In the closely related quinoline compounds 8-nitro-2-(trichloromethyl)quinoline, (I), 6-nitro-2-(trichloromethyl)quinoline, (II), and 5-nitro-2-(trichloromethyl)quinoline, (III), all C10H5Cl3N2O2, which are of both reactivity and pharmacological interest, and for which the biological activity and cytotoxicity appear to be based on the positions of the CCl3 and nitro substituents, the nitro group is only coplanar with its aromatic substrate in (II). The deviation of the nitro group from coplanarity is concluded to be a function of both its position with respect to the trichloromethyl group and the intermolecular contacts in which it participates. The discrepancies between the crystal structures and the molecular shapes predicted by ab initio calculations are also explained in these terms. The quinoline ring is not rigorously planar in any of the structures, which may be explained by stress produced by the CCl3 substituent.
Supporting information
CCDC references: 700030; 700031; 700032
2-Methyl-5, -6- or -8-nitroquinolines, obtained from commercial
2-methylquinoline through a classical nitration reaction, were reacted with a
mixture of phosphorus pentachloride (4–5 equivalents) and phosphorus
oxychloride, used as a solvent. The reaction was conducted under 800 W
microwave irradiation in a multimode microwave reactor for 5–20 min. The
crude residue was added to a solution of sodium carbonate and extracted with
chloroform. Purification was performed by flash chromatography on a silica gel
column, eluting with dichloromethane–petroleum ether (1:1 v/v),
leading to the chlorinated products in 83–98% yield (Verhaeghe, Rathelot,
Gellis et al., 2006).
All H atoms were determined via difference Fourier maps and refined with
isotropic atomic displacement parameters. [Range of refined C—H
distances?]
For all compounds, data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
(I) 8-nitro-2-(trichloromethyl)quinoline
top
Crystal data top
C10H5Cl3N2O2 | F(000) = 584 |
Mr = 291.51 | Dx = 1.761 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9918 reflections |
a = 15.1941 (14) Å | θ = 2.7–40.5° |
b = 5.5843 (5) Å | µ = 0.82 mm−1 |
c = 12.9620 (12) Å | T = 150 K |
β = 91.693 (5)° | Prism, translucent pale brown |
V = 1099.33 (17) Å3 | 0.58 × 0.34 × 0.31 mm |
Z = 4 | |
Data collection top
Bruker APEXII CCD area-detector diffractometer | 5214 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 39.4°, θmin = 2.7° |
ϕ and ω scans | h = −27→27 |
42809 measured reflections | k = −9→9 |
6463 independent reflections | l = −23→23 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.083 | All H-atom parameters refined |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0322P)2 + 0.4692P] where P = (Fo2 + 2Fc2)/3 |
6463 reflections | (Δ/σ)max = 0.002 |
174 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Crystal data top
C10H5Cl3N2O2 | V = 1099.33 (17) Å3 |
Mr = 291.51 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.1941 (14) Å | µ = 0.82 mm−1 |
b = 5.5843 (5) Å | T = 150 K |
c = 12.9620 (12) Å | 0.58 × 0.34 × 0.31 mm |
β = 91.693 (5)° | |
Data collection top
Bruker APEXII CCD area-detector diffractometer | 5214 reflections with I > 2σ(I) |
42809 measured reflections | Rint = 0.028 |
6463 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.083 | All H-atom parameters refined |
S = 1.11 | Δρmax = 0.71 e Å−3 |
6463 reflections | Δρmin = −0.32 e Å−3 |
174 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.25586 (5) | 0.13830 (12) | 0.38627 (5) | 0.01198 (11) | |
C2 | 0.19037 (5) | 0.04973 (14) | 0.43786 (6) | 0.01207 (12) | |
C3 | 0.17025 (6) | 0.11502 (16) | 0.53996 (7) | 0.01553 (13) | |
H3 | 0.1234 (11) | 0.042 (3) | 0.5734 (13) | 0.030 (4)* | |
C4 | 0.21938 (6) | 0.29098 (16) | 0.58703 (7) | 0.01604 (14) | |
H4 | 0.2074 (11) | 0.341 (3) | 0.6565 (12) | 0.028 (4)* | |
C4A | 0.28789 (5) | 0.40223 (15) | 0.53319 (6) | 0.01318 (12) | |
C5 | 0.33666 (6) | 0.59993 (16) | 0.57266 (7) | 0.01620 (14) | |
