Download citation
Download citation
link to html
The molecule of the title compound, C21H17N5O8·C3H7NO, is non-planar. The central benzene ring makes dihedral angles of 86.87 (8) and 4.52 (6)° with the terminal benzene ring bonded to the eth­oxy functionality and the p-nitro­phenyl residue bonded to the hydrazine functionality, respectively. Intra­molecular N—H...O and C—H...O hydrogen bonds help to stabilize the mol­ecular conformation, while weak inter­molecular C—H...O hydrogen bonds link adjacent mol­ecules to form infinite chains in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039905/bh6053sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039905/bh6053Isup2.hkl
Contains datablock I

CCDC reference: 296521

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.052
  • wR factor = 0.136
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for N5 - C19 .. 5.70 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N6 PLAT480_ALERT_4_C Long H...A H-Bond Reported H10 .. O7 .. 2.61 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Metal complexes based on Schiff bases have been extensively studied, because of their significant biological activity (Kahwa et al., 1986). Consequently, significant effort has been devoted to the synthesis of Schiff base derivatives to develop protein and enzyme mimics (Pires Santos et al., 2001). In order to investigate their crystal structures, which will provide useful information for the coordination properties of Schiff bases functioning as ligands, we report the synthesis and structure of the title dinitrophenylhydrazine Schiff base derivative, (I).

The central benzene ring of (I) (atoms C9–C14) is almost perpendicular to the terminal benzene ring bonded to the ethoxy functionality (C1–C6), with a dihedral angle of 86.87 (8)° (Fig. 1). The p-nitrophenyl residue (C16–C21/N5/O7/O8) bonded to the hydrazine functionality is planar, with an r.m.s. deviation of the fitted atoms of 0.010 Å. This plane makes dihedral angles of 87.56 (6) and 4.52 (6)° with the terminal benzene ring (C1–C6) and the central benzene ring (C9–C14), respectively. The O7—N5—C19—C18 and O8—N5—C19—C20 torsion angles are 179.3 (2) and 179.8 (2)°, respectively, confirming the coplanarity of the nitro group (N5/O7/O8) with the aromatic ring (C16–C21). The corresponding dihedral angle is indeed virtually zero, at 1.0 (3)°. The other nitro group (N4/O5/O6) makes a dihedral angle of 2.26 (11)° with the same ring. All bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

An intramolecular N3—H3···O5 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. There is also a weak C15—H15···O9 hydrogen bond linking the main molecule and the solvent molecule. The packing structure is stabilized by a couple of weak non-classical intermolecular C—H···O hydrogen bonds (Table 1), forming infinite chains in the crystal structure (Fig. 2).

Experimental top

To a solution of 2-hydroxybenzaldehyde (6.1 g, 50 mmol) and potassium carbonate (13.8 g, 100 mmol) in acetonitrile (500 ml), 1-bromo-2-chloroethane (7.1 g, 50 mmol) was added dropwise over a period of 30 min and the mixture refluxed for 24 h under an N2 atmosphere. 3-Nitrophenol (7.0 g, 50 mmol) dissolved in acetonitrile (100 ml) was then added dropwise over a period of 30 min and the mixture was refluxed for an additional 48 h under an N2 atmosphere. The solvent was then removed and the resulting mixture poured into ice–water (500 ml). The white precipitate which formed was isolated and recrystallized from ethanol to give pure 2-[2-(3-nitrophenoxy)ethoxy]benzaldehyde in 26% yield. An anhydrous ethanol solution of 2-[2-(3-nitrophenoxy)ethoxy]benzaldehyde (2.87 g, 10 mmol) was added to an anhydrous ethanol solution of 1-(2,4-dinitrophenyl)hydrazine (1.98 g, 10 mmol) and the mixture stirred at 350 K for 5 h under N2, whereupon an orange precipitate appeared. The product was isolated, recrystallized from acetonitrile and dried in vacuo, to give pure (I) in 88% yield. Orange single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an N,N-dimethylformamide solution over a period of 20 d.

Refinement top

H atoms were included in calculated positions and refined using a riding-model approximation. Constrained C—H and N—H bond lengths and isotropic U parameters are as follows: 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene CH2; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl CH3; 0.86 Å and Uiso(H) = 1.2Ueq(N) for NH.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I), with hydrogen bonds drawn as dashed lines.
(E)-1-(2,4-Dinitrophenyl)-2-{2-[2-(3-nitrophenoxy)ethoxy]benzylidene}hydrazine dimethylformamide solvate top
Crystal data top
C21H17N5O8·C3H7NOF(000) = 1128
Mr = 540.49Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2554 reflections
a = 6.9806 (12) Åθ = 2.8–25.9°
b = 25.764 (4) ŵ = 0.11 mm1
c = 14.200 (2) ÅT = 294 K
β = 96.318 (3)°Block, orange
V = 2538.4 (7) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5198 independent reflections
Radiation source: fine-focus sealed tube2638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.920, Tmax = 0.978k = 3231
14295 measured reflectionsl = 179
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.0615P]
where P = (Fo2 + 2Fc2)/3
5198 reflections(Δ/σ)max = 0.005
354 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H17N5O8·C3H7NOV = 2538.4 (7) Å3
Mr = 540.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9806 (12) ŵ = 0.11 mm1
b = 25.764 (4) ÅT = 294 K
c = 14.200 (2) Å0.28 × 0.24 × 0.20 mm
β = 96.318 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5198 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2638 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.978Rint = 0.049
14295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
5198 reflectionsΔρmin = 0.20 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1028 (4)0.57277 (9)0.9188 (2)0.1156 (10)
O20.3452 (4)0.62265 (8)0.90703 (17)0.0990 (8)
O30.3689 (2)0.39340 (6)0.88964 (12)0.0545 (5)
O40.1279 (2)0.30398 (6)0.85839 (10)0.0470 (4)
O50.2561 (3)0.38877 (7)0.48617 (14)0.0731 (6)
O60.3805 (4)0.40262 (7)0.34368 (15)0.0965 (8)
O70.5730 (3)0.27007 (9)0.12872 (13)0.0728 (6)
O80.5455 (3)0.18964 (9)0.16958 (13)0.0798 (6)
N10.2690 (5)0.57986 (10)0.90446 (18)0.0729 (7)
N20.1132 (3)0.25514 (7)0.60742 (13)0.0389 (5)
N30.1890 (3)0.29379 (7)0.54759 (12)0.0386 (5)
H30.18130.32570.56520.046*
N40.3239 (3)0.37282 (8)0.40798 (17)0.0551 (6)
N50.5265 (3)0.23574 (10)0.18659 (15)0.0536 (6)
C10.3119 (4)0.48604 (9)0.89723 (16)0.0455 (6)
H10.19300.48200.92000.055*
C20.3852 (4)0.53483 (9)0.88229 (17)0.0508 (7)
C30.5581 (5)0.54309 (11)0.84935 (19)0.0615 (8)
H3A0.60330.57650.84070.074*
C40.6644 (4)0.50009 (12)0.8292 (2)0.0655 (8)
H40.78320.50450.80640.079*
C50.5969 (4)0.45088 (10)0.84246 (19)0.0596 (8)
H50.66960.42230.82800.071*
C60.4210 (4)0.44353 (9)0.87725 (16)0.0445 (6)
C70.1985 (4)0.38345 (9)0.93452 (18)0.0495 (7)
H7A0.08540.39560.89480.059*
H7B0.20520.40130.99490.059*
C80.1871 (4)0.32635 (9)0.94896 (15)0.0455 (6)
H8A0.31190.31280.97430.055*
H8B0.09450.31840.99300.055*
C90.1219 (3)0.25128 (9)0.84883 (15)0.0365 (5)
C100.1864 (3)0.21659 (9)0.92021 (16)0.0427 (6)
H100.23420.22870.97990.051*
C110.1789 (4)0.16436 (10)0.90179 (18)0.0501 (7)
H110.22070.14110.94970.060*
C120.1102 (4)0.14574 (9)0.81326 (19)0.0532 (7)
H120.11010.11030.80120.064*
C130.0419 (3)0.18002 (9)0.74298 (17)0.0441 (6)
H130.00610.16740.68370.053*
C140.0440 (3)0.23337 (8)0.75973 (15)0.0351 (5)
C150.0363 (3)0.27046 (9)0.68894 (15)0.0378 (6)
H150.03190.30570.70290.045*
C160.2756 (3)0.28095 (8)0.46096 (15)0.0328 (5)
C170.3073 (3)0.22854 (9)0.43651 (16)0.0395 (6)
H170.27200.20310.48150.047*
C180.3878 (3)0.21401 (9)0.34914 (16)0.0422 (6)
H180.40740.17900.33500.051*
C190.4409 (3)0.25149 (10)0.28090 (15)0.0399 (6)
C200.4180 (3)0.30278 (9)0.30103 (16)0.0416 (6)
H200.45570.32760.25510.050*
C210.3383 (3)0.31794 (8)0.39026 (15)0.0369 (6)
O90.0494 (4)0.40305 (9)0.69916 (19)0.1115 (9)
N60.1713 (4)0.45169 (10)0.63236 (18)0.0768 (8)
C220.1049 (6)0.40784 (14)0.6656 (3)0.0893 (11)
H220.18120.37840.66340.107*
C230.3551 (6)0.45456 (16)0.5973 (3)0.1173 (14)
H23A0.43260.48040.63220.176*
H23B0.33810.46380.53140.176*
H23C0.41800.42150.60470.176*
C240.0549 (7)0.49820 (13)0.6358 (3)0.1208 (15)
H24A0.07640.48860.64100.181*
H24B0.06120.51800.57900.181*
H24C0.10300.51870.68970.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.102 (2)0.0717 (17)0.180 (3)0.0275 (16)0.045 (2)0.0008 (15)
O20.135 (2)0.0456 (13)0.112 (2)0.0045 (14)0.0084 (15)0.0110 (12)
O30.0558 (12)0.0400 (10)0.0708 (13)0.0007 (8)0.0213 (9)0.0056 (8)
O40.0639 (12)0.0412 (10)0.0338 (10)0.0060 (8)0.0045 (8)0.0006 (7)
O50.1153 (18)0.0451 (11)0.0545 (13)0.0002 (11)0.0108 (11)0.0054 (9)
O60.149 (2)0.0464 (12)0.0824 (16)0.0004 (12)0.0387 (14)0.0212 (11)
O70.0740 (15)0.1008 (16)0.0404 (12)0.0017 (12)0.0079 (9)0.0062 (11)
