In bis(2-hydroxyethylammonium) oxalate, 2C2H8NO+·C2O42-, hydrogen bonds involving the hydroxy and ammonium groups connect the carboxyl O atoms of the oxalate anion into a three-dimensional network structure.
Supporting information
CCDC reference: 155883
Key indicators
- Single-crystal X-ray study
- T = 298 K
- Mean (C-C) = 0.005 Å
- R factor = 0.041
- wR factor = 0.114
- Data-to-parameter ratio = 12.5
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies
outside the range 0.99 <> 1.01
Calculated value of mu = 0.134
Value of mu given = 0.130
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(3) - C(3)a = 1.56 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check
An aqueous solution of oxalic acid was neutralized with aqueous ethanolamine to
pH 8. The solution was concentrated by evaporating the water. Crystals
deposited after cooling the solution to room temperature and these were washed
with ethanol and air-dried. A yellow form of the compound was obtained in the
attempt to prepare the 2-ethanolamine complex of cadmium(II) oxalate
(Jordanovska & Trojko, 1995) by refluxing cadmium oxalate and aqueous
2-ethanolamine in chloroform.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CELDIM in CAD-4 Software (Enraf-Nonius, 1989); data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Bis(2-hydroxyethylammonium) oxalate
top
Crystal data top
2C2H8NO+·C2O42− | F(000) = 456 |
Mr = 212.21 | Dx = 1.502 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.473 (5) Å | Cell parameters from 25 reflections |
b = 5.916 (2) Å | θ = 6.8–18.1° |
c = 10.346 (3) Å | µ = 0.13 mm−1 |
β = 118.69 (2)° | T = 298 K |
V = 938.2 (5) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.10 × 0.05 mm |
Data collection top
Enraf-Nonius CAD-4 diffractometer | Rint = 0.019 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.7° |
Graphite monochromator | h = −20→18 |
ω–2θ scans | k = 0→7 |
872 measured reflections | l = 0→12 |
822 independent reflections | 3 standard reflections every 120 min |
550 reflections with I > 2σ(I) | intensity decay: 7% |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0543P)2 + 0.712P] where P = (Fo2 + 2Fc2)/3 |
822 reflections | (Δ/σ)max < 0.001 |
66 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Crystal data top
2C2H8NO+·C2O42− | V = 938.2 (5) Å3 |
Mr = 212.21 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.473 (5) Å | µ = 0.13 mm−1 |
b = 5.916 (2) Å | T = 298 K |
c = 10.346 (3) Å | 0.20 × 0.10 × 0.05 mm |
β = 118.69 (2)° | |
Data collection top
Enraf-Nonius CAD-4 diffractometer | Rint = 0.019 |
872 measured reflections | 3 standard reflections every 120 min |
822 independent reflections | intensity decay: 7% |
550 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.24 e Å−3 |
822 reflections | Δρmin = −0.23 e Å−3 |
66 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.1537 (1) | 0.6481 (3) | 0.0628 (2) | 0.0338 (5) | |
O2 | 0.0660 (1) | 0.5873 (3) | 0.2176 (2) | 0.0332 (5) | |
O3 | 0.0482 (1) | 0.2157 (3) | 0.1781 (2) | 0.0280 (5) | |
N1 | 0.0888 (1) | 1.1050 (4) | −0.0510 (2) | 0.0271 (5) | |
C1 | 0.1810 (2) | 1.0305 (5) | 0.0172 (3) | 0.0289 (7) | |
C2 | 0.2000 (2) | 0.8480 (5) | 0.1294 (3) | 0.0296 (6) | |
C3 | 0.0330 (2) | 0.4006 (4) | 0.2193 (3) | 0.0215 (6) | |
H1 | 0.1246 | 0.6102 | 0.1022 | 0.051* | |
H1a | 0.0539 | 0.9873 | −0.0933 | 0.041* | |
H1b | 0.0792 | 1.2100 | −0.1187 | 0.041* | |
H1c | 0.0779 | 1.1625 | 0.0180 | 0.041* | |
H1d | 0.2189 | 1.1587 | 0.0642 | 0.035* | |
H1e | 0.1934 | 0.9747 | −0.0589 | 0.035* | |
H2a | 0.2621 | 0.8163 | 0.1800 | 0.036* | |
H2b | 0.1839 | 0.9000 | 0.2019 | 0.036* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.041 (1) | 0.029 (1) | 0.038 (1) | −0.005 (1) | 0.025 (1) | −0.002 (1) |
O2 | 0.044 (1) | 0.022 (1) | 0.046 (1) | −0.006 (1) | 0.031 (1) | −0.003 (1) |
O3 | 0.032 (1) | 0.023 (1) | 0.033 (1) | 0.000 (1) | 0.019 (1) | −0.005 (1) |
N1 | 0.035 (1) | 0.021 (1) | 0.029 (1) | 0.001 (1) | 0.018 (1) | 0.000 (1) |
C1 | 0.032 (2) | 0.027 (2) | 0.035 (2) | −0.005 (1) | 0.021 (1) | −0.002 (1) |
C2 | 0.027 (1) | 0.033 (2) | 0.027 (1) | 0.000 (1) | 0.012 (1) | 0.000 (1) |
C3 | 0.024 (1) | 0.018 (1) | 0.020 (1) | −0.001 (1) | 0.009 (1) | 0.000 (1) |
Geometric parameters (Å, º) top
O1—C2 | 1.412 (3) | N1—H1a | 0.890 |
O2—C3 | 1.250 (3) | N1—H1b | 0.890 |
O3—C3 | 1.248 (3) | N1—H1c | 0.890 |
N1—C1 | 1.481 (3) | C1—H1d | 0.970 |
C1—C2 | 1.501 (4) | C1—H1e | 0.970 |
C3—C3i | 1.559 (5) | C2—H2a | 0.970 |
O1—H1 | 0.820 | C2—H2b | 0.970 |
| | | |
N1—C1—C2 | 111.6 (2) | H1b—N1—H1c | 109.5 |
O1—C2—C1 | 111.3 (2) | N1—C1—H1d | 109.3 |
O3—C3—O2 | 126.4 (2) | C2—C1—H1d | 109.3 |
O3—C3—C3i | 117.4 (2) | N1—C1—H1e | 109.3 |
O2—C3—C3i | 116.2 (2) | C2—C1—H1e | 109.3 |
C2—O1—H1 | 109.5 | H1d—C1—H1e | 108.0 |
C1—N1—H1a | 109.5 | O1—C2—H2a | 109.4 |
C1—N1—H1b | 109.5 | C1—C2—H2a | 109.4 |
H1a—N1—H1b | 109.5 | O1—C2—H2b | 109.4 |
C1—N1—H1c | 109.5 | C1—C2—H2b | 109.4 |
H1a—N1—H1c | 109.5 | H2a—C2—H2b | 108.0 |
| | | |
N1—C1—C2—O1 | 65.8 (3) | | |
Symmetry code: (i) −x, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.82 | 1.92 | 2.720 (3) | 167 |
N1—H1a···O3ii | 0.89 | 1.97 | 2.835 (3) | 163 |
N1—H1b···O2iii | 0.89 | 2.00 | 2.878 (3) | 171 |
N1—H1c···O3iv | 0.89 | 1.98 | 2.857 (3) | 167 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x, −y+2, z−1/2; (iv) x, y+1, z. |
Experimental details
Crystal data |
Chemical formula | 2C2H8NO+·C2O42− |
Mr | 212.21 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 17.473 (5), 5.916 (2), 10.346 (3) |
β (°) | 118.69 (2) |
V (Å3) | 938.2 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.20 × 0.10 × 0.05 |
|
Data collection |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 872, 822, 550 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.114, 1.01 |
No. of reflections | 822 |
No. of parameters | 66 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.23 |
Selected geometric parameters (Å, º) topO1—C2 | 1.412 (3) | N1—C1 | 1.481 (3) |
O2—C3 | 1.250 (3) | C1—C2 | 1.501 (4) |
O3—C3 | 1.248 (3) | C3—C3i | 1.559 (5) |
| | | |
N1—C1—C2 | 111.6 (2) | O3—C3—C3i | 117.4 (2) |
O1—C2—C1 | 111.3 (2) | O2—C3—C3i | 116.2 (2) |
O3—C3—O2 | 126.4 (2) | | |
Symmetry code: (i) −x, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.82 | 1.92 | 2.720 (3) | 167 |
N1—H1a···O3ii | 0.89 | 1.97 | 2.835 (3) | 163 |
N1—H1b···O2iii | 0.89 | 2.00 | 2.878 (3) | 171 |
N1—H1c···O3iv | 0.89 | 1.98 | 2.857 (3) | 167 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x, −y+2, z−1/2; (iv) x, y+1, z. |
Double salts with small-length alkylammonium cations are of interest because of their optical (Jayasree et al., 1996; Mahadevan Pillai et al., 1997, 1998), ferroelectric, ferroelastic (Kirpichnikova et al., 1990; Vlokh et al., 1991a,b) and structural (Bator et al., 1998; Kearley, 1983) properties, these compounds often exhibiting several phase transitions at lower temperature. The divalent metal 2-ethanolammonium (Jordanovska & Trojko, 1993) and trivalent metal bis- and tris(2-ethanol)ammonium sulfates (Jordanovska et al., 1996) exist as double salts; however, the reaction of MII oxalates (M = Mn, Co, Ni, Cu, Zn and Cd) yields only 2-ethanolamine adducts (Jordanovska & Trojko, 1995).
In our hands, the synthesis of the cadmium oxalate adduct gave only bis(2-ethanolammonium) oxalate. The structures of some ammonium oxalates have been described recently (Krishnakumar et al., 1998; Paixao et al., 1999). The title ammonium oxalate, (I), displays no unusual features; the C—C bond [1.559 (5) Å] in the oxalate anion is also characteristically long. Its ammonium unit is engaged in three hydrogen-bonding interactions, whereas the hydroxyl unit is engaged in one hydrogen-bonding interaction.