H5 | 0.3260 (11) | 0.652 (3) | 0.6398 (12) | 0.026 (4)* | |
C6 | 0.39971 (6) | 0.70626 (16) | 0.51478 (7) | 0.01674 (14) | |
H6 | 0.4306 (11) | 0.842 (3) | 0.5415 (14) | 0.035 (5)* | |
C7 | 0.41971 (6) | 0.61457 (15) | 0.41662 (7) | 0.01485 (13) | |
H7 | 0.4650 (11) | 0.679 (3) | 0.3806 (13) | 0.027 (4)* | |
C8 | 0.37476 (5) | 0.41900 (14) | 0.38058 (6) | 0.01223 (12) | |
C8A | 0.30532 (5) | 0.31090 (14) | 0.43403 (6) | 0.01135 (11) | |
C21 | 0.12911 (5) | −0.11660 (14) | 0.37547 (6) | 0.01346 (12) | |
Cl1 | 0.050976 (14) | 0.06787 (4) | 0.307478 (18) | 0.01832 (5) | |
Cl2 | 0.186136 (15) | −0.28881 (4) | 0.284842 (18) | 0.01848 (5) | |
Cl3 | 0.071609 (17) | −0.31494 (4) | 0.45575 (2) | 0.02278 (5) | |
N2 | 0.39872 (5) | 0.31463 (13) | 0.28171 (6) | 0.01413 (12) | |
O1 | 0.38648 (6) | 0.43392 (14) | 0.20358 (5) | 0.02407 (15) | |
O2 | 0.43089 (6) | 0.11444 (14) | 0.28351 (6) | 0.02433 (15) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0115 (3) | 0.0135 (2) | 0.0111 (3) | −0.0009 (2) | 0.0014 (2) | 0.0016 (2) |
C2 | 0.0108 (3) | 0.0134 (3) | 0.0120 (3) | −0.0002 (2) | 0.0006 (2) | 0.0029 (2) |
C3 | 0.0138 (3) | 0.0195 (3) | 0.0136 (3) | −0.0012 (3) | 0.0041 (2) | 0.0025 (3) |
C4 | 0.0159 (3) | 0.0208 (3) | 0.0116 (3) | −0.0002 (3) | 0.0038 (3) | 0.0003 (3) |
C4A | 0.0128 (3) | 0.0161 (3) | 0.0107 (3) | 0.0005 (2) | 0.0011 (2) | 0.0004 (2) |
C5 | 0.0164 (3) | 0.0190 (3) | 0.0133 (3) | 0.0000 (3) | 0.0011 (3) | −0.0030 (3) |
C6 | 0.0161 (3) | 0.0168 (3) | 0.0173 (3) | −0.0019 (3) | 0.0003 (3) | −0.0032 (3) |
C7 | 0.0138 (3) | 0.0149 (3) | 0.0159 (3) | −0.0023 (2) | 0.0018 (3) | 0.0003 (2) |
C8 | 0.0122 (3) | 0.0140 (3) | 0.0106 (3) | −0.0007 (2) | 0.0021 (2) | 0.0008 (2) |
C8A | 0.0107 (3) | 0.0135 (3) | 0.0099 (3) | 0.0001 (2) | 0.0009 (2) | 0.0017 (2) |
C21 | 0.0119 (3) | 0.0130 (3) | 0.0156 (3) | −0.0008 (2) | 0.0015 (2) | 0.0029 (2) |
Cl1 | 0.01499 (8) | 0.01778 (8) | 0.02189 (10) | 0.00236 (6) | −0.00444 (7) | 0.00126 (7) |
Cl2 | 0.01698 (9) | 0.01522 (8) | 0.02337 (10) | 0.00038 (6) | 0.00260 (7) | −0.00368 (7) |
Cl3 | 0.02302 (10) | 0.02102 (9) | 0.02449 (11) | −0.00943 (7) | 0.00384 (8) | 0.00649 (7) |
N2 | 0.0135 (3) | 0.0170 (3) | 0.0121 (3) | −0.0031 (2) | 0.0028 (2) | 0.0002 (2) |
O1 | 0.0356 (4) | 0.0250 (3) | 0.0115 (3) | −0.0027 (3) | −0.0002 (3) | 0.0039 (2) |
O2 | 0.0313 (4) | 0.0212 (3) | 0.0210 (3) | 0.0073 (3) | 0.0087 (3) | −0.0008 (2) |
Geometric parameters (Å, º) top
N1—C2 | 1.3121 (10) | C6—C7 | 1.4129 (12) |
N1—C8A | 1.3600 (11) | C6—H6 | 0.950 (18) |
C2—C3 | 1.4148 (12) | C7—C8 | 1.3633 (12) |
C2—C21 | 1.5293 (12) | C7—H7 | 0.916 (17) |
C3—C4 | 1.3667 (13) | C8—C8A | 1.4145 (11) |
C3—H3 | 0.939 (17) | C8—N2 | 1.4636 (11) |
C4—C4A | 1.4139 (12) | C21—Cl2 | 1.7651 (9) |
C4—H4 | 0.965 (16) | C21—Cl3 | 1.7682 (8) |
C4A—C8A | 1.4151 (11) | C21—Cl1 | 1.7848 (8) |
C4A—C5 | 1.4169 (12) | N2—O2 | 1.2201 (11) |
C5—C6 | 1.3695 (13) | N2—O1 | 1.2219 (10) |
C5—H5 | 0.935 (16) | | |
| | | |
C2—N1—C8A | 116.89 (7) | C8—C7—C6 | 118.68 (8) |
N1—C2—C3 | 124.59 (8) | C8—C7—H7 | 121.0 (10) |
N1—C2—C21 | 114.73 (7) | C6—C7—H7 | 120.1 (10) |
C3—C2—C21 | 120.42 (7) | C7—C8—C8A | 123.19 (7) |
C4—C3—C2 | 118.20 (7) | C7—C8—N2 | 118.95 (7) |
C4—C3—H3 | 121.2 (10) | C8A—C8—N2 | 117.86 (7) |
C2—C3—H3 | 120.5 (10) | N1—C8A—C8 | 119.31 (7) |
C3—C4—C4A | 119.73 (8) | N1—C8A—C4A | 123.59 (7) |
C3—C4—H4 | 120.6 (10) | C8—C8A—C4A | 116.96 (7) |
C4A—C4—H4 | 119.7 (10) | C2—C21—Cl2 | 112.32 (6) |
C4—C4A—C8A | 116.76 (8) | C2—C21—Cl3 | 111.89 (6) |
C4—C4A—C5 | 123.30 (8) | Cl2—C21—Cl3 | 108.13 (4) |
C8A—C4A—C5 | 119.93 (7) | C2—C21—Cl1 | 107.22 (5) |
C6—C5—C4A | 120.46 (8) | Cl2—C21—Cl1 | 108.56 (5) |
C6—C5—H5 | 121.3 (10) | Cl3—C21—Cl1 | 108.61 (4) |
C4A—C5—H5 | 118.2 (10) | O2—N2—O1 | 124.50 (8) |
C5—C6—C7 | 120.58 (8) | O2—N2—C8 | 117.27 (7) |
C5—C6—H6 | 119.4 (11) | O1—N2—C8 | 118.23 (7) |
C7—C6—H6 | 120.0 (11) | | |
(II) 6-nitro-2-(trichloromethyl)quinoline