O80.1045 (18)0.0769 (15)0.0566 (13)0.0332 (13)0.0032 (11)0.0189 (11)
N10.097 (2)0.0460 (16)0.0729 (18)0.0135 (16)0.0043 (16)0.0012 (12)
N20.0409 (12)0.0430 (11)0.0319 (11)0.0011 (9)0.0010 (9)0.0047 (9)
N30.0467 (12)0.0362 (11)0.0319 (11)0.0010 (9)0.0000 (9)0.0020 (9)
N40.0667 (16)0.0438 (13)0.0523 (15)0.0015 (11)0.0053 (12)0.0082 (12)
N50.0469 (14)0.0755 (17)0.0388 (14)0.0132 (12)0.0063 (10)0.0030 (13)
C10.0473 (16)0.0473 (15)0.0415 (15)0.0026 (12)0.0025 (11)0.0037 (12)
C20.0639 (19)0.0410 (15)0.0450 (17)0.0071 (14)0.0052 (13)0.0016 (12)
C30.077 (2)0.0519 (18)0.0539 (19)0.0104 (16)0.0016 (15)0.0077 (13)
C40.062 (2)0.070 (2)0.068 (2)0.0091 (17)0.0191 (15)0.0023 (15)
C50.061 (2)0.0522 (17)0.069 (2)0.0006 (14)0.0188 (15)0.0019 (13)
C60.0490 (16)0.0411 (15)0.0430 (16)0.0020 (12)0.0031 (12)0.0020 (11)
C70.0482 (17)0.0528 (16)0.0480 (17)0.0018 (12)0.0074 (12)0.0103 (12)
C80.0490 (16)0.0556 (16)0.0312 (14)0.0055 (12)0.0013 (11)0.0049 (12)
C90.0328 (13)0.0403 (14)0.0366 (14)0.0023 (11)0.0043 (10)0.0042 (11)
C100.0389 (15)0.0537 (16)0.0354 (14)0.0024 (12)0.0041 (11)0.0074 (12)
C110.0473 (16)0.0498 (17)0.0529 (18)0.0049 (13)0.0042 (13)0.0169 (13)
C120.0582 (18)0.0374 (15)0.064 (2)0.0034 (12)0.0084 (14)0.0043 (13)
C130.0460 (16)0.0433 (15)0.0428 (15)0.0003 (12)0.0032 (11)0.0005 (12)
C140.0348 (14)0.0402 (14)0.0303 (13)0.0031 (10)0.0039 (10)0.0040 (10)
C150.0387 (14)0.0415 (14)0.0329 (14)0.0077 (11)0.0026 (11)0.0007 (11)
C160.0320 (13)0.0387 (13)0.0284 (13)0.0031 (10)0.0062 (10)0.0009 (10)
C170.0397 (15)0.0419 (14)0.0363 (15)0.0046 (11)0.0018 (11)0.0043 (11)
C180.0432 (15)0.0420 (14)0.0419 (16)0.0079 (11)0.0065 (11)0.0029 (12)
C190.0365 (14)0.0557 (16)0.0272 (13)0.0083 (12)0.0023 (10)0.0014 (11)
C200.0350 (14)0.0542 (16)0.0351 (14)0.0008 (12)0.0027 (11)0.0109 (11)
C210.0361 (14)0.0383 (14)0.0362 (14)0.0007 (10)0.0031 (10)0.0045 (11)
O90.112 (2)0.1007 (19)0.124 (2)0.0024 (16)0.0246 (18)0.0270 (15)
N60.094 (2)0.0671 (18)0.0702 (19)0.0114 (16)0.0127 (15)0.0030 (13)
C220.101 (3)0.072 (3)0.094 (3)0.008 (2)0.008 (2)0.002 (2)
C230.113 (4)0.139 (4)0.102 (3)0.030 (3)0.023 (3)0.022 (2)
C240.166 (4)0.066 (2)0.133 (4)0.010 (3)0.029 (3)0.017 (2)
Geometric parameters (Å, º) top
O1—N11.213 (3)C9—C101.389 (3)
O2—N11.223 (3)C9—C141.399 (3)
O3—C61.358 (3)C10—C111.371 (3)
O3—C71.433 (3)C10—H100.9300
O4—C91.365 (3)C11—C121.381 (3)
O4—C81.428 (3)C11—H110.9300
O5—N41.229 (3)C12—C131.378 (3)
O6—N41.225 (3)C12—H120.9300
O7—N51.227 (3)C13—C141.395 (3)
O8—N51.216 (3)C13—H130.9300
N1—C21.469 (3)C14—C151.454 (3)
N2—C151.283 (3)C15—H150.9300
N2—N31.377 (2)C16—C171.406 (3)
N3—C161.351 (3)C16—C211.418 (3)
N3—H30.8600C17—C181.357 (3)
N4—C211.438 (3)C17—H170.9300
N5—C191.463 (3)C18—C191.389 (3)
C1—C61.381 (3)C18—H180.9300
C1—C21.382 (3)C19—C201.358 (3)
C1—H10.9300C20—C211.383 (3)
C2—C31.359 (4)C20—H200.9300
C3—C41.381 (4)O9—C221.231 (4)
C3—H3A0.9300N6—C221.327 (4)
C4—C51.373 (4)N6—C231.428 (4)
C4—H40.9300N6—C241.451 (4)
C5—C61.386 (3)C22—H220.9300
C5—H50.9300C23—H23A0.9600
C7—C81.489 (3)C23—H23B0.9600
C7—H7A0.9700C23—H23C0.9600
C7—H7B0.9700C24—H24A0.9600
C8—H8A0.9700C24—H24B0.9600
C8—H8B0.9700C24—H24C0.9600
C6—O3—C7118.32 (18)C10—C11—C12121.1 (2)
C9—O4—C8119.58 (17)C10—C11—H11119.4
O1—N1—O2123.5 (3)C12—C11—H11119.4
O1—N1—C2118.5 (3)C13—C12—C11119.6 (2)
O2—N1—C2118.0 (3)C13—C12—H12120.2
C15—N2—N3115.36 (18)C11—C12—H12120.2
C16—N3—N2119.21 (18)C12—C13—C14120.8 (2)
C16—N3—H3120.4C12—C13—H13119.6
N2—N3—H3120.4C14—C13—H13119.6
O6—N4—O5121.6 (2)C13—C14—C9118.3 (2)
O6—N4—C21118.4 (2)C13—C14—C15122.3 (2)
O5—N4—C21120.0 (2)C9—C14—C15119.4 (2)
O8—N5—O7123.8 (2)N2—C15—C14120.8 (2)
O8—N5—C19118.5 (2)N2—C15—H15119.6
O7—N5—C19117.7 (2)C14—C15—H15119.6
C6—C1—C2117.9 (2)N3—C16—C17120.18 (19)
C6—C1—H1121.0N3—C16—C21123.54 (19)
C2—C1—H1121.0C17—C16—C21116.3 (2)
C3—C2—C1123.6 (2)C18—C17—C16121.9 (2)
C3—C2—N1118.8 (3)C18—C17—H17119.0
C1—C2—N1117.6 (3)C16—C17—H17119.0
C2—C3—C4117.7 (3)C17—C18—C19119.8 (2)
C2—C3—H3A121.2C17—C18—H18120.1
C4—C3—H3A121.2C19—C18—H18120.1
C5—C4—C3120.8 (3)C20—C19—C18120.9 (2)
C5—C4—H4119.6C20—C19—N5119.3 (2)
C3—C4—H4119.6C18—C19—N5119.8 (2)
C4—C5—C6120.4 (3)C19—C20—C21119.6 (2)
C4—C5—H5119.8C19—C20—H20120.2
C6—C5—H5119.8C21—C20—H20120.2
O3—C6—C1124.5 (2)C20—C21—C16121.4 (2)
O3—C6—C5115.8 (2)C20—C21—N4116.8 (2)
C1—C6—C5119.7 (2)C16—C21—N4121.8 (2)
O3—C7—C8107.30 (19)C22—N6—C23122.0 (3)
O3—C7—H7A110.3C22—N6—C24118.2 (3)
C8—C7—H7A110.3C23—N6—C24119.8 (3)
O3—C7—H7B110.3O9—C22—N6125.3 (4)
C8—C7—H7B110.3O9—C22—H22117.4
H7A—C7—H7B108.5N6—C22—H22117.4
O4—C8—C7106.81 (19)N6—C23—H23A109.5
O4—C8—H8A110.4N6—C23—H23B109.5
C7—C8—H8A110.4H23A—C23—H23B109.5
O4—C8—H8B110.4N6—C23—H23C109.5
C7—C8—H8B110.4H23A—C23—H23C109.5
H8A—C8—H8B108.6H23B—C23—H23C109.5
O4—C9—C10124.3 (2)N6—C24—H24A109.5
O4—C9—C14115.00 (19)N6—C24—H24B109.5
C10—C9—C14120.7 (2)H24A—C24—H24B109.5
C11—C10—C9119.3 (2)N6—C24—H24C109.5
C11—C10—H10120.3H24A—C24—H24C109.5
C9—C10—H10120.3H24B—C24—H24C109.5
C15—N2—N3—C16178.9 (2)O4—C9—C14—C154.8 (3)
C6—C1—C2—C30.2 (4)C10—C9—C14—C15175.1 (2)
C6—C1—C2—N1179.5 (2)N3—N2—C15—C14178.20 (18)
O1—N1—C2—C3168.1 (3)C13—C14—C15—N20.1 (3)
O2—N1—C2—C311.6 (4)C9—C14—C15—N2178.2 (2)
O1—N1—C2—C112.5 (4)N2—N3—C16—C177.2 (3)
O2—N1—C2—C1167.8 (2)N2—N3—C16—C21172.49 (19)
C1—C2—C3—C40.6 (4)N3—C16—C17—C18177.7 (2)
N1—C2—C3—C4179.9 (2)C21—C16—C17—C182.0 (3)
C2—C3—C4—C50.2 (4)C16—C17—C18—C190.2 (3)
C3—C4—C5—C60.6 (4)C17—C18—C19—C201.7 (3)
C7—O3—C6—C16.1 (3)C17—C18—C19—N5179.6 (2)
C7—O3—C6—C5173.6 (2)O8—N5—C19—C20179.8 (2)
C2—C1—C6—O3179.1 (2)O7—N5—C19—C200.6 (3)
C2—C1—C6—C50.6 (3)O8—N5—C19—C181.5 (3)
C4—C5—C6—O3178.7 (2)O7—N5—C19—C18179.3 (2)
C4—C5—C6—C11.0 (4)C18—C19—C20—C210.9 (3)
C6—O3—C7—C8173.75 (19)N5—C19—C20—C21179.6 (2)
C9—O4—C8—C7174.20 (18)C19—C20—C21—C161.4 (3)
O3—C7—C8—O474.6 (2)C19—C20—C21—N4178.0 (2)
C8—O4—C9—C106.0 (3)N3—C16—C21—C20176.9 (2)
C8—O4—C9—C14173.93 (19)C17—C16—C21—C202.8 (3)
O4—C9—C10—C11178.0 (2)N3—C16—C21—N43.7 (3)
C14—C9—C10—C112.1 (3)C17—C16—C21—N4176.58 (19)
C9—C10—C11—C120.7 (3)O6—N4—C21—C200.7 (3)
C10—C11—C12—C132.2 (4)O5—N4—C21—C20179.3 (2)
C11—C12—C13—C141.0 (4)O6—N4—C21—C16179.9 (2)
C12—C13—C14—C91.7 (3)O5—N4—C21—C160.1 (3)
C12—C13—C14—C15176.6 (2)C23—N6—C22—O9177.9 (4)
O4—C9—C14—C13176.81 (19)C24—N6—C22—O90.4 (6)
C10—C9—C14—C133.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O50.862.012.623 (3)127
C15—H15···O90.932.513.421 (3)166
C8—H8A···O7i0.972.513.237 (3)132
C10—H10···O7i0.932.613.520 (3)168
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H17N5O8·C3H7NO
Mr540.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)6.9806 (12), 25.764 (4), 14.200 (2)
β (°) 96.318 (3)
V3)2538.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.920, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14295, 5198, 2638
Rint0.049
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.136, 1.00
No. of reflections5198
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O50.862.012.623 (3)127
C15—H15···O90.932.513.421 (3)166
C8—H8A···O7i0.972.513.237 (3)132
C10—H10···O7i0.932.613.520 (3)168
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds