.0106 (5) | −0.0001 (6) |
C5 | 0.0304 (7) | 0.0326 (7) | 0.0294 (6) | −0.0026 (5) | 0.0089 (5) | 0.0033 (5) |
C6 | 0.0391 (8) | 0.0289 (8) | 0.0356 (7) | −0.0035 (6) | 0.0191 (6) | 0.0012 (6) |
N1 | 0.0291 (6) | 0.0315 (6) | 0.0320 (6) | −0.0034 (5) | 0.0127 (4) | 0.0022 (5) |
C7 | 0.0273 (6) | 0.0310 (7) | 0.0297 (6) | −0.0013 (5) | 0.0099 (5) | 0.0013 (5) |
C8 | 0.0265 (6) | 0.0333 (8) | 0.0337 (6) | −0.0052 (5) | 0.0100 (5) | 0.0016 (5) |
O1 | 0.0282 (5) | 0.0410 (6) | 0.0351 (5) | −0.0091 (4) | 0.0062 (4) | 0.0101 (4) |
O2 | 0.0342 (5) | 0.0485 (7) | 0.0339 (5) | −0.0050 (5) | 0.0053 (4) | 0.0109 (5) |
C1—H1 | 0.991 (15) | C6—C6i | 1.533 (3) |
C1—C2 | 1.381 (2) | C6—H6A | 0.995 (18) |
C1—N1 | 1.3360 (17) | C6—H6B | 0.988 (18) |
C2—H2 | 0.988 (17) | N1—H1A | 1.51 (2) |
C2—C3 | 1.3870 (18) | C7—C8 | 1.4924 (19) |
C3—C4 | 1.3875 (18) | C7—O1 | 1.3091 (15) |
C3—C6 | 1.5054 (18) | C7—O2 | 1.2174 (16) |
C4—H4 | 0.979 (15) | C8—C8ii | 1.308 (3) |
C4—C5 | 1.3826 (19) | C8—H8 | 0.953 (17) |
C5—H5 | 0.978 (16) | O1—H1A | 1.07 (2) |
C5—N1 | 1.3384 (17) | ||
C2—C1—H1 | 121.8 (9) | C3—C6—H6A | 109.9 (10) |
N1—C1—H1 | 115.6 (9) | C3—C6—H6B | 109.4 (10) |
N1—C1—C2 | 122.61 (12) | C6i—C6—H6A | 108.7 (10) |
C1—C2—H2 | 120.2 (10) | C6i—C6—H6B | 108.1 (10) |
C1—C2—C3 | 119.61 (12) | H6A—C6—H6B | 110.0 (14) |
C3—C2—H2 | 120.2 (10) | C1—N1—C5 | 118.06 (11) |
C2—C3—C4 | 117.64 (12) | C1—N1—H1A | 118.6 (8) |
C2—C3—C6 | 120.93 (12) | C5—N1—H1A | 123.4 (8) |
C4—C3—C6 | 121.37 (12) | O1—C7—C8 | 113.75 (11) |
C3—C4—H4 | 122.2 (9) | O2—C7—C8 | 121.45 (12) |
C5—C4—C3 | 119.41 (12) | O2—C7—O1 | 124.80 (12) |
C5—C4—H4 | 118.4 (9) | C7—C8—H8 | 114.9 (10) |
C4—C5—H5 | 120.4 (9) | C8ii—C8—C7 | 124.22 (16) |
N1—C5—C4 | 122.68 (12) | C8ii—C8—H8 | 120.9 (10) |
N1—C5—H5 | 116.9 (9) | C7—O1—H1A | 111.0 (11) |
C3—C6—C6i | 110.75 (14) | ||
C1—C2—C3—C4 | 0.1 (2) | C4—C3—C6—C6i | −92.00 (18) |
C1—C2—C3—C6 | −177.14 (13) | C4—C5—N1—C1 | 0.1 (2) |
C2—C1—N1—C5 | 0.3 (2) | C6—C3—C4—C5 | 177.52 (12) |
C2—C3—C4—C5 | 0.3 (2) | N1—C1—C2—C3 | −0.4 (2) |
C2—C3—C6—C6i | 85.18 (19) | O1—C7—C8—C8ii | −2.9 (3) |
C3—C4—C5—N1 | −0.4 (2) | O2—C7—C8—C8ii | 176.94 (18) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.344 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6906 (9) Å | Cell parameters from 1500 reflections |
b = 4.7903 (2) Å | θ = 4.7–71.7° |
c = 19.6824 (9) Å | µ = 0.81 mm−1 |
β = 109.367 (5)° | T = 250 K |
V = 1484.62 (13) Å3 | Plate, colourless |
Z = 4 | 0.26 × 0.14 × 0.05 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1432 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1131 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.1°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.599, Tmax = 1.000 | l = −21→23 |
2821 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2145P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.15 e Å−3 |
1432 reflections | Δρmin = −0.13 e Å−3 |
133 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0014 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15817 (9) | 0.4111 (4) | 0.41454 (8) | 0.0401 (4) | |
H1 | 0.2195 (10) | 0.472 (4) | 0.4317 (9) | 0.042 (4)* | |
C2 | 0.13020 (9) | 0.2131 (4) | 0.45264 (8) | 0.0400 (4) | |
H2 | 0.1711 (11) | 0.128 (4) | 0.4964 (10) | 0.051 (5)* | |
C3 | 0.04563 (9) | 0.1329 (3) | 0.42853 (7) | 0.0329 (3) | |
C4 | −0.00744 (9) | 0.2575 (3) | 0.36650 (8) | 0.0378 (4) | |
H4 | −0.0672 (11) | 0.214 (4) | 0.3463 (9) | 0.050 (5)* | |
C5 | 0.02510 (9) | 0.4530 (3) | 0.33104 (8) | 0.0376 (4) | |
H5 | −0.0123 (11) | 0.546 (4) | 0.2865 (9) | 0.050 (5)* | |
C6 | 0.01241 (11) | −0.0733 (3) | 0.47042 (8) | 0.0393 (4) | |
H6A | −0.0390 (11) | −0.170 (4) | 0.4374 (9) | 0.049 (5)* | |
H6B | 0.0564 (11) | −0.212 (4) | 0.4946 (9) | 0.055 (5)* | |
N1 | 0.10664 (7) | 0.5296 (3) | 0.35458 (6) | 0.0358 (3) | |
C7 | 0.24153 (9) | 0.9795 (3) | 0.32030 (7) | 0.0352 (3) | |
C8 | 0.27201 (9) | 1.2015 (3) | 0.28178 (8) | 0.0369 (4) | |
H8 | 0.3274 (11) | 1.265 (4) | 0.3061 (9) | 0.054 (5)* | |
O1 | 0.16389 (6) | 0.8960 (2) | 0.28633 (6) | 0.0432 (3) | |
H1A | 0.1454 (13) | 0.754 (5) | 0.3165 (12) | 0.091 (8)* | |
O2 | 0.28637 (7) | 0.8895 (3) | 0.37803 (6) | 0.0492 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0304 (7) | 0.0460 (10) | 0.0432 (8) | −0.0043 (7) | 0.0113 (6) | 0.0066 (7) |
C2 | 0.0369 (8) | 0.0443 (9) | 0.0382 (7) | −0.0003 (7) | 0.0116 (6) | 0.0086 (7) |
C3 | 0.0382 (8) | 0.0313 (8) | 0.0338 (7) | −0.0029 (6) | 0.0181 (6) | −0.0014 (6) |
C4 | 0.0321 (7) | 0.0429 (9) | 0.0387 (7) | −0.0067 (6) | 0.0122 (6) | 0.0000 (7) |
C5 | 0.0366 (8) | 0.0409 (9) | 0.0343 (7) | −0.0034 (6) | 0.0104 (6) | 0.0042 (6) |
C6 | 0.0482 (9) | 0.0337 (9) | 0.0418 (8) | −0.0060 (7) | 0.0225 (7) | 0.0009 (7) |
N1 | 0.0352 (6) | 0.0372 (7) | 0.0373 (6) | −0.0046 (5) | 0.0150 (5) | 0.0037 (5) |
C7 | 0.0322 (7) | 0.0384 (8) | 0.0357 (7) | −0.0020 (6) | 0.0123 (6) | 0.0021 (6) |
C8 | 0.0306 (7) | 0.0396 (9) | 0.0402 (7) | −0.0072 (6) | 0.0114 (6) | 0.0033 (6) |
O1 | 0.0345 (6) | 0.0496 (7) | 0.0416 (6) | −0.0116 (5) | 0.0073 (4) | 0.0127 (5) |
O2 | 0.0410 (6) | 0.0601 (8) | 0.0403 (6) | −0.0064 (5) | 0.0053 (5) | 0.0142 (5) |
C1—H1 | 1.009 (16) | C5—N1 | 1.3354 (18) |
C1—C2 | 1.383 (2) | C6—C6i | 1.530 (3) |
C1—N1 | 1.3348 (19) | C6—H6A | 1.003 (18) |
C2—H2 | 0.992 (18) | C6—H6B | 0.99 (2) |
C2—C3 | 1.386 (2) | C7—C8 | 1.490 (2) |
C3—C4 | 1.384 (2) | C7—O1 | 1.3083 (17) |
C3—C6 | 1.505 (2) | C7—O2 | 1.2136 (17) |
C4—H4 | 0.967 (17) | C8—C8ii | 1.308 (3) |
C4—C5 | 1.382 (2) | C8—H8 | 0.940 (18) |
C5—H5 | 0.997 (17) | O1—H1A | 1.02 (2) |
C2—C1—H1 | 120.3 (9) | C3—C6—C6i | 110.93 (16) |
N1—C1—H1 | 117.2 (10) | C3—C6—H6A | 110.0 (10) |
N1—C1—C2 | 122.47 (14) | C3—C6—H6B | 110.9 (11) |
C1—C2—H2 | 119.5 (10) | C6i—C6—H6A | 108.4 (10) |
C1—C2—C3 | 119.54 (14) | C6i—C6—H6B | 106.7 (11) |
C3—C2—H2 | 120.9 (10) | H6A—C6—H6B | 109.8 (15) |
C2—C3—C6 | 120.84 (14) | C1—N1—C5 | 118.26 (12) |
C4—C3—C2 | 117.64 (13) | O1—C7—C8 | 113.93 (12) |
C4—C3—C6 | 121.48 (13) | O2—C7—C8 | 121.42 (13) |
C3—C4—H4 | 122.7 (11) | O2—C7—O1 | 124.65 (13) |
C5—C4—C3 | 119.61 (13) | C7—C8—H8 | 114.6 (11) |
C5—C4—H4 | 117.7 (11) | C8ii—C8—C7 | 124.17 (17) |
C4—C5—H5 | 120.7 (10) | C8ii—C8—H8 | 121.2 (11) |
N1—C5—C4 | 122.48 (13) | C7—O1—H1A | 110.4 (12) |
N1—C5—H5 | 116.8 (10) | ||
C1—C2—C3—C4 | −0.1 (2) | C4—C3—C6—C6i | −92.2 (2) |
C1—C2—C3—C6 | −177.48 (14) | C4—C5—N1—C1 | 0.2 (2) |
C2—C1—N1—C5 | 0.1 (2) | C6—C3—C4—C5 | 177.77 (14) |
C2—C3—C4—C5 | 0.4 (2) | N1—C1—C2—C3 | −0.2 (2) |
C2—C3—C6—C6i | 85.1 (2) | O1—C7—C8—C8ii | −3.1 (3) |
C3—C4—C5—N1 | −0.5 (2) | O2—C7—C8—C8ii | 177.1 (2) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.335 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6920 (4) Å | Cell parameters from 1867 reflections |
b = 4.8145 (1) Å | θ = 4.2–71.3° |
c = 19.6756 (5) Å | µ = 0.81 mm−1 |
β = 109.059 (3)° | T = 300 K |
V = 1494.53 (7) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.29 × 0.16 mm |
New Xcalibur, EosS2 diffractometer | 1428 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1219 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→3 |
Tmin = 0.791, Tmax = 0.901 | l = −24→23 |
4197 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | All H-atom parameters refined |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0786P)2 + 0.1853P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1428 reflections | Δρmax = 0.17 e Å−3 |
132 parameters | Δρmin = −0.19 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15749 (9) | 0.4151 (3) | 0.41473 (8) | 0.0471 (4) | |
H1 | 0.2171 (10) | 0.471 (4) | 0.4319 (9) | 0.049 (4)* | |
C2 | 0.12995 (9) | 0.2177 (3) | 0.45262 (8) | 0.0471 (4) | |
H2 | 0.1719 (10) | 0.140 (4) | 0.4963 (8) | 0.049 (4)* | |
C3 | 0.04581 (9) | 0.1356 (3) | 0.42886 (7) | 0.0386 (4) | |
C4 | −0.00703 (9) | 0.2581 (3) | 0.36669 (8) | 0.0431 (4) | |
H4 | −0.0675 (10) | 0.211 (4) | 0.3462 (8) | 0.050 (4)* | |
C5 | 0.02554 (9) | 0.4526 (3) | 0.33146 (8) | 0.0439 (4) | |
H5 | −0.0122 (12) | 0.537 (4) | 0.2877 (10) | 0.060 (5)* | |
C6 | 0.01246 (11) | −0.0710 (3) | 0.47028 (8) | 0.0454 (4) | |
H6A | −0.0383 (12) | −0.171 (4) | 0.4382 (10) | 0.057 (5)* | |
H6B | 0.0563 (12) | −0.204 (4) | 0.4935 (10) | 0.067 (6)* | |
N1 | 0.10645 (7) | 0.5310 (3) | 0.35470 (6) | 0.0414 (3) | |
C7 | 0.24108 (9) | 0.9810 (3) | 0.32007 (7) | 0.0406 (4) | |
C8 | 0.27153 (9) | 1.2013 (3) | 0.28176 (8) | 0.0434 (4) | |
H8 | 0.3258 (11) | 1.269 (4) | 0.3071 (9) | 0.061 (5)* | |
O1 | 0.16399 (6) | 0.8974 (2) | 0.28640 (6) | 0.0504 (3) | |
H1A | 0.1481 (13) | 0.758 (5) | 0.3167 (11) | 0.087 (7)* | |
O2 | 0.28561 (7) | 0.8922 (3) | 0.37772 (6) | 0.0575 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0360 (7) | 0.0556 (9) | 0.0493 (8) | −0.0051 (6) | 0.0136 (6) | 0.0085 (7) |
C2 | 0.0431 (7) | 0.0547 (9) | 0.0429 (8) | 0.0001 (7) | 0.0130 (6) | 0.0130 (7) |
C3 | 0.0473 (8) | 0.0368 (7) | 0.0381 (7) | −0.0028 (6) | 0.0228 (6) | −0.0012 (5) |
C4 | 0.0386 (7) | 0.0468 (8) | 0.0440 (7) | −0.0086 (6) | 0.0139 (6) | 0.0013 (6) |
C5 | 0.0435 (8) | 0.0493 (8) | 0.0373 (7) | −0.0035 (6) | 0.0112 (6) | 0.0065 (6) |
C6 | 0.0594 (9) | 0.0377 (8) | 0.0476 (8) | −0.0061 (7) | 0.0291 (7) | 0.0018 (6) |
N1 | 0.0429 (7) | 0.0435 (7) | 0.0407 (6) | −0.0054 (5) | 0.0178 (5) | 0.0043 (5) |
C7 | 0.0396 (7) | 0.0439 (8) | 0.0381 (7) | −0.0029 (6) | 0.0125 (6) | 0.0026 (6) |
C8 | 0.0371 (7) | 0.0463 (8) | 0.0464 (8) | −0.0082 (6) | 0.0134 (6) | 0.0035 (6) |
O1 | 0.0427 (6) | 0.0572 (7) | 0.0471 (6) | −0.0131 (5) | 0.0089 (5) | 0.0158 (5) |
O2 | 0.0491 (6) | 0.0698 (8) | 0.0466 (6) | −0.0090 (5) | 0.0061 (5) | 0.0175 (5) |
C1—H1 | 0.979 (16) | C5—N1 | 1.3312 (18) |
C1—C2 | 1.376 (2) | C6—C6i | 1.525 (3) |
C1—N1 | 1.3324 (19) | C6—H6A | 1.00 (2) |
C2—H2 | 0.988 (16) | C6—H6B | 0.97 (2) |
C2—C3 | 1.385 (2) | C7—C8 | 1.484 (2) |
C3—C4 | 1.385 (2) | C7—O1 | 1.3039 (16) |
C3—C6 | 1.5033 (19) | C7—O2 | 1.2130 (17) |
C4—H4 | 0.984 (16) | C8—C8ii | 1.308 (3) |
C4—C5 | 1.378 (2) | C8—H8 | 0.938 (18) |
C5—H5 | 0.973 (18) | O1—H1A | 0.99 (2) |
C2—C1—H1 | 119.0 (10) | C3—C6—C6i | 111.15 (15) |
N1—C1—H1 | 118.4 (10) | C3—C6—H6A | 111.4 (11) |
N1—C1—C2 | 122.64 (13) | C3—C6—H6B | 109.7 (12) |
C1—C2—H2 | 117.7 (10) | C6i—C6—H6A | 108.2 (11) |
C1—C2—C3 | 119.71 (13) | C6i—C6—H6B | 106.7 (11) |
C3—C2—H2 | 122.6 (10) | H6A—C6—H6B | 109.5 (15) |
C2—C3—C6 | 121.34 (13) | C5—N1—C1 | 117.98 (12) |
C4—C3—C2 | 117.36 (13) | O1—C7—C8 | 114.05 (12) |
C4—C3—C6 | 121.27 (13) | O2—C7—C8 | 121.34 (13) |
C3—C4—H4 | 122.4 (10) | O2—C7—O1 | 124.61 (13) |
C5—C4—C3 | 119.46 (13) | C7—C8—H8 | 114.2 (11) |
C5—C4—H4 | 118.1 (10) | C8ii—C8—C7 | 124.69 (17) |
C4—C5—H5 | 118.7 (11) | C8ii—C8—H8 | 121.1 (11) |
N1—C5—C4 | 122.85 (13) | C7—O1—H1A | 108.5 (12) |
N1—C5—H5 | 118.4 (11) | ||
C1—C2—C3—C4 | 0.4 (2) | C4—C3—C6—C6i | −93.2 (2) |
C1—C2—C3—C6 | −177.57 (14) | C4—C5—N1—C1 | −0.1 (2) |
C2—C1—N1—C5 | 0.7 (2) | C6—C3—C4—C5 | 178.11 (13) |
C2—C3—C4—C5 | 0.2 (2) | N1—C1—C2—C3 | −0.8 (3) |
C2—C3—C6—C6i | 84.7 (2) | O1—C7—C8—C8ii | −3.2 (3) |
C3—C4—C5—N1 | −0.3 (2) | O2—C7—C8—C8ii | 177.0 (2) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H4O4 | F(000) = 632 |
Mr = 300.31 | Dx = 1.335 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6911 (10) Å | Cell parameters from 1379 reflections |
b = 4.8164 (3) Å | θ = 3.1–72.4° |
c = 19.6669 (10) Å | µ = 0.81 mm−1 |
β = 109.032 (6)° | T = 300 K |
V = 1494.62 (16) Å3 | Plate, colourless |
Z = 4 | 0.23 × 0.14 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1440 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1119 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.6°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.718, Tmax = 1.000 | l = −21→23 |
2839 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.4091P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.12 e Å−3 |
1440 reflections | Δρmin = −0.15 e Å−3 |
133 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0016 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15740 (10) | 0.4149 (4) | 0.41466 (9) | 0.0479 (4) | |
H1 | 0.2173 (12) | 0.478 (4) | 0.4312 (10) | 0.061 (5)* | |
C2 | 0.12963 (10) | 0.2174 (4) | 0.45261 (9) | 0.0476 (4) | |
H2 | 0.1707 (12) | 0.136 (4) | 0.4964 (10) | 0.059 (5)* | |
C3 | 0.04574 (10) | 0.1351 (3) | 0.42878 (8) | 0.0391 (4) | |
C4 | −0.00688 (10) | 0.2576 (4) | 0.36668 (8) | 0.0444 (4) | |
H4 | −0.0669 (12) | 0.216 (4) | 0.3473 (10) | 0.060 (5)* | |
C5 | 0.02545 (10) | 0.4526 (4) | 0.33139 (8) | 0.0450 (4) | |
H5 | −0.0118 (12) | 0.538 (4) | 0.2874 (10) | 0.062 (5)* | |
C6 | 0.01267 (12) | −0.0712 (4) | 0.47038 (9) | 0.0465 (4) | |
H6A | −0.0388 (13) | −0.171 (4) | 0.4372 (11) | 0.066 (6)* | |
H6B | 0.0572 (13) | −0.209 (5) | 0.4948 (11) | 0.072 (6)* | |
N1 | 0.10668 (8) | 0.5310 (3) | 0.35474 (7) | 0.0424 (4) | |
C7 | 0.24122 (9) | 0.9811 (4) | 0.32014 (8) | 0.0411 (4) | |
C8 | 0.27168 (10) | 1.2013 (4) | 0.28170 (8) | 0.0441 (4) | |
H8 | 0.3260 (12) | 1.273 (4) | 0.3063 (10) | 0.058 (5)* | |
O1 | 0.16399 (7) | 0.8972 (3) | 0.28643 (6) | 0.0510 (4) | |
H1A | 0.1443 (14) | 0.756 (5) | 0.3172 (12) | 0.092 (8)* | |
O2 | 0.28563 (7) | 0.8919 (3) | 0.37767 (6) | 0.0589 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0361 (8) | 0.0567 (11) | 0.0505 (9) | −0.0060 (8) | 0.0136 (7) | 0.0079 (8) |
C2 | 0.0431 (9) | 0.0544 (11) | 0.0443 (8) | −0.0005 (8) | 0.0128 (7) | 0.0108 (8) |
C3 | 0.0464 (8) | 0.0361 (9) | 0.0409 (7) | −0.0037 (7) | 0.0225 (6) | −0.0009 (6) |
C4 | 0.0390 (8) | 0.0486 (10) | 0.0464 (8) | −0.0087 (7) | 0.0151 (7) | 0.0018 (7) |
C5 | 0.0437 (9) | 0.0494 (10) | 0.0405 (8) | −0.0044 (7) | 0.0117 (7) | 0.0069 (7) |
C6 | 0.0592 (11) | 0.0388 (10) | 0.0497 (9) | −0.0072 (8) | 0.0293 (8) | 0.0007 (7) |
N1 | 0.0419 (7) | 0.0448 (8) | 0.0431 (7) | −0.0051 (6) | 0.0176 (5) | 0.0053 (6) |
C7 | 0.0389 (8) | 0.0445 (9) | 0.0411 (8) | −0.0037 (7) | 0.0145 (6) | 0.0030 (7) |
C8 | 0.0378 (8) | 0.0472 (10) | 0.0470 (8) | −0.0083 (7) | 0.0135 (6) | 0.0040 (7) |
O1 | 0.0415 (6) | 0.0588 (8) | 0.0488 (6) | −0.0133 (5) | 0.0094 (5) | 0.0157 (6) |
O2 | 0.0492 (7) | 0.0725 (9) | 0.0480 (7) | −0.0093 (6) | 0.0064 (5) | 0.0173 (6) |
C1—H1 | 0.99 (2) | C5—N1 | 1.336 (2) |
C1—C2 | 1.379 (2) | C6—C6i | 1.526 (3) |
C1—N1 | 1.329 (2) | C6—H6A | 1.01 (2) |
C2—H2 | 0.990 (19) | C6—H6B | 0.99 (2) |
C2—C3 | 1.382 (2) | C7—C8 | 1.485 (2) |
C3—C4 | 1.383 (2) | C7—O1 | 1.3066 (18) |
C3—C6 | 1.502 (2) | C7—O2 | 1.2114 (18) |
C4—H4 | 0.969 (18) | C8—C8ii | 1.308 (3) |
C4—C5 | 1.378 (2) | C8—H8 | 0.943 (19) |
C5—H5 | 0.976 (19) | O1—H1A | 1.03 (3) |
C2—C1—H1 | 120.8 (12) | C3—C6—C6i | 111.16 (17) |
N1—C1—H1 | 116.4 (12) | C3—C6—H6A | 110.3 (12) |
N1—C1—C2 | 122.72 (15) | C3—C6—H6B | 110.7 (12) |
C1—C2—H2 | 119.0 (11) | C6i—C6—H6A | 108.5 (12) |
C1—C2—C3 | 119.77 (15) | C6i—C6—H6B | 106.3 (12) |
C3—C2—H2 | 121.3 (11) | H6A—C6—H6B | 109.8 (17) |
C2—C3—C4 | 117.30 (14) | C1—N1—C5 | 117.85 (14) |
C2—C3—C6 | 121.12 (15) | O1—C7—C8 | 114.05 (13) |
C4—C3—C6 | 121.54 (15) | O2—C7—C8 | 121.47 (14) |
C3—C4—H4 | 122.5 (11) | O2—C7—O1 | 124.48 (15) |
C5—C4—C3 | 119.70 (15) | C7—C8—H8 | 115.6 (11) |
C5—C4—H4 | 117.8 (11) | C8ii—C8—C7 | 124.52 (19) |
C4—C5—H5 | 119.5 (12) | C8ii—C8—H8 | 119.9 (12) |
N1—C5—C4 | 122.66 (15) | C7—O1—H1A | 110.9 (12) |
N1—C5—H5 | 117.9 (12) | ||
C1—C2—C3—C4 | 0.2 (3) | C4—C3—C6—C6i | −92.8 (2) |
C1—C2—C3—C6 | −177.60 (16) | C4—C5—N1—C1 | −0.3 (3) |
C2—C1—N1—C5 | 0.6 (3) | C6—C3—C4—C5 | 177.91 (15) |
C2—C3—C4—C5 | 0.2 (2) | N1—C1—C2—C3 | −0.6 (3) |
C2—C3—C6—C6i | 84.8 (2) | O1—C7—C8—C8ii | −2.9 (3) |
C3—C4—C5—N1 | −0.1 (3) | O2—C7—C8—C8ii | 177.1 (2) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, −y+5/2, −z+1/2. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.405 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.60 (4) Å | Cell parameters from 682 reflections |
b = 4.7781 (4) Å | θ = 4.3–19.7° |
c = 19.218 (9) Å | µ = 0.10 mm−1 |
β = 110.32 (13)° | T = 295 K |
V = 1429 (4) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.16 × 0.03 mm |
Xcalibur, Eos diffractometer | 283 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 167 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.089 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 25.8°, θmin = 4.4° |
ω scans | h = −7→7 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.996, Tmax = 0.997 | l = −23→23 |
1787 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.227 | w = 1/[σ2(Fo2) + (0.1079P)2 + 4.6707P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
283 reflections | Δρmax = 0.17 e Å−3 |
46 parameters | Δρmin = −0.21 e Å−3 |
5 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3938 (16) | 0.4584 (18) | 0.1458 (6) | 0.030 (3)* | |
C2 | 0.3417 (18) | 0.593 (2) | 0.0856 (6) | 0.050 (4)* | |
H2 | 0.2836 | 0.5477 | 0.0679 | 0.060* | |
C3 | 0.3715 (18) | 0.797 (2) | 0.0486 (7) | 0.037 (4)* | |
H3 | 0.3332 | 0.8858 | 0.0073 | 0.044* | |
C4 | 0.4580 (18) | 0.867 (2) | 0.0733 (7) | 0.027 (4)* | |
C5 | 0.509 (2) | 0.7278 (19) | 0.1338 (7) | 0.039 (3)* | |
H5 | 0.5679 | 0.7650 | 0.1519 | 0.047* | |
C6 | 0.4762 (17) | 0.533 (3) | 0.1687 (8) | 0.040 (4)* | |
H6 | 0.5136 | 0.4477 | 0.2111 | 0.048* | |
C1A | 0.2571 (17) | 0.023 (2) | 0.1771 (8) | 0.026 (3)* | |
O1A | 0.3340 (16) | 0.0941 (16) | 0.2114 (6) | 0.048 (3)* | |
H1A | 0.3453 | 0.2345 | 0.1920 | 0.072* | |
C2A | 0.2168 (19) | −0.2037 (18) | 0.2117 (6) | 0.031 (3)* | |
H2AA | 0.2003 | −0.3638 | 0.1787 | 0.037* | |
H2AB | 0.1656 | −0.1304 | 0.2186 | 0.037* | |
O2A | 0.2106 (18) | 0.1355 (14) | 0.1189 (6) | 0.049 (3)* | |
C7 | 0.490 (2) | 1.0714 (18) | 0.0311 (7) | 0.033 (3)* | |
H7A | 0.5421 | 1.1598 | 0.0642 | 0.039* | |
H7B | 0.4476 | 1.2160 | 0.0109 | 0.039* |
N1—C2 | 1.343 (17) | C1A—O1A | 1.26 (2) |
N1—C6 | 1.33 (2) | C1A—C2A | 1.54 (2) |
C2—H2 | 0.9300 | C1A—O2A | 1.24 (2) |
C2—C3 | 1.395 (15) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.57 (4) |
C3—C4 | 1.39 (2) | C2A—H2AA | 0.9700 |
C4—C5 | 1.35 (3) | C2A—H2AB | 0.9700 |
C4—C7 | 1.48 (2) | C7—C7ii | 1.50 (2) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.37 (2) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C6—N1—C2 | 115.9 (15) | O1A—C1A—C2A | 118.4 (15) |
N1—C2—H2 | 118.8 | O2A—C1A—O1A | 123.6 (16) |
N1—C2—C3 | 122 (2) | O2A—C1A—C2A | 118 (2) |
C3—C2—H2 | 118.8 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 119.9 | C1A—C2A—C2Ai | 110 (3) |
C4—C3—C2 | 120.2 (16) | C1A—C2A—H2AA | 109.8 |
C4—C3—H3 | 119.9 | C1A—C2A—H2AB | 109.8 |
C3—C4—C7 | 120.0 (16) | C2Ai—C2A—H2AA | 109.8 |
C5—C4—C3 | 116.2 (19) | C2Ai—C2A—H2AB | 109.8 |
C5—C4—C7 | 124 (3) | H2AA—C2A—H2AB | 108.2 |
C4—C5—H5 | 119.5 | C4—C7—C7ii | 110.6 (11) |
C4—C5—C6 | 121 (3) | C4—C7—H7A | 109.5 |
C6—C5—H5 | 119.5 | C4—C7—H7B | 109.5 |
N1—C6—C5 | 124.1 (19) | C7ii—C7—H7A | 109.5 |
N1—C6—H6 | 117.9 | C7ii—C7—H7B | 109.5 |
C5—C6—H6 | 117.9 | H7A—C7—H7B | 108.1 |
N1—C2—C3—C4 | 0.5 (18) | C4—C5—C6—N1 | 2.2 (19) |
C2—N1—C6—C5 | −1.8 (19) | C5—C4—C7—C7ii | 91 (3) |
C2—C3—C4—C5 | −0.1 (19) | C6—N1—C2—C3 | 0.4 (16) |
C2—C3—C4—C7 | 176.3 (8) | O1A—C1A—C2A—C2Ai | 2 (2) |
C3—C4—C5—C6 | −1.2 (17) | O2A—C1A—C2A—C2Ai | −174.3 (13) |
C3—C4—C7—C7ii | −85 (3) | C7—C4—C5—C6 | −177.4 (10) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.433 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.56 (3) Å | Cell parameters from 763 reflections |
b = 4.7226 (3) Å | θ = 4.3–21.9° |
c = 19.187 (7) Å | µ = 0.10 mm−1 |
β = 110.99 (11)° | T = 295 K |
V = 1401 (3) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.16 × 0.03 mm |
Xcalibur, Eos diffractometer | 307 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 165 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 26.2°, θmin = 4.4° |
ω scans | h = −7→7 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.996, Tmax = 0.997 | l = −23→22 |
2114 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.087 | H-atom parameters constrained |
wR(F2) = 0.265 | w = 1/[σ2(Fo2) + (0.1368P)2 + 1.254P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
307 reflections | Δρmax = 0.19 e Å−3 |
46 parameters | Δρmin = −0.28 e Å−3 |
6 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3930 (17) | 0.463 (2) | 0.1454 (6) | 0.038 (4)* | |
C2 | 0.3402 (19) | 0.601 (2) | 0.0865 (7) | 0.052 (4)* | |
H2 | 0.2815 | 0.5583 | 0.0697 | 0.062* | |
C3 | 0.369 (3) | 0.806 (3) | 0.0487 (8) | 0.041 (5)* | |
H3 | 0.3297 | 0.9028 | 0.0084 | 0.050* | |
C4 | 0.462 (3) | 0.866 (2) | 0.0742 (9) | 0.025 (4)* | |
C5 | 0.512 (2) | 0.7280 (19) | 0.1345 (8) | 0.044 (3)* | |
H5 | 0.5706 | 0.7642 | 0.1538 | 0.052* | |
C6 | 0.4770 (17) | 0.529 (2) | 0.1698 (8) | 0.039 (5)* | |
H6 | 0.5142 | 0.4392 | 0.2123 | 0.047* | |
C1A | 0.2565 (17) | 0.021 (2) | 0.1764 (8) | 0.029 (4)* | |
O1A | 0.3338 (16) | 0.0969 (16) | 0.2116 (6) | 0.047 (3)* | |
H1A | 0.3483 | 0.2142 | 0.1868 | 0.071* | |
C2A | 0.219 (2) | −0.2040 (17) | 0.2123 (7) | 0.035 (3)* | |
H2AA | 0.1670 | −0.1321 | 0.2173 | 0.042* | |
H2AB | 0.2040 | −0.3676 | 0.1796 | 0.042* | |
O2A | 0.2101 (18) | 0.1399 (13) | 0.1177 (6) | 0.049 (3)* | |
C7 | 0.493 (2) | 1.0741 (18) | 0.0314 (7) | 0.035 (3)* | |
H7A | 0.5465 | 1.1600 | 0.0637 | 0.042* | |
H7B | 0.4502 | 1.2226 | 0.0124 | 0.042* |
N1—C2 | 1.326 (17) | C1A—O1A | 1.27 (2) |
N1—C6 | 1.34 (2) | C1A—C2A | 1.51 (2) |
C2—H2 | 0.9300 | C1A—O2A | 1.25 (2) |
C2—C3 | 1.390 (16) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.50 (4) |
C3—C4 | 1.48 (6) | C2A—H2AA | 0.9700 |
C4—C5 | 1.32 (3) | C2A—H2AB | 0.9700 |
C4—C7 | 1.479 (16) | C7—C7ii | 1.48 (2) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.393 (16) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 117.9 (15) | O1A—C1A—C2A | 117.0 (15) |
N1—C2—H2 | 118.5 | O2A—C1A—O1A | 122.2 (16) |
N1—C2—C3 | 123 (2) | O2A—C1A—C2A | 121 (2) |
C3—C2—H2 | 118.5 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 120.9 | C1A—C2A—H2AA | 108.9 |
C2—C3—C4 | 118 (2) | C1A—C2A—H2AB | 108.9 |
C4—C3—H3 | 120.9 | C2Ai—C2A—C1A | 114 (3) |
C3—C4—C7 | 118 (2) | C2Ai—C2A—H2AA | 108.9 |
C5—C4—C3 | 115.9 (17) | C2Ai—C2A—H2AB | 108.9 |
C5—C4—C7 | 126 (3) | H2AA—C2A—H2AB | 107.7 |
C4—C5—H5 | 119.1 | C4—C7—C7ii | 108.8 (11) |
C4—C5—C6 | 122 (3) | C4—C7—H7A | 109.9 |
C6—C5—H5 | 119.1 | C4—C7—H7B | 109.9 |
N1—C6—C5 | 123.0 (18) | C7ii—C7—H7A | 109.9 |
N1—C6—H6 | 118.5 | C7ii—C7—H7B | 109.9 |
C5—C6—H6 | 118.5 | H7A—C7—H7B | 108.3 |
N1—C2—C3—C4 | 2 (2) | C4—C5—C6—N1 | 0.6 (19) |
C2—N1—C6—C5 | −2 (2) | C5—C4—C7—C7ii | 95 (3) |
C2—C3—C4—C5 | −4 (2) | C6—N1—C2—C3 | 1.1 (18) |
C2—C3—C4—C7 | 176.9 (8) | O1A—C1A—C2A—C2Ai | 3 (2) |
C3—C4—C5—C6 | 2 (2) | O2A—C1A—C2A—C2Ai | −172.1 (15) |
C3—C4—C7—C7ii | −86 (3) | C7—C4—C5—C6 | −178.1 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.369 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6147 (11) Å | Cell parameters from 991 reflections |
b = 4.8463 (4) Å | θ = 5.6–71.8° |
c = 19.3274 (11) Å | µ = 0.82 mm−1 |
β = 109.551 (7)° | T = 100 K |
V = 1466.51 (19) Å3 | Plate, colourless |
Z = 4 | 0.14 × 0.09 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1405 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 997 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.054 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 71.9°, θmin = 5.7° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.898, Tmax = 1.000 | l = −17→23 |
2776 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.065 | w = 1/[σ2(Fo2) + (0.1064P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.187 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.35 e Å−3 |
1405 reflections | Δρmin = −0.31 e Å−3 |
137 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0021 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39213 (14) | 0.4635 (5) | 0.14561 (10) | 0.0303 (6) | |
C2 | 0.34035 (18) | 0.5944 (7) | 0.08632 (13) | 0.0322 (7) | |
C3 | 0.36893 (18) | 0.7944 (7) | 0.04871 (14) | 0.0324 (7) | |
C4 | 0.45523 (17) | 0.8634 (6) | 0.07289 (12) | 0.0288 (7) | |
C5 | 0.50902 (17) | 0.7271 (6) | 0.13411 (13) | 0.0304 (7) | |
C6 | 0.47548 (17) | 0.5314 (6) | 0.16897 (13) | 0.0309 (7) | |
C1A | 0.25373 (17) | 0.0232 (6) | 0.17679 (12) | 0.0284 (6) | |
O1A | 0.33311 (12) | 0.0961 (4) | 0.21234 (9) | 0.0332 (6) | |
C2A | 0.22030 (17) | −0.2066 (6) | 0.21238 (13) | 0.0288 (7) | |
O2A | 0.20946 (12) | 0.1301 (4) | 0.11904 (9) | 0.0348 (6) | |
C7 | 0.48946 (18) | 1.0716 (6) | 0.03140 (13) | 0.0316 (7) | |
H2 | 0.2762 (19) | 0.532 (6) | 0.0677 (14) | 0.028 (7)* | |
H1A | 0.353 (3) | 0.232 (9) | 0.182 (2) | 0.071 (12)* | |
H2AA | 0.208 (2) | −0.369 (8) | 0.1766 (18) | 0.048 (9)* | |
H2AB | 0.166 (2) | −0.148 (8) | 0.2147 (18) | 0.050 (10)* | |
H7A | 0.545 (2) | 1.166 (7) | 0.0671 (16) | 0.030 (7)* | |
H6 | 0.515 (2) | 0.428 (7) | 0.2157 (16) | 0.036 (8)* | |
H3 | 0.328 (2) | 0.898 (8) | 0.0045 (17) | 0.048 (9)* | |
H7B | 0.443 (2) | 1.223 (8) | 0.0088 (18) | 0.047 (9)* | |
H5 | 0.570 (2) | 0.757 (7) | 0.1541 (15) | 0.036 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0359 (12) | 0.0365 (15) | 0.0240 (10) | 0.0004 (10) | 0.0176 (9) | 0.0012 (9) |
C2 | 0.0347 (13) | 0.0410 (19) | 0.0269 (11) | 0.0003 (13) | 0.0182 (11) | 0.0019 (11) |
C3 | 0.0360 (14) | 0.0405 (19) | 0.0271 (12) | 0.0003 (13) | 0.0188 (11) | 0.0039 (11) |
C4 | 0.0373 (14) | 0.0340 (17) | 0.0225 (11) | 0.0002 (12) | 0.0198 (10) | −0.0016 (10) |
C5 | 0.0346 (14) | 0.0363 (17) | 0.0261 (12) | −0.0007 (13) | 0.0178 (11) | −0.0006 (11) |
C6 | 0.0366 (14) | 0.0361 (17) | 0.0244 (11) | −0.0010 (12) | 0.0161 (11) | 0.0016 (11) |
C1A | 0.0345 (13) | 0.0319 (17) | 0.0241 (11) | 0.0010 (12) | 0.0170 (10) | −0.0005 (10) |
O1A | 0.0339 (10) | 0.0404 (13) | 0.0275 (9) | −0.0063 (9) | 0.0132 (8) | 0.0051 (8) |
C2A | 0.0313 (13) | 0.0319 (17) | 0.0274 (12) | −0.0014 (11) | 0.0154 (11) | 0.0027 (11) |
O2A | 0.0370 (10) | 0.0426 (13) | 0.0283 (9) | −0.0016 (9) | 0.0157 (8) | 0.0048 (9) |
C7 | 0.0384 (14) | 0.0350 (18) | 0.0285 (12) | −0.0016 (12) | 0.0205 (11) | 0.0005 (11) |
N1—C2 | 1.340 (4) | C1A—O1A | 1.315 (3) |
N1—C6 | 1.346 (3) | C1A—C2A | 1.509 (4) |
C2—C3 | 1.387 (4) | C1A—O2A | 1.227 (3) |
C2—H2 | 1.05 (3) | O1A—H1A | 1.00 (4) |
C3—C4 | 1.392 (4) | C2A—C2Ai | 1.518 (5) |
C3—H3 | 1.03 (4) | C2A—H2AA | 1.02 (4) |
C4—C5 | 1.388 (4) | C2A—H2AB | 0.97 (4) |
C4—C7 | 1.513 (4) | C7—C7ii | 1.537 (5) |
C5—C6 | 1.384 (4) | C7—H7A | 1.05 (3) |
C5—H5 | 0.97 (3) | C7—H7B | 1.05 (4) |
C6—H6 | 1.05 (3) | ||
C2—N1—C6 | 117.7 (2) | O1A—C1A—C2A | 114.7 (2) |
N1—C2—C3 | 123.0 (3) | O2A—C1A—O1A | 123.6 (3) |
N1—C2—H2 | 116.3 (16) | O2A—C1A—C2A | 121.7 (2) |
C3—C2—H2 | 120.6 (16) | C1A—O1A—H1A | 110 (2) |
C2—C3—C4 | 119.1 (3) | C1A—C2A—C2Ai | 114.9 (3) |
C2—C3—H3 | 122 (2) | C1A—C2A—H2AA | 106.3 (19) |
C4—C3—H3 | 119 (2) | C1A—C2A—H2AB | 107 (2) |
C3—C4—C7 | 120.7 (2) | C2Ai—C2A—H2AA | 111 (2) |
C5—C4—C3 | 118.0 (2) | C2Ai—C2A—H2AB | 111 (2) |
C5—C4—C7 | 121.3 (2) | H2AA—C2A—H2AB | 106 (3) |
C4—C5—H5 | 124.0 (19) | C4—C7—C7ii | 110.0 (3) |
C6—C5—C4 | 119.4 (2) | C4—C7—H7A | 110.0 (16) |
C6—C5—H5 | 116.5 (19) | C4—C7—H7B | 109.2 (19) |
N1—C6—C5 | 122.7 (2) | C7ii—C7—H7A | 109.7 (16) |
N1—C6—H6 | 116.9 (17) | C7ii—C7—H7B | 108.6 (18) |
C5—C6—H6 | 120.3 (17) | H7A—C7—H7B | 109 (3) |
N1—C2—C3—C4 | 0.3 (4) | C4—C5—C6—N1 | 0.7 (4) |
C2—N1—C6—C5 | −0.5 (4) | C5—C4—C7—C7ii | 92.0 (3) |
C2—C3—C4—C5 | 0.0 (4) | C6—N1—C2—C3 | −0.1 (4) |
C2—C3—C4—C7 | 177.4 (2) | O1A—C1A—C2A—C2Ai | 6.8 (4) |
C3—C4—C5—C6 | −0.5 (4) | O2A—C1A—C2A—C2Ai | −173.5 (3) |
C3—C4—C7—C7ii | −85.3 (4) | C7—C4—C5—C6 | −177.8 (2) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.363 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6128 (4) Å | Cell parameters from 2580 reflections |
b = 4.8607 (1) Å | θ = 4.3–71.4° |
c = 19.3367 (5) Å | µ = 0.82 mm−1 |
β = 109.370 (3)° | T = 140 K |
V = 1473.05 (7) Å3 | Plate, colourless |
Z = 4 | 0.45 × 0.41 × 0.14 mm |
New Xcalibur, EosS2 diffractometer | 1405 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1293 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.9° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.768, Tmax = 0.923 | l = −23→23 |
4200 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0768P)2 + 0.5548P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1405 reflections | Δρmax = 0.21 e Å−3 |
136 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39249 (6) | 0.4633 (2) | 0.14537 (5) | 0.0209 (3) | |
C2 | 0.34083 (7) | 0.5912 (3) | 0.08599 (7) | 0.0232 (3) | |
C3 | 0.36929 (8) | 0.7906 (3) | 0.04867 (7) | 0.0228 (3) | |
C4 | 0.45529 (8) | 0.8616 (2) | 0.07264 (6) | 0.0195 (3) | |
C5 | 0.50888 (7) | 0.7268 (3) | 0.13387 (7) | 0.0214 (3) | |
C6 | 0.47531 (8) | 0.5314 (3) | 0.16862 (7) | 0.0217 (3) | |
C1A | 0.25381 (7) | 0.0232 (2) | 0.17648 (6) | 0.0191 (3) | |
O1A | 0.33304 (5) | 0.09416 (19) | 0.21198 (5) | 0.0261 (3) | |
C2A | 0.22052 (7) | −0.2066 (3) | 0.21244 (6) | 0.0213 (3) | |
O2A | 0.21009 (5) | 0.12863 (19) | 0.11954 (5) | 0.0265 (3) | |
C7 | 0.48918 (8) | 1.0697 (3) | 0.03154 (7) | 0.0221 (3) | |
H2AA | 0.2098 (10) | −0.361 (4) | 0.1792 (9) | 0.032 (4)* | |
H2AB | 0.1637 (10) | −0.143 (3) | 0.2131 (9) | 0.030 (4)* | |
H6 | 0.5115 (9) | 0.433 (3) | 0.2105 (8) | 0.027 (4)* | |
H2 | 0.2804 (9) | 0.536 (3) | 0.0694 (8) | 0.024 (4)* | |
H3 | 0.3304 (9) | 0.881 (3) | 0.0082 (8) | 0.022 (4)* | |
H7A | 0.5416 (10) | 1.151 (3) | 0.0645 (9) | 0.027 (4)* | |
H5 | 0.5699 (9) | 0.763 (3) | 0.1523 (8) | 0.024 (4)* | |
H7B | 0.4465 (11) | 1.214 (4) | 0.0116 (9) | 0.036 (4)* | |
H1A | 0.3537 (13) | 0.241 (5) | 0.1825 (12) | 0.068 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0223 (5) | 0.0215 (6) | 0.0204 (5) | −0.0028 (4) | 0.0091 (4) | 0.0014 (4) |
C2 | 0.0178 (6) | 0.0276 (7) | 0.0245 (6) | −0.0018 (5) | 0.0075 (5) | 0.0020 (5) |
C3 | 0.0204 (6) | 0.0265 (7) | 0.0207 (6) | 0.0008 (5) | 0.0057 (5) | 0.0040 (5) |
C4 | 0.0238 (6) | 0.0180 (6) | 0.0199 (6) | −0.0020 (4) | 0.0114 (5) | −0.0021 (4) |
C5 | 0.0191 (6) | 0.0225 (6) | 0.0228 (6) | −0.0031 (5) | 0.0071 (5) | −0.0017 (5) |
C6 | 0.0222 (6) | 0.0222 (6) | 0.0191 (6) | −0.0005 (5) | 0.0047 (5) | 0.0020 (5) |
C1A | 0.0196 (6) | 0.0186 (6) | 0.0197 (6) | −0.0004 (5) | 0.0071 (5) | −0.0010 (4) |
O1A | 0.0211 (5) | 0.0301 (5) | 0.0240 (5) | −0.0079 (4) | 0.0034 (4) | 0.0081 (4) |
C2A | 0.0185 (6) | 0.0205 (6) | 0.0239 (7) | −0.0031 (5) | 0.0059 (5) | 0.0019 (5) |
O2A | 0.0231 (5) | 0.0287 (5) | 0.0247 (5) | −0.0013 (3) | 0.0039 (4) | 0.0080 (4) |
C7 | 0.0262 (6) | 0.0187 (6) | 0.0242 (6) | −0.0028 (5) | 0.0119 (5) | 0.0006 (5) |
N1—C2 | 1.3370 (16) | C1A—O1A | 1.3128 (14) |
N1—C6 | 1.3396 (15) | C1A—C2A | 1.5139 (16) |
C2—C3 | 1.3820 (17) | C1A—O2A | 1.2133 (15) |
C2—H2 | 0.985 (15) | O1A—H1A | 1.04 (2) |
C3—C4 | 1.3913 (17) | C2A—C2Ai | 1.518 (2) |
C3—H3 | 0.942 (15) | C2A—H2AA | 0.964 (18) |
C4—C5 | 1.3872 (17) | C2A—H2AB | 0.997 (16) |
C4—C7 | 1.5060 (16) | C7—C7ii | 1.538 (2) |
C5—C6 | 1.3833 (17) | C7—H7A | 0.977 (16) |
C5—H5 | 0.972 (14) | C7—H7B | 0.981 (18) |
C6—H6 | 0.960 (16) | ||
C2—N1—C6 | 117.94 (10) | O1A—C1A—C2A | 114.17 (10) |
N1—C2—C3 | 122.76 (11) | O2A—C1A—O1A | 123.93 (11) |
N1—C2—H2 | 116.6 (9) | O2A—C1A—C2A | 121.90 (10) |
C3—C2—H2 | 120.7 (9) | C1A—O1A—H1A | 110.5 (12) |
C2—C3—C4 | 119.43 (11) | C1A—C2A—C2Ai | 115.25 (12) |
C2—C3—H3 | 120.1 (9) | C1A—C2A—H2AA | 106.3 (10) |
C4—C3—H3 | 120.4 (9) | C1A—C2A—H2AB | 105.6 (9) |
C3—C4—C7 | 120.87 (11) | C2Ai—C2A—H2AA | 109.9 (10) |
C5—C4—C3 | 117.69 (11) | C2Ai—C2A—H2AB | 112.7 (9) |
C5—C4—C7 | 121.40 (11) | H2AA—C2A—H2AB | 106.4 (13) |
C4—C5—H5 | 121.7 (9) | C4—C7—C7ii | 110.45 (12) |
C6—C5—C4 | 119.39 (11) | C4—C7—H7A | 109.7 (10) |
C6—C5—H5 | 118.9 (9) | C4—C7—H7B | 109.9 (10) |
N1—C6—C5 | 122.78 (11) | C7ii—C7—H7A | 107.7 (10) |
N1—C6—H6 | 116.5 (9) | C7ii—C7—H7B | 109.4 (10) |
C5—C6—H6 | 120.7 (9) | H7A—C7—H7B | 109.6 (13) |
N1—C2—C3—C4 | 0.74 (19) | C4—C5—C6—N1 | 0.56 (19) |
C2—N1—C6—C5 | 0.02 (18) | C5—C4—C7—C7ii | 92.45 (16) |
C2—C3—C4—C5 | −0.14 (18) | C6—N1—C2—C3 | −0.67 (19) |
C2—C3—C4—C7 | 177.52 (11) | O1A—C1A—C2A—C2Ai | 7.09 (19) |
C3—C4—C5—C6 | −0.47 (18) | O2A—C1A—C2A—C2Ai | −173.30 (13) |
C3—C4—C7—C7ii | −85.12 (16) | C7—C4—C5—C6 | −178.12 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.481 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.55 (3) Å | Cell parameters from 771 reflections |
b = 4.6266 (3) Å | θ = 4.4–22.1° |
c = 19.089 (6) Å | µ = 0.11 mm−1 |
β = 111.96 (9)° | T = 295 K |
V = 1356 (2) Å3 | Plank, colourless |
Z = 4 | 0.37 × 0.16 × 0.03 mm |
Xcalibur, Eos diffractometer | 282 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 177 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 26.3°, θmin = 2.3° |
ω scans | h = −6→6 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.996, Tmax = 0.996 | l = −23→21 |
1943 measured reflections |
Refinement on F2 | 9 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.091 | H-atom parameters constrained |
wR(F2) = 0.274 | w = 1/[σ2(Fo2) + (0.1778P)2 + 0.1765P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
282 reflections | Δρmax = 0.22 e Å−3 |
46 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3945 (17) | 0.4679 (19) | 0.1472 (6) | 0.036 (4)* | |
C2 | 0.3397 (17) | 0.6075 (18) | 0.0866 (6) | 0.042 (3)* | |
H2 | 0.2805 | 0.5660 | 0.0696 | 0.051* | |
C3 | 0.3690 (16) | 0.813 (2) | 0.0486 (7) | 0.041 (4)* | |
H3 | 0.3299 | 0.9083 | 0.0069 | 0.049* | |
C4 | 0.4572 (14) | 0.873 (2) | 0.0737 (6) | 0.021 (3)* | |
C5 | 0.5135 (16) | 0.7284 (19) | 0.1349 (5) | 0.040 (3)* | |
H5 | 0.5731 | 0.7633 | 0.1523 | 0.048* | |
C6 | 0.4792 (18) | 0.528 (2) | 0.1702 (8) | 0.043 (5)* | |
H6 | 0.5173 | 0.4311 | 0.2121 | 0.051* | |
C1A | 0.2570 (15) | 0.028 (2) | 0.1769 (6) | 0.022 (3)* | |
O1A | 0.3358 (15) | 0.1010 (15) | 0.2125 (6) | 0.052 (3)* | |
H1A | 0.3539 | 0.1883 | 0.1839 | 0.077* | |
C2A | 0.2193 (19) | −0.2023 (19) | 0.2116 (6) | 0.037 (3)* | |
H2AA | 0.1664 | −0.1288 | 0.2159 | 0.045* | |
H2AB | 0.2036 | −0.3685 | 0.1783 | 0.045* | |
O2A | 0.2072 (14) | 0.1469 (12) | 0.1168 (4) | 0.044 (2)* | |
C7 | 0.489 (2) | 1.0781 (19) | 0.0303 (7) | 0.035 (3)* | |
H7A | 0.5400 | 1.1775 | 0.0643 | 0.042* | |
H7B | 0.4441 | 1.2216 | 0.0067 | 0.042* |
N1—C2 | 1.338 (16) | C1A—O1A | 1.270 (19) |
N1—C6 | 1.33 (2) | C1A—C2A | 1.51 (2) |
C2—H2 | 0.9300 | C1A—O2A | 1.262 (15) |
C2—C3 | 1.387 (15) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.50 (3) |
C3—C4 | 1.38 (2) | C2A—H2AA | 0.9700 |
C4—C5 | 1.365 (16) | C2A—H2AB | 0.9700 |
C4—C7 | 1.479 (15) | C7—C7ii | 1.52 (3) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.385 (16) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C6—N1—C2 | 118.2 (16) | O1A—C1A—C2A | 117.7 (12) |
N1—C2—H2 | 119.2 | O2A—C1A—O1A | 124.1 (14) |
N1—C2—C3 | 122 (2) | O2A—C1A—C2A | 118.0 (18) |
C3—C2—H2 | 119.2 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 120.4 | C1A—C2A—H2AA | 108.9 |
C4—C3—C2 | 119.1 (16) | C1A—C2A—H2AB | 108.9 |
C4—C3—H3 | 120.4 | C2Ai—C2A—C1A | 113 (3) |
C3—C4—C7 | 118.9 (14) | C2Ai—C2A—H2AA | 108.9 |
C5—C4—C3 | 119.5 (14) | C2Ai—C2A—H2AB | 108.9 |
C5—C4—C7 | 121.5 (18) | H2AA—C2A—H2AB | 107.7 |
C4—C5—H5 | 121.0 | C4—C7—C7ii | 111.1 (9) |
C4—C5—C6 | 118.0 (18) | C4—C7—H7A | 109.4 |
C6—C5—H5 | 121.0 | C4—C7—H7B | 109.4 |
N1—C6—C5 | 123.5 (16) | C7ii—C7—H7A | 109.4 |
N1—C6—H6 | 118.2 | C7ii—C7—H7B | 109.4 |
C5—C6—H6 | 118.2 | H7A—C7—H7B | 108.0 |
N1—C2—C3—C4 | 0.4 (17) | C4—C5—C6—N1 | 0.7 (18) |
C2—N1—C6—C5 | 0 (2) | C5—C4—C7—C7ii | 86 (3) |
C2—C3—C4—C5 | 0.4 (18) | C6—N1—C2—C3 | −0.7 (17) |
C2—C3—C4—C7 | 176.2 (8) | O1A—C1A—C2A—C2Ai | 4 (2) |
C3—C4—C5—C6 | −0.9 (16) | O2A—C1A—C2A—C2Ai | −171.7 (15) |
C3—C4—C7—C7ii | −90 (3) | C7—C4—C5—C6 | −176.6 (9) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.362 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6153 (5) Å | Cell parameters from 2569 reflections |
b = 4.8619 (1) Å | θ = 4.3–71.4° |
c = 19.3400 (5) Å | µ = 0.82 mm−1 |
β = 109.350 (3)° | T = 145 K |
V = 1474.07 (7) Å3 | Plate, colourless |
Z = 4 | 0.45 × 0.41 × 0.14 mm |
New Xcalibur, EosS2 diffractometer | 1405 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1300 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.9° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.769, Tmax = 0.923 | l = −23→23 |
4199 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5583P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1405 reflections | Δρmax = 0.20 e Å−3 |
136 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39247 (6) | 0.4632 (2) | 0.14530 (5) | 0.0217 (3) | |
C2 | 0.34088 (8) | 0.5908 (3) | 0.08600 (7) | 0.0239 (3) | |
C3 | 0.36930 (8) | 0.7901 (3) | 0.04859 (7) | 0.0236 (3) | |
C4 | 0.45529 (8) | 0.8615 (2) | 0.07261 (6) | 0.0200 (3) | |
C5 | 0.50885 (7) | 0.7265 (3) | 0.13389 (7) | 0.0220 (3) | |
C6 | 0.47532 (8) | 0.5314 (3) | 0.16861 (7) | 0.0223 (3) | |
C1A | 0.25379 (7) | 0.0232 (2) | 0.17647 (6) | 0.0194 (3) | |
O1A | 0.33310 (5) | 0.09372 (19) | 0.21193 (5) | 0.0267 (3) | |
C2A | 0.22053 (7) | −0.2066 (3) | 0.21248 (7) | 0.0220 (3) | |
O2A | 0.21016 (5) | 0.12828 (19) | 0.11956 (5) | 0.0274 (3) | |
C7 | 0.48914 (8) | 1.0694 (3) | 0.03150 (7) | 0.0225 (3) | |
H2AA | 0.2096 (10) | −0.361 (4) | 0.1785 (9) | 0.034 (4)* | |
H3 | 0.3300 (9) | 0.883 (3) | 0.0077 (8) | 0.021 (3)* | |
H6 | 0.5109 (9) | 0.435 (3) | 0.2106 (8) | 0.023 (4)* | |
H2AB | 0.1643 (10) | −0.144 (3) | 0.2139 (9) | 0.030 (4)* | |
H2 | 0.2803 (9) | 0.534 (3) | 0.0698 (8) | 0.024 (4)* | |
H7A | 0.5415 (10) | 1.152 (3) | 0.0651 (9) | 0.030 (4)* | |
H5 | 0.5703 (9) | 0.760 (3) | 0.1518 (8) | 0.023 (4)* | |
H7B | 0.4463 (10) | 1.214 (4) | 0.0111 (9) | 0.032 (4)* | |
H1A | 0.3544 (13) | 0.242 (5) | 0.1825 (12) | 0.070 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0227 (5) | 0.0220 (6) | 0.0217 (5) | −0.0028 (4) | 0.0092 (4) | 0.0015 (4) |
C2 | 0.0187 (6) | 0.0274 (7) | 0.0257 (6) | −0.0020 (5) | 0.0076 (5) | 0.0018 (5) |
C3 | 0.0215 (6) | 0.0268 (7) | 0.0217 (6) | 0.0014 (5) | 0.0062 (5) | 0.0044 (5) |
C4 | 0.0243 (6) | 0.0182 (6) | 0.0204 (6) | −0.0015 (4) | 0.0115 (5) | −0.0019 (4) |
C5 | 0.0198 (6) | 0.0231 (6) | 0.0231 (6) | −0.0032 (5) | 0.0071 (5) | −0.0015 (5) |
C6 | 0.0228 (6) | 0.0230 (6) | 0.0193 (6) | −0.0010 (5) | 0.0048 (5) | 0.0022 (5) |
C1A | 0.0197 (6) | 0.0185 (6) | 0.0206 (6) | −0.0005 (5) | 0.0073 (5) | −0.0009 (5) |
O1A | 0.0215 (5) | 0.0303 (5) | 0.0251 (5) | −0.0082 (4) | 0.0034 (4) | 0.0083 (4) |
C2A | 0.0189 (6) | 0.0214 (7) | 0.0248 (7) | −0.0030 (5) | 0.0061 (5) | 0.0027 (5) |
O2A | 0.0238 (5) | 0.0297 (5) | 0.0253 (5) | −0.0018 (3) | 0.0038 (4) | 0.0084 (4) |
C7 | 0.0266 (6) | 0.0192 (6) | 0.0241 (6) | −0.0032 (5) | 0.0117 (5) | 0.0007 (5) |
N1—C2 | 1.3354 (16) | C1A—O1A | 1.3136 (14) |
N1—C6 | 1.3405 (15) | C1A—C2A | 1.5145 (16) |
C2—C3 | 1.3829 (17) | C1A—O2A | 1.2120 (15) |
C2—H2 | 0.989 (14) | O1A—H1A | 1.05 (2) |
C3—C4 | 1.3920 (17) | C2A—C2Ai | 1.517 (2) |
C3—H3 | 0.955 (15) | C2A—H2AA | 0.973 (18) |
C4—C5 | 1.3886 (17) | C2A—H2AB | 0.991 (16) |
C4—C7 | 1.5054 (16) | C7—C7ii | 1.537 (2) |
C5—C6 | 1.3819 (17) | C7—H7A | 0.982 (17) |
C5—H5 | 0.977 (14) | C7—H7B | 0.985 (17) |
C6—H6 | 0.953 (15) | ||
C2—N1—C6 | 117.99 (10) | O1A—C1A—C2A | 114.09 (10) |
N1—C2—C3 | 122.80 (11) | O2A—C1A—O1A | 123.98 (11) |
N1—C2—H2 | 116.0 (9) | O2A—C1A—C2A | 121.93 (10) |
C3—C2—H2 | 121.2 (9) | C1A—O1A—H1A | 110.9 (12) |
C2—C3—C4 | 119.39 (11) | C1A—C2A—C2Ai | 115.28 (12) |
C2—C3—H3 | 120.3 (9) | C1A—C2A—H2AA | 105.8 (10) |
C4—C3—H3 | 120.2 (9) | C1A—C2A—H2AB | 106.2 (10) |
C3—C4—C7 | 120.86 (11) | C2Ai—C2A—H2AA | 110.4 (10) |
C5—C4—C3 | 117.63 (11) | C2Ai—C2A—H2AB | 111.9 (9) |
C5—C4—C7 | 121.47 (11) | H2AA—C2A—H2AB | 106.7 (13) |
C4—C5—H5 | 121.5 (9) | C4—C7—C7ii | 110.55 (12) |
C6—C5—C4 | 119.45 (11) | C4—C7—H7A | 109.1 (10) |
C6—C5—H5 | 119.0 (9) | C4—C7—H7B | 110.1 (9) |
N1—C6—C5 | 122.75 (11) | C7ii—C7—H7A | 108.3 (10) |
N1—C6—H6 | 116.3 (9) | C7ii—C7—H7B | 109.0 (10) |
C5—C6—H6 | 120.9 (9) | H7A—C7—H7B | 109.8 (13) |
N1—C2—C3—C4 | 0.63 (19) | C4—C5—C6—N1 | 0.59 (19) |
C2—N1—C6—C5 | −0.02 (18) | C5—C4—C7—C7ii | 92.42 (16) |
C2—C3—C4—C5 | −0.03 (18) | C6—N1—C2—C3 | −0.60 (19) |
C2—C3—C4—C7 | 177.54 (11) | O1A—C1A—C2A—C2Ai | 7.19 (19) |
C3—C4—C5—C6 | −0.54 (18) | O2A—C1A—C2A—C2Ai | −173.42 (13) |
C3—C4—C7—C7ii | −85.06 (16) | C7—C4—C5—C6 | −178.10 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.361 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6155 (4) Å | Cell parameters from 2565 reflections |
b = 4.8646 (1) Å | θ = 4.3–71.3° |
c = 19.3384 (5) Å | µ = 0.82 mm−1 |
β = 109.321 (3)° | T = 150 K |
V = 1475.05 (7) Å3 | Plate, colourless |
Z = 4 | 0.45 × 0.41 × 0.14 mm |
New Xcalibur, EosS2 diffractometer | 1406 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1302 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.9° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.769, Tmax = 0.923 | l = −23→23 |
4196 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | All H-atom parameters refined |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0789P)2 + 0.4183P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1406 reflections | Δρmax = 0.20 e Å−3 |
136 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39248 (6) | 0.4630 (2) | 0.14532 (5) | 0.0222 (3) | |
C2 | 0.34094 (7) | 0.5903 (3) | 0.08596 (7) | 0.0246 (3) | |
C3 | 0.36932 (7) | 0.7898 (3) | 0.04861 (7) | 0.0241 (3) | |
C4 | 0.45529 (8) | 0.8613 (2) | 0.07261 (6) | 0.0206 (3) | |
C5 | 0.50881 (7) | 0.7265 (3) | 0.13383 (7) | 0.0227 (3) | |
C6 | 0.47532 (8) | 0.5312 (3) | 0.16858 (7) | 0.0229 (3) | |
C1A | 0.25392 (7) | 0.0230 (2) | 0.17656 (6) | 0.0201 (3) | |
O1A | 0.33313 (5) | 0.09365 (19) | 0.21189 (5) | 0.0276 (3) | |
C2A | 0.22049 (7) | −0.2064 (3) | 0.21251 (7) | 0.0224 (3) | |
O2A | 0.21024 (5) | 0.1282 (2) | 0.11962 (5) | 0.0284 (3) | |
C7 | 0.48914 (8) | 1.0693 (3) | 0.03159 (7) | 0.0231 (3) | |
H2AA | 0.2102 (10) | −0.358 (4) | 0.1788 (9) | 0.032 (4)* | |
H2AB | 0.1634 (10) | −0.144 (3) | 0.2130 (8) | 0.029 (4)* | |
H6 | 0.5107 (9) | 0.435 (3) | 0.2107 (8) | 0.025 (4)* | |
H2 | 0.2800 (10) | 0.535 (3) | 0.0686 (9) | 0.028 (4)* | |
H3 | 0.3301 (9) | 0.881 (3) | 0.0081 (8) | 0.023 (4)* | |
H7A | 0.5419 (10) | 1.150 (3) | 0.0648 (9) | 0.031 (4)* | |
H5 | 0.5700 (9) | 0.761 (3) | 0.1518 (8) | 0.023 (4)* | |
H7B | 0.4456 (11) | 1.212 (4) | 0.0109 (9) | 0.038 (4)* | |
H1A | 0.3543 (13) | 0.237 (5) | 0.1823 (12) | 0.066 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0229 (5) | 0.0229 (6) | 0.0220 (5) | −0.0029 (4) | 0.0090 (4) | 0.0015 (4) |
C2 | 0.0194 (6) | 0.0285 (7) | 0.0260 (6) | −0.0024 (5) | 0.0078 (5) | 0.0025 (5) |
C3 | 0.0210 (6) | 0.0281 (7) | 0.0219 (6) | 0.0008 (5) | 0.0055 (5) | 0.0046 (5) |
C4 | 0.0247 (6) | 0.0187 (6) | 0.0214 (6) | −0.0016 (4) | 0.0119 (5) | −0.0020 (4) |
C5 | 0.0193 (6) | 0.0240 (7) | 0.0246 (6) | −0.0033 (5) | 0.0069 (5) | −0.0016 (5) |
C6 | 0.0227 (6) | 0.0237 (6) | 0.0208 (6) | −0.0004 (5) | 0.0052 (5) | 0.0026 (5) |
C1A | 0.0204 (6) | 0.0196 (6) | 0.0210 (6) | −0.0006 (5) | 0.0076 (5) | −0.0009 (5) |
O1A | 0.0221 (5) | 0.0316 (6) | 0.0258 (5) | −0.0087 (4) | 0.0033 (4) | 0.0084 (4) |
C2A | 0.0194 (6) | 0.0219 (7) | 0.0249 (7) | −0.0038 (5) | 0.0059 (5) | 0.0023 (5) |
O2A | 0.0248 (5) | 0.0306 (5) | 0.0265 (5) | −0.0014 (4) | 0.0041 (4) | 0.0091 (4) |
C7 | 0.0271 (6) | 0.0200 (6) | 0.0247 (6) | −0.0027 (5) | 0.0121 (5) | 0.0009 (5) |
N1—C2 | 1.3358 (16) | C1A—O1A | 1.3123 (14) |
N1—C6 | 1.3408 (15) | C1A—C2A | 1.5141 (16) |
C2—C3 | 1.3823 (17) | C1A—O2A | 1.2133 (15) |
C2—H2 | 0.992 (15) | O1A—H1A | 1.04 (2) |
C3—C4 | 1.3921 (17) | C2A—C2Ai | 1.518 (2) |
C3—H3 | 0.947 (15) | C2A—H2AA | 0.962 (18) |
C4—C5 | 1.3875 (17) | C2A—H2AB | 0.999 (15) |
C4—C7 | 1.5050 (16) | C7—C7ii | 1.539 (2) |
C5—C6 | 1.3824 (17) | C7—H7A | 0.982 (17) |
C5—H5 | 0.974 (13) | C7—H7B | 0.986 (18) |
C6—H6 | 0.954 (15) | ||
C2—N1—C6 | 117.94 (10) | O1A—C1A—C2A | 114.26 (10) |
N1—C2—C3 | 122.82 (11) | O2A—C1A—O1A | 123.91 (11) |
N1—C2—H2 | 117.2 (9) | O2A—C1A—C2A | 121.82 (10) |
C3—C2—H2 | 119.9 (9) | C1A—O1A—H1A | 110.7 (11) |
C2—C3—C4 | 119.40 (11) | C1A—C2A—C2Ai | 115.20 (12) |
C2—C3—H3 | 120.0 (9) | C1A—C2A—H2AA | 105.3 (10) |
C4—C3—H3 | 120.6 (9) | C1A—C2A—H2AB | 106.0 (9) |
C3—C4—C7 | 120.89 (11) | C2Ai—C2A—H2AA | 110.3 (10) |
C5—C4—C3 | 117.62 (11) | C2Ai—C2A—H2AB | 113.0 (9) |
C5—C4—C7 | 121.44 (11) | H2AA—C2A—H2AB | 106.3 (13) |
C4—C5—H5 | 121.5 (9) | C4—C7—C7ii | 110.52 (12) |
C6—C5—C4 | 119.47 (11) | C4—C7—H7A | 109.5 (10) |
C6—C5—H5 | 119.0 (9) | C4—C7—H7B | 109.5 (10) |
N1—C6—C5 | 122.73 (11) | C7ii—C7—H7A | 107.5 (10) |
N1—C6—H6 | 116.1 (9) | C7ii—C7—H7B | 108.6 (10) |
C5—C6—H6 | 121.2 (9) | H7A—C7—H7B | 111.2 (14) |
N1—C2—C3—C4 | 0.8 (2) | C4—C5—C6—N1 | 0.56 (19) |
C2—N1—C6—C5 | 0.11 (18) | C5—C4—C7—C7ii | 92.51 (16) |
C2—C3—C4—C5 | −0.07 (18) | C6—N1—C2—C3 | −0.78 (19) |
C2—C3—C4—C7 | 177.54 (11) | O1A—C1A—C2A—C2Ai | 7.00 (19) |
C3—C4—C5—C6 | −0.55 (18) | O2A—C1A—C2A—C2Ai | −173.52 (13) |
C3—C4—C7—C7ii | −85.01 (17) | C7—C4—C5—C6 | −178.16 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.360 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6252 (13) Å | Cell parameters from 1036 reflections |
b = 4.8647 (4) Å | θ = 4.9–71.0° |
c = 19.3379 (11) Å | µ = 0.82 mm−1 |
β = 109.278 (8)° | T = 150 K |
V = 1476.3 (2) Å3 | Plate, colourless |
Z = 4 | 0.14 × 0.09 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1416 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 954 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 71.9°, θmin = 4.9° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.903, Tmax = 1.000 | l = −17→23 |
2791 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.1111P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.190 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.25 e Å−3 |
1416 reflections | Δρmin = −0.25 e Å−3 |
137 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0029 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39256 (15) | 0.4616 (5) | 0.14538 (11) | 0.0380 (6) | |
C2 | 0.34048 (18) | 0.5894 (7) | 0.08568 (14) | 0.0392 (7) | |
C3 | 0.36912 (19) | 0.7911 (7) | 0.04844 (15) | 0.0400 (8) | |
C4 | 0.45518 (18) | 0.8607 (6) | 0.07254 (13) | 0.0354 (7) | |
C5 | 0.50865 (18) | 0.7270 (7) | 0.13396 (14) | 0.0376 (7) | |
C6 | 0.47557 (19) | 0.5309 (7) | 0.16895 (14) | 0.0395 (7) | |
C1A | 0.25352 (17) | 0.0224 (6) | 0.17656 (13) | 0.0351 (7) | |
O1A | 0.33312 (13) | 0.0934 (5) | 0.21189 (10) | 0.0434 (6) | |
C2A | 0.22084 (18) | −0.2054 (7) | 0.21293 (15) | 0.0379 (7) | |
O2A | 0.21002 (13) | 0.1287 (5) | 0.11946 (9) | 0.0450 (6) | |
C7 | 0.4890 (2) | 1.0700 (6) | 0.03152 (14) | 0.0391 (7) | |
H2 | 0.276 (2) | 0.529 (6) | 0.0682 (15) | 0.038 (8)* | |
H1A | 0.357 (3) | 0.230 (9) | 0.181 (2) | 0.087 (14)* | |
H2AA | 0.209 (3) | −0.367 (9) | 0.179 (2) | 0.071 (11)* | |
H2AB | 0.164 (2) | −0.159 (7) | 0.2148 (16) | 0.045 (8)* | |
H7A | 0.546 (2) | 1.165 (8) | 0.0676 (19) | 0.056 (9)* | |
H6 | 0.515 (2) | 0.431 (6) | 0.2177 (16) | 0.042 (8)* | |
H3 | 0.329 (2) | 0.891 (7) | 0.0009 (17) | 0.054 (9)* | |
H7B | 0.442 (2) | 1.214 (8) | 0.0068 (18) | 0.053 (9)* | |
H5 | 0.571 (2) | 0.751 (7) | 0.1524 (15) | 0.045 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0416 (13) | 0.0440 (15) | 0.0354 (11) | −0.0011 (11) | 0.0220 (10) | 0.0017 (10) |
C2 | 0.0382 (15) | 0.0495 (19) | 0.0352 (12) | −0.0008 (14) | 0.0191 (12) | 0.0051 (12) |
C3 | 0.0414 (15) | 0.0485 (19) | 0.0359 (13) | −0.0010 (14) | 0.0205 (12) | 0.0042 (13) |
C4 | 0.0409 (15) | 0.0408 (17) | 0.0326 (12) | −0.0009 (13) | 0.0229 (11) | −0.0007 (12) |
C5 | 0.0393 (16) | 0.0445 (18) | 0.0346 (13) | −0.0017 (14) | 0.0198 (12) | 0.0016 (12) |
C6 | 0.0429 (16) | 0.0454 (18) | 0.0344 (12) | −0.0003 (14) | 0.0186 (12) | 0.0018 (12) |
C1A | 0.0362 (14) | 0.0428 (17) | 0.0301 (11) | −0.0004 (13) | 0.0160 (11) | 0.0002 (12) |
O1A | 0.0411 (12) | 0.0534 (14) | 0.0362 (9) | −0.0079 (10) | 0.0135 (9) | 0.0081 (9) |
C2A | 0.0375 (15) | 0.0427 (18) | 0.0390 (13) | −0.0025 (13) | 0.0199 (12) | 0.0038 (13) |
O2A | 0.0432 (12) | 0.0554 (15) | 0.0386 (10) | −0.0012 (10) | 0.0162 (9) | 0.0084 (10) |
C7 | 0.0481 (17) | 0.0400 (18) | 0.0379 (13) | −0.0016 (14) | 0.0260 (13) | 0.0018 (12) |
N1—C2 | 1.345 (4) | C1A—O1A | 1.319 (3) |
N1—C6 | 1.346 (4) | C1A—C2A | 1.507 (4) |
C2—C3 | 1.391 (4) | C1A—O2A | 1.218 (3) |
C2—H2 | 1.05 (3) | O1A—H1A | 1.05 (5) |
C3—C4 | 1.392 (4) | C2A—C2Ai | 1.505 (6) |
C3—H3 | 1.06 (3) | C2A—H2AA | 1.00 (4) |
C4—C5 | 1.388 (4) | C2A—H2AB | 0.99 (3) |
C4—C7 | 1.508 (4) | C7—C7ii | 1.542 (5) |
C5—C6 | 1.384 (4) | C7—H7A | 1.08 (4) |
C5—H5 | 0.99 (3) | C7—H7B | 1.04 (4) |
C6—H6 | 1.07 (3) | ||
C2—N1—C6 | 118.2 (2) | O1A—C1A—C2A | 113.9 (2) |
N1—C2—C3 | 122.5 (3) | O2A—C1A—O1A | 123.5 (3) |
N1—C2—H2 | 116.4 (16) | O2A—C1A—C2A | 122.5 (3) |
C3—C2—H2 | 121.1 (16) | C1A—O1A—H1A | 112 (2) |
C2—C3—C4 | 119.2 (3) | C1A—C2A—H2AA | 108 (2) |
C2—C3—H3 | 123 (2) | C1A—C2A—H2AB | 110.4 (19) |
C4—C3—H3 | 117.5 (19) | C2Ai—C2A—C1A | 116.0 (3) |
C3—C4—C7 | 120.5 (3) | C2Ai—C2A—H2AA | 109 (2) |
C5—C4—C3 | 118.0 (2) | C2Ai—C2A—H2AB | 110.9 (17) |
C5—C4—C7 | 121.5 (3) | H2AA—C2A—H2AB | 102 (3) |
C4—C5—H5 | 123.5 (18) | C4—C7—C7ii | 110.2 (3) |
C6—C5—C4 | 119.7 (3) | C4—C7—H7A | 110.4 (18) |
C6—C5—H5 | 116.5 (18) | C4—C7—H7B | 110.0 (18) |
N1—C6—C5 | 122.4 (3) | C7ii—C7—H7A | 108.2 (19) |
N1—C6—H6 | 116.6 (16) | C7ii—C7—H7B | 105.8 (18) |
C5—C6—H6 | 121.0 (17) | H7A—C7—H7B | 112 (3) |
N1—C2—C3—C4 | 1.4 (4) | C4—C5—C6—N1 | 0.5 (4) |
C2—N1—C6—C5 | −0.1 (4) | C5—C4—C7—C7ii | 92.7 (4) |
C2—C3—C4—C5 | −1.0 (4) | C6—N1—C2—C3 | −0.8 (4) |
C2—C3—C4—C7 | 177.4 (3) | O1A—C1A—C2A—C2Ai | 6.6 (4) |
C3—C4—C5—C6 | 0.1 (4) | O2A—C1A—C2A—C2Ai | −173.8 (3) |
C3—C4—C7—C7ii | −85.7 (4) | C7—C4—C5—C6 | −178.3 (3) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.360 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6176 (4) Å | Cell parameters from 2558 reflections |
b = 4.8671 (1) Å | θ = 4.3–71.3° |
c = 19.3394 (5) Å | µ = 0.82 mm−1 |
β = 109.301 (3)° | T = 155 K |
V = 1476.25 (7) Å3 | Plate, colourless |
Z = 4 | 0.45 × 0.4 × 0.14 mm |
New Xcalibur, EosS2 diffractometer | 1408 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1286 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.9° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.769, Tmax = 0.923 | l = −23→23 |
4200 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | All H-atom parameters refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0807P)2 + 0.4039P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1408 reflections | Δρmax = 0.21 e Å−3 |
136 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39255 (6) | 0.4628 (2) | 0.14530 (6) | 0.0226 (3) | |
C2 | 0.34103 (7) | 0.5899 (3) | 0.08596 (7) | 0.0250 (3) | |
C3 | 0.36934 (8) | 0.7896 (3) | 0.04856 (7) | 0.0248 (3) | |
C4 | 0.45527 (8) | 0.8610 (2) | 0.07256 (6) | 0.0208 (3) | |
C5 | 0.50879 (7) | 0.7266 (3) | 0.13383 (7) | 0.0229 (3) | |
C6 | 0.47526 (8) | 0.5314 (3) | 0.16854 (7) | 0.0233 (3) | |
C1A | 0.25392 (7) | 0.0231 (2) | 0.17650 (6) | 0.0202 (3) | |
O1A | 0.33315 (5) | 0.09332 (19) | 0.21185 (5) | 0.0282 (3) | |
C2A | 0.22058 (7) | −0.2063 (3) | 0.21252 (7) | 0.0230 (3) | |
O2A | 0.21031 (5) | 0.1279 (2) | 0.11965 (5) | 0.0289 (3) | |
C7 | 0.48911 (8) | 1.0692 (3) | 0.03156 (7) | 0.0235 (3) | |
H2AA | 0.2094 (10) | −0.359 (4) | 0.1793 (10) | 0.037 (4)* | |
H6 | 0.5112 (9) | 0.435 (3) | 0.2105 (8) | 0.027 (4)* | |
H3 | 0.3299 (9) | 0.882 (3) | 0.0075 (8) | 0.025 (4)* | |
H2AB | 0.1637 (11) | −0.141 (4) | 0.2128 (9) | 0.036 (4)* | |
H2 | 0.2800 (10) | 0.534 (3) | 0.0692 (9) | 0.029 (4)* | |
H7A | 0.5419 (11) | 1.148 (3) | 0.0654 (10) | 0.032 (4)* | |
H5 | 0.5702 (9) | 0.761 (3) | 0.1517 (8) | 0.025 (4)* | |
H7B | 0.4465 (11) | 1.211 (4) | 0.0107 (9) | 0.038 (4)* | |
H1A | 0.3540 (14) | 0.239 (5) | 0.1817 (12) | 0.073 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0238 (5) | 0.0233 (6) | 0.0222 (5) | −0.0032 (4) | 0.0096 (4) | 0.0015 (4) |
C2 | 0.0191 (6) | 0.0296 (7) | 0.0261 (6) | −0.0022 (5) | 0.0073 (5) | 0.0031 (5) |
C3 | 0.0222 (6) | 0.0286 (7) | 0.0227 (6) | 0.0008 (5) | 0.0063 (5) | 0.0051 (5) |
C4 | 0.0254 (6) | 0.0191 (6) | 0.0212 (6) | −0.0020 (4) | 0.0121 (5) | −0.0019 (4) |
C5 | 0.0198 (6) | 0.0242 (7) | 0.0245 (6) | −0.0033 (5) | 0.0073 (5) | −0.0016 (5) |
C6 | 0.0235 (6) | 0.0242 (6) | 0.0209 (6) | −0.0012 (5) | 0.0056 (5) | 0.0019 (5) |
C1A | 0.0202 (6) | 0.0199 (6) | 0.0210 (6) | −0.0007 (5) | 0.0073 (5) | −0.0009 (5) |
O1A | 0.0227 (5) | 0.0324 (6) | 0.0259 (5) | −0.0086 (4) | 0.0033 (4) | 0.0087 (4) |
C2A | 0.0199 (6) | 0.0223 (7) | 0.0259 (7) | −0.0037 (5) | 0.0063 (5) | 0.0023 (5) |
O2A | 0.0254 (5) | 0.0314 (5) | 0.0264 (5) | −0.0017 (4) | 0.0040 (4) | 0.0090 (4) |
C7 | 0.0277 (6) | 0.0203 (6) | 0.0252 (7) | −0.0036 (5) | 0.0123 (5) | 0.0005 (5) |
N1—C2 | 1.3355 (16) | C1A—O1A | 1.3125 (14) |
N1—C6 | 1.3395 (16) | C1A—C2A | 1.5143 (16) |
C2—C3 | 1.3832 (18) | C1A—O2A | 1.2116 (15) |
C2—H2 | 0.994 (15) | O1A—H1A | 1.05 (3) |
C3—C4 | 1.3918 (17) | C2A—C2Ai | 1.517 (2) |
C3—H3 | 0.958 (16) | C2A—H2AA | 0.958 (19) |
C4—C5 | 1.3880 (17) | C2A—H2AB | 0.999 (17) |
C4—C7 | 1.5056 (16) | C7—C7ii | 1.539 (2) |
C5—C6 | 1.3823 (17) | C7—H7A | 0.983 (17) |
C5—H5 | 0.978 (14) | C7—H7B | 0.977 (19) |
C6—H6 | 0.957 (15) | ||
C2—N1—C6 | 117.90 (11) | O1A—C1A—C2A | 114.15 (10) |
N1—C2—C3 | 122.86 (11) | O2A—C1A—O1A | 123.99 (11) |
N1—C2—H2 | 116.7 (10) | O2A—C1A—C2A | 121.86 (10) |
C3—C2—H2 | 120.4 (9) | C1A—O1A—H1A | 110.3 (12) |
C2—C3—C4 | 119.33 (11) | C1A—C2A—C2Ai | 115.34 (12) |
C2—C3—H3 | 120.3 (9) | C1A—C2A—H2AA | 106.4 (10) |
C4—C3—H3 | 120.3 (9) | C1A—C2A—H2AB | 105.1 (10) |
C3—C4—C7 | 120.88 (11) | C2Ai—C2A—H2AA | 110.1 (10) |
C5—C4—C3 | 117.66 (11) | C2Ai—C2A—H2AB | 113.3 (10) |
C5—C4—C7 | 121.42 (11) | H2AA—C2A—H2AB | 106.0 (14) |
C4—C5—H5 | 121.3 (9) | C4—C7—C7ii | 110.47 (12) |
C6—C5—C4 | 119.41 (11) | C4—C7—H7A | 108.6 (10) |
C6—C5—H5 | 119.2 (9) | C4—C7—H7B | 110.4 (10) |
N1—C6—C5 | 122.82 (11) | C7ii—C7—H7A | 107.9 (10) |
N1—C6—H6 | 116.5 (9) | C7ii—C7—H7B | 108.1 (10) |
C5—C6—H6 | 120.7 (9) | H7A—C7—H7B | 111.3 (14) |
N1—C2—C3—C4 | 0.8 (2) | C4—C5—C6—N1 | 0.57 (19) |
C2—N1—C6—C5 | 0.03 (19) | C5—C4—C7—C7ii | 92.60 (16) |
C2—C3—C4—C5 | −0.19 (18) | C6—N1—C2—C3 | −0.75 (19) |
C2—C3—C4—C7 | 177.57 (11) | O1A—C1A—C2A—C2Ai | 7.09 (19) |
C3—C4—C5—C6 | −0.47 (18) | O2A—C1A—C2A—C2Ai | −173.51 (14) |
C3—C4—C7—C7ii | −85.08 (17) | C7—C4—C5—C6 | −178.22 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.359 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6174 (3) Å | Cell parameters from 2560 reflections |
b = 4.8695 (1) Å | θ = 4.3–71.2° |
c = 19.3375 (4) Å | µ = 0.82 mm−1 |
β = 109.268 (2)° | T = 160 K |
V = 1477.11 (5) Å3 | Plate, colourless |
Z = 4 | 0.45 × 0.4 × 0.14 mm |
New Xcalibur, EosS2 diffractometer | 1407 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1279 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.5°, θmin = 4.9° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.770, Tmax = 0.923 | l = −23→23 |
4202 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0795P)2 + 0.4169P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1407 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39257 (6) | 0.4625 (2) | 0.14527 (6) | 0.0233 (3) | |
C2 | 0.34112 (8) | 0.5896 (3) | 0.08592 (7) | 0.0255 (3) | |
C3 | 0.36942 (8) | 0.7891 (3) | 0.04857 (7) | 0.0253 (3) | |
C4 | 0.45526 (8) | 0.8606 (2) | 0.07255 (6) | 0.0213 (3) | |
C5 | 0.50880 (8) | 0.7266 (3) | 0.13382 (7) | 0.0237 (3) | |
C6 | 0.47525 (8) | 0.5315 (3) | 0.16856 (7) | 0.0240 (3) | |
C1A | 0.25394 (7) | 0.0226 (2) | 0.17650 (6) | 0.0210 (3) | |
O1A | 0.33317 (5) | 0.0932 (2) | 0.21183 (5) | 0.0289 (3) | |
C2A | 0.22055 (7) | −0.2064 (3) | 0.21259 (7) | 0.0235 (3) | |
O2A | 0.21036 (5) | 0.1279 (2) | 0.11967 (5) | 0.0298 (3) | |
C7 | 0.48913 (8) | 1.0692 (3) | 0.03152 (7) | 0.0242 (3) | |
H2AA | 0.2096 (10) | −0.357 (4) | 0.1788 (10) | 0.039 (4)* | |
H6 | 0.5112 (9) | 0.435 (3) | 0.2108 (8) | 0.023 (3)* | |
H2 | 0.2804 (9) | 0.531 (3) | 0.0684 (8) | 0.026 (4)* | |
H3 | 0.3298 (10) | 0.879 (3) | 0.0078 (9) | 0.029 (4)* | |
H7A | 0.5425 (10) | 1.150 (3) | 0.0656 (9) | 0.030 (4)* | |
H2AB | 0.1636 (10) | −0.148 (4) | 0.2130 (9) | 0.036 (4)* | |
H5 | 0.5699 (9) | 0.764 (3) | 0.1519 (8) | 0.026 (4)* | |
H7B | 0.4454 (11) | 1.210 (4) | 0.0103 (9) | 0.038 (4)* | |
H1A | 0.3544 (14) | 0.237 (5) | 0.1819 (12) | 0.077 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0238 (5) | 0.0241 (6) | 0.0231 (5) | −0.0031 (4) | 0.0095 (4) | 0.0019 (4) |
C2 | 0.0198 (6) | 0.0299 (7) | 0.0273 (6) | −0.0023 (5) | 0.0081 (5) | 0.0028 (5) |
C3 | 0.0225 (6) | 0.0297 (7) | 0.0232 (6) | 0.0005 (5) | 0.0067 (5) | 0.0050 (5) |
C4 | 0.0254 (6) | 0.0199 (6) | 0.0219 (6) | −0.0022 (4) | 0.0123 (5) | −0.0019 (4) |
C5 | 0.0207 (6) | 0.0255 (7) | 0.0248 (6) | −0.0041 (5) | 0.0075 (5) | −0.0016 (5) |
C6 | 0.0239 (6) | 0.0252 (7) | 0.0215 (6) | −0.0016 (5) | 0.0055 (5) | 0.0026 (5) |
C1A | 0.0210 (6) | 0.0205 (6) | 0.0220 (6) | −0.0006 (5) | 0.0078 (5) | −0.0008 (5) |
O1A | 0.0230 (5) | 0.0334 (6) | 0.0269 (5) | −0.0090 (4) | 0.0034 (4) | 0.0090 (4) |
C2A | 0.0201 (6) | 0.0234 (7) | 0.0260 (7) | −0.0038 (5) | 0.0063 (5) | 0.0027 (5) |
O2A | 0.0257 (5) | 0.0325 (6) | 0.0277 (5) | −0.0019 (4) | 0.0040 (4) | 0.0094 (4) |
C7 | 0.0284 (6) | 0.0210 (7) | 0.0264 (7) | −0.0035 (5) | 0.0133 (5) | 0.0004 (5) |
N1—C2 | 1.3355 (16) | C1A—O1A | 1.3133 (14) |
N1—C6 | 1.3398 (16) | C1A—C2A | 1.5145 (16) |
C2—C3 | 1.3823 (18) | C1A—O2A | 1.2122 (15) |
C2—H2 | 0.995 (15) | O1A—H1A | 1.04 (3) |
C3—C4 | 1.3909 (17) | C2A—C2Ai | 1.516 (2) |
C3—H3 | 0.949 (16) | C2A—H2AA | 0.959 (19) |
C4—C5 | 1.3876 (17) | C2A—H2AB | 0.991 (16) |
C4—C7 | 1.5074 (16) | C7—C7ii | 1.537 (2) |
C5—C6 | 1.3827 (17) | C7—H7A | 0.995 (16) |
C5—H5 | 0.975 (14) | C7—H7B | 0.985 (18) |
C6—H6 | 0.960 (15) | ||
C2—N1—C6 | 117.86 (11) | O1A—C1A—C2A | 114.18 (10) |
N1—C2—C3 | 122.89 (11) | O2A—C1A—O1A | 123.89 (11) |
N1—C2—H2 | 116.7 (9) | O2A—C1A—C2A | 121.93 (10) |
C3—C2—H2 | 120.4 (9) | C1A—O1A—H1A | 110.6 (12) |
C2—C3—C4 | 119.34 (11) | C1A—C2A—C2Ai | 115.28 (12) |
C2—C3—H3 | 119.6 (9) | C1A—C2A—H2AA | 105.5 (10) |
C4—C3—H3 | 121.1 (9) | C1A—C2A—H2AB | 106.7 (10) |
C3—C4—C7 | 120.87 (11) | C2Ai—C2A—H2AA | 110.7 (10) |
C5—C4—C3 | 117.71 (11) | C2Ai—C2A—H2AB | 113.0 (10) |
C5—C4—C7 | 121.38 (11) | H2AA—C2A—H2AB | 105.0 (14) |
C4—C5—H5 | 121.2 (9) | C4—C7—C7ii | 110.39 (13) |
C6—C5—C4 | 119.36 (11) | C4—C7—H7A | 108.9 (10) |
C6—C5—H5 | 119.4 (9) | C4—C7—H7B | 109.7 (10) |
N1—C6—C5 | 122.83 (11) | C7ii—C7—H7A | 107.9 (10) |
N1—C6—H6 | 116.4 (8) | C7ii—C7—H7B | 108.0 (10) |
C5—C6—H6 | 120.7 (8) | H7A—C7—H7B | 112.0 (14) |
N1—C2—C3—C4 | 0.9 (2) | C4—C5—C6—N1 | 0.66 (19) |
C2—N1—C6—C5 | −0.07 (19) | C5—C4—C7—C7ii | 92.68 (16) |
C2—C3—C4—C5 | −0.23 (18) | C6—N1—C2—C3 | −0.70 (19) |
C2—C3—C4—C7 | 177.59 (11) | O1A—C1A—C2A—C2Ai | 6.90 (19) |
C3—C4—C5—C6 | −0.48 (18) | O2A—C1A—C2A—C2Ai | −173.49 (14) |
C3—C4—C7—C7ii | −85.06 (17) | C7—C4—C5—C6 | −178.29 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.358 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6187 (3) Å | Cell parameters from 2530 reflections |
b = 4.8720 (1) Å | θ = 4.3–71.2° |
c = 19.3377 (4) Å | µ = 0.82 mm−1 |
β = 109.242 (2)° | T = 165 K |
V = 1478.23 (5) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.41 × 0.12 mm |
New Xcalibur, EosS2 diffractometer | 1408 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1285 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.764, Tmax = 0.922 | l = −23→23 |
4208 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | All H-atom parameters refined |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0803P)2 + 0.5292P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1408 reflections | Δρmax = 0.20 e Å−3 |
136 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39267 (7) | 0.4622 (2) | 0.14520 (6) | 0.0234 (3) | |
C2 | 0.34117 (8) | 0.5892 (3) | 0.08589 (7) | 0.0258 (3) | |
C3 | 0.36949 (8) | 0.7885 (3) | 0.04849 (7) | 0.0258 (3) | |
C4 | 0.45516 (8) | 0.8604 (3) | 0.07246 (7) | 0.0216 (3) | |
C5 | 0.50870 (8) | 0.7267 (3) | 0.13383 (7) | 0.0241 (3) | |
C6 | 0.47521 (8) | 0.5315 (3) | 0.16847 (7) | 0.0241 (3) | |
C1A | 0.25400 (7) | 0.0224 (3) | 0.17653 (7) | 0.0213 (3) | |
O1A | 0.33311 (6) | 0.0928 (2) | 0.21179 (5) | 0.0293 (3) | |
C2A | 0.22058 (8) | −0.2064 (3) | 0.21254 (7) | 0.0242 (3) | |
O2A | 0.21041 (6) | 0.1278 (2) | 0.11974 (5) | 0.0303 (3) | |
C7 | 0.48907 (9) | 1.0690 (3) | 0.03141 (7) | 0.0245 (3) | |
H2AA | 0.2089 (11) | −0.358 (4) | 0.1786 (10) | 0.039 (5)* | |
H2AB | 0.1644 (10) | −0.145 (4) | 0.2137 (9) | 0.033 (4)* | |
H6 | 0.5114 (10) | 0.436 (3) | 0.2103 (8) | 0.027 (4)* | |
H2 | 0.2806 (10) | 0.532 (3) | 0.0699 (9) | 0.026 (4)* | |
H3 | 0.3297 (10) | 0.880 (3) | 0.0079 (9) | 0.028 (4)* | |
H7A | 0.5413 (11) | 1.152 (4) | 0.0650 (10) | 0.032 (4)* | |
H5 | 0.5700 (9) | 0.760 (3) | 0.1517 (8) | 0.027 (4)* | |
H7B | 0.4453 (11) | 1.212 (4) | 0.0108 (10) | 0.038 (4)* | |
H1A | 0.3549 (14) | 0.237 (5) | 0.1833 (12) | 0.068 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0242 (6) | 0.0243 (6) | 0.0228 (6) | −0.0032 (4) | 0.0093 (4) | 0.0017 (4) |
C2 | 0.0195 (6) | 0.0307 (7) | 0.0272 (7) | −0.0031 (5) | 0.0078 (5) | 0.0033 (5) |
C3 | 0.0230 (6) | 0.0300 (7) | 0.0235 (7) | 0.0010 (5) | 0.0062 (5) | 0.0054 (5) |
C4 | 0.0261 (6) | 0.0202 (6) | 0.0221 (6) | −0.0022 (5) | 0.0128 (5) | −0.0017 (5) |
C5 | 0.0209 (6) | 0.0258 (7) | 0.0253 (7) | −0.0034 (5) | 0.0074 (5) | −0.0009 (5) |
C6 | 0.0242 (6) | 0.0254 (7) | 0.0209 (6) | −0.0012 (5) | 0.0051 (5) | 0.0025 (5) |
C1A | 0.0214 (6) | 0.0205 (6) | 0.0225 (6) | −0.0005 (5) | 0.0078 (5) | −0.0007 (5) |
O1A | 0.0232 (5) | 0.0339 (6) | 0.0271 (5) | −0.0097 (4) | 0.0033 (4) | 0.0094 (4) |
C2A | 0.0208 (6) | 0.0237 (7) | 0.0268 (7) | −0.0038 (5) | 0.0061 (5) | 0.0030 (5) |
O2A | 0.0260 (5) | 0.0330 (6) | 0.0284 (5) | −0.0019 (4) | 0.0040 (4) | 0.0102 (4) |
C7 | 0.0290 (7) | 0.0206 (7) | 0.0268 (7) | −0.0038 (5) | 0.0134 (6) | 0.0007 (5) |
N1—C2 | 1.3355 (17) | C1A—O1A | 1.3116 (15) |
N1—C6 | 1.3385 (16) | C1A—C2A | 1.5135 (17) |
C2—C3 | 1.3828 (18) | C1A—O2A | 1.2125 (16) |
C2—H2 | 0.991 (15) | O1A—H1A | 1.03 (2) |
C3—C4 | 1.3892 (18) | C2A—C2Ai | 1.517 (2) |
C3—H3 | 0.955 (16) | C2A—H2AA | 0.965 (19) |
C4—C5 | 1.3886 (18) | C2A—H2AB | 0.987 (16) |
C4—C7 | 1.5086 (17) | C7—C7ii | 1.533 (2) |
C5—C6 | 1.3815 (18) | C7—H7A | 0.983 (18) |
C5—H5 | 0.976 (14) | C7—H7B | 0.992 (19) |
C6—H6 | 0.955 (16) | ||
C2—N1—C6 | 117.88 (11) | O1A—C1A—C2A | 114.23 (11) |
N1—C2—C3 | 122.83 (11) | O2A—C1A—O1A | 123.87 (11) |
N1—C2—H2 | 115.7 (9) | O2A—C1A—C2A | 121.90 (11) |
C3—C2—H2 | 121.4 (9) | C1A—O1A—H1A | 111.7 (12) |
C2—C3—C4 | 119.38 (12) | C1A—C2A—C2Ai | 115.26 (13) |
C2—C3—H3 | 119.8 (9) | C1A—C2A—H2AA | 105.9 (11) |
C4—C3—H3 | 120.8 (9) | C1A—C2A—H2AB | 106.3 (10) |
C3—C4—C7 | 120.92 (12) | C2Ai—C2A—H2AA | 110.9 (11) |
C5—C4—C3 | 117.68 (11) | C2Ai—C2A—H2AB | 112.3 (10) |
C5—C4—C7 | 121.37 (11) | H2AA—C2A—H2AB | 105.5 (14) |
C4—C5—H5 | 121.5 (9) | C4—C7—C7ii | 110.39 (13) |
C6—C5—C4 | 119.35 (11) | C4—C7—H7A | 109.2 (10) |
C6—C5—H5 | 119.0 (9) | C4—C7—H7B | 109.5 (10) |
N1—C6—C5 | 122.87 (12) | C7ii—C7—H7A | 108.4 (10) |
N1—C6—H6 | 116.8 (9) | C7ii—C7—H7B | 108.9 (10) |
C5—C6—H6 | 120.3 (9) | H7A—C7—H7B | 110.4 (14) |
N1—C2—C3—C4 | 0.6 (2) | C4—C5—C6—N1 | 0.5 (2) |
C2—N1—C6—C5 | −0.08 (19) | C5—C4—C7—C7ii | 92.68 (17) |
C2—C3—C4—C5 | −0.17 (19) | C6—N1—C2—C3 | −0.5 (2) |
C2—C3—C4—C7 | 177.64 (12) | O1A—C1A—C2A—C2Ai | 7.0 (2) |
C3—C4—C5—C6 | −0.39 (19) | O2A—C1A—C2A—C2Ai | −173.33 (14) |
C3—C4—C7—C7ii | −85.04 (18) | C7—C4—C5—C6 | −178.18 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.357 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6197 (3) Å | Cell parameters from 2535 reflections |
b = 4.8747 (1) Å | θ = 4.3–71.1° |
c = 19.3362 (4) Å | µ = 0.82 mm−1 |
β = 109.217 (2)° | T = 170 K |
V = 1479.25 (5) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.41 × 0.12 mm |
New Xcalibur, EosS2 diffractometer | 1410 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1291 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.764, Tmax = 0.922 | l = −23→23 |
4216 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | All H-atom parameters refined |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0803P)2 + 0.5464P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1410 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39265 (7) | 0.4621 (2) | 0.14520 (6) | 0.0241 (3) | |
C2 | 0.34123 (8) | 0.5886 (3) | 0.08586 (7) | 0.0267 (3) | |
C3 | 0.36946 (8) | 0.7881 (3) | 0.04850 (7) | 0.0260 (3) | |
C4 | 0.45527 (8) | 0.8604 (3) | 0.07250 (7) | 0.0220 (3) | |
C5 | 0.50868 (8) | 0.7265 (3) | 0.13380 (7) | 0.0244 (3) | |
C6 | 0.47521 (8) | 0.5314 (3) | 0.16842 (7) | 0.0248 (3) | |
C1A | 0.25406 (7) | 0.0224 (3) | 0.17653 (7) | 0.0216 (3) | |
O1A | 0.33317 (6) | 0.0926 (2) | 0.21175 (5) | 0.0302 (3) | |
C2A | 0.22059 (8) | −0.2063 (3) | 0.21254 (7) | 0.0246 (3) | |
O2A | 0.21047 (6) | 0.1276 (2) | 0.11974 (5) | 0.0312 (3) | |
C7 | 0.48902 (9) | 1.0686 (3) | 0.03146 (7) | 0.0253 (3) | |
H2AA | 0.2091 (11) | −0.358 (4) | 0.1789 (10) | 0.038 (4)* | |
H2AB | 0.1640 (11) | −0.145 (4) | 0.2137 (9) | 0.036 (4)* | |
H6 | 0.5102 (10) | 0.434 (3) | 0.2102 (8) | 0.027 (4)* | |
H2 | 0.2805 (10) | 0.528 (3) | 0.0686 (9) | 0.030 (4)* | |
H3 | 0.3306 (10) | 0.879 (3) | 0.0075 (9) | 0.029 (4)* | |
H7A | 0.5423 (11) | 1.149 (4) | 0.0654 (10) | 0.034 (4)* | |
H5 | 0.5699 (9) | 0.763 (3) | 0.1521 (8) | 0.028 (4)* | |
H7B | 0.4454 (11) | 1.210 (4) | 0.0101 (10) | 0.039 (4)* | |
H1A | 0.3541 (14) | 0.238 (5) | 0.1833 (13) | 0.073 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0251 (6) | 0.0247 (6) | 0.0238 (6) | −0.0035 (4) | 0.0099 (4) | 0.0018 (4) |
C2 | 0.0207 (6) | 0.0316 (8) | 0.0282 (7) | −0.0027 (5) | 0.0083 (5) | 0.0032 (5) |
C3 | 0.0231 (6) | 0.0303 (7) | 0.0236 (7) | 0.0011 (5) | 0.0064 (5) | 0.0059 (5) |
C4 | 0.0263 (6) | 0.0207 (7) | 0.0223 (6) | −0.0022 (5) | 0.0124 (5) | −0.0017 (5) |
C5 | 0.0211 (6) | 0.0263 (7) | 0.0259 (7) | −0.0042 (5) | 0.0077 (5) | −0.0017 (5) |
C6 | 0.0246 (6) | 0.0263 (7) | 0.0217 (6) | −0.0013 (5) | 0.0054 (5) | 0.0027 (5) |
C1A | 0.0217 (6) | 0.0208 (6) | 0.0227 (6) | −0.0007 (5) | 0.0079 (5) | −0.0004 (5) |
O1A | 0.0240 (5) | 0.0350 (6) | 0.0279 (5) | −0.0095 (4) | 0.0035 (4) | 0.0094 (4) |
C2A | 0.0211 (6) | 0.0240 (7) | 0.0275 (7) | −0.0038 (5) | 0.0066 (5) | 0.0030 (5) |
O2A | 0.0269 (5) | 0.0343 (6) | 0.0286 (5) | −0.0023 (4) | 0.0039 (4) | 0.0102 (4) |
C7 | 0.0297 (7) | 0.0215 (7) | 0.0278 (7) | −0.0036 (5) | 0.0138 (6) | 0.0005 (5) |
N1—C2 | 1.3348 (17) | C1A—O1A | 1.3116 (15) |
N1—C6 | 1.3390 (16) | C1A—C2A | 1.5140 (17) |
C2—C3 | 1.3824 (18) | C1A—O2A | 1.2125 (16) |
C2—H2 | 0.998 (16) | O1A—H1A | 1.03 (3) |
C3—C4 | 1.3921 (18) | C2A—C2Ai | 1.518 (2) |
C3—H3 | 0.951 (16) | C2A—H2AA | 0.961 (19) |
C4—C5 | 1.3880 (18) | C2A—H2AB | 0.994 (17) |
C4—C7 | 1.5059 (17) | C7—C7ii | 1.534 (2) |
C5—C6 | 1.3809 (18) | C7—H7A | 0.992 (18) |
C5—H5 | 0.978 (15) | C7—H7B | 0.987 (19) |
C6—H6 | 0.953 (16) | ||
C2—N1—C6 | 117.85 (11) | O1A—C1A—C2A | 114.24 (11) |
N1—C2—C3 | 122.88 (12) | O2A—C1A—O1A | 123.90 (11) |
N1—C2—H2 | 116.3 (10) | O2A—C1A—C2A | 121.85 (11) |
C3—C2—H2 | 120.8 (10) | C1A—O1A—H1A | 111.2 (12) |
C2—C3—C4 | 119.38 (12) | C1A—C2A—C2Ai | 115.26 (13) |
C2—C3—H3 | 120.6 (9) | C1A—C2A—H2AA | 106.0 (11) |
C4—C3—H3 | 120.0 (9) | C1A—C2A—H2AB | 106.4 (10) |
C3—C4—C7 | 120.89 (12) | C2Ai—C2A—H2AA | 110.6 (11) |
C5—C4—C3 | 117.56 (11) | C2Ai—C2A—H2AB | 112.3 (10) |
C5—C4—C7 | 121.51 (11) | H2AA—C2A—H2AB | 105.6 (14) |
C4—C5—H5 | 121.3 (9) | C4—C7—C7ii | 110.55 (13) |
C6—C5—C4 | 119.44 (11) | C4—C7—H7A | 108.9 (10) |
C6—C5—H5 | 119.3 (9) | C4—C7—H7B | 110.0 (10) |
N1—C6—C5 | 122.89 (12) | C7ii—C7—H7A | 107.6 (10) |
N1—C6—H6 | 115.5 (9) | C7ii—C7—H7B | 107.9 (10) |
C5—C6—H6 | 121.6 (9) | H7A—C7—H7B | 111.9 (14) |
N1—C2—C3—C4 | 0.8 (2) | C4—C5—C6—N1 | 0.5 (2) |
C2—N1—C6—C5 | 0.09 (19) | C5—C4—C7—C7ii | 92.62 (17) |
C2—C3—C4—C5 | −0.18 (19) | C6—N1—C2—C3 | −0.8 (2) |
C2—C3—C4—C7 | 177.53 (12) | O1A—C1A—C2A—C2Ai | 7.0 (2) |
C3—C4—C5—C6 | −0.46 (19) | O2A—C1A—C2A—C2Ai | −173.39 (14) |
C3—C4—C7—C7ii | −85.01 (18) | C7—C4—C5—C6 | −178.16 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.356 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6216 (4) Å | Cell parameters from 2515 reflections |
b = 4.8770 (1) Å | θ = 4.3–71.1° |
c = 19.3388 (4) Å | µ = 0.81 mm−1 |
β = 109.193 (2)° | T = 175 K |
V = 1480.53 (6) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.41 × 0.12 mm |
New Xcalibur, EosS2 diffractometer | 1411 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1288 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.764, Tmax = 0.922 | l = −23→23 |
4215 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | All H-atom parameters refined |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0833P)2 + 0.4278P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1411 reflections | Δρmax = 0.21 e Å−3 |
136 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39271 (7) | 0.4620 (2) | 0.14514 (6) | 0.0251 (3) | |
C2 | 0.34133 (8) | 0.5882 (3) | 0.08582 (7) | 0.0276 (3) | |
C3 | 0.36955 (8) | 0.7876 (3) | 0.04847 (7) | 0.0276 (3) | |
C4 | 0.45519 (8) | 0.8602 (3) | 0.07244 (7) | 0.0230 (3) | |
C5 | 0.50859 (8) | 0.7267 (3) | 0.13375 (7) | 0.0254 (3) | |
C6 | 0.47515 (8) | 0.5313 (3) | 0.16840 (7) | 0.0257 (3) | |
C1A | 0.25413 (7) | 0.0223 (3) | 0.17660 (7) | 0.0227 (3) | |
O1A | 0.33319 (6) | 0.0923 (2) | 0.21169 (5) | 0.0315 (3) | |
C2A | 0.22060 (8) | −0.2062 (3) | 0.21258 (7) | 0.0255 (3) | |
O2A | 0.21058 (6) | 0.1272 (2) | 0.11980 (5) | 0.0324 (3) | |
C7 | 0.48896 (9) | 1.0686 (3) | 0.03151 (7) | 0.0263 (3) | |
H2AA | 0.2086 (11) | −0.355 (4) | 0.1785 (10) | 0.039 (4)* | |
H6 | 0.5110 (10) | 0.432 (3) | 0.2105 (9) | 0.028 (4)* | |
H2AB | 0.1643 (11) | −0.145 (4) | 0.2142 (9) | 0.038 (4)* | |
H2 | 0.2810 (10) | 0.532 (3) | 0.0692 (9) | 0.027 (4)* | |
H3 | 0.3308 (10) | 0.878 (3) | 0.0079 (9) | 0.030 (4)* | |
H7A | 0.5416 (11) | 1.149 (4) | 0.0654 (10) | 0.035 (4)* | |
H5 | 0.5692 (9) | 0.763 (3) | 0.1516 (8) | 0.029 (4)* | |
H7B | 0.4458 (11) | 1.210 (4) | 0.0104 (9) | 0.038 (4)* | |
H1A | 0.3542 (14) | 0.236 (5) | 0.1830 (13) | 0.074 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0260 (6) | 0.0261 (6) | 0.0247 (6) | −0.0036 (4) | 0.0102 (4) | 0.0021 (4) |
C2 | 0.0211 (6) | 0.0329 (7) | 0.0289 (7) | −0.0024 (5) | 0.0083 (5) | 0.0033 (5) |
C3 | 0.0239 (6) | 0.0323 (7) | 0.0252 (7) | 0.0012 (5) | 0.0063 (5) | 0.0058 (5) |
C4 | 0.0273 (6) | 0.0217 (6) | 0.0234 (6) | −0.0024 (5) | 0.0130 (5) | −0.0018 (5) |
C5 | 0.0218 (6) | 0.0275 (7) | 0.0270 (7) | −0.0040 (5) | 0.0079 (5) | −0.0016 (5) |
C6 | 0.0255 (6) | 0.0270 (7) | 0.0232 (6) | −0.0016 (5) | 0.0061 (5) | 0.0030 (5) |
C1A | 0.0229 (6) | 0.0222 (6) | 0.0236 (6) | −0.0009 (5) | 0.0082 (5) | −0.0005 (5) |
O1A | 0.0248 (5) | 0.0368 (6) | 0.0289 (5) | −0.0103 (4) | 0.0032 (4) | 0.0100 (4) |
C2A | 0.0216 (6) | 0.0258 (7) | 0.0278 (7) | −0.0041 (5) | 0.0063 (5) | 0.0033 (5) |
O2A | 0.0276 (5) | 0.0356 (6) | 0.0300 (5) | −0.0023 (4) | 0.0039 (4) | 0.0106 (4) |
C7 | 0.0307 (7) | 0.0227 (7) | 0.0286 (7) | −0.0039 (5) | 0.0140 (6) | 0.0007 (5) |
N1—C2 | 1.3342 (17) | C1A—O1A | 1.3106 (15) |
N1—C6 | 1.3375 (16) | C1A—C2A | 1.5136 (17) |
C2—C3 | 1.3821 (18) | C1A—O2A | 1.2123 (16) |
C2—H2 | 0.985 (15) | O1A—H1A | 1.02 (3) |
C3—C4 | 1.3902 (18) | C2A—C2Ai | 1.518 (2) |
C3—H3 | 0.946 (17) | C2A—H2AA | 0.957 (19) |
C4—C5 | 1.3876 (18) | C2A—H2AB | 0.992 (17) |
C4—C7 | 1.5055 (17) | C7—C7ii | 1.537 (2) |
C5—C6 | 1.3824 (18) | C7—H7A | 0.985 (18) |
C5—H5 | 0.968 (15) | C7—H7B | 0.981 (18) |
C6—H6 | 0.966 (16) | ||
C2—N1—C6 | 117.90 (11) | O1A—C1A—C2A | 114.32 (11) |
N1—C2—C3 | 122.86 (11) | O2A—C1A—O1A | 123.88 (11) |
N1—C2—H2 | 116.6 (10) | O2A—C1A—C2A | 121.79 (11) |
C3—C2—H2 | 120.6 (9) | C1A—O1A—H1A | 111.1 (12) |
C2—C3—C4 | 119.43 (12) | C1A—C2A—C2Ai | 115.27 (13) |
C2—C3—H3 | 120.5 (9) | C1A—C2A—H2AA | 105.6 (11) |
C4—C3—H3 | 120.1 (9) | C1A—C2A—H2AB | 106.7 (10) |
C3—C4—C7 | 120.97 (12) | C2Ai—C2A—H2AA | 111.4 (11) |
C5—C4—C3 | 117.55 (11) | C2Ai—C2A—H2AB | 111.9 (10) |
C5—C4—C7 | 121.44 (11) | H2AA—C2A—H2AB | 105.4 (14) |
C4—C5—H5 | 121.1 (10) | C4—C7—C7ii | 110.52 (13) |
C6—C5—C4 | 119.44 (11) | C4—C7—H7A | 108.7 (10) |
C6—C5—H5 | 119.4 (9) | C4—C7—H7B | 110.1 (10) |
N1—C6—C5 | 122.82 (12) | C7ii—C7—H7A | 108.0 (10) |
N1—C6—H6 | 116.0 (9) | C7ii—C7—H7B | 108.0 (10) |
C5—C6—H6 | 121.2 (9) | H7A—C7—H7B | 111.5 (14) |
N1—C2—C3—C4 | 0.8 (2) | C4—C5—C6—N1 | 0.5 (2) |
C2—N1—C6—C5 | 0.11 (19) | C5—C4—C7—C7ii | 92.74 (17) |
C2—C3—C4—C5 | −0.16 (19) | C6—N1—C2—C3 | −0.7 (2) |
C2—C3—C4—C7 | 177.63 (12) | O1A—C1A—C2A—C2Ai | 7.0 (2) |
C3—C4—C5—C6 | −0.43 (19) | O2A—C1A—C2A—C2Ai | −173.53 (14) |
C3—C4—C7—C7ii | −84.96 (18) | C7—C4—C5—C6 | −178.20 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.355 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6256 (3) Å | Cell parameters from 2502 reflections |
b = 4.8792 (1) Å | θ = 4.3–71.4° |
c = 19.3393 (4) Å | µ = 0.81 mm−1 |
β = 109.164 (2)° | T = 180 K |
V = 1481.86 (5) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.41 × 0.12 mm |
New Xcalibur, EosS2 diffractometer | 1413 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1286 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.3°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.764, Tmax = 0.922 | l = −23→23 |
4217 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0835P)2 + 0.4509P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1413 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39267 (7) | 0.4615 (2) | 0.14508 (6) | 0.0254 (3) | |
C2 | 0.34137 (8) | 0.5878 (3) | 0.08577 (7) | 0.0281 (3) | |
C3 | 0.36959 (8) | 0.7871 (3) | 0.04852 (7) | 0.0280 (3) | |
C4 | 0.45525 (8) | 0.8601 (3) | 0.07246 (7) | 0.0232 (3) | |
C5 | 0.50855 (8) | 0.7267 (3) | 0.13374 (7) | 0.0260 (3) | |
C6 | 0.47519 (8) | 0.5315 (3) | 0.16837 (7) | 0.0261 (3) | |
C1A | 0.25405 (7) | 0.0221 (3) | 0.17654 (7) | 0.0230 (3) | |
O1A | 0.33328 (6) | 0.0920 (2) | 0.21165 (5) | 0.0319 (3) | |
C2A | 0.22071 (8) | −0.2063 (3) | 0.21262 (7) | 0.0260 (3) | |
O2A | 0.21061 (6) | 0.1272 (2) | 0.11985 (5) | 0.0330 (3) | |
C7 | 0.48890 (9) | 1.0683 (3) | 0.03147 (7) | 0.0267 (3) | |
H2AA | 0.2094 (11) | −0.357 (4) | 0.1793 (10) | 0.041 (5)* | |
H6 | 0.5106 (10) | 0.437 (3) | 0.2100 (8) | 0.028 (4)* | |
H2 | 0.2807 (10) | 0.528 (4) | 0.0683 (9) | 0.033 (4)* | |
H2AB | 0.1643 (11) | −0.142 (4) | 0.2146 (9) | 0.039 (4)* | |
H3 | 0.3301 (10) | 0.878 (3) | 0.0079 (9) | 0.031 (4)* | |
H7A | 0.5414 (11) | 1.149 (3) | 0.0650 (10) | 0.032 (4)* | |
H5 | 0.5697 (9) | 0.763 (3) | 0.1521 (8) | 0.029 (4)* | |
H7B | 0.4463 (11) | 1.211 (4) | 0.0112 (9) | 0.039 (4)* | |
H1A | 0.3547 (14) | 0.236 (5) | 0.1830 (12) | 0.072 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0256 (6) | 0.0267 (6) | 0.0249 (6) | −0.0034 (4) | 0.0098 (4) | 0.0023 (4) |
C2 | 0.0212 (6) | 0.0332 (8) | 0.0300 (7) | −0.0026 (5) | 0.0086 (5) | 0.0037 (5) |
C3 | 0.0241 (6) | 0.0333 (7) | 0.0255 (7) | 0.0007 (5) | 0.0068 (5) | 0.0062 (5) |
C4 | 0.0271 (6) | 0.0218 (7) | 0.0240 (6) | −0.0018 (5) | 0.0127 (5) | −0.0015 (5) |
C5 | 0.0226 (6) | 0.0278 (7) | 0.0275 (7) | −0.0041 (5) | 0.0081 (5) | −0.0008 (5) |
C6 | 0.0254 (6) | 0.0275 (7) | 0.0233 (6) | −0.0019 (5) | 0.0051 (5) | 0.0032 (5) |
C1A | 0.0231 (6) | 0.0225 (6) | 0.0238 (6) | −0.0012 (5) | 0.0082 (5) | 0.0000 (5) |
O1A | 0.0253 (5) | 0.0370 (6) | 0.0292 (5) | −0.0105 (4) | 0.0033 (4) | 0.0103 (4) |
C2A | 0.0225 (6) | 0.0256 (7) | 0.0288 (7) | −0.0044 (5) | 0.0067 (5) | 0.0036 (5) |
O2A | 0.0277 (5) | 0.0364 (6) | 0.0308 (6) | −0.0029 (4) | 0.0040 (4) | 0.0111 (4) |
C7 | 0.0317 (7) | 0.0228 (7) | 0.0289 (7) | −0.0039 (5) | 0.0145 (6) | 0.0009 (5) |
N1—C2 | 1.3345 (17) | C1A—O1A | 1.3134 (15) |
N1—C6 | 1.3401 (16) | C1A—C2A | 1.5132 (17) |
C2—C3 | 1.3807 (18) | C1A—O2A | 1.2112 (16) |
C2—H2 | 0.997 (16) | O1A—H1A | 1.03 (3) |
C3—C4 | 1.3915 (18) | C2A—C2Ai | 1.515 (2) |
C3—H3 | 0.951 (17) | C2A—H2AA | 0.955 (19) |
C4—C5 | 1.3869 (18) | C2A—H2AB | 1.001 (17) |
C4—C7 | 1.5050 (17) | C7—C7ii | 1.535 (3) |
C5—C6 | 1.3811 (18) | C7—H7A | 0.983 (17) |
C5—H5 | 0.977 (15) | C7—H7B | 0.979 (19) |
C6—H6 | 0.945 (16) | ||
C2—N1—C6 | 117.78 (11) | O1A—C1A—C2A | 114.19 (11) |
N1—C2—C3 | 122.88 (11) | O2A—C1A—O1A | 123.84 (11) |
N1—C2—H2 | 116.6 (10) | O2A—C1A—C2A | 121.97 (11) |
C3—C2—H2 | 120.5 (10) | C1A—O1A—H1A | 111.4 (12) |
C2—C3—C4 | 119.50 (12) | C1A—C2A—C2Ai | 115.42 (13) |
C2—C3—H3 | 119.8 (9) | C1A—C2A—H2AA | 106.1 (11) |
C4—C3—H3 | 120.6 (10) | C1A—C2A—H2AB | 106.0 (10) |
C3—C4—C7 | 120.94 (12) | C2Ai—C2A—H2AA | 110.4 (11) |
C5—C4—C3 | 117.48 (11) | C2Ai—C2A—H2AB | 111.7 (10) |
C5—C4—C7 | 121.54 (11) | H2AA—C2A—H2AB | 106.7 (14) |
C4—C5—H5 | 121.5 (9) | C4—C7—C7ii | 110.62 (13) |
C6—C5—C4 | 119.49 (11) | C4—C7—H7A | 109.0 (10) |
C6—C5—H5 | 119.0 (9) | C4—C7—H7B | 110.3 (10) |
N1—C6—C5 | 122.86 (12) | C7ii—C7—H7A | 107.8 (10) |
N1—C6—H6 | 116.4 (9) | C7ii—C7—H7B | 108.8 (10) |
C5—C6—H6 | 120.7 (9) | H7A—C7—H7B | 110.2 (14) |
N1—C2—C3—C4 | 0.8 (2) | C4—C5—C6—N1 | 0.5 (2) |
C2—N1—C6—C5 | 0.01 (19) | C5—C4—C7—C7ii | 92.66 (17) |
C2—C3—C4—C5 | −0.20 (19) | C6—N1—C2—C3 | −0.7 (2) |
C2—C3—C4—C7 | 177.56 (12) | O1A—C1A—C2A—C2Ai | 7.2 (2) |
C3—C4—C5—C6 | −0.42 (19) | O2A—C1A—C2A—C2Ai | −173.40 (14) |
C3—C4—C7—C7ii | −85.01 (18) | C7—C4—C5—C6 | −178.17 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.354 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6268 (3) Å | Cell parameters from 2486 reflections |
b = 4.8810 (1) Å | θ = 4.3–71.3° |
c = 19.3397 (4) Å | µ = 0.81 mm−1 |
β = 109.141 (2)° | T = 185 K |
V = 1482.75 (5) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.41 × 0.12 mm |
New Xcalibur, EosS2 diffractometer | 1414 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1300 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.764, Tmax = 0.922 | l = −23→23 |
4221 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | All H-atom parameters refined |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0816P)2 + 0.4553P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1414 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39275 (7) | 0.4616 (2) | 0.14508 (6) | 0.0261 (3) | |
C2 | 0.34140 (8) | 0.5875 (3) | 0.08572 (7) | 0.0290 (3) | |
C3 | 0.36958 (8) | 0.7870 (3) | 0.04841 (7) | 0.0288 (3) | |
C4 | 0.45518 (8) | 0.8597 (3) | 0.07240 (6) | 0.0240 (3) | |
C5 | 0.50858 (8) | 0.7268 (3) | 0.13374 (7) | 0.0265 (3) | |
C6 | 0.47516 (8) | 0.5313 (3) | 0.16839 (7) | 0.0267 (3) | |
C1A | 0.25411 (7) | 0.0223 (2) | 0.17656 (7) | 0.0237 (3) | |
O1A | 0.33320 (6) | 0.0916 (2) | 0.21161 (5) | 0.0328 (3) | |
C2A | 0.22064 (8) | −0.2062 (3) | 0.21264 (7) | 0.0269 (3) | |
O2A | 0.21071 (6) | 0.1270 (2) | 0.11987 (5) | 0.0341 (3) | |
C7 | 0.48894 (9) | 1.0682 (3) | 0.03150 (7) | 0.0274 (3) | |
H2AA | 0.2088 (11) | −0.356 (4) | 0.1794 (10) | 0.041 (4)* | |
H2AB | 0.1655 (11) | −0.141 (4) | 0.2152 (9) | 0.042 (5)* | |
H3 | 0.3298 (10) | 0.876 (3) | 0.0071 (9) | 0.032 (4)* | |
H6 | 0.5118 (10) | 0.437 (4) | 0.2113 (9) | 0.036 (4)* | |
H2 | 0.2809 (10) | 0.529 (3) | 0.0689 (9) | 0.031 (4)* | |
H7A | 0.5408 (11) | 1.147 (4) | 0.0646 (10) | 0.037 (4)* | |
H5 | 0.5694 (9) | 0.761 (3) | 0.1521 (8) | 0.030 (4)* | |
H7B | 0.4465 (11) | 1.210 (4) | 0.0107 (10) | 0.043 (4)* | |
H1A | 0.3539 (14) | 0.233 (5) | 0.1818 (12) | 0.070 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0265 (6) | 0.0277 (6) | 0.0253 (6) | −0.0040 (4) | 0.0103 (4) | 0.0019 (4) |
C2 | 0.0223 (6) | 0.0347 (8) | 0.0301 (7) | −0.0026 (5) | 0.0087 (5) | 0.0043 (5) |
C3 | 0.0250 (6) | 0.0339 (7) | 0.0265 (7) | 0.0010 (5) | 0.0072 (5) | 0.0065 (5) |
C4 | 0.0285 (6) | 0.0229 (6) | 0.0237 (6) | −0.0026 (5) | 0.0130 (5) | −0.0024 (5) |
C5 | 0.0230 (6) | 0.0286 (7) | 0.0277 (7) | −0.0045 (5) | 0.0080 (5) | −0.0016 (5) |
C6 | 0.0264 (6) | 0.0281 (7) | 0.0237 (6) | −0.0022 (5) | 0.0057 (5) | 0.0026 (5) |
C1A | 0.0238 (6) | 0.0235 (6) | 0.0240 (6) | −0.0008 (5) | 0.0079 (5) | −0.0004 (5) |
O1A | 0.0261 (5) | 0.0384 (6) | 0.0296 (5) | −0.0105 (4) | 0.0033 (4) | 0.0105 (4) |
C2A | 0.0231 (6) | 0.0267 (7) | 0.0294 (7) | −0.0044 (5) | 0.0068 (5) | 0.0033 (5) |
O2A | 0.0292 (5) | 0.0378 (6) | 0.0312 (6) | −0.0027 (4) | 0.0042 (4) | 0.0114 (4) |
C7 | 0.0325 (7) | 0.0238 (7) | 0.0291 (7) | −0.0040 (5) | 0.0145 (6) | 0.0005 (5) |
N1—C2 | 1.3349 (17) | C1A—O1A | 1.3110 (15) |
N1—C6 | 1.3385 (16) | C1A—C2A | 1.5146 (17) |
C2—C3 | 1.3820 (18) | C1A—O2A | 1.2106 (15) |
C2—H2 | 0.993 (15) | O1A—H1A | 1.03 (2) |
C3—C4 | 1.3907 (18) | C2A—C2Ai | 1.516 (2) |
C3—H3 | 0.957 (17) | C2A—H2AA | 0.952 (19) |
C4—C5 | 1.3878 (18) | C2A—H2AB | 0.986 (17) |
C4—C7 | 1.5058 (17) | C7—C7ii | 1.535 (3) |
C5—C6 | 1.3829 (18) | C7—H7A | 0.969 (18) |
C5—H5 | 0.970 (14) | C7—H7B | 0.978 (19) |
C6—H6 | 0.970 (17) | ||
C2—N1—C6 | 117.90 (11) | O1A—C1A—C2A | 114.19 (11) |
N1—C2—C3 | 122.87 (11) | O2A—C1A—O1A | 123.92 (11) |
N1—C2—H2 | 116.3 (10) | O2A—C1A—C2A | 121.89 (11) |
C3—C2—H2 | 120.8 (10) | C1A—O1A—H1A | 110.3 (12) |
C2—C3—C4 | 119.39 (12) | C1A—C2A—C2Ai | 115.32 (13) |
C2—C3—H3 | 119.7 (9) | C1A—C2A—H2AA | 106.4 (11) |
C4—C3—H3 | 120.9 (9) | C1A—C2A—H2AB | 105.9 (11) |
C3—C4—C7 | 120.95 (12) | C2Ai—C2A—H2AA | 110.6 (11) |
C5—C4—C3 | 117.62 (11) | C2Ai—C2A—H2AB | 111.2 (10) |
C5—C4—C7 | 121.39 (11) | H2AA—C2A—H2AB | 106.9 (14) |
C4—C5—H5 | 122.0 (9) | C4—C7—C7ii | 110.56 (13) |
C6—C5—C4 | 119.39 (11) | C4—C7—H7A | 109.0 (10) |
C6—C5—H5 | 118.5 (9) | C4—C7—H7B | 110.6 (10) |
N1—C6—C5 | 122.81 (12) | C7ii—C7—H7A | 107.7 (10) |
N1—C6—H6 | 117.0 (10) | C7ii—C7—H7B | 108.1 (11) |
C5—C6—H6 | 120.2 (10) | H7A—C7—H7B | 110.8 (14) |
N1—C2—C3—C4 | 0.9 (2) | C4—C5—C6—N1 | 0.4 (2) |
C2—N1—C6—C5 | 0.10 (19) | C5—C4—C7—C7ii | 92.87 (17) |
C2—C3—C4—C5 | −0.27 (19) | C6—N1—C2—C3 | −0.8 (2) |
C2—C3—C4—C7 | 177.62 (12) | O1A—C1A—C2A—C2Ai | 7.1 (2) |
C3—C4—C5—C6 | −0.34 (19) | O2A—C1A—C2A—C2Ai | −173.59 (14) |
C3—C4—C7—C7ii | −84.94 (18) | C7—C4—C5—C6 | −178.22 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.353 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6279 (3) Å | Cell parameters from 2456 reflections |
b = 4.8825 (1) Å | θ = 4.3–71.4° |
c = 19.3411 (4) Å | µ = 0.81 mm−1 |
β = 109.105 (2)° | T = 190 K |
V = 1483.73 (5) Å3 | Plate, colourless |
Z = 4 | 0.44 × 0.42 × 0.15 mm |
New Xcalibur, EosS2 diffractometer | 1415 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1295 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.764, Tmax = 0.904 | l = −23→23 |
4224 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
wR(F2) = 0.124 | w = 1/[σ2(Fo2) + (0.0847P)2 + 0.3322P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1415 reflections | Δρmax = 0.18 e Å−3 |
136 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39280 (7) | 0.4613 (2) | 0.14505 (6) | 0.0269 (3) | |
C2 | 0.34156 (8) | 0.5870 (3) | 0.08574 (7) | 0.0294 (3) | |
C3 | 0.36960 (8) | 0.7862 (3) | 0.04838 (7) | 0.0293 (3) | |
C4 | 0.45525 (8) | 0.8595 (3) | 0.07243 (6) | 0.0245 (3) | |
C5 | 0.50855 (8) | 0.7268 (3) | 0.13368 (7) | 0.0272 (3) | |
C6 | 0.47514 (8) | 0.5314 (3) | 0.16839 (7) | 0.0274 (3) | |
C1A | 0.25426 (7) | 0.0221 (2) | 0.17664 (6) | 0.0241 (3) | |
O1A | 0.33328 (6) | 0.0914 (2) | 0.21161 (5) | 0.0333 (3) | |
C2A | 0.22072 (8) | −0.2061 (3) | 0.21271 (7) | 0.0272 (3) | |
O2A | 0.21078 (6) | 0.1270 (2) | 0.11995 (5) | 0.0347 (3) | |
C7 | 0.48893 (9) | 1.0681 (3) | 0.03147 (7) | 0.0277 (3) | |
H6 | 0.5114 (10) | 0.438 (3) | 0.2106 (9) | 0.033 (4)* | |
H3 | 0.3297 (10) | 0.875 (3) | 0.0070 (9) | 0.035 (4)* | |
H2 | 0.2809 (10) | 0.529 (3) | 0.0682 (9) | 0.032 (4)* | |
H2AA | 0.2099 (11) | −0.358 (4) | 0.1791 (10) | 0.044 (5)* | |
H2AB | 0.1653 (10) | −0.147 (4) | 0.2141 (9) | 0.039 (4)* | |
H7A | 0.5414 (10) | 1.151 (3) | 0.0651 (9) | 0.035 (4)* | |
H5 | 0.5698 (9) | 0.763 (3) | 0.1523 (8) | 0.031 (4)* | |
H7B | 0.4466 (12) | 1.209 (4) | 0.0112 (10) | 0.047 (5)* | |
H1A | 0.3527 (14) | 0.235 (5) | 0.1821 (12) | 0.078 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0273 (6) | 0.0284 (6) | 0.0264 (6) | −0.0039 (4) | 0.0108 (4) | 0.0024 (4) |
C2 | 0.0220 (6) | 0.0349 (8) | 0.0315 (7) | −0.0028 (5) | 0.0091 (5) | 0.0041 (5) |
C3 | 0.0250 (6) | 0.0348 (7) | 0.0271 (7) | 0.0011 (5) | 0.0072 (5) | 0.0065 (5) |
C4 | 0.0287 (6) | 0.0237 (6) | 0.0246 (6) | −0.0025 (5) | 0.0137 (5) | −0.0018 (5) |
C5 | 0.0236 (6) | 0.0297 (7) | 0.0284 (7) | −0.0047 (5) | 0.0085 (5) | −0.0010 (5) |
C6 | 0.0270 (6) | 0.0292 (7) | 0.0241 (6) | −0.0017 (5) | 0.0061 (5) | 0.0034 (5) |
C1A | 0.0242 (6) | 0.0242 (6) | 0.0241 (6) | −0.0008 (5) | 0.0082 (5) | 0.0001 (5) |
O1A | 0.0265 (5) | 0.0388 (6) | 0.0303 (5) | −0.0109 (4) | 0.0035 (4) | 0.0107 (4) |
C2A | 0.0234 (6) | 0.0272 (7) | 0.0302 (7) | −0.0041 (5) | 0.0076 (5) | 0.0033 (5) |
O2A | 0.0291 (5) | 0.0384 (6) | 0.0321 (6) | −0.0024 (4) | 0.0040 (4) | 0.0119 (4) |
C7 | 0.0333 (7) | 0.0235 (7) | 0.0298 (7) | −0.0042 (5) | 0.0152 (6) | 0.0006 (5) |
N1—C2 | 1.3337 (17) | C1A—O1A | 1.3103 (15) |
N1—C6 | 1.3383 (16) | C1A—C2A | 1.5146 (17) |
C2—C3 | 1.3807 (18) | C1A—O2A | 1.2117 (15) |
C2—H2 | 0.995 (15) | O1A—H1A | 1.02 (3) |
C3—C4 | 1.3925 (17) | C2A—C2Ai | 1.514 (2) |
C3—H3 | 0.960 (17) | C2A—H2AA | 0.965 (19) |
C4—C5 | 1.3860 (18) | C2A—H2AB | 0.974 (17) |
C4—C7 | 1.5065 (16) | C7—C7ii | 1.534 (2) |
C5—C6 | 1.3834 (18) | C7—H7A | 0.987 (17) |
C5—H5 | 0.978 (14) | C7—H7B | 0.97 (2) |
C6—H6 | 0.957 (16) | ||
C2—N1—C6 | 117.86 (11) | O1A—C1A—C2A | 114.23 (10) |
N1—C2—C3 | 122.98 (11) | O2A—C1A—O1A | 123.94 (11) |
N1—C2—H2 | 117.0 (10) | O2A—C1A—C2A | 121.82 (11) |
C3—C2—H2 | 120.0 (10) | C1A—O1A—H1A | 109.7 (12) |
C2—C3—C4 | 119.32 (12) | C1A—C2A—H2AA | 105.8 (11) |
C2—C3—H3 | 119.7 (10) | C1A—C2A—H2AB | 106.7 (10) |
C4—C3—H3 | 120.9 (10) | C2Ai—C2A—C1A | 115.34 (13) |
C3—C4—C7 | 120.90 (11) | C2Ai—C2A—H2AA | 110.1 (11) |
C5—C4—C3 | 117.61 (11) | C2Ai—C2A—H2AB | 112.2 (10) |
C5—C4—C7 | 121.45 (11) | H2AA—C2A—H2AB | 106.1 (14) |
C4—C5—H5 | 121.9 (9) | C4—C7—C7ii | 110.56 (13) |
C6—C5—C4 | 119.41 (11) | C4—C7—H7A | 109.3 (10) |
C6—C5—H5 | 118.7 (9) | C4—C7—H7B | 110.3 (11) |
N1—C6—C5 | 122.81 (12) | C7ii—C7—H7A | 108.1 (10) |
N1—C6—H6 | 117.1 (9) | C7ii—C7—H7B | 108.5 (11) |
C5—C6—H6 | 120.1 (9) | H7A—C7—H7B | 110.1 (14) |
N1—C2—C3—C4 | 0.8 (2) | C4—C5—C6—N1 | 0.6 (2) |
C2—N1—C6—C5 | −0.01 (19) | C5—C4—C7—C7ii | 92.87 (17) |
C2—C3—C4—C5 | −0.19 (19) | C6—N1—C2—C3 | −0.7 (2) |
C2—C3—C4—C7 | 177.63 (12) | O1A—C1A—C2A—C2Ai | 7.0 (2) |
C3—C4—C5—C6 | −0.47 (19) | O2A—C1A—C2A—C2Ai | −173.53 (14) |
C3—C4—C7—C7ii | −84.87 (18) | C7—C4—C5—C6 | −178.28 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.513 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.53 (2) Å | Cell parameters from 735 reflections |
b = 4.5612 (3) Å | θ = 4.4–22.2° |
c = 19.065 (7) Å | µ = 0.11 mm−1 |
β = 112.63 (10)° | T = 295 K |
V = 1327 (2) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.16 × 0.03 mm |
Xcalibur, Eos diffractometer | 292 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 159 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 26.1°, θmin = 4.4° |
ω scans | h = −6→6 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.996, Tmax = 0.996 | l = −21→22 |
1144 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.089 | H-atom parameters constrained |
wR(F2) = 0.291 | w = 1/[σ2(Fo2) + (0.1697P)2 + 2.2082P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
292 reflections | Δρmax = 0.26 e Å−3 |
46 parameters | Δρmin = −0.27 e Å−3 |
8 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3929 (18) | 0.470 (2) | 0.1460 (7) | 0.037 (4)* | |
C2 | 0.3382 (18) | 0.617 (2) | 0.0870 (7) | 0.042 (4)* | |
H2 | 0.2783 | 0.5816 | 0.0707 | 0.050* | |
C3 | 0.3685 (18) | 0.825 (2) | 0.0486 (9) | 0.037 (5)* | |
H3 | 0.3293 | 0.9254 | 0.0069 | 0.044* | |
C4 | 0.4586 (17) | 0.879 (2) | 0.0740 (7) | 0.022 (4)* | |
C5 | 0.5141 (17) | 0.727 (2) | 0.1351 (6) | 0.035 (4)* | |
H5 | 0.5742 | 0.7572 | 0.1528 | 0.042* | |
C6 | 0.4793 (19) | 0.524 (2) | 0.1708 (9) | 0.029 (4)* | |
H6 | 0.5172 | 0.4238 | 0.2131 | 0.035* | |
C1A | 0.2532 (16) | 0.032 (2) | 0.1765 (7) | 0.023 (4)* | |
O1A | 0.3355 (16) | 0.0994 (18) | 0.2119 (6) | 0.048 (3)* | |
H1A | 0.3505 | 0.2131 | 0.1858 | 0.073* | |
C2A | 0.217 (2) | −0.201 (2) | 0.2116 (7) | 0.033 (3)* | |
H2AA | 0.2004 | −0.3693 | 0.1778 | 0.040* | |
H2AB | 0.1651 | −0.1282 | 0.2173 | 0.040* | |
O2A | 0.2068 (16) | 0.1499 (14) | 0.1155 (5) | 0.040 (3)* | |
C7 | 0.491 (2) | 1.084 (2) | 0.0307 (8) | 0.033 (3)* | |
H7A | 0.5437 | 1.1789 | 0.0647 | 0.040* | |
H7B | 0.4469 | 1.2339 | 0.0075 | 0.040* |
N1—C2 | 1.323 (17) | C1A—O1A | 1.30 (2) |
N1—C6 | 1.34 (2) | C1A—C2A | 1.50 (2) |
C2—H2 | 0.9300 | C1A—O2A | 1.243 (15) |
C2—C3 | 1.405 (16) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.51 (4) |
C3—C4 | 1.40 (2) | C2A—H2AA | 0.9700 |
C4—C5 | 1.364 (17) | C2A—H2AB | 0.9700 |
C4—C7 | 1.47 (2) | C7—C7ii | 1.53 (3) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.394 (16) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 119.5 (17) | O1A—C1A—C2A | 116.8 (15) |
N1—C2—H2 | 119.3 | O2A—C1A—O1A | 122.0 (17) |
N1—C2—C3 | 121 (2) | O2A—C1A—C2A | 121 (2) |
C3—C2—H2 | 119.3 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 120.5 | C1A—C2A—C2Ai | 112 (3) |
C4—C3—C2 | 118.9 (18) | C1A—C2A—H2AA | 109.1 |
C4—C3—H3 | 120.5 | C1A—C2A—H2AB | 109.1 |
C3—C4—C7 | 118.8 (16) | C2Ai—C2A—H2AA | 109.1 |
C5—C4—C3 | 118.9 (17) | C2Ai—C2A—H2AB | 109.1 |
C5—C4—C7 | 122 (2) | H2AA—C2A—H2AB | 107.9 |
C4—C5—H5 | 120.5 | C4—C7—C7ii | 109.7 (11) |
C4—C5—C6 | 119 (2) | C4—C7—H7A | 109.7 |
C6—C5—H5 | 120.5 | C4—C7—H7B | 109.7 |
N1—C6—C5 | 122.2 (17) | C7ii—C7—H7A | 109.7 |
N1—C6—H6 | 118.9 | C7ii—C7—H7B | 109.7 |
C5—C6—H6 | 118.9 | H7A—C7—H7B | 108.2 |
N1—C2—C3—C4 | −0.7 (19) | C4—C5—C6—N1 | 1.4 (19) |
C2—N1—C6—C5 | −2 (2) | C5—C4—C7—C7ii | 87 (3) |
C2—C3—C4—C5 | 0 (2) | C6—N1—C2—C3 | 1 (2) |
C2—C3—C4—C7 | 176.2 (9) | O1A—C1A—C2A—C2Ai | 6 (2) |
C3—C4—C5—C6 | −0.7 (18) | O2A—C1A—C2A—C2Ai | −175.9 (16) |
C3—C4—C7—C7ii | −89 (3) | C7—C4—C5—C6 | −176.4 (10) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.351 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6313 (5) Å | Cell parameters from 2436 reflections |
b = 4.8871 (1) Å | θ = 4.3–71.2° |
c = 19.3441 (6) Å | µ = 0.81 mm−1 |
β = 109.050 (3)° | T = 200 K |
V = 1486.16 (8) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.41 × 0.12 mm |
New Xcalibur, EosS2 diffractometer | 1415 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1283 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −19→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.765, Tmax = 0.923 | l = −23→23 |
4155 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0832P)2 + 0.3962P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1415 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39283 (7) | 0.4609 (2) | 0.14504 (6) | 0.0277 (3) | |
C2 | 0.34173 (8) | 0.5861 (3) | 0.08575 (7) | 0.0309 (3) | |
C3 | 0.36980 (8) | 0.7854 (3) | 0.04834 (7) | 0.0301 (3) | |
C4 | 0.45519 (8) | 0.8592 (3) | 0.07240 (7) | 0.0251 (3) | |
C5 | 0.50841 (8) | 0.7268 (3) | 0.13365 (7) | 0.0280 (3) | |
C6 | 0.47520 (8) | 0.5314 (3) | 0.16830 (7) | 0.0282 (3) | |
C1A | 0.25425 (8) | 0.0218 (3) | 0.17665 (7) | 0.0248 (3) | |
O1A | 0.33335 (6) | 0.0907 (2) | 0.21154 (5) | 0.0347 (3) | |
C2A | 0.22084 (8) | −0.2064 (3) | 0.21272 (7) | 0.0284 (3) | |
O2A | 0.21097 (6) | 0.1266 (2) | 0.11999 (5) | 0.0361 (3) | |
C7 | 0.48890 (9) | 1.0677 (3) | 0.03143 (7) | 0.0287 (3) | |
H2AA | 0.2094 (12) | −0.358 (4) | 0.1793 (10) | 0.049 (5)* | |
H3 | 0.3306 (10) | 0.874 (4) | 0.0080 (9) | 0.035 (4)* | |
H6 | 0.5103 (10) | 0.439 (3) | 0.2107 (9) | 0.031 (4)* | |
H2AB | 0.1652 (11) | −0.144 (4) | 0.2146 (9) | 0.045 (5)* | |
H2 | 0.2804 (10) | 0.528 (4) | 0.0686 (9) | 0.035 (4)* | |
H5 | 0.5689 (10) | 0.761 (4) | 0.1519 (8) | 0.034 (4)* | |
H7A | 0.5397 (11) | 1.152 (4) | 0.0648 (10) | 0.040 (4)* | |
H7B | 0.4454 (12) | 1.208 (4) | 0.0105 (10) | 0.047 (5)* | |
H1A | 0.3525 (15) | 0.231 (6) | 0.1816 (13) | 0.082 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0281 (6) | 0.0292 (6) | 0.0271 (6) | −0.0042 (4) | 0.0109 (5) | 0.0024 (4) |
C2 | 0.0233 (6) | 0.0365 (8) | 0.0325 (7) | −0.0031 (5) | 0.0086 (5) | 0.0047 (5) |
C3 | 0.0262 (6) | 0.0351 (8) | 0.0279 (7) | 0.0012 (5) | 0.0075 (5) | 0.0071 (5) |
C4 | 0.0301 (6) | 0.0238 (7) | 0.0251 (6) | −0.0029 (5) | 0.0139 (5) | −0.0016 (5) |
C5 | 0.0237 (6) | 0.0304 (7) | 0.0296 (7) | −0.0051 (5) | 0.0083 (5) | −0.0012 (5) |
C6 | 0.0271 (7) | 0.0301 (7) | 0.0249 (6) | −0.0013 (5) | 0.0053 (5) | 0.0041 (5) |
C1A | 0.0248 (6) | 0.0241 (7) | 0.0255 (6) | −0.0009 (5) | 0.0081 (5) | −0.0003 (5) |
O1A | 0.0273 (5) | 0.0408 (6) | 0.0315 (5) | −0.0110 (4) | 0.0033 (4) | 0.0116 (4) |
C2A | 0.0243 (6) | 0.0281 (7) | 0.0315 (7) | −0.0049 (5) | 0.0073 (6) | 0.0036 (5) |
O2A | 0.0303 (5) | 0.0400 (6) | 0.0333 (6) | −0.0032 (4) | 0.0042 (4) | 0.0130 (4) |
C7 | 0.0347 (7) | 0.0237 (7) | 0.0313 (7) | −0.0044 (5) | 0.0157 (6) | 0.0004 (5) |
N1—C2 | 1.3325 (17) | C1A—O1A | 1.3115 (15) |
N1—C6 | 1.3400 (16) | C1A—C2A | 1.5140 (17) |
C2—C3 | 1.3822 (19) | C1A—O2A | 1.2113 (16) |
C2—H2 | 1.005 (16) | O1A—H1A | 1.01 (3) |
C3—C4 | 1.3899 (18) | C2A—C2Ai | 1.513 (2) |
C3—H3 | 0.943 (17) | C2A—H2AA | 0.96 (2) |
C4—C5 | 1.3861 (18) | C2A—H2AB | 0.986 (18) |
C4—C7 | 1.5068 (17) | C7—C7ii | 1.532 (3) |
C5—C6 | 1.3813 (18) | C7—H7A | 0.972 (19) |
C5—H5 | 0.966 (15) | C7—H7B | 0.98 (2) |
C6—H6 | 0.952 (16) | ||
C2—N1—C6 | 117.76 (11) | O1A—C1A—C2A | 114.18 (11) |
N1—C2—C3 | 123.00 (12) | O2A—C1A—O1A | 123.84 (11) |
N1—C2—H2 | 116.6 (10) | O2A—C1A—C2A | 121.97 (11) |
C3—C2—H2 | 120.4 (10) | C1A—O1A—H1A | 109.3 (13) |
C2—C3—C4 | 119.36 (12) | C1A—C2A—H2AA | 106.3 (11) |
C2—C3—H3 | 119.7 (10) | C1A—C2A—H2AB | 106.2 (11) |
C4—C3—H3 | 120.9 (10) | C2Ai—C2A—C1A | 115.41 (13) |
C3—C4—C7 | 120.95 (12) | C2Ai—C2A—H2AA | 110.4 (11) |
C5—C4—C3 | 117.56 (12) | C2Ai—C2A—H2AB | 111.7 (10) |
C5—C4—C7 | 121.45 (12) | H2AA—C2A—H2AB | 106.3 (15) |
C4—C5—H5 | 122.1 (10) | C4—C7—C7ii | 110.67 (13) |
C6—C5—C4 | 119.50 (12) | C4—C7—H7A | 109.3 (11) |
C6—C5—H5 | 118.3 (10) | C4—C7—H7B | 109.8 (11) |
N1—C6—C5 | 122.80 (12) | C7ii—C7—H7A | 109.1 (11) |
N1—C6—H6 | 116.0 (9) | C7ii—C7—H7B | 108.0 (11) |
C5—C6—H6 | 121.1 (9) | H7A—C7—H7B | 110.0 (15) |
N1—C2—C3—C4 | 0.7 (2) | C4—C5—C6—N1 | 0.4 (2) |
C2—N1—C6—C5 | 0.2 (2) | C5—C4—C7—C7ii | 92.94 (18) |
C2—C3—C4—C5 | −0.1 (2) | C6—N1—C2—C3 | −0.8 (2) |
C2—C3—C4—C7 | 177.63 (12) | O1A—C1A—C2A—C2Ai | 7.4 (2) |
C3—C4—C5—C6 | −0.49 (19) | O2A—C1A—C2A—C2Ai | −173.46 (15) |
C3—C4—C7—C7ii | −84.66 (18) | C7—C4—C5—C6 | −178.17 (11) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.350 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6408 (10) Å | Cell parameters from 966 reflections |
b = 4.8878 (3) Å | θ = 4.8–71.1° |
c = 19.3501 (10) Å | µ = 0.81 mm−1 |
β = 109.048 (6)° | T = 200 K |
V = 1487.70 (16) Å3 | Plate, colourless |
Z = 4 | 0.14 × 0.09 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1422 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 953 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.041 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.3°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.903, Tmax = 1.000 | l = −17→23 |
2799 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | All H-atom parameters refined |
wR(F2) = 0.188 | w = 1/[σ2(Fo2) + (0.0957P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1422 reflections | Δρmax = 0.19 e Å−3 |
136 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39276 (14) | 0.4598 (5) | 0.14495 (11) | 0.0422 (6) | |
C2 | 0.34167 (19) | 0.5868 (7) | 0.08572 (15) | 0.0468 (7) | |
C3 | 0.37015 (19) | 0.7855 (7) | 0.04835 (14) | 0.0455 (8) | |
C4 | 0.45518 (18) | 0.8590 (6) | 0.07235 (13) | 0.0398 (7) | |
C5 | 0.50852 (19) | 0.7266 (7) | 0.13358 (14) | 0.0438 (7) | |
C6 | 0.47532 (19) | 0.5308 (7) | 0.16831 (14) | 0.0455 (7) | |
C1A | 0.25420 (18) | 0.0211 (6) | 0.17683 (13) | 0.0419 (7) | |
O1A | 0.33338 (12) | 0.0906 (5) | 0.21152 (10) | 0.0503 (6) | |
C2A | 0.22086 (18) | −0.2068 (7) | 0.21296 (15) | 0.0422 (7) | |
O2A | 0.21082 (13) | 0.1269 (5) | 0.11979 (10) | 0.0528 (6) | |
C7 | 0.4884 (2) | 1.0678 (7) | 0.03120 (15) | 0.0449 (7) | |
H1A | 0.353 (3) | 0.229 (9) | 0.184 (2) | 0.089 (13)* | |
H6 | 0.5077 (18) | 0.440 (6) | 0.2108 (15) | 0.036 (7)* | |
H2 | 0.281 (2) | 0.522 (6) | 0.0666 (15) | 0.044 (8)* | |
H2AA | 0.207 (2) | −0.365 (7) | 0.1786 (18) | 0.057 (9)* | |
H2AB | 0.167 (2) | −0.151 (7) | 0.2130 (17) | 0.056 (9)* | |
H3 | 0.328 (2) | 0.886 (7) | 0.0045 (18) | 0.060 (9)* | |
H7A | 0.541 (2) | 1.169 (7) | 0.0647 (16) | 0.046 (8)* | |
H5 | 0.5651 (19) | 0.765 (7) | 0.1507 (15) | 0.047 (8)* | |
H7B | 0.443 (2) | 1.210 (9) | 0.008 (2) | 0.074 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0443 (12) | 0.0512 (16) | 0.0364 (10) | −0.0029 (11) | 0.0205 (9) | 0.0038 (11) |
C2 | 0.0447 (15) | 0.056 (2) | 0.0430 (13) | −0.0053 (15) | 0.0191 (12) | 0.0029 (13) |
C3 | 0.0470 (15) | 0.055 (2) | 0.0393 (13) | −0.0023 (14) | 0.0205 (12) | 0.0054 (13) |
C4 | 0.0505 (15) | 0.0411 (17) | 0.0366 (12) | −0.0007 (13) | 0.0262 (11) | 0.0005 (11) |
C5 | 0.0444 (15) | 0.0514 (19) | 0.0405 (13) | −0.0021 (14) | 0.0206 (12) | 0.0018 (13) |
C6 | 0.0530 (16) | 0.0497 (19) | 0.0363 (13) | −0.0036 (14) | 0.0181 (12) | 0.0056 (13) |
C1A | 0.0489 (15) | 0.0458 (18) | 0.0364 (12) | −0.0017 (14) | 0.0211 (12) | 0.0005 (12) |
O1A | 0.0457 (11) | 0.0616 (15) | 0.0435 (10) | −0.0127 (10) | 0.0142 (9) | 0.0112 (10) |
C2A | 0.0416 (14) | 0.0458 (18) | 0.0430 (13) | −0.0039 (13) | 0.0187 (12) | 0.0035 (13) |
O2A | 0.0480 (11) | 0.0654 (16) | 0.0447 (11) | −0.0020 (11) | 0.0146 (9) | 0.0134 (10) |
C7 | 0.0557 (17) | 0.0453 (18) | 0.0419 (13) | −0.0060 (15) | 0.0273 (13) | 0.0021 (13) |
N1—C2 | 1.336 (4) | C1A—O1A | 1.313 (3) |
N1—C6 | 1.344 (4) | C1A—C2A | 1.513 (4) |
C2—C3 | 1.384 (4) | C1A—O2A | 1.219 (3) |
C2—H2 | 1.00 (3) | O1A—H1A | 0.98 (5) |
C3—C4 | 1.385 (4) | C2A—C2Ai | 1.506 (6) |
C3—H3 | 1.03 (3) | C2A—H2AA | 1.00 (4) |
C4—C5 | 1.387 (4) | C2A—H2AB | 0.94 (3) |
C4—C7 | 1.506 (4) | C7—C7ii | 1.534 (5) |
C5—C6 | 1.384 (4) | C7—H7A | 1.03 (3) |
C5—H5 | 0.91 (3) | C7—H7B | 1.02 (4) |
C6—H6 | 0.93 (3) | ||
C2—N1—C6 | 117.6 (2) | O1A—C1A—C2A | 114.3 (2) |
N1—C2—C3 | 122.9 (3) | O2A—C1A—O1A | 123.5 (3) |
N1—C2—H2 | 116.8 (17) | O2A—C1A—C2A | 122.2 (3) |
C3—C2—H2 | 120.1 (17) | C1A—O1A—H1A | 111 (2) |
C2—C3—C4 | 119.6 (3) | C1A—C2A—H2AA | 107.7 (18) |
C2—C3—H3 | 120.7 (19) | C1A—C2A—H2AB | 106 (2) |
C4—C3—H3 | 119.6 (19) | C2Ai—C2A—C1A | 115.3 (3) |
C3—C4—C5 | 117.7 (3) | C2Ai—C2A—H2AA | 111 (2) |
C3—C4—C7 | 120.6 (3) | C2Ai—C2A—H2AB | 113.6 (19) |
C5—C4—C7 | 121.7 (3) | H2AA—C2A—H2AB | 102 (3) |
C4—C5—H5 | 120.8 (19) | C4—C7—C7ii | 110.7 (3) |
C6—C5—C4 | 119.5 (3) | C4—C7—H7A | 112.1 (17) |
C6—C5—H5 | 120 (2) | C4—C7—H7B | 111 (2) |
N1—C6—C5 | 122.8 (3) | C7ii—C7—H7A | 108.9 (17) |
N1—C6—H6 | 114.0 (17) | C7ii—C7—H7B | 107 (2) |
C5—C6—H6 | 123.2 (17) | H7A—C7—H7B | 108 (3) |
N1—C2—C3—C4 | 0.1 (5) | C4—C5—C6—N1 | 0.6 (5) |
C2—N1—C6—C5 | −0.2 (4) | C5—C4—C7—C7ii | 92.1 (4) |
C2—C3—C4—C5 | 0.2 (4) | C6—N1—C2—C3 | −0.1 (4) |
C2—C3—C4—C7 | 177.9 (3) | O1A—C1A—C2A—C2Ai | 7.3 (5) |
C3—C4—C5—C6 | −0.6 (4) | O2A—C1A—C2A—C2Ai | −173.6 (3) |
C3—C4—C7—C7ii | −85.5 (4) | C7—C4—C5—C6 | −178.2 (3) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.537 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.48 (4) Å | Cell parameters from 521 reflections |
b = 4.5205 (4) Å | θ = 4.3–22.2° |
c = 19.083 (12) Å | µ = 0.11 mm−1 |
β = 113.24 (16)° | T = 295 K |
V = 1307 (4) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.16 × 0.03 mm |
Xcalibur, Eos diffractometer | 259 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 163 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.076 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 26.3°, θmin = 2.3° |
ω scans | h = −6→6 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.996, Tmax = 0.996 | l = −22→23 |
1924 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.0939P)2 + 3.0865P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
259 reflections | Δρmax = 0.14 e Å−3 |
46 parameters | Δρmin = −0.17 e Å−3 |
9 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3908 (15) | 0.4702 (19) | 0.1462 (6) | 0.037 (4)* | |
C2 | 0.3356 (17) | 0.6243 (17) | 0.0868 (6) | 0.036 (3)* | |
H2 | 0.2751 | 0.5922 | 0.0694 | 0.043* | |
C3 | 0.3682 (16) | 0.833 (2) | 0.0507 (7) | 0.035 (4)* | |
H3 | 0.3289 | 0.9422 | 0.0103 | 0.042* | |
C4 | 0.4582 (16) | 0.880 (2) | 0.0741 (7) | 0.027 (4)* | |
C5 | 0.5149 (18) | 0.7226 (17) | 0.1357 (6) | 0.029 (3)* | |
H5 | 0.5757 | 0.7486 | 0.1536 | 0.035* | |
C6 | 0.4776 (15) | 0.522 (2) | 0.1704 (8) | 0.028 (4)* | |
H6 | 0.5154 | 0.4179 | 0.2128 | 0.034* | |
C1A | 0.2531 (14) | 0.0297 (19) | 0.1759 (6) | 0.022 (3)* | |
O1A | 0.3353 (14) | 0.1014 (14) | 0.2122 (5) | 0.040 (3)* | |
H1A | 0.3437 | 0.2676 | 0.1991 | 0.060* | |
C2A | 0.2174 (18) | −0.2041 (16) | 0.2109 (6) | 0.028 (2)* | |
H2AA | 0.2017 | −0.3759 | 0.1777 | 0.033* | |
H2AB | 0.1641 | −0.1315 | 0.2149 | 0.033* | |
O2A | 0.2083 (14) | 0.1553 (11) | 0.1161 (5) | 0.038 (2)* | |
C7 | 0.4925 (17) | 1.0856 (16) | 0.0302 (6) | 0.028 (2)* | |
H7A | 0.4501 | 1.2424 | 0.0073 | 0.034* | |
H7B | 0.5474 | 1.1750 | 0.0643 | 0.034* |
N1—C2 | 1.336 (16) | C1A—O1A | 1.30 (2) |
N1—C6 | 1.34 (2) | C1A—C2A | 1.489 (18) |
C2—H2 | 0.9300 | C1A—O2A | 1.228 (12) |
C2—C3 | 1.394 (15) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.51 (3) |
C3—C4 | 1.39 (2) | C2A—H2AA | 0.9700 |
C4—C5 | 1.38 (2) | C2A—H2AB | 0.9700 |
C4—C7 | 1.503 (14) | C7—C7ii | 1.488 (18) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.400 (15) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 118.6 (14) | O1A—C1A—C2A | 117.0 (12) |
N1—C2—H2 | 119.8 | O2A—C1A—O1A | 120.0 (13) |
N1—C2—C3 | 120.4 (19) | O2A—C1A—C2A | 123.1 (18) |
C3—C2—H2 | 119.8 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 119.4 | C1A—C2A—C2Ai | 113 (2) |
C4—C3—C2 | 121.1 (15) | C1A—C2A—H2AA | 109.1 |
C4—C3—H3 | 119.4 | C1A—C2A—H2AB | 109.1 |
C3—C4—C7 | 120.4 (15) | C2Ai—C2A—H2AA | 109.1 |
C5—C4—C3 | 118.3 (14) | C2Ai—C2A—H2AB | 109.1 |
C5—C4—C7 | 121 (2) | H2AA—C2A—H2AB | 107.8 |
C4—C5—H5 | 121.2 | C4—C7—H7A | 109.9 |
C4—C5—C6 | 118 (2) | C4—C7—H7B | 109.9 |
C6—C5—H5 | 121.2 | C7ii—C7—C4 | 108.9 (10) |
N1—C6—C5 | 124.0 (16) | C7ii—C7—H7A | 109.9 |
N1—C6—H6 | 118.0 | C7ii—C7—H7B | 109.9 |
C5—C6—H6 | 118.0 | H7A—C7—H7B | 108.3 |
N1—C2—C3—C4 | 1.7 (16) | C4—C5—C6—N1 | 1.4 (15) |
C2—N1—C6—C5 | −1.9 (18) | C5—C4—C7—C7ii | 87 (2) |
C2—C3—C4—C5 | −2.2 (18) | C6—N1—C2—C3 | 0.3 (15) |
C2—C3—C4—C7 | 174.5 (7) | O1A—C1A—C2A—C2Ai | 6.4 (19) |
C3—C4—C5—C6 | 0.6 (14) | O2A—C1A—C2A—C2Ai | −172.8 (13) |
C3—C4—C7—C7ii | −89 (2) | C7—C4—C5—C6 | −176.0 (8) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.341 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6494 (14) Å | Cell parameters from 976 reflections |
b = 4.9069 (4) Å | θ = 4.8–71.8° |
c = 19.3575 (13) Å | µ = 0.81 mm−1 |
β = 108.812 (9)° | T = 250 K |
V = 1497.0 (2) Å3 | Plate, colourless |
Z = 4 | 0.14 × 0.09 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1432 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 961 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.036 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.3°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.904, Tmax = 1.000 | l = −17→23 |
2831 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | All H-atom parameters refined |
wR(F2) = 0.165 | w = 1/[σ2(Fo2) + (0.0878P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
1432 reflections | Δρmax = 0.17 e Å−3 |
136 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39345 (13) | 0.4590 (5) | 0.14466 (10) | 0.0468 (6) | |
C2 | 0.34218 (17) | 0.5824 (6) | 0.08521 (13) | 0.0517 (7) | |
C3 | 0.37049 (17) | 0.7810 (6) | 0.04821 (13) | 0.0509 (7) | |
C4 | 0.45496 (15) | 0.8564 (5) | 0.07198 (12) | 0.0434 (6) | |
C5 | 0.50795 (16) | 0.7272 (6) | 0.13321 (13) | 0.0487 (6) | |
C6 | 0.47496 (16) | 0.5312 (6) | 0.16822 (13) | 0.0485 (6) | |
C1A | 0.25454 (15) | 0.0195 (5) | 0.17687 (12) | 0.0453 (6) | |
O1A | 0.33347 (11) | 0.0883 (4) | 0.21111 (9) | 0.0553 (5) | |
C2A | 0.22099 (17) | −0.2062 (6) | 0.21302 (14) | 0.0480 (6) | |
O2A | 0.21144 (12) | 0.1247 (4) | 0.12033 (9) | 0.0596 (6) | |
C7 | 0.48817 (19) | 1.0654 (6) | 0.03107 (14) | 0.0493 (7) | |
H2 | 0.2823 (18) | 0.525 (6) | 0.0684 (14) | 0.053 (7)* | |
H1A | 0.351 (2) | 0.230 (8) | 0.181 (2) | 0.101 (13)* | |
H2AA | 0.2075 (19) | −0.360 (7) | 0.1791 (16) | 0.061 (8)* | |
H2AB | 0.171 (2) | −0.135 (7) | 0.2174 (16) | 0.068 (9)* | |
H7A | 0.541 (2) | 1.148 (7) | 0.0642 (16) | 0.064 (8)* | |
H6 | 0.511 (2) | 0.443 (7) | 0.2117 (16) | 0.068 (9)* | |
H3 | 0.3290 (19) | 0.864 (6) | 0.0038 (16) | 0.066 (8)* | |
H7B | 0.441 (2) | 1.203 (7) | 0.0066 (17) | 0.071 (9)* | |
H5 | 0.5648 (17) | 0.767 (6) | 0.1513 (13) | 0.048 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0494 (11) | 0.0542 (13) | 0.0431 (10) | −0.0057 (10) | 0.0238 (9) | 0.0034 (9) |
C2 | 0.0460 (14) | 0.0669 (19) | 0.0466 (12) | −0.0044 (13) | 0.0212 (11) | 0.0070 (12) |
C3 | 0.0525 (14) | 0.0600 (18) | 0.0449 (12) | −0.0011 (13) | 0.0221 (11) | 0.0103 (12) |
C4 | 0.0526 (14) | 0.0460 (14) | 0.0398 (11) | −0.0021 (11) | 0.0263 (10) | 0.0006 (10) |
C5 | 0.0453 (14) | 0.0585 (17) | 0.0461 (12) | −0.0067 (12) | 0.0199 (11) | 0.0001 (12) |
C6 | 0.0520 (14) | 0.0531 (16) | 0.0437 (12) | −0.0025 (12) | 0.0199 (11) | 0.0059 (11) |
C1A | 0.0497 (13) | 0.0507 (15) | 0.0407 (11) | 0.0003 (12) | 0.0218 (11) | 0.0010 (11) |
O1A | 0.0496 (10) | 0.0673 (14) | 0.0479 (9) | −0.0127 (9) | 0.0141 (8) | 0.0134 (9) |
C2A | 0.0459 (13) | 0.0525 (16) | 0.0486 (13) | −0.0041 (12) | 0.0195 (11) | 0.0068 (12) |
O2A | 0.0544 (11) | 0.0703 (14) | 0.0528 (10) | −0.0033 (10) | 0.0154 (8) | 0.0173 (10) |
C7 | 0.0599 (16) | 0.0493 (16) | 0.0481 (12) | −0.0070 (13) | 0.0305 (12) | 0.0011 (12) |
N1—C2 | 1.337 (3) | C1A—O1A | 1.311 (3) |
N1—C6 | 1.333 (3) | C1A—C2A | 1.510 (4) |
C2—C3 | 1.379 (4) | C1A—O2A | 1.213 (3) |
C2—H2 | 0.99 (3) | O1A—H1A | 1.01 (4) |
C3—C4 | 1.382 (4) | C2A—C2Ai | 1.509 (5) |
C3—H3 | 1.00 (3) | C2A—H2AA | 0.98 (3) |
C4—C5 | 1.382 (4) | C2A—H2AB | 0.93 (3) |
C4—C7 | 1.506 (3) | C7—C7ii | 1.523 (5) |
C5—C6 | 1.388 (4) | C7—H7A | 0.99 (3) |
C5—H5 | 0.92 (3) | C7—H7B | 1.03 (3) |
C6—H6 | 0.96 (3) | ||
C6—N1—C2 | 118.1 (2) | O1A—C1A—C2A | 114.5 (2) |
N1—C2—C3 | 122.5 (3) | O2A—C1A—O1A | 123.5 (2) |
N1—C2—H2 | 116.9 (16) | O2A—C1A—C2A | 122.0 (2) |
C3—C2—H2 | 120.7 (16) | C1A—O1A—H1A | 109 (2) |
C2—C3—C4 | 119.9 (2) | C1A—C2A—H2AA | 107.1 (17) |
C2—C3—H3 | 118.6 (18) | C1A—C2A—H2AB | 104 (2) |
C4—C3—H3 | 121.6 (18) | C2Ai—C2A—C1A | 115.4 (3) |
C3—C4—C5 | 117.5 (2) | C2Ai—C2A—H2AA | 110.9 (18) |
C3—C4—C7 | 120.9 (2) | C2Ai—C2A—H2AB | 109.8 (19) |
C5—C4—C7 | 121.5 (2) | H2AA—C2A—H2AB | 109 (3) |
C4—C5—C6 | 119.5 (2) | C4—C7—C7ii | 111.1 (3) |
C4—C5—H5 | 121.5 (16) | C4—C7—H7A | 109.6 (18) |
C6—C5—H5 | 119.0 (16) | C4—C7—H7B | 109.3 (17) |
N1—C6—C5 | 122.5 (2) | C7ii—C7—H7A | 106.4 (18) |
N1—C6—H6 | 117.1 (18) | C7ii—C7—H7B | 105.6 (17) |
C5—C6—H6 | 120.4 (18) | H7A—C7—H7B | 115 (3) |
N1—C2—C3—C4 | 0.8 (4) | C4—C5—C6—N1 | 0.7 (4) |
C2—N1—C6—C5 | −0.3 (4) | C5—C4—C7—C7ii | 92.8 (4) |
C2—C3—C4—C5 | −0.3 (4) | C6—N1—C2—C3 | −0.4 (4) |
C2—C3—C4—C7 | 177.8 (2) | O1A—C1A—C2A—C2Ai | 7.1 (4) |
C3—C4—C5—C6 | −0.4 (4) | O2A—C1A—C2A—C2Ai | −173.6 (3) |
C3—C4—C7—C7ii | −85.2 (4) | C7—C4—C5—C6 | −178.5 (2) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.558 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.469 (14) Å | Cell parameters from 1908 reflections |
b = 4.4857 (2) Å | θ = 4.7–26.6° |
c = 19.042 (4) Å | µ = 0.11 mm−1 |
β = 113.63 (5)° | T = 295 K |
V = 1288.7 (12) Å3 | Plate, colourless |
Z = 4 | 0.31 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 361 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 229 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.081 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 26.8°, θmin = 4.7° |
ω scans | h = −6→6 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.995, Tmax = 0.996 | l = −23→23 |
4834 measured reflections |
Refinement on F2 | 5 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.088 | H-atom parameters constrained |
wR(F2) = 0.281 | w = 1/[σ2(Fo2) + (0.1571P)2 + 5.0593P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
361 reflections | Δρmax = 0.22 e Å−3 |
46 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3930 (13) | 0.4763 (14) | 0.1477 (5) | 0.035 (2)* | |
C2 | 0.3371 (15) | 0.6263 (16) | 0.0870 (5) | 0.043 (2)* | |
H2 | 0.2764 | 0.5931 | 0.0695 | 0.051* | |
C3 | 0.370 (2) | 0.834 (2) | 0.0496 (6) | 0.039 (3)* | |
H3 | 0.3298 | 0.9340 | 0.0069 | 0.047* | |
C4 | 0.4538 (19) | 0.8894 (18) | 0.0732 (5) | 0.032 (3)* | |
C5 | 0.5124 (15) | 0.7271 (16) | 0.1358 (5) | 0.036 (2)* | |
H5 | 0.5732 | 0.7573 | 0.1532 | 0.043* | |
C6 | 0.4799 (15) | 0.5268 (19) | 0.1705 (6) | 0.042 (3)* | |
H6 | 0.5194 | 0.4193 | 0.2118 | 0.050* | |
C1A | 0.2536 (12) | 0.0328 (15) | 0.1754 (5) | 0.029 (2)* | |
O1A | 0.3341 (11) | 0.1019 (12) | 0.2122 (4) | 0.050 (2)* | |
H1A | 0.3463 | 0.2468 | 0.1920 | 0.074* | |
C2A | 0.2141 (16) | −0.1989 (15) | 0.2110 (5) | 0.035 (2)* | |
H2AA | 0.1930 | −0.3687 | 0.1770 | 0.042* | |
H2AB | 0.1641 | −0.1138 | 0.2188 | 0.042* | |
O2A | 0.2066 (11) | 0.1581 (11) | 0.1150 (3) | 0.0424 (19)* | |
C7 | 0.4897 (15) | 1.0882 (15) | 0.0304 (5) | 0.033 (2)* | |
H7A | 0.5434 | 1.1827 | 0.0659 | 0.039* | |
H7B | 0.4469 | 1.2436 | 0.0053 | 0.039* |
N1—C2 | 1.335 (14) | C1A—O1A | 1.265 (17) |
N1—C6 | 1.338 (19) | C1A—C2A | 1.523 (19) |
C2—H2 | 0.9300 | C1A—O2A | 1.234 (10) |
C2—C3 | 1.40 (2) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.55 (3) |
C3—C4 | 1.30 (5) | C2A—H2AA | 0.9700 |
C4—C5 | 1.40 (2) | C2A—H2AB | 0.9700 |
C4—C7 | 1.48 (2) | C7—C7ii | 1.55 (2) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.347 (19) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 118.2 (13) | O1A—C1A—C2A | 117.4 (10) |
N1—C2—H2 | 119.9 | O2A—C1A—O1A | 122.1 (11) |
N1—C2—C3 | 120.2 (19) | O2A—C1A—C2A | 120.4 (15) |
C3—C2—H2 | 119.9 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 119.2 | C1A—C2A—C2Ai | 109 (2) |
C4—C3—C2 | 121.6 (15) | C1A—C2A—H2AA | 109.8 |
C4—C3—H3 | 119.2 | C1A—C2A—H2AB | 109.8 |
C3—C4—C5 | 118.1 (14) | C2Ai—C2A—H2AA | 109.8 |
C3—C4—C7 | 122.1 (13) | C2Ai—C2A—H2AB | 109.8 |
C5—C4—C7 | 119 (2) | H2AA—C2A—H2AB | 108.3 |
C4—C5—H5 | 120.3 | C4—C7—C7ii | 111.0 (9) |
C6—C5—C4 | 119 (2) | C4—C7—H7A | 109.4 |
C6—C5—H5 | 120.3 | C4—C7—H7B | 109.4 |
N1—C6—C5 | 122.5 (13) | C7ii—C7—H7A | 109.4 |
N1—C6—H6 | 118.7 | C7ii—C7—H7B | 109.4 |
C5—C6—H6 | 118.7 | H7A—C7—H7B | 108.0 |
N1—C2—C3—C4 | −1 (2) | C4—C5—C6—N1 | −0.3 (15) |
C2—N1—C6—C5 | 1.7 (15) | C5—C4—C7—C7ii | 83.7 (19) |
C2—C3—C4—C5 | 2 (2) | C6—N1—C2—C3 | −1.0 (14) |
C2—C3—C4—C7 | 174.6 (8) | O1A—C1A—C2A—C2Ai | 0.2 (17) |
C3—C4—C5—C6 | −1.8 (19) | O2A—C1A—C2A—C2Ai | −175.8 (12) |
C3—C4—C7—C7ii | −88 (3) | C7—C4—C5—C6 | −174.2 (8) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.560 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.462 (12) Å | Cell parameters from 1891 reflections |
b = 4.4828 (2) Å | θ = 4.3–24.7° |
c = 19.038 (3) Å | µ = 0.11 mm−1 |
β = 113.66 (5)° | T = 295 K |
V = 1286.9 (10) Å3 | Plate, colourless |
Z = 4 | 0.31 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 366 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 215 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.086 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 26.6°, θmin = 2.3° |
ω scans | h = −6→6 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.995, Tmax = 0.996 | l = −22→22 |
3855 measured reflections |
Refinement on F2 | 5 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.086 | H-atom parameters constrained |
wR(F2) = 0.270 | w = 1/[σ2(Fo2) + (0.1902P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
366 reflections | Δρmax = 0.19 e Å−3 |
46 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3937 (9) | 0.4757 (11) | 0.1473 (4) | 0.041 (2)* | |
C2 | 0.3349 (11) | 0.6280 (11) | 0.0866 (4) | 0.046 (2)* | |
H2 | 0.2740 | 0.6002 | 0.0699 | 0.056* | |
C3 | 0.3721 (16) | 0.8371 (14) | 0.0490 (4) | 0.039 (2)* | |
H3 | 0.3339 | 0.9368 | 0.0054 | 0.046* | |
C4 | 0.4549 (14) | 0.8887 (13) | 0.0734 (4) | 0.033 (2)* | |
C5 | 0.5141 (10) | 0.7263 (13) | 0.1363 (4) | 0.043 (2)* | |
H5 | 0.5749 | 0.7581 | 0.1539 | 0.052* | |
C6 | 0.4822 (12) | 0.5255 (15) | 0.1707 (4) | 0.044 (2)* | |
H6 | 0.5217 | 0.4169 | 0.2118 | 0.053* | |
C1A | 0.2532 (9) | 0.0357 (12) | 0.1742 (4) | 0.0325 (18)* | |
O1A | 0.3335 (8) | 0.1023 (9) | 0.2116 (3) | 0.0503 (17)* | |
H1A | 0.3419 | 0.2761 | 0.2028 | 0.075* | |
C2A | 0.2139 (11) | −0.1979 (12) | 0.2110 (4) | 0.0392 (19)* | |
H2AA | 0.1922 | −0.3676 | 0.1769 | 0.047* | |
H2AB | 0.1643 | −0.1119 | 0.2192 | 0.047* | |
O2A | 0.2059 (9) | 0.1615 (8) | 0.1149 (2) | 0.0470 (16)* | |
C7 | 0.4898 (11) | 1.0905 (12) | 0.0300 (4) | 0.0399 (19)* | |
H7A | 0.5435 | 1.1873 | 0.0651 | 0.048* | |
H7B | 0.4464 | 1.2439 | 0.0045 | 0.048* |
N1—C2 | 1.357 (12) | C1A—O1A | 1.261 (14) |
N1—C6 | 1.359 (17) | C1A—C2A | 1.539 (15) |
C2—H2 | 0.9300 | C1A—O2A | 1.222 (9) |
C2—C3 | 1.456 (19) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.56 (2) |
C3—C4 | 1.27 (3) | C2A—H2AA | 0.9700 |
C4—C5 | 1.406 (15) | C2A—H2AB | 0.9700 |
C4—C7 | 1.488 (16) | C7—C7ii | 1.544 (17) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.338 (15) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 120.1 (9) | O1A—C1A—C2A | 116.2 (7) |
N1—C2—H2 | 121.8 | O2A—C1A—O1A | 123.1 (9) |
N1—C2—C3 | 116.4 (15) | O2A—C1A—C2A | 120.4 (12) |
C3—C2—H2 | 121.8 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 118.7 | C1A—C2A—C2Ai | 109.8 (15) |
C4—C3—C2 | 122.5 (11) | C1A—C2A—H2AA | 109.7 |
C4—C3—H3 | 118.7 | C1A—C2A—H2AB | 109.7 |
C3—C4—C5 | 119.5 (11) | C2Ai—C2A—H2AA | 109.7 |
C3—C4—C7 | 120.2 (9) | C2Ai—C2A—H2AB | 109.7 |
C5—C4—C7 | 119.8 (16) | H2AA—C2A—H2AB | 108.2 |
C4—C5—H5 | 120.3 | C4—C7—C7ii | 109.8 (7) |
C6—C5—C4 | 119.4 (15) | C4—C7—H7A | 109.7 |
C6—C5—H5 | 120.3 | C4—C7—H7B | 109.7 |
N1—C6—H6 | 119.0 | C7ii—C7—H7A | 109.7 |
C5—C6—N1 | 122.0 (10) | C7ii—C7—H7B | 109.7 |
C5—C6—H6 | 119.0 | H7A—C7—H7B | 108.2 |
N1—C2—C3—C4 | −3.7 (15) | C4—C5—C6—N1 | −0.8 (12) |
C2—N1—C6—C5 | 1.1 (12) | C5—C4—C7—C7ii | 83.5 (14) |
C2—C3—C4—C5 | 4.0 (18) | C6—N1—C2—C3 | 1.0 (10) |
C2—C3—C4—C7 | 176.2 (6) | O1A—C1A—C2A—C2Ai | −0.3 (12) |
C3—C4—C5—C6 | −1.8 (15) | O2A—C1A—C2A—C2Ai | −175.2 (9) |
C3—C4—C7—C7ii | −88.7 (18) | C7—C4—C5—C6 | −174.0 (6) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.569 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.446 (10) Å | Cell parameters from 1681 reflections |
b = 4.46879 (18) Å | θ = 4.7–23.7° |
c = 19.038 (3) Å | µ = 0.11 mm−1 |
β = 113.81 (4)° | T = 295 K |
V = 1280.2 (9) Å3 | Plate, colourless |
Z = 4 | 0.31 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 211 reflections with I > 2σ(I) |
Detector resolution: 16.1544 pixels mm-1 | Rint = 0.076 |
phi and ω scans | θmax = 26.6°, θmin = 2.3° |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | h = −6→6 |
Tmin = 0.995, Tmax = 0.996 | k = −5→5 |
2572 measured reflections | l = −22→22 |
314 independent reflections |
Refinement on F2 | 5 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.174 | w = 1/[σ2(Fo2) + (0.115P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
314 reflections | Δρmax = 0.15 e Å−3 |
46 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3917 (9) | 0.4737 (10) | 0.1475 (3) | 0.0314 (19)* | |
C2 | 0.3356 (10) | 0.6271 (11) | 0.0870 (3) | 0.0317 (19)* | |
H2 | 0.2748 | 0.5928 | 0.0694 | 0.038* | |
C3 | 0.3673 (15) | 0.8396 (13) | 0.0496 (4) | 0.030 (2)* | |
H3 | 0.3276 | 0.9478 | 0.0083 | 0.036* | |
C4 | 0.4573 (12) | 0.8866 (12) | 0.0744 (4) | 0.0220 (19)* | |
C5 | 0.5129 (9) | 0.7243 (11) | 0.1357 (3) | 0.0260 (17)* | |
H5 | 0.5740 | 0.7518 | 0.1539 | 0.031* | |
C6 | 0.4795 (11) | 0.5249 (14) | 0.1698 (4) | 0.030 (2)* | |
H6 | 0.5191 | 0.4161 | 0.2111 | 0.036* | |
C1A | 0.2533 (9) | 0.0369 (12) | 0.1756 (3) | 0.0254 (17)* | |
O1A | 0.3356 (8) | 0.1007 (9) | 0.2122 (3) | 0.0430 (15)* | |
H1A | 0.3500 | 0.2302 | 0.1889 | 0.065* | |
C2A | 0.2145 (11) | −0.2005 (11) | 0.2110 (3) | 0.0316 (18)* | |
H2AA | 0.1949 | −0.3715 | 0.1769 | 0.038* | |
H2AB | 0.1635 | −0.1192 | 0.2179 | 0.038* | |
O2A | 0.2053 (8) | 0.1593 (7) | 0.1145 (2) | 0.0341 (14)* | |
C7 | 0.4898 (10) | 1.0890 (12) | 0.0305 (3) | 0.0273 (16)* | |
H7A | 0.5432 | 1.1894 | 0.0651 | 0.033* | |
H7B | 0.4452 | 1.2403 | 0.0052 | 0.033* |
N1—C2 | 1.339 (11) | C1A—O1A | 1.280 (14) |
N1—C6 | 1.350 (16) | C1A—C2A | 1.528 (13) |
C2—H2 | 0.9300 | C1A—O2A | 1.238 (8) |
C2—C3 | 1.407 (14) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.54 (2) |
C3—C4 | 1.38 (3) | C2A—H2AA | 0.9700 |
C4—C5 | 1.365 (13) | C2A—H2AB | 0.9700 |
C4—C7 | 1.472 (14) | C7—C7ii | 1.552 (16) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.343 (13) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 117.6 (8) | O1A—C1A—C2A | 116.9 (7) |
N1—C2—H2 | 119.6 | O2A—C1A—O1A | 123.2 (8) |
N1—C2—C3 | 120.9 (13) | O2A—C1A—C2A | 119.9 (11) |
C3—C2—H2 | 119.6 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 120.1 | C1A—C2A—C2Ai | 109.7 (15) |
C4—C3—C2 | 119.8 (9) | C1A—C2A—H2AA | 109.7 |
C4—C3—H3 | 120.1 | C1A—C2A—H2AB | 109.7 |
C3—C4—C7 | 119.1 (9) | C2Ai—C2A—H2AA | 109.7 |
C5—C4—C3 | 118.0 (10) | C2Ai—C2A—H2AB | 109.7 |
C5—C4—C7 | 122.7 (16) | H2AA—C2A—H2AB | 108.2 |
C4—C5—H5 | 119.9 | C4—C7—C7ii | 110.4 (6) |
C6—C5—C4 | 120.1 (14) | C4—C7—H7A | 109.6 |
C6—C5—H5 | 119.9 | C4—C7—H7B | 109.6 |
N1—C6—H6 | 118.2 | C7ii—C7—H7A | 109.6 |
C5—C6—N1 | 123.6 (9) | C7ii—C7—H7B | 109.6 |
C5—C6—H6 | 118.2 | H7A—C7—H7B | 108.1 |
N1—C2—C3—C4 | 1.4 (12) | C4—C5—C6—N1 | −0.7 (10) |
C2—N1—C6—C5 | 1.4 (11) | C5—C4—C7—C7ii | 83.1 (13) |
C2—C3—C4—C5 | −0.6 (14) | C6—N1—C2—C3 | −1.7 (10) |
C2—C3—C4—C7 | 174.4 (5) | O1A—C1A—C2A—C2Ai | 3.6 (12) |
C3—C4—C5—C6 | 0.2 (12) | O2A—C1A—C2A—C2Ai | −175.8 (9) |
C3—C4—C7—C7ii | −91.6 (16) | C7—C4—C5—C6 | −174.6 (5) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.569 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.33 (7) Å | Cell parameters from 570 reflections |
b = 4.4824 (9) Å | θ = 2.3–25.8° |
c = 19.06 (2) Å | µ = 0.11 mm−1 |
β = 113.4 (3)° | T = 295 K |
V = 1280 (7) Å3 | Plate, colourless |
Z = 4 | 0.19 × 0.09 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 252 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 164 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.097 |
Detector resolution: 8.0169 pixels mm-1 | θmax = 25.9°, θmin = 2.3° |
ω scans | h = −6→7 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.997, Tmax = 0.998 | l = −23→20 |
1082 measured reflections |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.073 | H-atom parameters constrained |
wR(F2) = 0.227 | w = 1/[σ2(Fo2) + (0.1503P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
252 reflections | Δρmax = 0.23 e Å−3 |
46 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3904 (15) | 0.4735 (19) | 0.1463 (6) | 0.027 (4)* | |
C2 | 0.3339 (18) | 0.6262 (18) | 0.0869 (7) | 0.037 (3)* | |
H2 | 0.2728 | 0.5937 | 0.0701 | 0.045* | |
C3 | 0.367 (3) | 0.839 (2) | 0.0488 (8) | 0.018 (3)* | |
H3 | 0.3270 | 0.9443 | 0.0070 | 0.022* | |
C4 | 0.461 (3) | 0.890 (2) | 0.0754 (9) | 0.023 (4)* | |
C5 | 0.513 (2) | 0.7255 (17) | 0.1344 (7) | 0.030 (3)* | |
H5 | 0.5750 | 0.7467 | 0.1521 | 0.036* | |
C6 | 0.4783 (17) | 0.523 (2) | 0.1703 (8) | 0.021 (4)* | |
H6 | 0.5172 | 0.4174 | 0.2124 | 0.025* | |
C1A | 0.2543 (15) | 0.0376 (19) | 0.1760 (7) | 0.017 (3)* | |
O1A | 0.3373 (15) | 0.1017 (14) | 0.2131 (6) | 0.042 (3)* | |
H1A | 0.3519 | 0.2323 | 0.1902 | 0.063* | |
C2A | 0.214 (2) | −0.2038 (17) | 0.2101 (7) | 0.026 (3)* | |
H2AA | 0.1964 | −0.3757 | 0.1764 | 0.031* | |
H2AB | 0.1614 | −0.1268 | 0.2158 | 0.031* | |
O2A | 0.2057 (14) | 0.1568 (11) | 0.1147 (5) | 0.029 (2)* | |
C7 | 0.4883 (19) | 1.0932 (15) | 0.0298 (7) | 0.019 (2)* | |
H7A | 0.5401 | 1.2065 | 0.0624 | 0.022* | |
H7B | 0.4404 | 1.2320 | 0.0033 | 0.022* |
N1—C2 | 1.331 (17) | C1A—O1A | 1.29 (2) |
N1—C6 | 1.34 (2) | C1A—C2A | 1.54 (2) |
C2—H2 | 0.9300 | C1A—O2A | 1.242 (15) |
C2—C3 | 1.42 (2) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.56 (4) |
C3—C4 | 1.44 (6) | C2A—H2AA | 0.9700 |
C4—C5 | 1.33 (3) | C2A—H2AB | 0.9700 |
C4—C7 | 1.445 (19) | C7—C7ii | 1.57 (2) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.39 (2) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 119.4 (14) | O1A—C1A—C2A | 117.4 (13) |
N1—C2—H2 | 119.8 | O2A—C1A—O1A | 124.0 (14) |
N1—C2—C3 | 120 (2) | O2A—C1A—C2A | 118.6 (19) |
C3—C2—H2 | 119.8 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 120.2 | C1A—C2A—C2Ai | 108 (3) |
C2—C3—C4 | 119.6 (19) | C1A—C2A—H2AA | 110.0 |
C4—C3—H3 | 120.2 | C1A—C2A—H2AB | 110.0 |
C3—C4—C7 | 115.5 (19) | C2Ai—C2A—H2AA | 110.0 |
C5—C4—C3 | 116 (2) | C2Ai—C2A—H2AB | 110.0 |
C5—C4—C7 | 128 (3) | H2AA—C2A—H2AB | 108.4 |
C4—C5—H5 | 119.1 | C4—C7—C7ii | 108.7 (10) |
C4—C5—C6 | 122 (3) | C4—C7—H7A | 110.0 |
C6—C5—H5 | 119.1 | C4—C7—H7B | 110.0 |
N1—C6—C5 | 122.3 (16) | C7ii—C7—H7A | 110.0 |
N1—C6—H6 | 118.9 | C7ii—C7—H7B | 110.0 |
C5—C6—H6 | 118.9 | H7A—C7—H7B | 108.3 |
N1—C2—C3—C4 | −0.5 (19) | C4—C5—C6—N1 | 2.2 (16) |
C2—N1—C6—C5 | −1.1 (18) | C5—C4—C7—C7ii | 79 (2) |
C2—C3—C4—C5 | 1 (2) | C6—N1—C2—C3 | 0.3 (16) |
C2—C3—C4—C7 | 175.6 (7) | O1A—C1A—C2A—C2Ai | 5.4 (19) |
C3—C4—C5—C6 | −2.3 (18) | O2A—C1A—C2A—C2Ai | −175.2 (13) |
C3—C4—C7—C7ii | −94 (3) | C7—C4—C5—C6 | −175.5 (9) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.331 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6688 (5) Å | Cell parameters from 2102 reflections |
b = 4.9269 (1) Å | θ = 4.2–71.3° |
c = 19.3733 (6) Å | µ = 0.80 mm−1 |
β = 108.522 (3)° | T = 300 K |
V = 1508.63 (8) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.41 × 0.12 mm |
New Xcalibur, EosS2 diffractometer | 1432 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1276 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.0294 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.767, Tmax = 0.923 | l = −23→23 |
4278 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | All H-atom parameters refined |
wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0941P)2 + 0.2773P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1432 reflections | Δρmax = 0.18 e Å−3 |
136 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39371 (7) | 0.4567 (3) | 0.14447 (6) | 0.0392 (4) | |
C2 | 0.34303 (9) | 0.5779 (3) | 0.08497 (8) | 0.0445 (4) | |
C3 | 0.37067 (9) | 0.7760 (3) | 0.04769 (8) | 0.0439 (4) | |
C4 | 0.45497 (9) | 0.8548 (3) | 0.07190 (7) | 0.0359 (4) | |
C5 | 0.50763 (9) | 0.7268 (3) | 0.13309 (8) | 0.0406 (4) | |
C6 | 0.47474 (9) | 0.5319 (3) | 0.16770 (8) | 0.0410 (4) | |
C1A | 0.25508 (8) | 0.0185 (3) | 0.17694 (7) | 0.0358 (4) | |
O1A | 0.33364 (6) | 0.0854 (2) | 0.21075 (6) | 0.0502 (4) | |
C2A | 0.22127 (9) | −0.2053 (3) | 0.21334 (8) | 0.0416 (4) | |
O2A | 0.21238 (7) | 0.1226 (3) | 0.12090 (6) | 0.0552 (4) | |
C7 | 0.48799 (11) | 1.0641 (3) | 0.03117 (8) | 0.0421 (4) | |
H2AA | 0.2064 (14) | −0.349 (5) | 0.1773 (13) | 0.081 (7)* | |
H6 | 0.5105 (12) | 0.444 (4) | 0.2103 (11) | 0.055 (5)* | |
H2 | 0.2836 (11) | 0.516 (4) | 0.0690 (10) | 0.047 (4)* | |
H3 | 0.3293 (11) | 0.862 (4) | 0.0057 (10) | 0.051 (5)* | |
H5 | 0.5675 (11) | 0.771 (4) | 0.1524 (9) | 0.050 (5)* | |
H2AB | 0.1681 (13) | −0.140 (4) | 0.2154 (10) | 0.064 (6)* | |
H7A | 0.5394 (13) | 1.152 (4) | 0.0645 (12) | 0.061 (5)* | |
H7B | 0.4450 (13) | 1.199 (4) | 0.0110 (10) | 0.061 (5)* | |
H1A | 0.3514 (14) | 0.220 (5) | 0.1823 (12) | 0.082 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0402 (7) | 0.0403 (7) | 0.0395 (7) | −0.0069 (5) | 0.0158 (5) | 0.0052 (5) |
C2 | 0.0326 (7) | 0.0538 (9) | 0.0471 (8) | −0.0066 (6) | 0.0124 (6) | 0.0093 (7) |
C3 | 0.0379 (7) | 0.0502 (9) | 0.0427 (8) | 0.0000 (6) | 0.0116 (6) | 0.0127 (6) |
C4 | 0.0429 (7) | 0.0331 (7) | 0.0375 (7) | −0.0048 (5) | 0.0209 (6) | −0.0016 (5) |
C5 | 0.0362 (7) | 0.0437 (8) | 0.0414 (8) | −0.0083 (6) | 0.0117 (6) | 0.0003 (6) |
C6 | 0.0400 (8) | 0.0438 (8) | 0.0365 (7) | −0.0051 (6) | 0.0085 (6) | 0.0068 (6) |
C1A | 0.0355 (7) | 0.0350 (7) | 0.0368 (7) | −0.0029 (5) | 0.0116 (6) | 0.0024 (5) |
O1A | 0.0402 (6) | 0.0577 (7) | 0.0470 (7) | −0.0166 (5) | 0.0057 (5) | 0.0178 (5) |
C2A | 0.0358 (7) | 0.0417 (8) | 0.0456 (9) | −0.0075 (6) | 0.0104 (6) | 0.0080 (6) |
O2A | 0.0455 (6) | 0.0614 (8) | 0.0520 (7) | −0.0058 (5) | 0.0062 (5) | 0.0223 (5) |
C7 | 0.0530 (9) | 0.0340 (8) | 0.0461 (8) | −0.0062 (6) | 0.0254 (7) | 0.0016 (6) |
N1—C2 | 1.3341 (19) | C1A—O1A | 1.3067 (17) |
N1—C6 | 1.3334 (18) | C1A—C2A | 1.5110 (19) |
C2—C3 | 1.378 (2) | C1A—O2A | 1.2071 (17) |
C2—H2 | 0.986 (17) | O1A—H1A | 0.97 (3) |
C3—C4 | 1.388 (2) | C2A—C2Ai | 1.505 (3) |
C3—H3 | 0.979 (19) | C2A—H2AA | 0.97 (3) |
C4—C5 | 1.383 (2) | C2A—H2AB | 0.95 (2) |
C4—C7 | 1.5049 (18) | C7—C7ii | 1.525 (3) |
C5—C6 | 1.381 (2) | C7—H7A | 0.99 (2) |
C5—H5 | 0.973 (17) | C7—H7B | 0.96 (2) |
C6—H6 | 0.953 (19) | ||
C6—N1—C2 | 117.58 (12) | O1A—C1A—C2A | 114.39 (12) |
N1—C2—C3 | 122.99 (13) | O2A—C1A—O1A | 123.67 (13) |
N1—C2—H2 | 115.5 (11) | O2A—C1A—C2A | 121.93 (12) |
C3—C2—H2 | 121.5 (11) | C1A—O1A—H1A | 109.1 (13) |
C2—C3—C4 | 119.50 (13) | C1A—C2A—H2AA | 104.2 (14) |
C2—C3—H3 | 118.5 (10) | C1A—C2A—H2AB | 105.3 (13) |
C4—C3—H3 | 122.0 (10) | C2Ai—C2A—C1A | 115.74 (15) |
C3—C4—C7 | 120.94 (13) | C2Ai—C2A—H2AA | 113.9 (14) |
C5—C4—C3 | 117.44 (12) | C2Ai—C2A—H2AB | 112.3 (12) |
C5—C4—C7 | 121.58 (13) | H2AA—C2A—H2AB | 104.3 (17) |
C4—C5—H5 | 121.4 (11) | C4—C7—C7ii | 111.32 (15) |
C6—C5—C4 | 119.45 (13) | C4—C7—H7A | 110.0 (12) |
C6—C5—H5 | 119.1 (11) | C4—C7—H7B | 109.6 (12) |
N1—C6—C5 | 123.03 (13) | C7ii—C7—H7A | 107.8 (12) |
N1—C6—H6 | 117.0 (11) | C7ii—C7—H7B | 108.2 (12) |
C5—C6—H6 | 119.9 (11) | H7A—C7—H7B | 109.9 (16) |
N1—C2—C3—C4 | 0.5 (3) | C4—C5—C6—N1 | 0.8 (2) |
C2—N1—C6—C5 | 0.0 (2) | C5—C4—C7—C7ii | 93.3 (2) |
C2—C3—C4—C5 | 0.3 (2) | C6—N1—C2—C3 | −0.6 (2) |
C2—C3—C4—C7 | 178.01 (14) | O1A—C1A—C2A—C2Ai | 6.8 (2) |
C3—C4—C5—C6 | −0.9 (2) | O2A—C1A—C2A—C2Ai | −173.94 (18) |
C3—C4—C7—C7ii | −84.4 (2) | C7—C4—C5—C6 | −178.58 (13) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.331 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6610 (13) Å | Cell parameters from 927 reflections |
b = 4.9284 (4) Å | θ = 4.8–71.2° |
c = 19.3767 (13) Å | µ = 0.80 mm−1 |
β = 108.520 (8)° | T = 300 K |
V = 1508.7 (2) Å3 | Plate, colourless |
Z = 4 | 0.14 × 0.09 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1444 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 914 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 72.4°, θmin = 4.8° |
ω scans | h = −20→19 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.907, Tmax = 1.000 | l = −17→23 |
2850 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | All H-atom parameters refined |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0756P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
1444 reflections | Δρmax = 0.15 e Å−3 |
136 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39363 (13) | 0.4555 (4) | 0.14440 (10) | 0.0534 (6) | |
C2 | 0.34321 (17) | 0.5778 (6) | 0.08502 (14) | 0.0585 (7) | |
C3 | 0.37098 (17) | 0.7766 (6) | 0.04758 (14) | 0.0585 (7) | |
C4 | 0.45509 (15) | 0.8547 (5) | 0.07181 (12) | 0.0484 (6) | |
C5 | 0.50740 (16) | 0.7267 (6) | 0.13288 (13) | 0.0556 (7) | |
C6 | 0.47485 (16) | 0.5319 (6) | 0.16778 (13) | 0.0554 (7) | |
C1A | 0.25494 (15) | 0.0190 (5) | 0.17705 (12) | 0.0518 (6) | |
O1A | 0.33364 (11) | 0.0860 (4) | 0.21075 (9) | 0.0644 (6) | |
C2A | 0.22126 (17) | −0.2046 (6) | 0.21356 (14) | 0.0551 (6) | |
O2A | 0.21224 (12) | 0.1221 (4) | 0.12072 (10) | 0.0698 (6) | |
C7 | 0.4876 (2) | 1.0643 (6) | 0.03101 (15) | 0.0572 (7) | |
H2AA | 0.1660 (18) | −0.137 (6) | 0.2160 (15) | 0.071 (8)* | |
H6 | 0.5124 (18) | 0.432 (6) | 0.2115 (15) | 0.070 (8)* | |
H2 | 0.2858 (16) | 0.512 (5) | 0.0684 (12) | 0.051 (7)* | |
H1A | 0.357 (2) | 0.231 (7) | 0.1813 (18) | 0.106 (12)* | |
H3 | 0.3295 (19) | 0.862 (6) | 0.0031 (16) | 0.077 (9)* | |
H7A | 0.441 (2) | 1.200 (7) | 0.0057 (18) | 0.090 (11)* | |
H7B | 0.537 (2) | 1.154 (7) | 0.0634 (17) | 0.084 (10)* | |
H2AB | 0.212 (2) | −0.365 (7) | 0.1817 (18) | 0.092 (11)* | |
H5 | 0.5674 (17) | 0.759 (5) | 0.1504 (13) | 0.062 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0559 (12) | 0.0606 (13) | 0.0497 (11) | −0.0061 (10) | 0.0253 (9) | 0.0059 (10) |
C2 | 0.0491 (14) | 0.0748 (19) | 0.0553 (14) | −0.0081 (13) | 0.0221 (11) | 0.0071 (13) |
C3 | 0.0570 (15) | 0.0690 (18) | 0.0536 (13) | 0.0005 (13) | 0.0233 (11) | 0.0128 (13) |
C4 | 0.0579 (14) | 0.0494 (13) | 0.0473 (12) | −0.0041 (11) | 0.0302 (11) | 0.0015 (11) |
C5 | 0.0530 (15) | 0.0643 (17) | 0.0537 (13) | −0.0099 (13) | 0.0230 (11) | −0.0019 (12) |
C6 | 0.0581 (15) | 0.0601 (16) | 0.0500 (13) | −0.0062 (13) | 0.0200 (11) | 0.0057 (12) |
C1A | 0.0553 (14) | 0.0593 (16) | 0.0465 (12) | −0.0015 (12) | 0.0243 (11) | 0.0028 (12) |
O1A | 0.0552 (11) | 0.0797 (14) | 0.0566 (10) | −0.0167 (9) | 0.0155 (8) | 0.0164 (10) |
C2A | 0.0523 (14) | 0.0589 (17) | 0.0572 (13) | −0.0053 (13) | 0.0216 (11) | 0.0094 (13) |
O2A | 0.0620 (11) | 0.0829 (14) | 0.0621 (11) | −0.0070 (10) | 0.0162 (9) | 0.0210 (10) |
C7 | 0.0719 (17) | 0.0545 (16) | 0.0567 (14) | −0.0088 (14) | 0.0366 (13) | 0.0024 (13) |
N1—C2 | 1.334 (3) | C1A—O1A | 1.308 (3) |
N1—C6 | 1.337 (3) | C1A—C2A | 1.511 (3) |
C2—C3 | 1.383 (4) | C1A—O2A | 1.209 (3) |
C2—H2 | 0.96 (3) | O1A—H1A | 1.06 (4) |
C3—C4 | 1.384 (4) | C2A—C2Ai | 1.501 (5) |
C3—H3 | 1.01 (3) | C2A—H2AA | 0.99 (3) |
C4—C5 | 1.379 (4) | C2A—H2AB | 0.98 (4) |
C4—C7 | 1.502 (3) | C7—C7ii | 1.527 (5) |
C5—C6 | 1.381 (4) | C7—H7A | 1.02 (3) |
C5—H5 | 0.96 (3) | C7—H7B | 0.97 (3) |
C6—H6 | 1.01 (3) | ||
C2—N1—C6 | 117.2 (2) | O1A—C1A—C2A | 114.4 (2) |
N1—C2—C3 | 123.3 (3) | O2A—C1A—O1A | 123.6 (2) |
N1—C2—H2 | 114.9 (15) | O2A—C1A—C2A | 122.0 (2) |
C3—C2—H2 | 121.8 (15) | C1A—O1A—H1A | 112.2 (18) |
C2—C3—C4 | 119.4 (2) | C1A—C2A—H2AA | 105.4 (17) |
C2—C3—H3 | 119.4 (18) | C1A—C2A—H2AB | 107.5 (19) |
C4—C3—H3 | 121.2 (18) | C2Ai—C2A—C1A | 115.9 (3) |
C3—C4—C7 | 120.6 (2) | C2Ai—C2A—H2AA | 112.2 (16) |
C5—C4—C3 | 117.4 (2) | C2Ai—C2A—H2AB | 106 (2) |
C5—C4—C7 | 122.0 (2) | H2AA—C2A—H2AB | 110 (3) |
C4—C5—C6 | 119.9 (2) | C4—C7—C7ii | 111.2 (3) |
C4—C5—H5 | 122.0 (16) | C4—C7—H7A | 110.9 (19) |
C6—C5—H5 | 117.9 (16) | C4—C7—H7B | 110.5 (19) |
N1—C6—C5 | 122.9 (2) | C7ii—C7—H7A | 104.3 (19) |
N1—C6—H6 | 116.1 (16) | C7ii—C7—H7B | 108.1 (19) |
C5—C6—H6 | 121.0 (16) | H7A—C7—H7B | 112 (3) |
N1—C2—C3—C4 | 0.3 (4) | C4—C5—C6—N1 | 1.1 (4) |
C2—N1—C6—C5 | −0.6 (4) | C5—C4—C7—C7ii | 92.8 (4) |
C2—C3—C4—C5 | 0.3 (4) | C6—N1—C2—C3 | −0.1 (4) |
C2—C3—C4—C7 | 178.2 (2) | O1A—C1A—C2A—C2Ai | 6.4 (4) |
C3—C4—C5—C6 | −0.9 (4) | O2A—C1A—C2A—C2Ai | −174.7 (3) |
C3—C4—C7—C7ii | −85.1 (4) | C7—C4—C5—C6 | −178.8 (2) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.595 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.429 (12) Å | Cell parameters from 1430 reflections |
b = 4.4214 (3) Å | θ = 4.7–24.4° |
c = 19.020 (4) Å | µ = 0.12 mm−1 |
β = 114.32 (5)° | T = 295 K |
V = 1258.9 (11) Å3 | Plate, colourless |
Z = 4 | 0.31 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 353 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 241 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 26.8°, θmin = 2.4° |
ω scans | h = −6→6 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.995, Tmax = 0.997 | l = −23→23 |
4135 measured reflections |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.0646P)2 + 5.1287P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
353 reflections | Δρmax = 0.18 e Å−3 |
46 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3927 (10) | 0.4769 (11) | 0.1481 (4) | 0.0318 (18)* | |
C2 | 0.3342 (11) | 0.6335 (12) | 0.0879 (4) | 0.0347 (18)* | |
H2 | 0.2731 | 0.6012 | 0.0713 | 0.042* | |
C3 | 0.3657 (15) | 0.8452 (14) | 0.0504 (4) | 0.030 (2)* | |
H3 | 0.3250 | 0.9565 | 0.0096 | 0.035* | |
C4 | 0.4568 (13) | 0.8925 (13) | 0.0732 (4) | 0.0229 (18)* | |
C5 | 0.5153 (12) | 0.7247 (12) | 0.1358 (3) | 0.0289 (17)* | |
H5 | 0.5768 | 0.7483 | 0.1537 | 0.035* | |
C6 | 0.4790 (11) | 0.5230 (14) | 0.1704 (4) | 0.029 (2)* | |
H6 | 0.5182 | 0.4121 | 0.2122 | 0.035* | |
C1A | 0.2529 (10) | 0.0385 (12) | 0.1755 (4) | 0.0229 (16)* | |
O1A | 0.3345 (8) | 0.1029 (9) | 0.2123 (3) | 0.0407 (14)* | |
H1A | 0.3466 | 0.2529 | 0.1932 | 0.061* | |
C2A | 0.2174 (12) | −0.1999 (12) | 0.2109 (4) | 0.0311 (16)* | |
H2AA | 0.2000 | −0.3740 | 0.1769 | 0.037* | |
H2AB | 0.1643 | −0.1233 | 0.2151 | 0.037* | |
O2A | 0.2040 (8) | 0.1621 (8) | 0.1137 (2) | 0.0348 (13)* | |
C7 | 0.4911 (11) | 1.0957 (12) | 0.0302 (3) | 0.0253 (15)* | |
H7A | 0.5460 | 1.1915 | 0.0653 | 0.030* | |
H7B | 0.4477 | 1.2526 | 0.0046 | 0.030* |
N1—C2 | 1.345 (12) | C1A—O1A | 1.262 (15) |
N1—C6 | 1.318 (17) | C1A—C2A | 1.492 (14) |
C2—H2 | 0.9300 | C1A—O2A | 1.245 (9) |
C2—C3 | 1.398 (16) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.497 (19) |
C3—C4 | 1.39 (3) | C2A—H2AA | 0.9700 |
C4—C5 | 1.396 (14) | C2A—H2AB | 0.9700 |
C4—C7 | 1.474 (16) | C7—C7ii | 1.548 (18) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.380 (16) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C6—N1—C2 | 119.4 (10) | O1A—C1A—C2A | 115.6 (8) |
N1—C2—H2 | 120.2 | O2A—C1A—O1A | 123.3 (9) |
N1—C2—C3 | 119.6 (14) | O2A—C1A—C2A | 121.1 (12) |
C3—C2—H2 | 120.2 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 119.4 | C1A—C2A—C2Ai | 113.9 (16) |
C4—C3—C2 | 121.2 (10) | C1A—C2A—H2AA | 108.8 |
C4—C3—H3 | 119.4 | C1A—C2A—H2AB | 108.8 |
C3—C4—C5 | 117.3 (11) | C2Ai—C2A—H2AA | 108.8 |
C3—C4—C7 | 121.8 (10) | C2Ai—C2A—H2AB | 108.8 |
C5—C4—C7 | 120.8 (17) | H2AA—C2A—H2AB | 107.7 |
C4—C5—H5 | 121.0 | C4—C7—C7ii | 108.1 (7) |
C6—C5—C4 | 118.0 (16) | C4—C7—H7A | 110.1 |
C6—C5—H5 | 121.0 | C4—C7—H7B | 110.1 |
N1—C6—C5 | 124.4 (10) | C7ii—C7—H7A | 110.1 |
N1—C6—H6 | 117.8 | C7ii—C7—H7B | 110.1 |
C5—C6—H6 | 117.8 | H7A—C7—H7B | 108.4 |
N1—C2—C3—C4 | 1.5 (12) | C4—C5—C6—N1 | 0.2 (11) |
C2—N1—C6—C5 | 0.0 (12) | C5—C4—C7—C7ii | 83.7 (14) |
C2—C3—C4—C5 | −1.3 (14) | C6—N1—C2—C3 | −0.8 (11) |
C2—C3—C4—C7 | 174.7 (5) | O1A—C1A—C2A—C2Ai | 6.3 (15) |
C3—C4—C5—C6 | 0.5 (12) | O2A—C1A—C2A—C2Ai | −173.9 (11) |
C3—C4—C7—C7ii | −92.2 (17) | C7—C4—C5—C6 | −175.6 (6) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.598 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.44 (9) Å | Cell parameters from 540 reflections |
b = 4.4104 (11) Å | θ = 2.3–23.9° |
c = 18.97 (3) Å | µ = 0.12 mm−1 |
β = 114.0 (4)° | T = 295 K |
V = 1256 (8) Å3 | Plate, colourless |
Z = 4 | 0.19 × 0.09 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 289 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 181 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.095 |
Detector resolution: 8.0169 pixels mm-1 | θmax = 26.3°, θmin = 2.4° |
ω scans | h = −7→7 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −5→5 |
Tmin = 0.998, Tmax = 0.998 | l = −23→23 |
1431 measured reflections |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.0916P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
289 reflections | Δρmax = 0.16 e Å−3 |
46 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3902 (14) | 0.4749 (15) | 0.1471 (6) | 0.036 (3)* | |
C2 | 0.3362 (15) | 0.6336 (15) | 0.0878 (6) | 0.035 (3)* | |
H2 | 0.2753 | 0.5997 | 0.0703 | 0.042* | |
C3 | 0.365 (2) | 0.8463 (19) | 0.0503 (7) | 0.030 (4)* | |
H3 | 0.3242 | 0.9611 | 0.0104 | 0.036* | |
C4 | 0.459 (2) | 0.8884 (18) | 0.0740 (8) | 0.023 (3)* | |
C5 | 0.5172 (17) | 0.7238 (15) | 0.1366 (6) | 0.031 (3)* | |
H5 | 0.5786 | 0.7458 | 0.1549 | 0.038* | |
C6 | 0.4772 (15) | 0.5198 (17) | 0.1710 (7) | 0.020 (3)* | |
H6 | 0.5148 | 0.4093 | 0.2136 | 0.023* | |
C1A | 0.2514 (13) | 0.0398 (18) | 0.1737 (7) | 0.025 (3)* | |
O1A | 0.3342 (13) | 0.0998 (13) | 0.2125 (5) | 0.038 (2)* | |
H1A | 0.3486 | 0.2441 | 0.1928 | 0.057* | |
C2A | 0.2161 (16) | −0.2007 (13) | 0.2103 (6) | 0.024 (2)* | |
H2AA | 0.1984 | −0.3762 | 0.1766 | 0.029* | |
H2AB | 0.1634 | −0.1236 | 0.2154 | 0.029* | |
O2A | 0.2051 (12) | 0.1628 (10) | 0.1143 (4) | 0.0365 (19)* | |
C7 | 0.4921 (16) | 1.0933 (15) | 0.0296 (6) | 0.024 (2)* | |
H7A | 0.5470 | 1.1897 | 0.0639 | 0.029* | |
H7B | 0.4485 | 1.2502 | 0.0046 | 0.029* |
N1—C2 | 1.315 (16) | C1A—O1A | 1.28 (2) |
N1—C6 | 1.33 (2) | C1A—C2A | 1.508 (16) |
C2—H2 | 0.9300 | C1A—O2A | 1.202 (14) |
C2—C3 | 1.37 (2) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.53 (3) |
C3—C4 | 1.44 (5) | C2A—H2AA | 0.9700 |
C4—C5 | 1.39 (3) | C2A—H2AB | 0.9700 |
C4—C7 | 1.482 (18) | C7—C7ii | 1.499 (16) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.420 (19) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 118.1 (13) | O1A—C1A—C2A | 113.4 (12) |
N1—C2—H2 | 118.2 | O2A—C1A—O1A | 124.3 (13) |
N1—C2—C3 | 124 (2) | O2A—C1A—C2A | 122.3 (17) |
C3—C2—H2 | 118.2 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 120.7 | C1A—C2A—C2Ai | 113 (2) |
C2—C3—C4 | 118.7 (19) | C1A—C2A—H2AA | 109.0 |
C4—C3—H3 | 120.7 | C1A—C2A—H2AB | 109.0 |
C3—C4—C7 | 119.9 (18) | C2Ai—C2A—H2AA | 109.0 |
C5—C4—C3 | 118.6 (15) | C2Ai—C2A—H2AB | 109.0 |
C5—C4—C7 | 121 (3) | H2AA—C2A—H2AB | 107.8 |
C4—C5—H5 | 122.0 | C4—C7—C7ii | 107.9 (9) |
C4—C5—C6 | 116 (2) | C4—C7—H7A | 110.1 |
C6—C5—H5 | 122.0 | C4—C7—H7B | 110.1 |
N1—C6—C5 | 125.0 (14) | C7ii—C7—H7A | 110.1 |
N1—C6—H6 | 117.5 | C7ii—C7—H7B | 110.1 |
C5—C6—H6 | 117.5 | H7A—C7—H7B | 108.4 |
N1—C2—C3—C4 | 3.5 (15) | C4—C5—C6—N1 | 1.0 (13) |
C2—N1—C6—C5 | −1.2 (15) | C5—C4—C7—C7ii | 85 (2) |
C2—C3—C4—C5 | −3.5 (17) | C6—N1—C2—C3 | −1.2 (14) |
C2—C3—C4—C7 | 173.7 (6) | O1A—C1A—C2A—C2Ai | 5.6 (16) |
C3—C4—C5—C6 | 1.4 (13) | O2A—C1A—C2A—C2Ai | −173.7 (11) |
C3—C4—C7—C7ii | −92 (2) | C7—C4—C5—C6 | −175.8 (6) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.612 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 16.46 (6) Å | Cell parameters from 521 reflections |
b = 4.3839 (7) Å | θ = 2.3–24.1° |
c = 18.94 (2) Å | µ = 0.12 mm−1 |
β = 114.3 (3)° | T = 295 K |
V = 1246 (6) Å3 | Plate, colourless |
Z = 4 | 0.19 × 0.09 × 0.02 mm |
New Xcalibur, EosS2 diffractometer | 253 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 159 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.095 |
Detector resolution: 8.0169 pixels mm-1 | θmax = 26.2°, θmin = 2.4° |
ω scans | h = −7→7 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492) | k = −4→5 |
Tmin = 0.997, Tmax = 0.998 | l = −23→22 |
1000 measured reflections |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.090 | H-atom parameters constrained |
wR(F2) = 0.271 | w = 1/[σ2(Fo2) + (0.1895P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
253 reflections | Δρmax = 0.24 e Å−3 |
46 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3896 (17) | 0.474 (2) | 0.1471 (8) | 0.036 (4)* | |
C2 | 0.3342 (19) | 0.636 (2) | 0.0873 (7) | 0.033 (3)* | |
H2 | 0.2733 | 0.6007 | 0.0700 | 0.039* | |
C3 | 0.362 (3) | 0.852 (2) | 0.0502 (9) | 0.030 (5)* | |
H3 | 0.3210 | 0.9726 | 0.0115 | 0.036* | |
C4 | 0.462 (3) | 0.888 (2) | 0.0743 (9) | 0.017 (4)* | |
C5 | 0.518 (2) | 0.720 (2) | 0.1365 (8) | 0.035 (4)* | |
H5 | 0.5795 | 0.7361 | 0.1551 | 0.042* | |
C6 | 0.4771 (18) | 0.522 (2) | 0.1704 (9) | 0.019 (4)* | |
H6 | 0.5148 | 0.4128 | 0.2136 | 0.023* | |
C1A | 0.2523 (17) | 0.041 (3) | 0.1763 (9) | 0.028 (4)* | |
O1A | 0.3362 (17) | 0.1000 (19) | 0.2124 (7) | 0.046 (4)* | |
H1A | 0.3490 | 0.2457 | 0.1918 | 0.069* | |
C2A | 0.221 (2) | −0.2004 (19) | 0.2121 (8) | 0.028 (3)* | |
H2AA | 0.1660 | −0.1317 | 0.2140 | 0.033* | |
H2AB | 0.2068 | −0.3765 | 0.1782 | 0.033* | |
O2A | 0.2064 (16) | 0.1624 (15) | 0.1152 (6) | 0.036 (3)* | |
C7 | 0.492 (2) | 1.093 (2) | 0.0303 (8) | 0.027 (3)* | |
H7A | 0.5467 | 1.1934 | 0.0642 | 0.033* | |
H7B | 0.4472 | 1.2479 | 0.0054 | 0.033* |
N1—C2 | 1.331 (18) | C1A—O1A | 1.29 (2) |
N1—C6 | 1.34 (2) | C1A—C2A | 1.46 (2) |
C2—H2 | 0.9300 | C1A—O2A | 1.215 (16) |
C2—C3 | 1.36 (3) | O1A—H1A | 0.8200 |
C3—H3 | 0.9300 | C2A—C2Ai | 1.42 (4) |
C3—C4 | 1.53 (6) | C2A—H2AA | 0.9700 |
C4—C5 | 1.37 (3) | C2A—H2AB | 0.9700 |
C4—C7 | 1.44 (2) | C7—C7ii | 1.51 (2) |
C5—H5 | 0.9300 | C7—H7A | 0.9700 |
C5—C6 | 1.40 (3) | C7—H7B | 0.9700 |
C6—H6 | 0.9300 | ||
C2—N1—C6 | 117.7 (15) | O1A—C1A—C2A | 113.8 (15) |
N1—C2—H2 | 118.2 | O2A—C1A—O1A | 121.7 (17) |
N1—C2—C3 | 124 (3) | O2A—C1A—C2A | 124 (2) |
C3—C2—H2 | 118.2 | C1A—O1A—H1A | 109.5 |
C2—C3—H3 | 121.1 | C1A—C2A—H2AA | 107.7 |
C2—C3—C4 | 118 (2) | C1A—C2A—H2AB | 107.7 |
C4—C3—H3 | 121.1 | C2Ai—C2A—C1A | 118 (3) |
C5—C4—C3 | 117 (2) | C2Ai—C2A—H2AA | 107.7 |
C5—C4—C7 | 124 (3) | C2Ai—C2A—H2AB | 107.7 |
C7—C4—C3 | 118 (2) | H2AA—C2A—H2AB | 107.1 |
C4—C5—H5 | 121.7 | C4—C7—C7ii | 108.1 (11) |
C4—C5—C6 | 117 (3) | C4—C7—H7A | 110.1 |
C6—C5—H5 | 121.7 | C4—C7—H7B | 110.1 |
N1—C6—C5 | 126.8 (17) | C7ii—C7—H7A | 110.1 |
N1—C6—H6 | 116.6 | C7ii—C7—H7B | 110.1 |
C5—C6—H6 | 116.6 | H7A—C7—H7B | 108.4 |
N1—C2—C3—C4 | 5.4 (18) | C4—C5—C6—N1 | 2.1 (17) |
C2—N1—C6—C5 | −3 (2) | C5—C4—C7—C7ii | 84 (3) |
C2—C3—C4—C5 | −5.6 (19) | C6—N1—C2—C3 | −1.5 (19) |
C2—C3—C4—C7 | 173.7 (8) | O1A—C1A—C2A—C2Ai | 12 (3) |
C3—C4—C5—C6 | 2.0 (15) | O2A—C1A—C2A—C2Ai | −173.1 (18) |
C3—C4—C7—C7ii | −95 (3) | C7—C4—C5—C6 | −177.2 (9) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
C12H12N2·C4H6O4 | F(000) = 640 |
Mr = 302.32 | Dx = 1.331 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6711 (3) Å | Cell parameters from 6372 reflections |
b = 4.9272 (1) Å | θ = 4.2–76.1° |
c = 19.3744 (4) Å | µ = 0.80 mm−1 |
β = 108.512 (2)° | T = 295 K |
V = 1509.10 (5) Å3 | Block, colourless |
Z = 4 | 0.2 × 0.1 × 0.04 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1554 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1318 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.5384 pixels mm-1 | θmax = 76.2°, θmin = 4.8° |
ω scans | h = −21→20 |
Absorption correction: gaussian CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −5→5 |
Tmin = 0.813, Tmax = 1.000 | l = −24→23 |
12238 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.6357P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.17 e Å−3 |
1554 reflections | Δρmin = −0.16 e Å−3 |
137 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0011 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39365 (7) | 0.4565 (2) | 0.14452 (6) | 0.0400 (3) | |
C2 | 0.34297 (8) | 0.5776 (3) | 0.08506 (7) | 0.0454 (4) | |
C3 | 0.37070 (8) | 0.7758 (3) | 0.04771 (7) | 0.0449 (4) | |
C4 | 0.45499 (8) | 0.8545 (3) | 0.07183 (6) | 0.0367 (3) | |
C5 | 0.50755 (8) | 0.7272 (3) | 0.13315 (7) | 0.0411 (3) | |
C6 | 0.47475 (8) | 0.5319 (3) | 0.16781 (7) | 0.0418 (3) | |
C1A | 0.25506 (8) | 0.0182 (3) | 0.17701 (6) | 0.0371 (3) | |
O1A | 0.33368 (6) | 0.0856 (2) | 0.21085 (5) | 0.0512 (3) | |
C2A | 0.22111 (8) | −0.2052 (3) | 0.21334 (7) | 0.0426 (3) | |
O2A | 0.21229 (6) | 0.1228 (2) | 0.12076 (5) | 0.0560 (3) | |
C7 | 0.48802 (10) | 1.0641 (3) | 0.03119 (8) | 0.0431 (3) | |
H2 | 0.2839 (10) | 0.511 (4) | 0.0670 (9) | 0.053 (4)* | |
H2AA | 0.1674 (12) | −0.142 (4) | 0.2166 (9) | 0.066 (5)* | |
H5 | 0.5678 (10) | 0.770 (4) | 0.1524 (9) | 0.058 (5)* | |
H2AB | 0.2082 (12) | −0.356 (4) | 0.1782 (11) | 0.074 (6)* | |
H7A | 0.4435 (11) | 1.197 (4) | 0.0092 (9) | 0.064 (5)* | |
H6 | 0.5103 (10) | 0.443 (4) | 0.2112 (9) | 0.055 (5)* | |
H7B | 0.5407 (12) | 1.157 (4) | 0.0658 (10) | 0.064 (5)* | |
H3 | 0.3296 (11) | 0.862 (4) | 0.0042 (9) | 0.060 (5)* | |
H1A | 0.3537 (12) | 0.227 (5) | 0.1830 (11) | 0.085 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0415 (6) | 0.0421 (7) | 0.0389 (5) | −0.0071 (5) | 0.0162 (4) | 0.0052 (5) |
C2 | 0.0350 (6) | 0.0563 (9) | 0.0453 (7) | −0.0069 (6) | 0.0131 (5) | 0.0093 (6) |
C3 | 0.0404 (7) | 0.0524 (9) | 0.0418 (7) | −0.0016 (6) | 0.0130 (5) | 0.0121 (6) |
C4 | 0.0442 (6) | 0.0348 (7) | 0.0373 (6) | −0.0040 (5) | 0.0219 (5) | −0.0001 (5) |
C5 | 0.0367 (6) | 0.0454 (8) | 0.0415 (6) | −0.0090 (5) | 0.0129 (5) | 0.0008 (6) |
C6 | 0.0416 (7) | 0.0458 (8) | 0.0363 (6) | −0.0053 (6) | 0.0101 (5) | 0.0062 (5) |
C1A | 0.0373 (6) | 0.0380 (7) | 0.0369 (6) | −0.0028 (5) | 0.0128 (5) | 0.0026 (5) |
O1A | 0.0422 (5) | 0.0595 (7) | 0.0467 (5) | −0.0165 (5) | 0.0068 (4) | 0.0180 (5) |
C2A | 0.0374 (6) | 0.0435 (8) | 0.0454 (7) | −0.0080 (6) | 0.0111 (5) | 0.0086 (6) |
O2A | 0.0461 (5) | 0.0645 (7) | 0.0513 (6) | −0.0060 (5) | 0.0065 (4) | 0.0219 (5) |
C7 | 0.0558 (8) | 0.0362 (8) | 0.0454 (7) | −0.0067 (6) | 0.0275 (6) | 0.0022 (6) |
N1—C2 | 1.3339 (17) | C1A—O1A | 1.3086 (15) |
N1—C6 | 1.3350 (16) | C1A—C2A | 1.5101 (18) |
C2—C3 | 1.3793 (19) | C1A—O2A | 1.2118 (15) |
C2—H2 | 0.991 (16) | O1A—H1A | 1.00 (2) |
C3—C4 | 1.3880 (18) | C2A—C2Ai | 1.507 (3) |
C3—H3 | 0.998 (18) | C2A—H2AA | 0.967 (19) |
C4—C5 | 1.3827 (18) | C2A—H2AB | 0.98 (2) |
C4—C7 | 1.5050 (17) | C7—C7ii | 1.525 (3) |
C5—C6 | 1.3816 (18) | C7—H7A | 0.982 (19) |
C5—H5 | 0.977 (16) | C7—H7B | 1.027 (19) |
C6—H6 | 0.966 (17) | ||
C2—N1—C6 | 117.59 (11) | O1A—C1A—C2A | 114.56 (11) |
N1—C2—C3 | 122.95 (12) | O2A—C1A—O1A | 123.52 (12) |
N1—C2—H2 | 116.2 (10) | O2A—C1A—C2A | 121.92 (11) |
C3—C2—H2 | 120.8 (10) | C1A—O1A—H1A | 111.1 (11) |
C2—C3—C4 | 119.56 (12) | C1A—C2A—H2AA | 106.8 (11) |
C2—C3—H3 | 119.4 (10) | C1A—C2A—H2AB | 105.0 (11) |
C4—C3—H3 | 121.0 (10) | C2Ai—C2A—C1A | 115.51 (14) |
C3—C4—C7 | 121.01 (12) | C2Ai—C2A—H2AA | 111.1 (11) |
C5—C4—C3 | 117.39 (11) | C2Ai—C2A—H2AB | 111.4 (11) |
C5—C4—C7 | 121.57 (12) | H2AA—C2A—H2AB | 106.5 (15) |
C4—C5—H5 | 121.6 (10) | C4—C7—C7ii | 111.22 (14) |
C6—C5—C4 | 119.54 (12) | C4—C7—H7A | 109.5 (10) |
C6—C5—H5 | 118.9 (10) | C4—C7—H7B | 110.0 (10) |
N1—C6—C5 | 122.97 (12) | C7ii—C7—H7A | 106.6 (11) |
N1—C6—H6 | 116.3 (10) | C7ii—C7—H7B | 108.5 (10) |
C5—C6—H6 | 120.7 (10) | H7A—C7—H7B | 111.0 (15) |
N1—C2—C3—C4 | 0.4 (2) | C4—C5—C6—N1 | 0.5 (2) |
C2—N1—C6—C5 | −0.1 (2) | C5—C4—C7—C7ii | 93.58 (19) |
C2—C3—C4—C5 | 0.1 (2) | C6—N1—C2—C3 | −0.4 (2) |
C2—C3—C4—C7 | 178.18 (13) | O1A—C1A—C2A—C2Ai | 6.5 (2) |
C3—C4—C5—C6 | −0.5 (2) | O2A—C1A—C2A—C2Ai | −174.09 (16) |
C3—C4—C7—C7ii | −84.5 (2) | C7—C4—C5—C6 | −178.63 (12) |
Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2; (ii) −x+1, −y+2, −z. |
Acknowledgements
The roles of the authors were as follows. EPK: conceptualization, investigation, formal analysis, resources, data curation, writing (original draft, review and editing), visualization, supervision, project administration and funding acquisition; KS: investigation and visualization; MK: software, data curation, writing (review and editing) and visualization.
Funding information
The following funding is acknowledged: Narodowe Centrum Nauki (grant No. 2020/39/D/ST4/00260).
References
Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. (1998). Science, 279, 1522–1524. Web of Science CrossRef CAS PubMed Google Scholar
Bhunia, M. K., Das, S. K. & Bhaumik, A. (2010). Chem. Phys. Lett. 498, 145–150. Web of Science CSD CrossRef CAS Google Scholar
Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514–11603. Web of Science CrossRef CAS PubMed Google Scholar
Braga, D., Dichiarante, E., Palladino, G., Grepioni, F., Chierotti, M. R., Gobetto, R. & Pellegrino, L. (2010). CrystEngComm, 12, 3534–3536. Web of Science CSD CrossRef CAS Google Scholar
Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. McMillan, pp. 101–112. Dordrecht: Springer Netherlands. Google Scholar
Bull, C. L., Funnell, N. P., Ridley, C. J., Pulham, C. R., Coster, P. L., Tellam, J. P. & Marshall, W. G. (2019). CrystEngComm, 21, 5872–5881. Web of Science CSD CrossRef CAS Google Scholar
Cai, W. & Katrusiak, A. (2014). Nat. Commun. 5, 4337. Web of Science CSD CrossRef PubMed Google Scholar
Cairns, A. B., Catafesta, J., Levelut, C., Rouquette, J., van der Lee, A., Peters, L., Thompson, A. L., Dmitriev, V., Haines, J. & Goodwin, A. L. (2013). Nat. Mater. 12, 212–216. Web of Science CrossRef CAS PubMed Google Scholar
Cairns, A. B. & Goodwin, A. L. (2015). Phys. Chem. Chem. Phys. 17, 20449–20465. Web of Science CrossRef CAS PubMed Google Scholar
Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321–1329. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dai, C., Ren, Z., Hu, W., Liu, Q. & Pang, Z. (2024). Dyes Pigments, 224, 112014. Web of Science CrossRef Google Scholar
Ding, Y., Zhao, Y. & Liu, Y. (2024). Aggregate, e626. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duggirala, N. K., Perry, M. L., Almarsson, Ö. & Zaworotko, M. J. (2015). Chem. Commun. 52, 640–655. Web of Science CrossRef Google Scholar
Erkartal, M. (2024). J. Phys. Chem. C, 128, 588–596. Web of Science CrossRef CAS Google Scholar
Evans, J. S. O., Mary, T. A. & Sleight, A. W. (1997). J. Solid State Chem. 133, 580–583. Web of Science CrossRef CAS Google Scholar
Goodwin, A. L., Keen, D. A. & Tucker, M. G. (2008). Proc. Natl Acad. Sci. USA, 105, 18708–18713. Web of Science CrossRef PubMed CAS Google Scholar
Harty, E. L., Ha, A. R., Warren, M. R., Thompson, A. L., Allan, D. R., Goodwin, A. L. & Funnell, N. P. (2015). Chem. Commun. 51, 10608–10611. Web of Science CSD CrossRef CAS Google Scholar
Hitchings, J., Scatena, T., Allan, R. R., Cairns, D. B. & Saines, A. (2024). Chem. Commun. 60, 3271–3274. Web of Science CSD CrossRef CAS Google Scholar
Jiang, D., Wen, T., Guo, Y., Liang, J., Jiang, Z., Li, C., Liu, K., Yang, W. & Wang, Y. (2022). Chem. Mater. 34, 2764–2770. Web of Science CrossRef CAS Google Scholar
Jones, C. L., Wilson, C. C. & Thomas, L. H. (2014). CrystEngComm, 16, 5849–5858. Web of Science CSD CrossRef CAS Google Scholar
Kaźmierczak, M., Patyk-Kaźmierczak, E. & Katrusiak, A. (2021). Cryst. Growth Des. 21, 2196–2204. Google Scholar
Knížek, K. (2021). KDiff, Kalvados Software Package. Prague, Czech Republic. Google Scholar
Korthuis, V., Khosrovani, N., Sleight, A. W., Roberts, N., Dupree, R. & Warren, W. W. Jr (1995). Chem. Mater. 7, 412–417. CrossRef CAS Web of Science Google Scholar
Lee, A. van der & Dumitrescu, D. G. (2021). Chem. Sci. 12, 8537–8547. Web of Science PubMed Google Scholar
Lertkiattrakul, M., Evans, M. L. & Cliffe, M. J. (2023). J. Open Source Softw. 8, 5556. CrossRef Google Scholar
Li, S., Lin, Y. & Yan, D. (2016). J. Mater. Chem. C. 4, 2527–2534. Web of Science CSD CrossRef CAS Google Scholar
Li, S., Lu, B., Fang, X. & Yan, D. (2020). Angew. Chem. Int. Ed. 59, 22623–22630. Web of Science CSD CrossRef CAS Google Scholar
Lind, C. (2012). Materials, 5, 1125–1154. Web of Science CrossRef CAS PubMed Google Scholar
Liu, Y., Fu, B., Wu, M., He, W., Liu, D., Liu, F., Wang, L., Liu, H., Wang, K. & Cai, W. (2024). Phys. Chem. Chem. Phys. 26, 1722–1728. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mary, T. A., Evans, J. S. O., Vogt, T. & Sleight, A. W. (1996). Science, 272, 90–92. CrossRef ICSD CAS Web of Science Google Scholar
Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294. CrossRef Web of Science Google Scholar
Miller, W., Smith, C. W., Mackenzie, D. S. & Evans, K. E. (2009). J. Mater. Sci. 44, 5441–5451. Web of Science CrossRef CAS Google Scholar
Patyk-Kaźmierczak, E., Izquierdo-Ruiz, F., Lobato, A., Kaźmierczak, M., Moszczyńska, I., Olejniczak, A. & Recio, J. M. (2024). IUCrJ, 11, 168–181. Web of Science CSD CrossRef PubMed IUCr Journals Google Scholar
Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2024). Chem. Commun. 60, 10310–10313. Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry. Cornell University Press. Google Scholar
Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780. CrossRef CAS Web of Science Google Scholar
Qu, S., Shen, K., Wu, B., He, Y., Zhao, Z., Yin, C., An, Z., Yan, S. & Shi, H. (2023). Cryst. Growth Des. 23, 31–36. Web of Science CSD CrossRef CAS Google Scholar
Rigaku Oxford Diffraction (2020). CrysAlisPro. Rigaku Corporation, Wroclaw, Poland. Google Scholar
Rigaku Oxford Diffraction (2022). CrysAlisPro. Rigaku Corporation, Wroclaw, Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shephard, J. J., Berryman, V. E. J., Ochiai, T., Walter, O., Price, A. N., Warren, M. R., Arnold, P. L., Kaltsoyannis, N. & Parsons, S. (2022). Nat. Commun. 13, 5923. Web of Science CSD CrossRef PubMed Google Scholar
Shepherd, H. J., Palamarciuc, T., Rosa, P., Guionneau, P., Molnár, G., Létard, J.-F. & Bousseksou, A. (2012). Angew. Chem. Int. Ed. 51, 3910–3914. Web of Science CSD CrossRef CAS Google Scholar
Sleight, A. W. (1995). Endeavour, 19, 64–68. CrossRef CAS Web of Science Google Scholar
Szafrański, M. (2020). J. Phys. Chem. C, 124, 11631–11638. Google Scholar
Takenaka, K. (2012). Sci. Technol. Adv. Mater. 13, 013001. Web of Science CrossRef PubMed Google Scholar
Woodall, C. H., Beavers, C. M., Christensen, J., Hatcher, L. E., Intissar, M., Parlett, A., Teat, S. J., Reber, C. & Raithby, P. R. (2013). Angew. Chem. Int. Ed. 52, 9691–9694. Web of Science CSD CrossRef CAS Google Scholar
Yeung, H. H.-M., Kilmurray, R., Hobday, C. L., McKellar, S. C., Cheetham, A. K., Allan, D. R. & Moggach, S. A. (2017). Phys. Chem. Chem. Phys. 19, 3544–3549. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zeng, Q., Wang, K. & Zou, B. (2017). J. Am. Chem. Soc. 139, 15648–15651. Web of Science CrossRef CAS PubMed Google Scholar
Zeng, Q., Wang, K. & Zou, B. (2020). ACS Materials Lett. 2, 291–295. Web of Science CrossRef CAS Google Scholar
Zhao, Y., Fan, C., Pei, C., Geng, X., Xing, G., Ben, T. & Qiu, S. (2020). J. Am. Chem. Soc. 142, 3593–3599. Web of Science CrossRef CAS PubMed Google Scholar
Zhou, B., Zhao, Q., Tang, L. & Yan, D. (2020). Chem. Commun. 56, 7698–7701. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.