top
Crystal data top
C10H5Cl3N2O2 | F(000) = 584 |
Mr = 291.51 | Dx = 1.758 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8836 reflections |
a = 16.764 (3) Å | θ = 2.5–53.8° |
b = 5.5177 (11) Å | µ = 0.82 mm−1 |
c = 12.313 (3) Å | T = 150 K |
β = 104.73 (3)° | Prism, translucent pale brown |
V = 1101.5 (4) Å3 | 0.41 × 0.32 × 0.28 mm |
Z = 4 | |
Data collection top
Bruker APEXII CCD area-detector diffractometer | 8836 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.049 |
Graphite monochromator | θmax = 53.8°, θmin = 2.5° |
ω scans | h = −32→37 |
53399 measured reflections | k = −12→10 |
13343 independent reflections | l = −27→27 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.087 | All H-atom parameters refined |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0446P)2] where P = (Fo2 + 2Fc2)/3 |
13343 reflections | (Δ/σ)max = 0.005 |
174 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.78 e Å−3 |
Crystal data top
C10H5Cl3N2O2 | V = 1101.5 (4) Å3 |
Mr = 291.51 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.764 (3) Å | µ = 0.82 mm−1 |
b = 5.5177 (11) Å | T = 150 K |
c = 12.313 (3) Å | 0.41 × 0.32 × 0.28 mm |
β = 104.73 (3)° | |
Data collection top
Bruker APEXII CCD area-detector diffractometer | 8836 reflections with I > 2σ(I) |
53399 measured reflections | Rint = 0.049 |
13343 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.087 | All H-atom parameters refined |
S = 0.94 | Δρmax = 0.77 e Å−3 |
13343 reflections | Δρmin = −0.78 e Å−3 |
174 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.25457 (2) | 0.36278 (7) | 1.05209 (3) | 0.01255 (5) | |
C2 | 0.31384 (3) | 0.44511 (8) | 1.00987 (3) | 0.01115 (5) | |
C3 | 0.32622 (3) | 0.37458 (9) | 0.90491 (4) | 0.01402 (6) | |
H3 | 0.3708 (8) | 0.440 (2) | 0.8783 (12) | 0.039 (3)* | |
C4 | 0.27365 (3) | 0.20520 (9) | 0.84305 (4) | 0.01436 (7) | |
H4 | 0.2789 (7) | 0.153 (2) | 0.7726 (10) | 0.028 (3)* | |
C4A | 0.21140 (3) | 0.10199 (8) | 0.88766 (3) | 0.01160 (6) | |
C5 | 0.16004 (3) | −0.09001 (8) | 0.83381 (4) | 0.01318 (6) | |
H5 | 0.1625 (7) | −0.145 (2) | 0.7635 (9) | 0.023 (2)* | |
C6 | 0.10486 (3) | −0.18769 (8) | 0.88700 (4) | 0.01255 (6) | |
C7 | 0.09477 (3) | −0.10170 (9) | 0.99071 (4) | 0.01477 (7) | |
H7 | 0.0558 (8) | −0.183 (2) | 1.0220 (12) | 0.038 (3)* | |
C8 | 0.14274 (3) | 0.08850 (9) | 1.04182 (4) | 0.01531 (7) | |
H8 | 0.1371 (7) | 0.153 (2) | 1.1083 (9) | 0.022 (2)* | |
C8A | 0.20313 (3) | 0.18986 (8) | 0.99273 (3) | 0.01164 (6) | |
C20 | 0.37587 (3) | 0.61146 (8) | 1.08827 (4) | 0.01233 (6) | |
Cl1 | 0.448950 (8) | 0.42092 (2) | 1.180552 (11) | 0.01867 (3) | |
Cl2 | 0.327846 (8) | 0.79726 (2) | 1.170061 (13) | 0.01959 (3) | |
Cl3 | 0.429127 (10) | 0.80096 (3) | 1.014289 (12) | 0.02308 (3) | |
N2 | 0.05360 (3) | −0.39323 (7) | 0.83412 (4) | 0.01431 (6) | |
O2 | −0.00084 (3) | −0.46332 (8) | 0.87691 (4) | 0.02082 (7) | |
O1 | 0.06805 (3) | −0.48497 (9) | 0.75024 (4) | 0.02212 (8) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.01289 (13) | 0.01453 (13) | 0.01053 (11) | −0.00299 (11) | 0.00352 (10) | −0.00112 (10) |
C2 | 0.01118 (13) | 0.01190 (13) | 0.00996 (12) | −0.00069 (11) | 0.00190 (10) | 0.00118 (10) |
C3 | 0.01461 (15) | 0.01685 (16) | 0.01150 (14) | −0.00327 (13) | 0.00497 (12) | 0.00008 (12) |
C4 | 0.01551 (16) | 0.01805 (16) | 0.01050 (13) | −0.00309 (13) | 0.00511 (12) | −0.00102 (12) |
C4A | 0.01160 (13) | 0.01384 (14) | 0.00937 (12) | −0.00079 (11) | 0.00271 (10) | −0.00021 (10) |
C5 | 0.01322 (14) | 0.01510 (15) | 0.01100 (13) | −0.00128 (12) | 0.00267 (11) | −0.00153 (11) |
C6 | 0.01149 (13) | 0.01284 (14) | 0.01256 (14) | −0.00132 (12) | 0.00167 (11) | −0.00077 (11) |
C7 | 0.01345 (15) | 0.01751 (16) | 0.01420 (15) | −0.00376 (13) | 0.00507 (12) | −0.00146 (12) |
C8 | 0.01483 (16) | 0.01944 (17) | 0.01328 (15) | −0.00500 (14) | 0.00658 (13) | −0.00324 (13) |
C8A | 0.01119 (13) | 0.01393 (14) | 0.01012 (12) | −0.00163 (11) | 0.00327 (10) | −0.00082 (10) |
C20 | 0.01242 (14) | 0.01115 (13) | 0.01290 (14) | −0.00107 (11) | 0.00225 (11) | 0.00067 (10) |
Cl1 | 0.01609 (5) | 0.01582 (4) | 0.01943 (5) | 0.00211 (3) | −0.00406 (3) | 0.00031 (3) |
Cl2 | 0.01840 (5) | 0.01531 (4) | 0.02536 (6) | −0.00044 (4) | 0.00613 (4) | −0.00751 (4) |
Cl3 | 0.02756 (6) | 0.02171 (5) | 0.02065 (5) | −0.01311 (5) | 0.00736 (5) | 0.00128 (4) |
N2 | 0.01378 (14) | 0.01258 (12) | 0.01511 (14) | −0.00145 (11) | 0.00094 (11) | −0.00038 (10) |
O2 | 0.02175 (17) | 0.02142 (16) | 0.01935 (16) | −0.00950 (14) | 0.00536 (13) | 0.00019 (13) |
O1 | 0.02192 (17) | 0.02151 (17) | 0.02371 (18) | −0.00429 (14) | 0.00726 (14) | −0.01054 (14) |
Geometric parameters (Å, º) top
N1—C2 | 1.3140 (6) | C6—C7 | 1.4121 (7) |
N1—C8A | 1.3666 (6) | C6—N2 | 1.4711 (7) |
C2—C3 | 1.4147 (7) | C7—C8 | 1.3736 (7) |
C2—C20 | 1.5314 (7) | C7—H7 | 0.950 (14) |
C3—C4 | 1.3743 (7) | C8—C8A | 1.4193 (7) |
C3—H3 | 0.961 (14) | C8—H8 | 0.919 (11) |
C4—C4A | 1.4167 (7) | C20—Cl2 | 1.7679 (6) |
C4—H4 | 0.939 (12) | C20—Cl3 | 1.7703 (5) |
C4A—C5 | 1.4187 (7) | C20—Cl1 | 1.7859 (6) |
C4A—C8A | 1.4209 (6) | N2—O2 | 1.2266 (7) |
C5—C6 | 1.3724 (7) | N2—O1 | 1.2284 (6) |
C5—H5 | 0.928 (11) | | |
| | | |
C2—N1—C8A | 117.87 (4) | C8—C7—C6 | 118.71 (4) |
N1—C2—C3 | 124.59 (4) | C8—C7—H7 | 123.8 (8) |
N1—C2—C20 | 114.73 (4) | C6—C7—H7 | 117.5 (8) |
C3—C2—C20 | 120.46 (4) | C7—C8—C8A | 120.25 (4) |
C4—C3—C2 | 118.10 (4) | C7—C8—H8 | 121.5 (7) |
C4—C3—H3 | 120.9 (8) | C8A—C8—H8 | 118.2 (7) |
C2—C3—H3 | 121.0 (8) | N1—C8A—C8 | 117.95 (4) |
C3—C4—C4A | 119.36 (4) | N1—C8A—C4A | 122.06 (4) |
C3—C4—H4 | 121.6 (8) | C8—C8A—C4A | 119.90 (4) |
C4A—C4—H4 | 119.0 (8) | C2—C20—Cl2 | 111.85 (3) |
C4—C4A—C5 | 122.56 (4) | C2—C20—Cl3 | 112.34 (3) |
C4—C4A—C8A | 117.90 (4) | Cl2—C20—Cl3 | 108.24 (3) |
C5—C4A—C8A | 119.49 (4) | C2—C20—Cl1 | 107.11 (4) |
C6—C5—C4A | 118.22 (4) | Cl2—C20—Cl1 | 108.48 (3) |
C6—C5—H5 | 120.9 (7) | Cl3—C20—Cl1 | 108.72 (3) |
C4A—C5—H5 | 120.9 (7) | O2—N2—O1 | 123.96 (5) |
C5—C6—C7 | 123.35 (4) | O2—N2—C6 | 117.88 (4) |
C5—C6—N2 | 118.71 (4) | O1—N2—C6 | 118.16 (4) |
C7—C6—N2 | 117.94 (4) | | |
(III) 5-nitro-2-(trichloromethyl)quinoline
top
Crystal data top
C10H5Cl3N2O2 | Z = 4 |
Mr = 291.51 | F(000) = 584 |
Triclinic, P1 | Dx = 1.752 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7551 (6) Å | Cell parameters from 5806 reflections |
b = 11.3903 (9) Å | θ = 2.9–29.2° |
c = 13.6023 (11) Å | µ = 0.82 mm−1 |
α = 69.927 (5)° | T = 150 K |
β = 87.071 (5)° | Plate, translucent pale brown |
γ = 78.391 (5)° | 0.38 × 0.28 × 0.25 mm |
V = 1105.25 (15) Å3 | |
Data collection top
Bruker APEXII CCD area-detector diffractometer | 5286 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 29.2°, θmin = 2.7° |
ϕ and ω scans | h = −7→10 |
21169 measured reflections | k = −14→15 |
5900 independent reflections | l = −16→18 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.062 | All H-atom parameters refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0268P)2 + 0.485P] where P = (Fo2 + 2Fc2)/3 |
5900 reflections | (Δ/σ)max = 0.001 |
347 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Crystal data top
C10H5Cl3N2O2 | γ = 78.391 (5)° |
Mr = 291.51 | V = 1105.25 (15) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.7551 (6) Å | Mo Kα radiation |
b = 11.3903 (9) Å | µ = 0.82 mm−1 |
c = 13.6023 (11) Å | T = 150 K |
α = 69.927 (5)° | 0.38 × 0.28 × 0.25 mm |
β = 87.071 (5)° | |
Data collection top
Bruker APEXII CCD area-detector diffractometer | 5286 reflections with I > 2σ(I) |
21169 measured reflections | Rint = 0.023 |
5900 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.062 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.47 e Å−3 |
5900 reflections | Δρmin = −0.26 e Å−3 |
347 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N11 | 0.43438 (13) | 0.22960 (10) | 0.80972 (8) | 0.01453 (18) | |
C12 | 0.48445 (15) | 0.31467 (11) | 0.72662 (9) | 0.0143 (2) | |
C13 | 0.53389 (16) | 0.29276 (12) | 0.63196 (9) | 0.0178 (2) | |
H13 | 0.562 (2) | 0.3587 (18) | 0.5721 (14) | 0.024 (4)* | |
C14 | 0.53711 (16) | 0.17438 (12) | 0.62628 (9) | 0.0178 (2) | |
H14 | 0.570 (2) | 0.1567 (18) | 0.5654 (14) | 0.024 (4)* | |
C14A | 0.48951 (15) | 0.07755 (11) | 0.71504 (9) | 0.0143 (2) | |
C15 | 0.48221 (15) | −0.04903 (11) | 0.72199 (9) | 0.0156 (2) | |
C16 | 0.42602 (16) | −0.13497 (12) | 0.80916 (10) | 0.0171 (2) | |
H16 | 0.426 (2) | −0.2197 (18) | 0.8094 (13) | 0.022 (4)* | |
C17 | 0.37405 (16) | −0.09917 (12) | 0.89726 (9) | 0.0169 (2) | |
H17 | 0.338 (2) | −0.1603 (19) | 0.9568 (15) | 0.027 (4)* | |
C18 | 0.37622 (15) | 0.02161 (12) | 0.89528 (9) | 0.0158 (2) | |
H18 | 0.341 (2) | 0.0465 (18) | 0.9518 (14) | 0.023 (4)* | |
C18A | 0.43444 (14) | 0.11120 (11) | 0.80541 (9) | 0.0138 (2) | |
C120 | 0.47421 (15) | 0.44671 (11) | 0.73498 (9) | 0.0154 (2) | |
Cl11 | 0.52356 (4) | 0.43612 (3) | 0.86399 (2) | 0.01923 (7) | |
Cl12 | 0.62116 (4) | 0.53249 (3) | 0.64921 (2) | 0.01945 (6) | |
Cl13 | 0.25585 (4) | 0.53581 (3) | 0.69886 (3) | 0.02495 (7) | |
N12 | 0.53457 (15) | −0.09447 (10) | 0.63356 (8) | 0.0191 (2) | |
O11 | 0.65414 (13) | −0.05422 (10) | 0.57750 (7) | 0.02397 (19) | |
O12 | 0.45554 (16) | −0.17240 (10) | 0.62212 (8) | 0.0282 (2) | |
N21 | 0.92776 (13) | −0.05485 (9) | 0.86257 (7) | 0.01364 (18) | |
C22 | 0.95423 (14) | −0.14273 (11) | 0.81846 (8) | 0.01277 (19) | |
C23 | 1.01433 (16) | −0.12367 (12) | 0.71524 (9) | 0.0161 (2) | |
H23 | 1.042 (2) | −0.1905 (18) | 0.6896 (14) | 0.026 (4)* | |
C24 | 1.03456 (16) | −0.00416 (12) | 0.65354 (9) | 0.0160 (2) | |
H24 | 1.078 (2) | 0.0113 (18) | 0.5838 (14) | 0.024 (4)* | |
C24A | 0.99908 (14) | 0.09597 (11) | 0.69532 (8) | 0.01308 (19) | |
C25 | 1.01413 (15) | 0.22490 (11) | 0.64227 (9) | 0.0148 (2) | |
C26 | 0.99756 (16) | 0.31334 (12) | 0.69108 (9) | 0.0168 (2) | |
H26 | 1.011 (2) | 0.3977 (18) | 0.6500 (14) | 0.024 (4)* | |
C27 | 0.95829 (17) | 0.27823 (12) | 0.79842 (10) | 0.0180 (2) | |
H27 | 0.948 (2) | 0.3418 (18) | 0.8301 (14) | 0.022 (4)* | |
C28 | 0.93461 (16) | 0.15684 (11) | 0.85296 (9) | 0.0164 (2) | |
H28 | 0.908 (2) | 0.1290 (17) | 0.9240 (14) | 0.021 (4)* | |
C28A | 0.95347 (14) | 0.06419 (11) | 0.80293 (8) | 0.01293 (19) | |
C220 | 0.92828 (15) | −0.27577 (11) | 0.88714 (9) | 0.0140 (2) | |
Cl21 | 0.79043 (4) | −0.27363 (3) | 0.99337 (2) | 0.01697 (6) | |
Cl22 | 1.14003 (4) | −0.37009 (3) | 0.93662 (2) | 0.01873 (6) | |
Cl23 | 0.83655 (4) | −0.34963 (3) | 0.81128 (2) | 0.01901 (6) | |
N22 | 1.03808 (15) | 0.27163 (11) | 0.52829 (8) | 0.0209 (2) | |
O21 | 0.97422 (16) | 0.22181 (10) | 0.47560 (7) | 0.0301 (2) | |
O22 | 1.11331 (16) | 0.36176 (11) | 0.49120 (9) | 0.0352 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N11 | 0.0148 (4) | 0.0135 (5) | 0.0164 (4) | −0.0036 (3) | 0.0009 (3) | −0.0061 (4) |
C12 | 0.0139 (5) | 0.0134 (5) | 0.0165 (5) | −0.0032 (4) | −0.0005 (4) | −0.0056 (4) |
C13 | 0.0221 (5) | 0.0168 (5) | 0.0144 (5) | −0.0060 (4) | 0.0019 (4) | −0.0042 (4) |
C14 | 0.0217 (5) | 0.0181 (6) | 0.0146 (5) | −0.0042 (4) | 0.0012 (4) | −0.0068 (4) |
C14A | 0.0143 (5) | 0.0136 (5) | 0.0154 (5) | −0.0016 (4) | −0.0016 (4) | −0.0059 (4) |
C15 | 0.0158 (5) | 0.0149 (5) | 0.0169 (5) | −0.0004 (4) | −0.0023 (4) | −0.0078 (4) |
C16 | 0.0167 (5) | 0.0135 (5) | 0.0212 (5) | −0.0021 (4) | −0.0019 (4) | −0.0063 (4) |
C17 | 0.0166 (5) | 0.0148 (5) | 0.0183 (5) | −0.0035 (4) | 0.0008 (4) | −0.0040 (4) |
C18 | 0.0154 (5) | 0.0165 (5) | 0.0157 (5) | −0.0034 (4) | 0.0010 (4) | −0.0056 (4) |
C18A | 0.0130 (5) | 0.0134 (5) | 0.0155 (5) | −0.0028 (4) | −0.0012 (4) | −0.0051 (4) |
C120 | 0.0153 (5) | 0.0145 (5) | 0.0169 (5) | −0.0042 (4) | 0.0009 (4) | −0.0053 (4) |
Cl11 | 0.02483 (14) | 0.01957 (14) | 0.01781 (12) | −0.01082 (11) | 0.00290 (10) | −0.00874 (10) |
Cl12 | 0.02378 (14) | 0.01470 (13) | 0.01952 (13) | −0.00819 (10) | 0.00423 (10) | −0.00341 (10) |
Cl13 | 0.01733 (13) | 0.01935 (15) | 0.04036 (18) | 0.00048 (11) | −0.00507 (12) | −0.01443 (13) |
N12 | 0.0248 (5) | 0.0142 (5) | 0.0178 (5) | 0.0009 (4) | −0.0024 (4) | −0.0068 (4) |
O11 | 0.0236 (4) | 0.0260 (5) | 0.0223 (4) | −0.0008 (4) | 0.0032 (3) | −0.0109 (4) |
O12 | 0.0469 (6) | 0.0193 (5) | 0.0244 (5) | −0.0110 (4) | 0.0003 (4) | −0.0121 (4) |
N21 | 0.0156 (4) | 0.0124 (4) | 0.0132 (4) | −0.0041 (3) | 0.0007 (3) | −0.0040 (3) |
C22 | 0.0130 (5) | 0.0122 (5) | 0.0131 (5) | −0.0034 (4) | −0.0004 (4) | −0.0036 (4) |
C23 | 0.0208 (5) | 0.0147 (5) | 0.0138 (5) | −0.0031 (4) | 0.0008 (4) | −0.0063 (4) |
C24 | 0.0189 (5) | 0.0167 (5) | 0.0121 (5) | −0.0024 (4) | 0.0010 (4) | −0.0050 (4) |
C24A | 0.0126 (5) | 0.0132 (5) | 0.0127 (4) | −0.0029 (4) | −0.0001 (4) | −0.0031 (4) |
C25 | 0.0143 (5) | 0.0151 (5) | 0.0129 (5) | −0.0036 (4) | 0.0011 (4) | −0.0018 (4) |
C26 | 0.0163 (5) | 0.0132 (5) | 0.0194 (5) | −0.0045 (4) | −0.0013 (4) | −0.0027 (4) |
C27 | 0.0221 (5) | 0.0138 (5) | 0.0193 (5) | −0.0042 (4) | −0.0011 (4) | −0.0064 (4) |
C28 | 0.0214 (5) | 0.0143 (5) | 0.0145 (5) | −0.0039 (4) | 0.0008 (4) | −0.0060 (4) |
C28A | 0.0141 (5) | 0.0121 (5) | 0.0124 (5) | −0.0033 (4) | 0.0002 (4) | −0.0035 (4) |
C220 | 0.0148 (5) | 0.0124 (5) | 0.0152 (5) | −0.0031 (4) | −0.0004 (4) | −0.0051 (4) |
Cl21 | 0.01962 (13) | 0.01458 (13) | 0.01654 (12) | −0.00577 (10) | 0.00467 (9) | −0.00435 (9) |
Cl22 | 0.01613 (12) | 0.01392 (13) | 0.02257 (13) | −0.00129 (10) | −0.00191 (10) | −0.00231 (10) |
Cl23 | 0.02259 (13) | 0.01585 (13) | 0.02247 (13) | −0.00699 (10) | −0.00148 (10) | −0.00935 (10) |
N22 | 0.0249 (5) | 0.0169 (5) | 0.0155 (5) | −0.0016 (4) | 0.0044 (4) | −0.0006 (4) |
O21 | 0.0501 (6) | 0.0231 (5) | 0.0140 (4) | −0.0028 (4) | −0.0021 (4) | −0.0046 (4) |
O22 | 0.0426 (6) | 0.0292 (6) | 0.0283 (5) | −0.0161 (5) | 0.0146 (5) | 0.0003 (4) |
Geometric parameters (Å, º) top
N11—C12 | 1.3123 (15) | N21—C22 | 1.3119 (14) |
N11—C18A | 1.3697 (15) | N21—C28A | 1.3688 (14) |
C12—C13 | 1.4138 (16) | C22—C23 | 1.4144 (15) |
C12—C120 | 1.5328 (16) | C22—C220 | 1.5302 (16) |
C13—C14 | 1.3721 (17) | C23—C24 | 1.3675 (17) |
C13—H13 | 0.951 (19) | C23—H23 | 0.926 (19) |
C14—C14A | 1.4194 (16) | C24—C24A | 1.4149 (16) |
C14—H14 | 0.930 (18) | C24—H24 | 0.959 (18) |
C14A—C15 | 1.4246 (16) | C24A—C25 | 1.4227 (16) |
C14A—C18A | 1.4298 (15) | C24A—C28A | 1.4261 (15) |
C15—C16 | 1.3697 (17) | C25—C26 | 1.3675 (17) |
C15—N12 | 1.4740 (15) | C25—N22 | 1.4715 (15) |
C16—C17 | 1.4088 (16) | C26—C27 | 1.4098 (17) |
C16—H16 | 0.965 (18) | C26—H26 | 0.954 (19) |
C17—C18 | 1.3703 (17) | C27—C28 | 1.3711 (17) |
C17—H17 | 0.943 (19) | C27—H27 | 0.950 (18) |
C18—C18A | 1.4185 (16) | C28—C28A | 1.4208 (15) |
C18—H18 | 0.918 (18) | C28—H28 | 0.935 (18) |
C120—Cl12 | 1.7732 (12) | C220—Cl21 | 1.7570 (12) |
C120—Cl11 | 1.7734 (12) | C220—Cl23 | 1.7861 (11) |
C120—Cl13 | 1.7860 (12) | C220—Cl22 | 1.7917 (12) |
N12—O11 | 1.2290 (15) | N22—O22 | 1.2266 (16) |
N12—O12 | 1.2292 (15) | N22—O21 | 1.2286 (16) |
| | | |
C12—N11—C18A | 117.98 (10) | C22—N21—C28A | 117.49 (10) |
N11—C12—C13 | 124.04 (11) | N21—C22—C23 | 124.26 (11) |
N11—C12—C120 | 115.35 (10) | N21—C22—C220 | 116.64 (10) |
C13—C12—C120 | 120.48 (10) | C23—C22—C220 | 118.99 (10) |
C14—C13—C12 | 118.97 (11) | C24—C23—C22 | 118.80 (11) |
C14—C13—H13 | 119.7 (11) | C24—C23—H23 | 119.9 (11) |
C12—C13—H13 | 121.4 (11) | C22—C23—H23 | 121.3 (11) |
C13—C14—C14A | 119.29 (11) | C23—C24—C24A | 119.28 (10) |
C13—C14—H14 | 121.0 (11) | C23—C24—H24 | 120.7 (11) |
C14A—C14—H14 | 119.7 (11) | C24A—C24—H24 | 120.0 (11) |
C14—C14A—C15 | 126.63 (10) | C24—C24A—C25 | 126.44 (10) |
C14—C14A—C18A | 117.25 (10) | C24—C24A—C28A | 117.34 (10) |
C15—C14A—C18A | 116.04 (10) | C25—C24A—C28A | 116.11 (10) |
C16—C15—C14A | 122.96 (11) | C26—C25—C24A | 123.18 (10) |
C16—C15—N12 | 116.03 (10) | C26—C25—N22 | 116.29 (11) |
C14A—C15—N12 | 121.00 (11) | C24A—C25—N22 | 120.42 (10) |
C15—C16—C17 | 119.60 (11) | C25—C26—C27 | 119.45 (11) |
C15—C16—H16 | 118.9 (10) | C25—C26—H26 | 118.0 (11) |
C17—C16—H16 | 121.5 (11) | C27—C26—H26 | 122.6 (11) |
C18—C17—C16 | 120.35 (11) | C28—C27—C26 | 120.17 (11) |
C18—C17—H17 | 121.5 (12) | C28—C27—H27 | 122.4 (11) |
C16—C17—H17 | 118.2 (12) | C26—C27—H27 | 117.4 (11) |
C17—C18—C18A | 120.43 (11) | C27—C28—C28A | 120.61 (11) |
C17—C18—H18 | 121.2 (11) | C27—C28—H28 | 123.5 (11) |
C18A—C18—H18 | 118.4 (11) | C28A—C28—H28 | 115.9 (11) |
N11—C18A—C18 | 117.02 (10) | N21—C28A—C28 | 117.17 (10) |
N11—C18A—C14A | 122.37 (10) | N21—C28A—C24A | 122.48 (10) |
C18—C18A—C14A | 120.60 (10) | C28—C28A—C24A | 120.35 (10) |
C12—C120—Cl12 | 112.11 (8) | C22—C220—Cl21 | 112.84 (8) |
C12—C120—Cl11 | 111.62 (8) | C22—C220—Cl23 | 110.31 (7) |
Cl12—C120—Cl11 | 107.88 (6) | Cl21—C220—Cl23 | 108.49 (6) |
C12—C120—Cl13 | 108.18 (8) | C22—C220—Cl22 | 107.97 (7) |
Cl12—C120—Cl13 | 107.72 (6) | Cl21—C220—Cl22 | 108.77 (6) |
Cl11—C120—Cl13 | 109.23 (6) | Cl23—C220—Cl22 | 108.36 (6) |
O11—N12—O12 | 124.45 (11) | O22—N22—O21 | 123.95 (11) |
O11—N12—C15 | 118.72 (10) | O22—N22—C25 | 118.04 (11) |
O12—N12—C15 | 116.82 (11) | O21—N22—C25 | 117.92 (11) |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | C10H5Cl3N2O2 | C10H5Cl3N2O2 | C10H5Cl3N2O2 |
Mr | 291.51 | 291.51 | 291.51 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 150 | 150 | 150 |
a, b, c (Å) | 15.1941 (14), 5.5843 (5), 12.9620 (12) | 16.764 (3), 5.5177 (11), 12.313 (3) | 7.7551 (6), 11.3903 (9), 13.6023 (11) |
α, β, γ (°) | 90, 91.693 (5), 90 | 90, 104.73 (3), 90 | 69.927 (5), 87.071 (5), 78.391 (5) |
V (Å3) | 1099.33 (17) | 1101.5 (4) | 1105.25 (15) |
Z | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.82 | 0.82 | 0.82 |
Crystal size (mm) | 0.58 × 0.34 × 0.31 | 0.41 × 0.32 × 0.28 | 0.38 × 0.28 × 0.25 |
|
Data collection |
Diffractometer | Bruker APEXII CCD area-detector diffractometer | Bruker APEXII CCD area-detector diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | – | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 42809, 6463, 5214 | 53399, 13343, 8836 | 21169, 5900, 5286 |
Rint | 0.028 | 0.049 | 0.023 |
(sin θ/λ)max (Å−1) | 0.894 | 1.135 | 0.686 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.083, 1.11 | 0.031, 0.087, 0.94 | 0.022, 0.062, 1.07 |
No. of reflections | 6463 | 13343 | 5900 |
No. of parameters | 174 | 174 | 347 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.71, −0.32 | 0.77, −0.78 | 0.47, −0.26 |
The quinoline nucleus presents a broad spectrum of pharmacological activities. It is part of the chemotherapeutic arsenal in various medical specialities, mainly in infectiology (chloroquine, mefloquine), but also in cardiology (quinidine), and it can present analgesic properties (floctafenine). Recent research has evaluated its potential in other pharmaceutical areas, such as the central nervous system (Bromidge et al., 2001), haematology (Clasby et al., 2006) or virology (Polanski et al., 2002). The trichloromethyl group in a position α to the sp2 N atom of various heteroaromatic rings has also demonstrated its own specific pharmacological activities (Liu et al., 2003; Tiwari et al., 2002; Sielecki et al., 2001; Verhaeghe et al., 2008). Furthermore, the trichloromethyl group offers interesting synthetic pathways to further products. It leads easily to the amidine function, is the main synthetic trifluoromethyl precursor and has recently been reacted with aromatic aldehydes through TDAE-initiated reactions [TDAE is tetrakis(dimethylamino)ethylene], generating α-chloroketone derivatives (Montana et al., 2006). It is also possible to involve 8- and 6-nitro-2-(trichloromethyl)quinolines, (I) and (II), in consecutive SRN1 and ERC1 reactions, leading to novel vinylic chloride derivatives (Verhaeghe, Rathelot, Rault & Vanelle, 2006) (SRN1 is a nucleophilic radical substitution mechanism and ERC1 is a unimolecular radical chain elimination reaction).
For both reaction studies and therapeutic purposes, it appeared important to establish the structures of these isomeric compounds, which were prepared efficiently in two steps from 2-methylquinoline, via successive nitration and microwave-assisted chlorination reactions (Verhaeghe, Rathelot, Gellis et al., 2006). From a reactivity point of view, in the nitrobenzyl chloride series, Kerber et al. (1965) suggested that the nitro group of the aromatic substrates involved in SRN1 reactions had to be coplanar with the benzene ring in order for the reaction to proceed correctly. However, when we reacted compounds (I) and (II) with nitroalkane salts, under single electron-transfer reaction conditions, the corresponding vinyl chloride products were obtained in similar very good yields (Verhaeghe, Rathelot, Rault & Vanelle, 2006), although the nitro group in (I) is perpendicular to the quinoline ring while the nitro group of (II) is nearly coplanar with the same quinoline ring.
Fig. 1 shows views of the asymmetric units of compounds (I), (II) and (III). The asymmetric units of compounds (I) and (II) contain one molecule, while for (III) Z' = 2.
In the 8-nitro isomer, (I), the nitro group is nearly perpendicular to the quinoline ring, as was initially supposed [dihedral angle 68.42 (5)°]. An ab initio calculation of potential energy as a function of nitro group torsion angle [GAUSSIAN98 (Frisch et al., 2001); basis set HF/3-21 G] showed that the most stable nitro group conformations are those with a deviation of about ±30° from coplanarity. The larger deviation observed in the crystal structure of (I) seems to be a consequence of intermolecular interactions. Atom O1 crowds atom O2i from a neighbouring molecule [2.952 (2) Å; symmetry code: (i) 1 - x, 1/2 + y, 1/2 - z]. At the same time, atom O1 also contacts two H atoms from aromatic C—H groups, H5ii [2.613 Å; symmetry code: (ii) +x, 3/2 - y, -1/2 + z] and H6ii (2.552 Å), and these electrostatic contacts are favourable to an out-of-plane twist of the nitro group.
In the 5-nitro isomer, (III), the nitro group deviates from coplanarity with the quinoline ring [dihedral angles 36.05 (6) and 35.74 (5)°]. An ab inito calculation proposed, as the most stable conformation, a coplanar position for the nitro group, but with a broad minimum and only a small energy penalty of about 1 kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1) for a twist of 30°. A short contact exists between atom O12 of the nitro group of one molecule and a pyridyl H atom of a neighbouring molecule [C14iii—H14iii···O12 = 2.510 Å; symmetry code: (iii) 1 - x, -y, 1 - z], a favourable out-of-plane interaction which may be the origin of the deviation of the nitro group. The second molecule in the asymmetric unit is involved in a similar contact [C23iv—H23iv···O21 = 2.406 Å; symmetry code: (iv) 2 - x,-y,1 - z].
For the 6-nitro isomer, (II), the nitro group is nearly coplanar with the quinoline ring [dihedral angle 7.49 (9)°]. The small deviation appears to be related to a contact between atom O1 of the nitro group and a neighbouring C8v—H8v group [symmetry code: (v) x, -1/2 - y, -1/2 + z].
In none of the three structures is the quinoline ring rigorously planar; they are all somewhat bent. The dihedral angles between the fused rings are 5.65 (5)° for the 8-nitro isomer, 5.23 (4)° for the 6-nitro isomer, and 1.80 (5) and 4.74 (4)° for the two molecules of the 5-nitro isomer. A search of quinoline structures deposited in the Cambridge Structural Database (CSD, Version 5.29; Allen, 2002) indicates that the quinoline ring is usually planar, even if it is substituted at position 2. [Two structures with 2-chloromethyl substitution were found, namely 2-(trichloromethyl)quinoline and 2-dichloromethylquinoline (Kaluski & Golankiewicz, 1965), but no coordinates are present.] We recently reported crystal structures (Sopková-de Oliveira Santos et al., 2007) in which the quinoline rings were substituted by a nitro group at position 8 and by vinyl or 1-chloro-2-methylpropenyl at position 2. In both cases the quinoline ring was planar. Based on this comparison, it seems that it is the trichloromethyl group at position 2 that induces tension within the quinoline system.
In conclusion, the theoretical simulation predicts that the nitro group should be coplanar with the quinoline ring for the 5- and 6-nitro isomers, and twisted by about ±30° from coplanarity in the 8-nitro isomer. However, the observed deviations are about 35° for the 5-nitro isomer, 7° for the 6-nitro isomer and 68° for the 8-nitro isomer. Our ab initio simulations show that the deviation of 35° for the 5-nitro system involves less than a 1 kcal mol-1 penalty and that the deviation of about 68° in the 8-nitro compound introduces about 2.5 kcal mol-1 of penalty. These energy disadvantages are compensated for in the crystal structures by the intermolecular interactions involving the nitro groups.