Download citation
Download citation
link to html
The title compounds, μ-oxido-bis­[(tert-butyl­seleno­lato)bis­(η5-cyclo­penta­dien­yl)niobium(IV)] toluene solvate, [Nb2(C5H5)4(C4H9Se)2O]·C7H8, and μ-selenido-bis­[(tert-butyl­selenol­ato)bis­(η5-cyclo­penta­dien­yl)niobium(IV)], [Nb2(C5H5)4(C4H9Se)2Se], consist of niobium(IV) centres each bonded to two η5-coordinated cyclo­penta­dienyl groups and one tert-butyl­seleno­late ligand and are the first organometallic niobium seleno­lates to be structurally characterized. A bridging oxide or selenide completes the niobium coordination spheres of the discrete dinuclear mol­ecules. In the oxide, the O atom lies on an inversion centre, resulting in a linear Nb—O—Nb linkage, whereas the selenide has a bent bridging group [Nb—Se—Nb = 139.76 (2)°]. The difference is attributable to strong π bonding in the oxide case, although the effects on the Nb—C and Nb—SetBu bond lengths are small.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108025055/bm3060sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025055/bm3060Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025055/bm3060IIsup3.hkl
Contains datablock II

CCDC references: 707192; 707193

Comment top

Thiolate ligands (RS-) form complexes with most metals and metalloids. Much less is known about the corresponding compounds with the heavier chalcogens, the selenolates (RSe-) and tellurolates (RTe-) (Arnold, 1995). Current interest in selenolates derives from the observation that they can be useful precursors in the synthesis of metal selenide materials by chemical vapour deposition (CVD). The early transition metal diselenides adopt layered CdI2-type structures with various stacking sequences and are potential sensor and photovoltaic materials, as well as being useful solid lubricants. NbSe2 is a low-dimensional superconductor (Frindt, 1972) and has previously been deposited under CVD conditions from NbCl5 and tBu2Se (Boscher et al., 2006). [(η5-Cp)2M(SetBu)2] complexes (M = Ti, Zr or Hf) were recently shown to deposit MSe2 films by CVD (Hector et al., 2008). The title compounds were derived from attempts to crystallize the very air-sensitive [(η5-Cp)2Nb(SetBu)2] complex for use in the CVD of NbSe2.

Only two niobium selenolates have been structurally characterized to date. These are the [Se3Nb(SetBu)]- anion (Lorenz & Fenske, 2001) and a copper–niobium cluster, [{Et3PCu(µ-SePh)3}2Nb] (Feuerhake & Fenske, 2003). [(η5-Cp)2Nb(SePh)2] (Sato & Yoshida, 1975) and [Nb(SePh)3] (Andrä, 1970) have also been reported but without structural characterization.

Blue crystals of the title compounds were isolated from solutions of [(η5-Cp)2Nb(SetBu)2], presumably as minor by-product phases due to hydrolysis by trace water or condensation of two of the selenolate groups with elimination of tBu2Se. Crystals of [{(η5-Cp)2(SetBu)Nb}2(µ-O)].C7H8, (I), are needle-shaped [From the Co-Editor: A needle has one dimension >> the other two, so may not be appropriate?], whereas those of [{(η5-Cp)2(SetBu)Nb}2(µ-Se)], (II), are blocks. The discrete molecules are bimetallic, with oxide or selenide bridges between the two Nb atoms. The remainder of the Nb coordination environment shows a typical metallocene geometry, each with two η5-coordinated Cp rings and one tert-butylselenolate group. The Nb—C distances are in the ranges 2.403 (2)–2.487 (2) Å in (I) and 2.387 (5)–2.477 (4) Å in (II). The C—C distances are normal and similar to those observed in bis(η5-Cp) selenolates of zirconium and hafnium (Hector et al., 2008).

The most striking difference between the structures of (I) and (II) is the geometry of the bridging atom between the two Nb centres. The oxide in (I) forms a linear Nb—O—Nb linkage, whereas the corresponding angle in the selenide in (II) is markedly bent [139.76 (2)°]. This difference can be attributed to a high level of π(O)—Nb bonding in the oxide case that is not present with selenide (i.e. in simple terms the selenide has a stereochemically active lone pair). In [{(η5-Cp)2(SeMe)Zr}2(µ-O)], the Zr—O—Zr angle is 173.92 (9)° (Hector et al., 2008).

The selenolate Nb—Se distance in (I) [2.6307 (4) Å] is shorter than those in [{(η5-Cp)2(SeMe)Zr}2(µ-O)] [2.6645 (5)/2.6689 (5) Å] by the amount expected from the ionic radii of Nb4+ and Zr4+ (Shannon, 1976). In (II) this distance is longer [2.6630 (11)/2.6326 (11) Å], reflecting the strong π-donation from the bridging oxide. The Nb—Se—C angles of 115.38 (6)° (I) and 115.22 (14)/117.06 (14)° (II) are wider than those observed in [{(η5-Cp)2(SeMe)Zr}2(µ-O)] [103.71 (6)/104.31 (7)°] or [(η5-Cp)2Hf(SeMe)2] [105.37 (15)°], as expected due to the steric bulk of the tert-butyl groups, but not as wide as in [(η5-Cp)2Zr(SetBu)2] [127.4 (3)°], where two tert-butylselenolate groups are in close proximity.

From the Co-Editor: In (II) there is a very short intermolecular H12···H12 contact of only 2.08 Å - please check.

Related literature top

For related literature, see: Andrä (1970); Arnold (1995); Boscher et al. (2006); Feuerhake & Fenske (2003); Frindt (1972); Hector et al. (2008); Lorenz & Fenske (2001); Sato & Yoshida (1975); Shannon (1976).

Experimental top

LiSetBu was produced by dissolving tBuLi [Quantity?] and Se powder [Quantity?] in tetrahydrofuran–pentane [Ratio of solvents? Volume?]. LiSetBu (10 mmol) was added to a suspension of [Cp2NbCl2] (1.0 g, 3.52 mmol) in toluene (20 ml) and the mixture stirred for 2 h. The solvent was removed at reduced pressure and the resulting dark-blue solid extracted with Et2O and then filtered through Celite. The solvent volume was reduced to ca 10 ml and dark-blue crystals of (II) were isolated by decantation (yield 147 mg). Attempts to crystallize further material from the cold supernatant solutions resulted in crystals of (I).

Refinement top

H atoms were placed in calculated positions, with C—H = 0.95 (Cp) or 0.98 Å (methyl). Uiso(H) values for methyl H atoms were set at 1.5Ueq(C) and the rest at 1.2Ueq(C). For (I), the disordered toluene solvent was modelled as two overlapping orientations related by a centre of symmetry.

From the Co-Editor: The methyl H atoms in toluene cannot be placed in calculated positions: they must be located in a difference Fourier synthesis and refined as part of a rigid rotating group. From the Co-Editor: Please supply a complete file of structure factors for (II).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The discrete centrosymmetric molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (a) 2 - x, - y, 2 - z.] [From the Co-Editor: You need to mention the omission of the toluene solvent molecule. More generally, ensure that you use "(I)" consistently to identify the solvate throughout the text.]
[Figure 2] Fig. 2. The discrete molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
(I) µ-oxido-bis[(tert-butylselenolato)bis(η5-cyclopentadienyl)niobium(IV)] toluene solvate top
Crystal data top
[Nb2(C5H5)4(C4H9Se)2O]·C7H8F(000) = 828
Mr = 826.46Dx = 1.689 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24097 reflections
a = 8.0288 (10) Åθ = 2.9–27.5°
b = 12.7685 (15) ŵ = 2.97 mm1
c = 15.873 (2) ÅT = 120 K
β = 92.848 (6)°Needle, blue
V = 1625.3 (3) Å30.14 × 0.06 × 0.02 mm
Z = 2
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
3729 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3323 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 810
Tmin = 0.731, Tmax = 0.940k = 1616
21963 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0086P)2 + 1.6817P]
where P = (Fo2 + 2Fc2)/3
3729 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Nb2(C5H5)4(C4H9Se)2O]·C7H8V = 1625.3 (3) Å3
Mr = 826.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.0288 (10) ŵ = 2.97 mm1
b = 12.7685 (15) ÅT = 120 K
c = 15.873 (2) Å0.14 × 0.06 × 0.02 mm
β = 92.848 (6)°
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
3729 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3323 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.940Rint = 0.030
21963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.17Δρmax = 0.44 e Å3
3729 reflectionsΔρmin = 0.57 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.86675 (2)0.045165 (15)0.902140 (12)0.01596 (6)
Se11.16711 (3)0.088095 (17)0.852676 (13)0.01894 (6)
O11.00000.00001.00000.0175 (4)
C10.8267 (3)0.23334 (18)0.88319 (15)0.0280 (5)
H10.89040.26990.84380.034*
C20.6699 (3)0.1887 (2)0.86687 (16)0.0332 (6)
H20.60770.19000.81440.040*
C30.6197 (3)0.14135 (19)0.94186 (17)0.0311 (6)
H30.51830.10450.94830.037*
C40.7445 (3)0.15800 (18)1.00495 (15)0.0245 (5)
H40.74260.13541.06190.029*
C50.8736 (3)0.21437 (17)0.96879 (14)0.0217 (5)
H50.97480.23600.99710.026*
C60.7174 (3)0.03132 (19)0.77639 (15)0.0265 (5)
H60.67450.01260.73210.032*
C70.6332 (3)0.06054 (19)0.84833 (16)0.0280 (5)
H70.52330.04020.86100.034*
C80.7408 (3)0.12557 (18)0.89862 (15)0.0267 (5)
H80.71680.15630.95120.032*
C90.8900 (3)0.13632 (17)0.85629 (14)0.0235 (5)
H90.98440.17620.87540.028*
C100.8760 (3)0.07818 (18)0.78117 (14)0.0229 (5)
H100.95890.07170.74080.028*
C111.1745 (3)0.16368 (18)0.74104 (14)0.0219 (5)
C121.3076 (3)0.1089 (2)0.69162 (15)0.0300 (5)
H12A1.27550.03570.68190.045*
H12B1.41470.11170.72390.045*
H12C1.31790.14420.63730.045*
C131.0094 (3)0.16079 (19)0.68959 (14)0.0256 (5)
H13A0.92260.19390.72170.038*
H13B0.97860.08790.67740.038*
H13C1.02080.19870.63650.038*
C141.2255 (3)0.27681 (19)0.75989 (15)0.0284 (5)
H14A1.23880.31430.70680.043*
H14B1.33140.27760.79340.043*
H14C1.13910.31110.79160.043*
C150.930 (3)0.073 (3)0.540 (2)0.038 (3)0.50
H150.95000.13980.56520.046*0.50
C160.7745 (8)0.0246 (4)0.5405 (4)0.0386 (13)0.50
H160.68450.05940.56520.046*0.50
C170.750 (5)0.069 (3)0.507 (2)0.0479 (19)0.50
H170.64280.10000.50900.058*0.50
C180.8708 (9)0.1250 (4)0.4686 (3)0.0435 (15)0.50
H180.85060.19200.44420.052*0.50
C15A1.028 (3)0.075 (3)0.4684 (19)0.038 (3)0.50
H15A1.11660.11100.44320.046*0.50
C191.0579 (7)0.0164 (4)0.5009 (3)0.0360 (13)0.50
C17A1.239 (5)0.069 (3)0.499 (3)0.0479 (19)0.50
H17A1.26030.11010.55100.072*0.50
H17B1.32360.01450.49580.072*0.50
H17C1.24300.11550.45020.072*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.01481 (10)0.01642 (10)0.01657 (10)0.00070 (7)0.00005 (7)0.00092 (7)
Se10.01581 (11)0.02261 (12)0.01830 (11)0.00004 (9)0.00005 (8)0.00289 (8)
O10.0135 (10)0.0206 (11)0.0184 (10)0.0021 (9)0.0021 (8)0.0019 (8)
C10.0378 (14)0.0204 (11)0.0262 (12)0.0093 (10)0.0053 (10)0.0011 (9)
C20.0350 (14)0.0297 (13)0.0334 (14)0.0178 (11)0.0138 (11)0.0106 (11)
C30.0166 (11)0.0261 (12)0.0509 (16)0.0053 (10)0.0041 (10)0.0116 (11)
C40.0251 (12)0.0228 (11)0.0262 (12)0.0032 (10)0.0058 (9)0.0021 (9)
C50.0230 (11)0.0167 (10)0.0253 (12)0.0053 (9)0.0003 (9)0.0037 (9)
C60.0286 (13)0.0255 (12)0.0244 (12)0.0019 (10)0.0073 (10)0.0063 (9)
C70.0188 (11)0.0286 (12)0.0364 (14)0.0055 (10)0.0001 (10)0.0120 (10)
C80.0318 (13)0.0218 (11)0.0267 (12)0.0100 (10)0.0020 (10)0.0030 (9)
C90.0260 (12)0.0186 (11)0.0255 (12)0.0014 (10)0.0033 (9)0.0051 (9)
C100.0238 (12)0.0240 (11)0.0209 (11)0.0012 (9)0.0002 (9)0.0078 (9)
C110.0223 (11)0.0253 (12)0.0183 (11)0.0015 (9)0.0020 (8)0.0028 (9)
C120.0294 (13)0.0371 (14)0.0242 (12)0.0032 (11)0.0068 (10)0.0016 (10)
C130.0262 (12)0.0300 (13)0.0203 (11)0.0007 (10)0.0012 (9)0.0047 (9)
C140.0328 (13)0.0255 (12)0.0268 (12)0.0040 (11)0.0010 (10)0.0047 (10)
C150.059 (10)0.036 (2)0.021 (5)0.023 (8)0.008 (6)0.001 (3)
C160.048 (3)0.032 (3)0.035 (3)0.009 (3)0.005 (3)0.004 (2)
C170.060 (4)0.0447 (18)0.039 (4)0.005 (3)0.005 (3)0.009 (2)
C180.071 (4)0.028 (3)0.030 (3)0.014 (3)0.011 (3)0.001 (2)
C15A0.059 (10)0.036 (2)0.021 (5)0.023 (8)0.008 (6)0.001 (3)
C190.051 (4)0.032 (3)0.024 (2)0.012 (3)0.000 (3)0.007 (2)
C17A0.060 (4)0.0447 (18)0.039 (4)0.005 (3)0.005 (3)0.009 (2)
Geometric parameters (Å, º) top
Nb1—O11.9300 (3)C7—H70.9500
Nb1—Se12.6307 (4)C8—C91.409 (3)
Se1—C112.021 (2)C8—H80.9500
C11—C121.526 (3)C9—C101.404 (3)
C11—C131.523 (3)C9—H90.9500
C11—C141.527 (3)C10—H100.9500
Nb1—C82.403 (2)C12—H12A0.9800
Nb1—C52.405 (2)C12—H12B0.9800
Nb1—C42.421 (2)C12—H12C0.9800
Nb1—C72.431 (2)C13—H13A0.9800
Nb1—C92.439 (2)C13—H13B0.9800
Nb1—C12.441 (2)C13—H13C0.9800
Nb1—C32.442 (2)C14—H14A0.9800
Nb1—C22.466 (2)C14—H14B0.9800
Nb1—C62.477 (2)C14—H14C0.9800
Nb1—C102.487 (2)C15—C161.40 (3)
O1—Nb1i1.9300 (3)C15—C191.42 (3)
C1—C21.394 (4)C15—H150.9500
C1—C51.413 (3)C16—C171.33 (4)
C1—H10.9500C16—H160.9500
C2—C31.412 (4)C17—C181.36 (4)
C2—H20.9500C17—H170.9500
C3—C41.398 (3)C18—C15A1.41 (3)
C3—H30.9500C18—H180.9500
C4—C51.407 (3)C15A—C191.30 (4)
C4—H40.9500C15A—H15A0.9500
C5—H50.9500C19—C17A1.60 (4)
C6—C101.405 (3)C17A—H17A0.9800
C6—C71.406 (4)C17A—H17B0.9800
C6—H60.9500C17A—H17C0.9800
C7—C81.416 (3)
Nb1—O1—Nb1i180Nb1—C3—H3119.3
O1—Nb1—Se179.791 (11)C3—C4—C5107.6 (2)
C11—Se1—Nb1115.38 (6)C3—C4—Nb174.15 (14)
O1—Nb1—C887.90 (6)C5—C4—Nb172.43 (13)
O1—Nb1—C585.11 (5)C3—C4—H4126.2
C8—Nb1—C5145.65 (8)C5—C4—H4126.2
O1—Nb1—C482.08 (6)Nb1—C4—H4119.1
C8—Nb1—C4111.80 (8)C4—C5—C1108.3 (2)
C5—Nb1—C433.90 (8)C4—C5—Nb173.67 (13)
O1—Nb1—C7120.27 (6)C1—C5—Nb174.44 (13)
C8—Nb1—C734.06 (8)C4—C5—H5125.9
C5—Nb1—C7130.82 (8)C1—C5—H5125.9
C4—Nb1—C7103.64 (8)Nb1—C5—H5118.0
O1—Nb1—C984.76 (5)C10—C6—C7108.3 (2)
C8—Nb1—C933.84 (8)C10—C6—Nb173.95 (13)
C5—Nb1—C9169.87 (8)C7—C6—Nb171.54 (13)
C4—Nb1—C9143.73 (8)C10—C6—H6125.8
C7—Nb1—C955.72 (8)C7—C6—H6125.8
O1—Nb1—C1117.24 (6)Nb1—C6—H6120.4
C8—Nb1—C1146.88 (9)C6—C7—C8108.0 (2)
C5—Nb1—C133.89 (8)C6—C7—Nb175.18 (13)
C4—Nb1—C156.07 (8)C8—C7—Nb171.87 (13)
C7—Nb1—C1114.11 (9)C6—C7—H7126.0
C9—Nb1—C1155.52 (8)C8—C7—H7126.0
O1—Nb1—C3111.55 (7)Nb1—C7—H7118.8
C8—Nb1—C396.66 (9)C9—C8—C7107.3 (2)
C5—Nb1—C355.65 (8)C9—C8—Nb174.49 (13)
C4—Nb1—C333.40 (8)C7—C8—Nb174.06 (13)
C7—Nb1—C375.38 (8)C9—C8—H8126.3
C9—Nb1—C3129.06 (8)C7—C8—H8126.3
C1—Nb1—C355.46 (9)Nb1—C8—H8117.2
O1—Nb1—C2136.73 (6)C10—C9—C8108.6 (2)
C8—Nb1—C2113.89 (9)C10—C9—Nb175.35 (13)
C5—Nb1—C255.43 (8)C8—C9—Nb171.67 (13)
C4—Nb1—C255.54 (8)C10—C9—H9125.7
C7—Nb1—C281.87 (9)C8—C9—H9125.7
C9—Nb1—C2134.12 (8)Nb1—C9—H9119.1
C1—Nb1—C232.99 (9)C9—C10—C6107.8 (2)
C3—Nb1—C233.43 (9)C9—C10—Nb171.55 (13)
O1—Nb1—C6139.23 (6)C6—C10—Nb173.17 (13)
C8—Nb1—C655.76 (8)C9—C10—H10126.1
C5—Nb1—C6135.08 (8)C6—C10—H10126.1
C4—Nb1—C6125.57 (8)Nb1—C10—H10120.9
C7—Nb1—C633.28 (9)C13—C11—C12109.04 (19)
C9—Nb1—C654.98 (8)C13—C11—C14110.22 (19)
C1—Nb1—C6103.48 (8)C12—C11—C14110.3 (2)
C3—Nb1—C692.27 (8)C13—C11—Se1113.31 (15)
C2—Nb1—C680.28 (8)C12—C11—Se1106.49 (15)
O1—Nb1—C10113.30 (5)C14—C11—Se1107.41 (15)
C8—Nb1—C1055.68 (8)C11—C12—H12A109.5
C5—Nb1—C10155.16 (8)C11—C12—H12B109.5
C4—Nb1—C10157.79 (8)H12A—C12—H12B109.5
C7—Nb1—C1055.20 (8)C11—C12—H12C109.5
C9—Nb1—C1033.11 (8)H12A—C12—H12C109.5
C1—Nb1—C10122.47 (8)H12B—C12—H12C109.5
C3—Nb1—C10124.99 (8)C11—C13—H13A109.5
C2—Nb1—C10109.80 (8)C11—C13—H13B109.5
C6—Nb1—C1032.88 (8)H13A—C13—H13B109.5
C8—Nb1—Se1124.97 (6)C11—C13—H13C109.5
C5—Nb1—Se186.73 (6)H13A—C13—H13C109.5
C4—Nb1—Se1119.04 (6)H13B—C13—H13C109.5
C7—Nb1—Se1135.52 (6)C11—C14—H14A109.5
C9—Nb1—Se191.37 (6)C11—C14—H14B109.5
C1—Nb1—Se182.84 (6)H14A—C14—H14B109.5
C3—Nb1—Se1137.78 (6)C11—C14—H14C109.5
C2—Nb1—Se1111.34 (7)H14A—C14—H14C109.5
C6—Nb1—Se1104.82 (6)H14B—C14—H14C109.5
C10—Nb1—Se180.71 (6)C16—C15—C19116 (3)
C2—C1—C5107.7 (2)C16—C15—H15121.9
C2—C1—Nb174.50 (14)C19—C15—H15121.9
C5—C1—Nb171.67 (13)C17—C16—C15121 (2)
C2—C1—H1126.2C17—C16—H16119.6
C5—C1—H1126.2C15—C16—H16119.6
Nb1—C1—H1119.5C16—C17—C18124 (3)
C1—C2—C3108.2 (2)C16—C17—H17118.0
C1—C2—Nb172.50 (13)C18—C17—H17118.0
C3—C2—Nb172.36 (13)C17—C18—C15A115 (2)
C1—C2—H2125.9C17—C18—H18122.5
C3—C2—H2125.9C15A—C18—H18122.5
Nb1—C2—H2121.0C19—C15A—C18123.5 (19)
C4—C3—C2108.3 (2)C19—C15A—H15A118.2
C4—C3—Nb172.46 (13)C18—C15A—H15A118.2
C2—C3—Nb174.21 (14)C15A—C19—C15120.7 (19)
C4—C3—H3125.8C15A—C19—C17A121.6 (18)
C2—C3—H3125.8C15—C19—C17A118 (2)
Symmetry code: (i) x+2, y, z+2.
(II) µ-selenido-bis[(tert-butylselenolato)bis(η5-cyclopentadienyl)niobium(IV)] top
Crystal data top
[Nb2(C5H5)4(C4H9Se)2Se]F(000) = 3120
Mr = 797.28Dx = 1.860 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10429 reflections
a = 31.583 (8) Åθ = 2.9–27.5°
b = 7.9548 (15) ŵ = 4.66 mm1
c = 26.520 (7) ÅT = 120 K
β = 121.29 (2)°Block, blue
V = 5694 (3) Å30.12 × 0.09 × 0.06 mm
Z = 8
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
6538 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode4694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 4040
Tmin = 0.514, Tmax = 0.756k = 1010
31432 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0168P)2 + 15.270P]
where P = (Fo2 + 2Fc2)/3
6538 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.79 e Å3
1 restraintΔρmin = 0.82 e Å3
Crystal data top
[Nb2(C5H5)4(C4H9Se)2Se]V = 5694 (3) Å3
Mr = 797.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.583 (8) ŵ = 4.66 mm1
b = 7.9548 (15) ÅT = 120 K
c = 26.520 (7) Å0.12 × 0.09 × 0.06 mm
β = 121.29 (2)°
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
6538 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4694 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.756Rint = 0.083
31432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.075H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0168P)2 + 15.270P]
where P = (Fo2 + 2Fc2)/3
6538 reflectionsΔρmax = 0.79 e Å3
298 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.063734 (15)0.52132 (5)0.144254 (19)0.01341 (10)
Nb20.198133 (15)0.32688 (5)0.125843 (18)0.01238 (10)
Se10.134400 (17)0.44206 (6)0.25388 (2)0.01579 (11)
Se20.134871 (17)0.52506 (5)0.12505 (2)0.01444 (11)
Se30.124085 (18)0.23327 (6)0.02186 (2)0.01689 (12)
C10.11269 (18)0.3866 (6)0.3112 (2)0.0188 (11)
C20.16075 (19)0.3821 (7)0.3716 (2)0.0288 (13)
H2A0.18270.29500.37170.043*
H2B0.15300.35690.40220.043*
H2C0.17720.49160.37970.043*
C30.07857 (19)0.5230 (6)0.3110 (2)0.0258 (12)
H3A0.04780.52530.27240.039*
H3B0.09510.63250.31870.039*
H3C0.07100.49870.34170.039*
C40.0873 (2)0.2148 (6)0.2982 (2)0.0266 (12)
H4A0.05640.21790.25970.040*
H4B0.07990.18760.32880.040*
H4C0.10940.12890.29780.040*
C50.14054 (18)0.0507 (5)0.0190 (2)0.0189 (11)
C60.19286 (18)0.0164 (6)0.0181 (2)0.0226 (12)
H6A0.19750.06530.05450.034*
H6B0.21650.07570.02780.034*
H6C0.19840.10290.00420.034*
C70.1325 (2)0.1278 (6)0.0755 (2)0.0286 (13)
H7A0.09850.17030.09900.043*
H7B0.13790.04220.09820.043*
H7C0.15580.22060.06600.043*
C80.10316 (19)0.0903 (6)0.0334 (2)0.0279 (13)
H8A0.06950.04560.05750.042*
H8B0.10770.13660.00340.042*
H8C0.10830.17910.05520.042*
C90.04568 (17)0.2209 (5)0.1467 (2)0.0169 (11)
H90.06740.15080.17890.020*
C100.00674 (17)0.3205 (5)0.1427 (2)0.0175 (11)
H100.00170.33120.17220.021*
C110.01703 (18)0.4002 (6)0.0874 (2)0.0244 (12)
H110.04490.47280.07220.029*
C120.00814 (19)0.3526 (5)0.0591 (2)0.0260 (13)
H120.00020.38910.02100.031*
C130.04664 (19)0.2436 (5)0.0952 (2)0.0217 (12)
H130.06940.19390.08640.026*
C140.05650 (18)0.7993 (5)0.1043 (2)0.0169 (11)
H140.06320.81450.07350.020*
C150.09097 (18)0.8104 (5)0.1654 (2)0.0165 (11)
H150.12530.83480.18300.020*
C160.06628 (19)0.7796 (5)0.1961 (2)0.0220 (12)
H160.08080.78060.23770.026*
C170.0164 (2)0.7471 (6)0.1541 (3)0.0258 (13)
H170.00880.72030.16220.031*
C180.01032 (19)0.7614 (6)0.0975 (2)0.0240 (12)
H180.01990.74760.06090.029*
C190.17465 (18)0.1478 (5)0.1818 (2)0.0189 (11)
H190.14330.16150.17810.023*
C200.21813 (18)0.2346 (6)0.2217 (2)0.0187 (11)
H200.22140.31700.24950.022*
C210.25566 (19)0.1768 (6)0.2129 (2)0.0200 (11)
H210.28930.21150.23450.024*
C220.23512 (17)0.0582 (5)0.1664 (2)0.0169 (11)
H220.25210.00240.15040.020*
C230.18491 (18)0.0382 (5)0.1484 (2)0.0173 (11)
H230.16210.03650.11880.021*
C240.27442 (17)0.4879 (6)0.1641 (2)0.0204 (11)
H240.29790.48890.20530.024*
C250.23515 (18)0.5995 (6)0.1337 (2)0.0206 (11)
H250.22740.69100.15050.025*
C260.20886 (19)0.5536 (6)0.0736 (2)0.0224 (12)
H260.18000.60700.04300.027*
C270.23307 (19)0.4147 (6)0.0675 (2)0.0221 (12)
H270.22370.35820.03170.027*
C280.27310 (18)0.3733 (6)0.1229 (2)0.0230 (12)
H280.29560.28330.13130.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0124 (2)0.0117 (2)0.0151 (2)0.00047 (17)0.00641 (19)0.00036 (17)
Nb20.0131 (2)0.0117 (2)0.0123 (2)0.00000 (16)0.00653 (19)0.00005 (17)
Se10.0136 (3)0.0200 (3)0.0144 (3)0.00012 (19)0.0077 (2)0.0003 (2)
Se20.0157 (3)0.0132 (2)0.0150 (2)0.00153 (19)0.0084 (2)0.00067 (19)
Se30.0151 (3)0.0189 (3)0.0128 (3)0.0020 (2)0.0046 (2)0.0016 (2)
C10.021 (3)0.022 (3)0.016 (3)0.002 (2)0.012 (2)0.001 (2)
C20.027 (3)0.043 (3)0.016 (3)0.001 (3)0.010 (3)0.004 (2)
C30.027 (3)0.031 (3)0.030 (3)0.002 (2)0.023 (3)0.004 (2)
C40.032 (3)0.025 (3)0.026 (3)0.003 (2)0.018 (3)0.004 (2)
C50.020 (3)0.016 (3)0.020 (3)0.001 (2)0.010 (2)0.002 (2)
C60.025 (3)0.022 (3)0.020 (3)0.001 (2)0.011 (2)0.005 (2)
C70.031 (3)0.037 (3)0.016 (3)0.006 (3)0.011 (3)0.000 (2)
C80.029 (3)0.026 (3)0.030 (3)0.007 (2)0.017 (3)0.013 (2)
C90.019 (3)0.009 (2)0.022 (3)0.0036 (19)0.010 (2)0.003 (2)
C100.012 (3)0.019 (3)0.021 (3)0.007 (2)0.008 (2)0.004 (2)
C110.011 (3)0.016 (3)0.032 (3)0.007 (2)0.001 (3)0.004 (2)
C120.033 (3)0.020 (3)0.014 (3)0.013 (2)0.004 (3)0.002 (2)
C130.030 (3)0.009 (2)0.029 (3)0.005 (2)0.018 (3)0.004 (2)
C140.021 (3)0.008 (2)0.021 (3)0.0024 (19)0.011 (2)0.003 (2)
C150.015 (3)0.010 (2)0.022 (3)0.0010 (19)0.008 (2)0.002 (2)
C160.031 (3)0.011 (2)0.026 (3)0.002 (2)0.016 (3)0.001 (2)
C170.027 (3)0.014 (3)0.050 (4)0.002 (2)0.030 (3)0.003 (2)
C180.017 (3)0.016 (3)0.031 (3)0.008 (2)0.007 (3)0.002 (2)
C190.019 (3)0.020 (3)0.022 (3)0.002 (2)0.014 (2)0.007 (2)
C200.027 (3)0.016 (2)0.009 (2)0.006 (2)0.007 (2)0.0042 (19)
C210.017 (3)0.020 (3)0.019 (3)0.007 (2)0.007 (2)0.005 (2)
C220.017 (3)0.013 (2)0.021 (3)0.008 (2)0.010 (2)0.004 (2)
C230.022 (3)0.010 (2)0.020 (3)0.000 (2)0.011 (2)0.005 (2)
C240.014 (3)0.024 (3)0.021 (3)0.009 (2)0.008 (2)0.002 (2)
C250.021 (3)0.015 (3)0.034 (3)0.008 (2)0.020 (3)0.005 (2)
C260.023 (3)0.021 (3)0.024 (3)0.005 (2)0.013 (3)0.005 (2)
C270.030 (3)0.020 (3)0.028 (3)0.006 (2)0.023 (3)0.007 (2)
C280.016 (3)0.018 (3)0.043 (3)0.005 (2)0.021 (3)0.001 (2)
Geometric parameters (Å, º) top
Nb1—Se12.6630 (11)C7—H7B0.9800
Nb1—Se22.5488 (9)C7—H7C0.9800
Nb2—Se22.5366 (7)C8—H8A0.9800
Nb2—Se32.6326 (11)C8—H8B0.9800
Se1—C12.014 (5)C8—H8C0.9800
Se3—C52.034 (5)C9—C131.392 (6)
C1—C21.532 (7)C9—C101.421 (6)
C1—C31.527 (6)C9—H90.9500
C1—C41.530 (6)C10—C111.405 (7)
C5—C61.515 (6)C10—H100.9500
C5—C71.514 (6)C11—C121.400 (7)
C5—C81.526 (6)C11—H110.9500
Nb1—C112.390 (5)C12—C131.392 (7)
Nb1—C102.391 (4)C12—H120.9500
Nb1—C142.411 (4)C13—H130.9500
Nb1—C152.417 (4)C14—C181.406 (7)
Nb1—C182.420 (5)C14—C151.409 (6)
Nb1—C122.422 (5)C14—H140.9500
Nb1—C172.436 (5)C15—C161.411 (7)
Nb1—C162.450 (5)C15—H150.9500
Nb1—C92.465 (4)C16—C171.402 (7)
Nb1—C132.477 (4)C16—H160.9500
Nb2—C212.387 (5)C17—C181.417 (7)
Nb2—C202.395 (4)C17—H170.9500
Nb2—C262.402 (5)C18—H180.9500
Nb2—C222.405 (4)C19—C231.396 (6)
Nb2—C252.421 (4)C19—C201.405 (6)
Nb2—C272.422 (5)C19—H190.9500
Nb2—C192.434 (4)C20—C211.400 (7)
Nb2—C242.436 (4)C20—H200.9500
Nb2—C282.438 (5)C21—C221.414 (6)
Nb2—C232.462 (4)C21—H210.9500
C2—H2A0.9800C22—C231.408 (6)
C2—H2B0.9800C22—H220.9500
C2—H2C0.9800C23—H230.9500
C3—H3A0.9800C24—C251.392 (6)
C3—H3B0.9800C24—C281.408 (7)
C3—H3C0.9800C24—H240.9500
C4—H4A0.9800C25—C261.409 (7)
C4—H4B0.9800C25—H250.9500
C4—H4C0.9800C26—C271.400 (6)
C6—H6A0.9800C26—H260.9500
C6—H6B0.9800C27—C281.390 (7)
C6—H6C0.9800C27—H270.9500
C7—H7A0.9800C28—H280.9500
Nb2—Se2—Nb1139.76 (2)H3A—C3—H3B109.5
Se2—Nb1—Se183.97 (3)C1—C3—H3C109.5
Se2—Nb2—Se384.24 (3)H3A—C3—H3C109.5
C1—Se1—Nb1117.06 (14)H3B—C3—H3C109.5
C5—Se3—Nb2115.22 (14)C1—C4—H4A109.5
C3—C1—Se1111.0 (3)C1—C4—H4B109.5
C4—C1—Se1111.7 (3)H4A—C4—H4B109.5
C2—C1—Se1104.7 (3)C1—C4—H4C109.5
C6—C5—Se3113.6 (3)H4A—C4—H4C109.5
C7—C5—Se3106.3 (3)H4B—C4—H4C109.5
C8—C5—Se3106.2 (3)C6—C5—C7110.6 (4)
C11—Nb1—C1034.17 (16)C6—C5—C8110.2 (4)
C11—Nb1—C14105.42 (17)C7—C5—C8109.8 (4)
C10—Nb1—C14134.96 (16)C5—C6—H6A109.5
C11—Nb1—C15131.63 (16)C5—C6—H6B109.5
C10—Nb1—C15144.46 (16)H6A—C6—H6B109.5
C14—Nb1—C1533.94 (15)C5—C6—H6C109.5
C11—Nb1—C1876.30 (17)H6A—C6—H6C109.5
C10—Nb1—C18101.55 (16)H6B—C6—H6C109.5
C14—Nb1—C1833.84 (16)C5—C7—H7A109.5
C15—Nb1—C1855.78 (16)C5—C7—H7B109.5
C11—Nb1—C1233.83 (17)H7A—C7—H7B109.5
C10—Nb1—C1255.90 (16)C5—C7—H7C109.5
C14—Nb1—C12103.94 (16)H7A—C7—H7C109.5
C15—Nb1—C12137.88 (16)H7B—C7—H7C109.5
C18—Nb1—C1289.10 (17)C5—C8—H8A109.5
C11—Nb1—C1781.44 (18)C5—C8—H8B109.5
C10—Nb1—C1789.74 (16)H8A—C8—H8B109.5
C14—Nb1—C1756.51 (16)C5—C8—H8C109.5
C15—Nb1—C1755.83 (16)H8A—C8—H8C109.5
C18—Nb1—C1733.93 (16)H8B—C8—H8C109.5
C12—Nb1—C17108.69 (18)C13—C9—C10108.3 (4)
C11—Nb1—C16113.89 (17)C13—C9—Nb174.1 (3)
C10—Nb1—C16112.00 (16)C10—C9—Nb170.2 (2)
C14—Nb1—C1656.34 (16)C13—C9—H9125.8
C15—Nb1—C1633.70 (15)C10—C9—H9125.8
C18—Nb1—C1655.74 (17)Nb1—C9—H9121.6
C12—Nb1—C16141.68 (18)C11—C10—C9107.5 (4)
C17—Nb1—C1633.36 (16)C11—C10—Nb172.9 (3)
C11—Nb1—C955.96 (16)C9—C10—Nb175.9 (3)
C10—Nb1—C933.98 (15)C11—C10—H10126.2
C14—Nb1—C9158.42 (16)C9—C10—H10126.2
C15—Nb1—C9167.31 (16)Nb1—C10—H10117.1
C18—Nb1—C9131.99 (16)C12—C11—C10107.1 (4)
C12—Nb1—C954.66 (15)C12—C11—Nb174.3 (3)
C17—Nb1—C9123.27 (16)C10—C11—Nb173.0 (3)
C16—Nb1—C9137.65 (16)C12—C11—H11126.5
C11—Nb1—C1355.90 (17)C10—C11—H11126.5
C10—Nb1—C1355.85 (16)Nb1—C11—H11118.3
C14—Nb1—C13129.93 (16)C13—C12—C11109.6 (4)
C15—Nb1—C13157.61 (16)C13—C12—Nb175.7 (3)
C18—Nb1—C13122.05 (17)C11—C12—Nb171.8 (3)
C12—Nb1—C1333.00 (16)C13—C12—H12125.2
C17—Nb1—C13137.33 (17)C11—C12—H12125.2
C16—Nb1—C13167.79 (17)Nb1—C12—H12119.0
C9—Nb1—C1332.73 (15)C12—C13—C9107.4 (5)
C11—Nb1—Se2129.92 (13)C12—C13—Nb171.3 (3)
C10—Nb1—Se2137.60 (11)C9—C13—Nb173.2 (3)
C14—Nb1—Se278.08 (12)C12—C13—H13126.3
C15—Nb1—Se277.91 (11)C9—C13—H13126.3
C18—Nb1—Se2109.90 (13)Nb1—C13—H13121.0
C12—Nb1—Se296.18 (13)C18—C14—C15107.0 (4)
C17—Nb1—Se2131.82 (12)C18—C14—Nb173.4 (3)
C16—Nb1—Se2109.07 (12)C15—C14—Nb173.3 (2)
C9—Nb1—Se2104.84 (11)C18—C14—H14126.5
C13—Nb1—Se283.10 (12)C15—C14—H14126.5
C11—Nb1—Se1127.43 (13)Nb1—C14—H14118.8
C10—Nb1—Se193.27 (12)C14—C15—C16108.9 (4)
C14—Nb1—Se1122.10 (11)C14—C15—Nb172.8 (2)
C15—Nb1—Se188.66 (11)C16—C15—Nb174.4 (3)
C18—Nb1—Se1135.43 (13)C14—C15—H15125.5
C12—Nb1—Se1132.65 (11)C16—C15—H15125.5
C17—Nb1—Se1105.68 (14)Nb1—C15—H15119.0
C16—Nb1—Se179.71 (12)C17—C16—C15107.7 (5)
C9—Nb1—Se179.41 (11)C17—C16—Nb172.8 (3)
C13—Nb1—Se1101.11 (12)C15—C16—Nb171.9 (3)
C21—Nb2—C2034.05 (16)C17—C16—H16126.1
C21—Nb2—C26131.94 (17)C15—C16—H16126.1
C20—Nb2—C26143.47 (16)Nb1—C16—H16121.0
C21—Nb2—C2234.31 (15)C16—C17—C18107.7 (4)
C20—Nb2—C2256.88 (16)C16—C17—Nb173.8 (3)
C26—Nb2—C22138.06 (17)C18—C17—Nb172.4 (3)
C21—Nb2—C25105.89 (17)C16—C17—H17126.2
C20—Nb2—C25109.51 (16)C18—C17—H17126.2
C26—Nb2—C2533.97 (16)Nb1—C17—H17119.5
C22—Nb2—C25131.06 (16)C14—C18—C17108.7 (5)
C21—Nb2—C27113.02 (17)C14—C18—Nb172.7 (3)
C20—Nb2—C27144.07 (17)C17—C18—Nb173.7 (3)
C26—Nb2—C2733.74 (15)C14—C18—H18125.6
C22—Nb2—C27105.39 (16)C17—C18—H18125.6
C25—Nb2—C2755.72 (16)Nb1—C18—H18119.8
C21—Nb2—C1955.78 (17)C23—C19—C20109.1 (4)
C20—Nb2—C1933.82 (15)C23—C19—Nb274.6 (3)
C26—Nb2—C19165.82 (16)C20—C19—Nb271.6 (3)
C22—Nb2—C1955.81 (15)C23—C19—H19125.4
C25—Nb2—C19139.33 (16)C20—C19—H19125.4
C27—Nb2—C19160.37 (15)Nb2—C19—H19120.1
C21—Nb2—C2476.63 (17)C21—C20—C19107.0 (4)
C20—Nb2—C2493.46 (17)C21—C20—Nb272.7 (3)
C26—Nb2—C2455.97 (16)C19—C20—Nb274.6 (3)
C22—Nb2—C2497.77 (16)C21—C20—H20126.5
C25—Nb2—C2433.30 (15)C19—C20—H20126.5
C27—Nb2—C2455.56 (17)Nb2—C20—H20118.3
C19—Nb2—C24127.04 (17)C20—C21—C22108.7 (4)
C21—Nb2—C2880.95 (17)C20—C21—Nb273.3 (3)
C20—Nb2—C28110.85 (18)C22—C21—Nb273.5 (3)
C26—Nb2—C2855.78 (17)C20—C21—H21125.7
C22—Nb2—C2883.96 (16)C22—C21—H21125.7
C25—Nb2—C2855.48 (16)Nb2—C21—H21119.3
C27—Nb2—C2833.24 (16)C23—C22—C21107.3 (4)
C19—Nb2—C28135.80 (17)C23—C22—Nb275.4 (2)
C24—Nb2—C2833.58 (15)C21—C22—Nb272.1 (2)
C21—Nb2—C2355.86 (16)C23—C22—H22126.3
C20—Nb2—C2356.01 (15)C21—C22—H22126.3
C26—Nb2—C23158.81 (16)Nb2—C22—H22118.1
C22—Nb2—C2333.59 (15)C19—C23—C22107.8 (4)
C25—Nb2—C23161.75 (17)C19—C23—Nb272.3 (3)
C27—Nb2—C23127.93 (15)C22—C23—Nb271.0 (2)
C19—Nb2—C2333.11 (14)C19—C23—H23126.1
C24—Nb2—C23130.15 (16)C22—C23—H23126.1
C28—Nb2—C23116.05 (16)Nb2—C23—H23122.3
C21—Nb2—Se2121.30 (12)C25—C24—C28107.7 (4)
C20—Nb2—Se288.37 (12)C25—C24—Nb272.7 (3)
C26—Nb2—Se282.81 (12)C28—C24—Nb273.3 (3)
C22—Nb2—Se2138.89 (11)C25—C24—H24126.1
C25—Nb2—Se277.72 (11)C28—C24—H24126.1
C27—Nb2—Se2115.69 (12)Nb2—C24—H24119.7
C19—Nb2—Se283.15 (11)C24—C25—C26108.3 (4)
C24—Nb2—Se2106.32 (11)C24—C25—Nb274.0 (3)
C28—Nb2—Se2132.83 (11)C26—C25—Nb272.3 (3)
C23—Nb2—Se2110.45 (11)C24—C25—H25125.8
C21—Nb2—Se3133.43 (12)C26—C25—H25125.8
C20—Nb2—Se3128.80 (12)Nb2—C25—H25119.7
C26—Nb2—Se385.59 (12)C27—C26—C25107.4 (5)
C22—Nb2—Se3100.27 (11)C27—C26—Nb273.9 (3)
C25—Nb2—Se3118.04 (12)C25—C26—Nb273.7 (3)
C27—Nb2—Se382.20 (13)C27—C26—H26126.3
C19—Nb2—Se394.99 (12)C25—C26—H26126.3
C24—Nb2—Se3137.17 (12)Nb2—C26—H26118.0
C28—Nb2—Se3110.99 (13)C28—C27—C26108.5 (4)
C23—Nb2—Se379.64 (11)C28—C27—Nb274.0 (3)
C3—C1—C4110.3 (4)C26—C27—Nb272.3 (3)
C3—C1—C2109.5 (4)C28—C27—H27125.8
C4—C1—C2109.4 (4)C26—C27—H27125.8
C1—C2—H2A109.5Nb2—C27—H27119.7
C1—C2—H2B109.5C27—C28—C24108.1 (4)
H2A—C2—H2B109.5C27—C28—Nb272.8 (3)
C1—C2—H2C109.5C24—C28—Nb273.1 (3)
H2A—C2—H2C109.5C27—C28—H28126.0
H2B—C2—H2C109.5C24—C28—H28126.0
C1—C3—H3A109.5Nb2—C28—H28119.9
C1—C3—H3B109.5

Experimental details

(I)(II)
Crystal data
Chemical formula[Nb2(C5H5)4(C4H9Se)2O]·C7H8[Nb2(C5H5)4(C4H9Se)2Se]
Mr826.46797.28
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)120120
a, b, c (Å)8.0288 (10), 12.7685 (15), 15.873 (2)31.583 (8), 7.9548 (15), 26.520 (7)
β (°) 92.848 (6) 121.29 (2)
V3)1625.3 (3)5694 (3)
Z28
Radiation typeMo KαMo Kα
µ (mm1)2.974.66
Crystal size (mm)0.14 × 0.06 × 0.020.12 × 0.09 × 0.06
Data collection
DiffractometerBruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.731, 0.9400.514, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
21963, 3729, 3323 31432, 6538, 4694
Rint0.0300.083
(sin θ/λ)max1)0.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.051, 1.17 0.041, 0.075, 1.02
No. of reflections37296538
No. of parameters206298
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0086P)2 + 1.6817P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0168P)2 + 15.270P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.44, 0.570.79, 0.82

Computer programs: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (I) top
Nb1—O11.9300 (3)Se1—C112.021 (2)
Nb1—Se12.6307 (4)
Nb1—O1—Nb1i180C11—Se1—Nb1115.38 (6)
O1—Nb1—Se179.791 (11)
Symmetry code: (i) x+2, y, z+2.
Selected geometric parameters (Å, º) for (II) top
Nb1—Se12.6630 (11)Nb2—Se32.6326 (11)
Nb1—Se22.5488 (9)Se1—C12.014 (5)
Nb2—Se22.5366 (7)Se3—C52.034 (5)
Nb2—Se2—Nb1139.76 (2)C4—C1—Se1111.7 (3)
Se2—Nb1—Se183.97 (3)C2—C1—Se1104.7 (3)
Se2—Nb2—Se384.24 (3)C6—C5—Se3113.6 (3)
C1—Se1—Nb1117.06 (14)C7—C5—Se3106.3 (3)
C5—Se3—Nb2115.22 (14)C8—C5—Se3106.2 (3)
C3—C1—Se1111.0 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds