Download citation
Download citation
link to html
4,4′-(p-Phenyl­ene)bipyridazine, C14H10N4, (I), and the coordination compounds catena-poly[[dibromidocopper(II)]-μ-4,4′-(p-phenyl­ene)bipyridazine-κ2N2:N2′], [CuBr2(C14H10N4)]n, (II), and catena-poly[[[tetra­kis(μ-acetato-κ2O:O′)­dicopper(II)]-μ-4,4′-(p-phenyl­ene)bipyridazine-κ2N1:N1′] chloro­form disolvate], {[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3}n, (III), contain a new extended bitopic ligand. The combination of the p-phenyl­ene spacer and the electron-deficient pyridazine rings precludes C—H...π inter­actions between the lengthy aromatic mol­ecules, which could be suited for the synthesis of open-framework coordination polymers. In (I), the mol­ecules are situated across a center of inversion and display a set of very weak inter­molecular C—H...N hydrogen bonds [3.399 (3) and 3.608 (2) Å]. In (II) and (III), the ligand mol­ecules are situated across a center of inversion and act as N2,N2′-bidentate [in (II)] and N1,N1′-bidentate [in (III)] long-distance bridges between the metal ions, leading to the formation of coordination chains [Cu—N = 2.005 (3) Å in (II) and 2.199 (2) Å in (III)]. In (II), the copper ion lies on a center of inversion and adopts CuN2Br4 (4+2)-coordination involving two long axial Cu—Br bonds [3.2421 (4) Å]. In (III), the copper ion has a tetra­gonal pyramidal CuO4N environment. The uncoordinated pyridazine N atom and two acetate O atoms provide a multiple acceptor site for accommodation of a chloroform solvent mol­ecule by trifurcated hydrogen bonding [C—H...O(N) = 3.298 (5)–3.541 (4) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108017666/hj3079sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017666/hj3079Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017666/hj3079IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017666/hj3079IIIsup4.hkl
Contains datablock III

CCDC references: 697561; 697562; 697563

Comment top

In coordination compounds, N1,N2-bidentate pyridazine typically sustains short-distance bridges between metal ions and supports the generation of complicated polynuclear and polymeric metal–organic motifs (Otieno et al., 1995). Such arrays are interesting in view of strong magnetic coupling between the paramagnetic centers through pyridazine bridges (Carlucci et al., 1994) and also as coordination subtopologies for metal–organic frameworks (Domasevitch, Solntsev et al., 2007). In this way, multifunctional pyridazine N-atom donors offer a new potential for the designing of solid-state coordination architecture, as was revealed by examination of a simpler bitopic ligand 4,4'-bipyridazine (Domasevitch, Gural'skiy et al., 2007). The latter combines inherent ability for coordination of closely situated metal ions (3.2 Å) and long-distance bridging at ca 11 Å. Extension of the effective length of the ligand is relevant for the connection of even more distant metal ions and it is an essential prerequisite for the preparation of open metal–organic frameworks. These possibilities may be anticipated for a series of new extended ligands, which unite two pyridazine functions separated by a rigid covalent spacer, i.e. para-phenylene. Such species are readily accessible via the inverse electron demand Diels–Alder cycloaddition of 1,2,4,5-tetrazine (Sauer et al., 1998), and they may be viewed as new attractive `building blocks' for crystal design. We report here the structure of the hitherto unknown ligand 4,4'-(p-phenylene)bipyridazine, (I), and two new copper(II) complexes, (II) and (III), which feature two different bidentate coordination modes.

The asymmetric unit of structure (I) comprises a half-molecule of 4,4'-(p-phenylene)bipyridazine lying across a center of inversion (Fig. 1). The geometry of the heteroaromatic ring is consistent with the structure of pyridazine itself (Blake & Rankin, 1991). In the molecule of (I), the two pyridazine rings are coplanar, while exhibiting a significant twist angle of 43.15 (9)° with respect to the plane of the phenylene spacer. This suggests conformational flexibility of the molecule and a lack of conjugation between the hetero- and carbocyclic fragments, as is indicated also by the standard length of the C2—C5 [1.482 (2) Å]. The corresponding torsion angle [C1—C2—C5—C6 = -43.1 (3)°] appreciably exceeds the value for terphenyl (14.4°; Baudour et al., 1986), but it is consistent with a molecular geometry optimization (37.6°) performed using density function theory (DFT) with the 6–311(d,p) basis set and B3LYP hybrid functional defined in GAMESS (Schmidt et al., 1993).

In the crystal structure of (I), the molecules associate via a set of very weak interactions, namely C—H···N hydrogen bonding (Table 2) and ππ contacts. A pair of C4—H4···N1i bonds connects the molecules into centrosymmetric dimers, similar to those observed for unsubstituted pyridazine (Blake & Rankin, 1991), and C3—H3···N2ii interactions extend this motif along the a-axis direction with the formation of a layer parallel to the (021) plane [symmetry codes: (i) -x + 1, -y + 1, -z - 1; (ii) x + 1, y, z; Fig. 2]. Weak slipped ππ stacking occurs between a pair of antiparallel pyridazine rings related by inversion (symmetry code: -x + 1, -y + 1, -z). The parameters of this interaction [the interplanar and intercentroid distances are 3.4683 (11) and 3.564 (2) Å, respectively, and the slippage angle is 13.31 (8)°] are characteristic of weak ππ contacts of electron-deficient heteroaromatic rings (Janiak, 2000).

In the copper(II) complexes (II) and (III), the primary connectivity exists in the form of one-dimensional coordination chains supported by bridging of the ligand between the copper ions. In both structures, the molecules of the ligand are situated across a center of inversion, and therefore they adopt symmetric N,N'-bidentate bridging modes, while each of the pyridazine rings is coordinated in a monodentate manner. This is consistent with the coordination preferences of the simpler 4,4'-bipyridazine ligand, which is an efficient tetradentate linker towards silver(I) ions (Domasevitch, Solntsev et al., 2007) but is typically bidentate towards Cu2+ and Zn2+ ions (Domasevitch, Gural'skiy et al., 2007). The coordination modes in (II) and (III), however, are different, namely N2,N2'- and linear N1,N1'-coordinations, respectively. This may reflect the adaptability of the ligand to the demands of the crystal packing.

In the bromide (II), the copper ion is situated on a center of inversion and displays Jahn–Teller distorted octahedral (4+2)-coordination, with a trans-CuN2Br2 equatorial plane [Cu1—Br1 = 2.4151 (4) Å] (Fig. 3); the octahedron is completed by two very long axial contacts [Cu1···Br1i = 3.2421 (4) Å; symmetry code: (i) -x + 1, -y, -z]. These weak bonds connect linear Br—Cu—Br units into a chain of vertex-sharing Cu2Br2 rhombes running along the a-axis direction, and overall this generates coordination layers that lie parallel to the ab plane (Fig. 4). These features are analogous to the situation in dibromo-bis(pyridine)copper(II) (Cu—Br = 2.451 and 3.240 Å; Morosin, 1975), while shorter chloride bridges were essential for stabilization of the bidentate coordination of pyridazine in the copper(II) chloride complex (Fetzer et al., 1990). The axial Cu···Br contacts are accompanied also by weak C1—H1···Br1i hydrogen bonding [3.449 (4) Å; angle C—H···Br = 133°].

Structure of (III) is based on very characteristic dicopper(II)–tetracetate units, which are situated across a center of inversion [Cu1···Cu1i = 2.6332 (7) Å; symmetry code: (i) -x + 1, -y + 1, -z + 1; Fig. 5]. The ligands act as N1,N1'-bidentate linear bridges connecting these Cu2(AcO)4 units into rod-like linear chains, with a separation between the dinuclear unit centroids of 18.2164 (13) Å. This motif is similar to that found for a related 4,4'-bipyridazine complex (Domasevitch, Gural'skiy et al., 2007). The copper ions adopt tetragonal–pyramidal coordination, with four basal acetate O atoms [Cu—O = 1.960 (2)–1.975 (2) Å] and pyridazine atom N1 in at the apex [2.199 (2) Å]. The latter separation is consistent with the Cu—N bond length for the orthorhombic polymorph of tetracetato-bis(pyridine)dicopper(II) [2.191 (2) Å; Uekusa et al., 1989].

The uncoordinated N atoms (N2) are also functional as acceptors of hydrogen bonding and, together with two adjacent carboxylate atoms (O2 and O4), they provide three-center acceptor sites for the accommodation of chloroform molecules. The latter are held between the coordination chains (Fig. 6) and interact with them by means of weak trifurcated hydrogen bonding [C12—H12···O(N) = 3.298 (5)–3.541 (4) Å and 130–138°; Table 5 and Fig. 5]. Comparable trifurcated hydrogen bonding is known for chloroform solvates of molecular metal complexes such as tris(1-hydroxy-2-pyridinethionato-O,S)cobalt(III) (C—H···O = 3.07–3.39 Å; Manivannan et al., 1993). However, this supramolecular pattern is unprecedented for pyridazine and related polynitrogen heterocycles, and it may be relevant for functionalization of the metal–organic structure towards specific interactions with the guest species.

There are no ππ or C—H···π contacts in the structures (II) and (III), and no C—H···π bonding in (I). Thus the inherent electron deficiency of the pyridazine ring actually appears to preclude the formation of hydrogen bonds involving π acceptors. Such closely packed motifs supported by extensive C—H···π bonding are typical for lengthy aromatic ligands (Domasevitch et al., 2002), and they mitigate the formation of open structures. In this view, the combination of heterocyclic functions and carbocyclic spacer provided by 4,4'-(p-phenylene)bipyridazine could be especially favorable for the preparation of open metal–organic frameworks.

Related literature top

For related literature, see: Baudour et al. (1986); Blake & Rankin (1991); Carlucci et al. (1994); Domasevitch et al. (2002); Domasevitch, Gural'skiy, Solntsev, Rusanov, Krautscheid, Howard & Chernega (2007); Domasevitch, Solntsev, Gural'skiy, Krautscheid, Rusanov, Chernega & Howard (2007); Fetzer et al. (1990); Janiak (2000); Manivannan et al. (1993); Morosin (1975); Otieno et al. (1995); Sauer et al. (1998); Schmidt et al. (1993); Uekusa et al. (1989).

Experimental top

The ligand was synthesized by reacting 1,2,4,5-tetrazine (2.30 g, 28 mmol) and 1,4-diethynylbenzene (1.76 g, 14 mmol) in 40 ml of dry 1,4-dioxane (24 h, 353 K). The yield of pure colorless crystalline product was 2.95 g (90%). For the synthesis of (II), CuBr2 (11.1 mg, 0.05 mmol), (I) (11.7 mg, 0.05 mmol) and water (5 ml) were sealed in a Pyrex tube, heated at 443 K for 8 h and then cooled to room temperature over a period of 48 h. This afforded green prisms of (II) (yield 90%, 20.5 mg). Complex (III) was synthesized using the layering technique: a solution of Cu(AcO)2.H2O (16.0 mg, 0.08 mmol) in methanol (3 ml) was layered over a solution of (I) (9.4 mg, 0.04 mmol) in a mixture of methanol (2 ml) and chloroform (2 ml). Large green–blue prisms of (III) grew on the walls of the tube as the solutions interdiffused over a period of 15 d (yield 65%, 21.7 mg).

Refinement top

For (I), all the H atoms were found in intermediate difference Fourier maps and were refined fully with isotropic displacement parameters [C—H = 0.91 (2)–0.99 (2) Å]. For (II) and (III), the H atoms were treated as riding in geometrically idealized positions, with C—H (aromatic) distances of 0.93 Å, C—H (methyl) distances of 0.96 Å and C—H (chloroform) distances of 0.98 Å, and with Uiso(H) values of 1.2Ueq(C) and [1.5Ueq(C) for the methyl groups].

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 35% probability level, H atoms are shown as small spheres of arbitrary radii and N atoms are shaded gray. [Symmetry code: (iii) -x + 2, -y + 2, -z + 1.]
[Figure 2] Fig. 2. A projection of the structure of (I) on to the ac plane, showing weak C—H···N hydrogen-bonding interactions as dashed lines. N atoms are shaded gray. [Symmetry codes: (i) -x + 1, -y + 1, -z - 1; (ii) x + 1, y, z.]
[Figure 3] Fig. 3. The structure of (II), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level, H atoms are shown as small spheres of arbitrary radii and N atoms are shaded gray. [Symmetry codes: (i) -x + 1, -y, -z; (ii) -x, -y, -z; (iii) -x + 1, -y + 1, -z.]
[Figure 4] Fig. 4. Fragment of the structure of (II), showing weak coordination Cu···Br (open lines) and hydrogen-bonding C—H···Br (dashed lines) interactions between the metal–organic chains. N atoms are shaded gray. [Symmetry code: (i) -x + 1, -y, -z.]
[Figure 5] Fig. 5. The structure of (III), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level, H atoms are shown as small spheres of arbitrary radii and N atoms are shaded gray. Coordination bonds are shown with open lines and the trifurcated hydrogen bonding is indicated by dashed lines. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x - 1, -y, -z.]
[Figure 6] Fig. 6. A projection of the structure of (III) on to the bc plane, showing the mode of incorporation of hydrogen-bonded chloroform molecules between the coordination chains. N atoms are shaded gray and the coordination bonds are shown by open lines.
(I) 4,4'-(p-phenylene)bipyridazine top
Crystal data top
C14H10N4Z = 1
Mr = 234.26F(000) = 122
Triclinic, P1Dx = 1.400 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3588 (7) ÅCell parameters from 2129 reflections
b = 6.9307 (9) Åθ = 3.1–26.4°
c = 7.0681 (10) ŵ = 0.09 mm1
α = 110.282 (3)°T = 296 K
β = 90.823 (3)°Prism, colorless
γ = 106.585 (2)°0.26 × 0.23 × 0.20 mm
V = 277.80 (6) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
894 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
ω scansh = 77
2129 measured reflectionsk = 87
1131 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.137All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.0624P]
where P = (Fo2 + 2Fc2)/3
1131 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H10N4γ = 106.585 (2)°
Mr = 234.26V = 277.80 (6) Å3
Triclinic, P1Z = 1
a = 6.3588 (7) ÅMo Kα radiation
b = 6.9307 (9) ŵ = 0.09 mm1
c = 7.0681 (10) ÅT = 296 K
α = 110.282 (3)°0.26 × 0.23 × 0.20 mm
β = 90.823 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
894 reflections with I > 2σ(I)
2129 measured reflectionsRint = 0.028
1131 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.137All H-atom parameters refined
S = 1.10Δρmax = 0.30 e Å3
1131 reflectionsΔρmin = 0.18 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4490 (3)0.6498 (3)0.2498 (2)0.0457 (5)
N20.3692 (2)0.7226 (3)0.0724 (2)0.0454 (5)
C10.5050 (3)0.8026 (3)0.0994 (3)0.0386 (5)
C20.7278 (3)0.8157 (3)0.1126 (3)0.0321 (4)
C30.8067 (3)0.7371 (3)0.0694 (3)0.0382 (5)
C40.6601 (3)0.6577 (3)0.2457 (3)0.0426 (5)
C50.8672 (3)0.9095 (3)0.3121 (2)0.0325 (4)
C60.8522 (3)1.0984 (3)0.4604 (3)0.0375 (5)
C71.0161 (3)0.8123 (3)0.3538 (3)0.0377 (5)
H10.438 (3)0.851 (3)0.223 (3)0.045 (5)*
H30.956 (3)0.736 (3)0.078 (3)0.045 (5)*
H40.711 (3)0.609 (4)0.368 (4)0.052 (6)*
H60.756 (3)1.170 (3)0.431 (3)0.046 (6)*
H71.026 (3)0.677 (4)0.249 (3)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0480 (10)0.0495 (10)0.0332 (9)0.0105 (8)0.0079 (7)0.0115 (8)
N20.0385 (9)0.0518 (11)0.0404 (10)0.0120 (7)0.0053 (7)0.0122 (8)
C10.0370 (10)0.0429 (11)0.0320 (10)0.0104 (8)0.0008 (8)0.0106 (8)
C20.0354 (9)0.0330 (9)0.0262 (9)0.0076 (7)0.0005 (7)0.0112 (7)
C30.0368 (10)0.0427 (11)0.0311 (10)0.0109 (8)0.0007 (7)0.0102 (8)
C40.0507 (11)0.0458 (12)0.0261 (10)0.0127 (9)0.0020 (8)0.0089 (9)
C50.0303 (8)0.0406 (10)0.0254 (9)0.0091 (7)0.0011 (6)0.0122 (8)
C60.0384 (9)0.0424 (11)0.0324 (10)0.0177 (8)0.0018 (7)0.0104 (8)
C70.0387 (9)0.0404 (11)0.0297 (10)0.0141 (8)0.0001 (7)0.0062 (8)
Geometric parameters (Å, º) top
N1—C41.327 (3)C3—H30.96 (2)
N1—N21.345 (2)C4—H40.91 (2)
N2—C11.325 (2)C5—C71.390 (3)
C1—C21.393 (3)C5—C61.395 (3)
C1—H10.98 (2)C6—C7i1.385 (2)
C2—C31.376 (3)C6—H60.95 (2)
C2—C51.482 (2)C7—C6i1.385 (2)
C3—C41.387 (2)C7—H70.99 (2)
C4—N1—N2118.61 (15)N1—C4—H4117.0 (13)
C1—N2—N1118.85 (16)C3—C4—H4118.6 (13)
N2—C1—C2124.98 (17)C7—C5—C6118.94 (16)
N2—C1—H1115.2 (12)C7—C5—C2120.73 (16)
C2—C1—H1119.8 (12)C6—C5—C2120.33 (16)
C3—C2—C1115.71 (16)C7i—C6—C5120.47 (17)
C3—C2—C5123.19 (16)C7i—C6—H6119.9 (13)
C1—C2—C5121.10 (16)C5—C6—H6119.5 (13)
C2—C3—C4117.48 (17)C6i—C7—C5120.59 (17)
C2—C3—H3122.8 (12)C6i—C7—H7120.4 (12)
C4—C3—H3119.7 (12)C5—C7—H7119.0 (12)
N1—C4—C3124.35 (18)
C4—N1—N2—C11.1 (3)C3—C2—C5—C742.7 (3)
N1—N2—C1—C20.9 (3)C1—C2—C5—C7137.45 (19)
N2—C1—C2—C30.3 (3)C3—C2—C5—C6136.7 (2)
N2—C1—C2—C5179.56 (17)C1—C2—C5—C643.1 (3)
C1—C2—C3—C41.2 (3)C7—C5—C6—C7i0.1 (3)
C5—C2—C3—C4178.65 (17)C2—C5—C6—C7i179.34 (17)
N2—N1—C4—C30.2 (3)C6—C5—C7—C6i0.1 (3)
C2—C3—C4—N11.0 (3)C2—C5—C7—C6i179.34 (17)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1ii0.91 (2)2.66 (2)3.399 (3)139 (2)
C3—H3···N2iii0.96 (2)2.65 (2)3.608 (2)175 (2)
Symmetry codes: (ii) x+1, y+1, z1; (iii) x+1, y, z.
(II) catena-poly[[dibromidocopper(II)]-µ2-4,4'-(p-phenylene)bipyridazine- κ2N2:N2'] top
Crystal data top
[CuBr2(C14H10N4)]F(000) = 442
Mr = 457.62Dx = 2.169 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.1377 (2) ÅCell parameters from 3750 reflections
b = 12.5407 (7) Åθ = 2.2–26.3°
c = 13.5301 (8) ŵ = 7.26 mm1
β = 93.786 (4)°T = 296 K
V = 700.54 (7) Å3Prism, green
Z = 20.24 × 0.20 × 0.19 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1415 independent reflections
Radiation source: fine-focus sealed tube1099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.3°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.203, Tmax = 0.251k = 1515
3750 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.206P]
where P = (Fo2 + 2Fc2)/3
1415 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[CuBr2(C14H10N4)]V = 700.54 (7) Å3
Mr = 457.62Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.1377 (2) ŵ = 7.26 mm1
b = 12.5407 (7) ÅT = 296 K
c = 13.5301 (8) Å0.24 × 0.20 × 0.19 mm
β = 93.786 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1415 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1099 reflections with I > 2σ(I)
Tmin = 0.203, Tmax = 0.251Rint = 0.031
3750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
1415 reflectionsΔρmin = 0.37 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.0350 (2)
Br10.38905 (9)0.07954 (3)0.11892 (3)0.03486 (15)
N10.0773 (8)0.1368 (3)0.1682 (2)0.0365 (8)
N20.0300 (7)0.1365 (2)0.0772 (2)0.0314 (8)
C10.1530 (9)0.2224 (3)0.0389 (3)0.0336 (9)
H10.21940.21820.02530.040*
C20.1907 (8)0.3205 (3)0.0889 (3)0.0262 (8)
C30.0708 (9)0.3222 (3)0.1811 (3)0.0314 (9)
H30.07550.38430.21870.038*
C40.0575 (10)0.2285 (3)0.2167 (3)0.0371 (10)
H40.13570.23040.27960.045*
C50.3470 (8)0.4126 (3)0.0428 (3)0.0274 (8)
C60.4070 (10)0.4144 (3)0.0570 (3)0.0383 (10)
H60.34290.35650.09650.046*
C70.4420 (10)0.5009 (3)0.0993 (3)0.0383 (10)
H70.40340.50290.16620.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0549 (4)0.0202 (4)0.0286 (4)0.0012 (3)0.0063 (3)0.0041 (3)
Br10.0412 (2)0.0351 (3)0.0283 (2)0.00269 (19)0.00236 (16)0.00208 (18)
N10.0471 (19)0.030 (2)0.033 (2)0.0041 (16)0.0073 (16)0.0023 (16)
N20.0450 (19)0.0205 (18)0.0282 (19)0.0005 (15)0.0004 (15)0.0034 (14)
C10.048 (2)0.027 (2)0.026 (2)0.0024 (19)0.0072 (18)0.0037 (18)
C20.0267 (18)0.021 (2)0.030 (2)0.0029 (16)0.0030 (15)0.0035 (16)
C30.039 (2)0.029 (2)0.026 (2)0.0033 (18)0.0005 (17)0.0075 (17)
C40.046 (2)0.036 (3)0.030 (2)0.0024 (19)0.0058 (19)0.0085 (19)
C50.0299 (18)0.021 (2)0.031 (2)0.0011 (16)0.0013 (16)0.0027 (17)
C60.057 (2)0.026 (2)0.032 (2)0.011 (2)0.0042 (19)0.0124 (19)
C70.053 (3)0.035 (3)0.027 (2)0.006 (2)0.0060 (19)0.0080 (18)
Geometric parameters (Å, º) top
Cu1—N2i2.005 (3)C2—C31.373 (5)
Cu1—N22.005 (3)C2—C51.481 (5)
Cu1—Br1i2.4151 (4)C3—C41.388 (5)
Cu1—Br12.4151 (4)C3—H30.9300
Cu1—Br1ii3.2421 (4)C4—H40.9300
N1—C41.325 (5)C5—C71.388 (5)
N1—N21.336 (4)C5—C61.390 (5)
N2—C11.312 (4)C6—C7iii1.376 (5)
C1—C21.408 (5)C6—H60.9300
C1—H10.9300C7—H70.9300
N2i—Cu1—N2180.00 (17)C1—C2—C5121.1 (3)
N2i—Cu1—Br1i89.43 (9)C2—C3—C4118.2 (4)
N2—Cu1—Br1i90.57 (9)C2—C3—H3120.9
N2i—Cu1—Br190.57 (9)C4—C3—H3120.9
N2—Cu1—Br189.43 (9)N1—C4—C3125.1 (4)
Br1i—Cu1—Br1180.00 (3)N1—C4—H4117.5
N2—Cu1—Br1ii88.40 (9)C3—C4—H4117.5
Br1—Cu1—Br1ii87.158 (12)C7—C5—C6117.4 (3)
C4—N1—N2116.5 (3)C7—C5—C2120.4 (3)
C1—N2—N1121.5 (3)C6—C5—C2122.2 (3)
C1—N2—Cu1120.5 (3)C7iii—C6—C5122.2 (4)
N1—N2—Cu1118.0 (2)C7iii—C6—H6118.9
N2—C1—C2124.1 (4)C5—C6—H6118.9
N2—C1—H1117.9C6iii—C7—C5120.4 (4)
C2—C1—H1117.9C6iii—C7—H7119.8
C3—C2—C1114.5 (3)C5—C7—H7119.8
C3—C2—C5124.4 (3)
C4—N1—N2—C11.0 (5)C5—C2—C3—C4177.3 (3)
C4—N1—N2—Cu1179.2 (3)N2—N1—C4—C31.4 (6)
Br1i—Cu1—N2—C166.2 (3)C2—C3—C4—N10.8 (6)
Br1—Cu1—N2—C1113.8 (3)C3—C2—C5—C713.4 (5)
Br1i—Cu1—N2—N1114.1 (3)C1—C2—C5—C7166.9 (4)
Br1—Cu1—N2—N165.9 (3)C3—C2—C5—C6167.1 (4)
N1—N2—C1—C21.5 (6)C1—C2—C5—C612.6 (5)
Cu1—N2—C1—C2178.3 (3)C7—C5—C6—C7iii0.8 (7)
N2—C1—C2—C33.4 (6)C2—C5—C6—C7iii178.7 (4)
N2—C1—C2—C5176.8 (3)C6—C5—C7—C6iii0.8 (7)
C1—C2—C3—C42.9 (5)C2—C5—C7—C6iii178.7 (4)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
(III) catena-poly[[[tetrakis(µ-acetato-κ2O:O')dicopper(II)]- µ2-4,4'-(p-phenylene)bipyridazine-κ2N1:N1'] chloroform disolvate] top
Crystal data top
[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3Z = 1
Mr = 836.25F(000) = 420
Triclinic, P1Dx = 1.738 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6349 (8) ÅCell parameters from 8062 reflections
b = 8.0203 (8) Åθ = 2.6–26.5°
c = 13.9312 (10) ŵ = 1.88 mm1
α = 104.601 (2)°T = 296 K
β = 103.993 (2)°Prism, green-blue
γ = 90.123 (3)°0.27 × 0.15 × 0.12 mm
V = 799.21 (13) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
3283 independent reflections
Radiation source: fine-focus sealed tube2688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.630, Tmax = 0.806k = 1010
8062 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.1918P]
where P = (Fo2 + 2Fc2)/3
3283 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3γ = 90.123 (3)°
Mr = 836.25V = 799.21 (13) Å3
Triclinic, P1Z = 1
a = 7.6349 (8) ÅMo Kα radiation
b = 8.0203 (8) ŵ = 1.88 mm1
c = 13.9312 (10) ÅT = 296 K
α = 104.601 (2)°0.27 × 0.15 × 0.12 mm
β = 103.993 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3283 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2688 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.806Rint = 0.035
8062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
3283 reflectionsΔρmin = 0.41 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37515 (4)0.41141 (4)0.42032 (3)0.02542 (12)
O10.4749 (3)0.7837 (3)0.56696 (17)0.0371 (5)
O20.2681 (3)0.6361 (3)0.42876 (17)0.0394 (5)
O30.7298 (3)0.6220 (3)0.46891 (16)0.0359 (5)
O40.5206 (3)0.4719 (3)0.33358 (15)0.0365 (5)
N10.1314 (3)0.2811 (3)0.30510 (18)0.0291 (6)
N20.1189 (3)0.2746 (4)0.20707 (19)0.0380 (7)
C10.0328 (4)0.2105 (4)0.1390 (2)0.0368 (8)
H10.03970.20860.07110.044*
C20.1850 (4)0.1446 (4)0.1605 (2)0.0289 (7)
C30.1700 (4)0.1586 (4)0.2618 (2)0.0369 (8)
H30.26580.12190.28360.044*
C40.0099 (4)0.2280 (4)0.3310 (2)0.0367 (8)
H40.00080.23820.40000.044*
C50.3471 (4)0.0707 (4)0.0783 (2)0.0293 (7)
C60.5189 (4)0.1108 (4)0.0903 (2)0.0362 (8)
H60.53270.18530.15060.043*
C70.3322 (4)0.0400 (4)0.0126 (2)0.0396 (8)
H70.21770.06730.02140.048*
C80.3332 (4)0.7716 (4)0.4966 (2)0.0304 (7)
C90.2359 (5)0.9324 (4)0.4925 (3)0.0416 (8)
H9A0.23210.99440.56060.062*
H9B0.11480.90220.45060.062*
H9C0.29841.00380.46390.062*
C100.6657 (4)0.5640 (4)0.3743 (2)0.0295 (7)
C110.7700 (5)0.6105 (4)0.3052 (3)0.0423 (8)
H11A0.73560.52910.23910.064*
H11B0.89720.60760.33420.064*
H11C0.74390.72440.29810.064*
C120.2578 (5)0.6717 (5)0.1792 (3)0.0555 (10)
H120.27150.58810.22070.067*
Cl10.02744 (17)0.69281 (19)0.13244 (10)0.0885 (4)
Cl20.35719 (18)0.59579 (18)0.07766 (9)0.0910 (4)
Cl30.36454 (17)0.87143 (14)0.25682 (9)0.0720 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02236 (19)0.0254 (2)0.0242 (2)0.00199 (13)0.00009 (14)0.00435 (14)
O10.0365 (12)0.0291 (12)0.0404 (13)0.0034 (9)0.0024 (10)0.0066 (10)
O20.0329 (12)0.0294 (12)0.0485 (14)0.0044 (9)0.0018 (10)0.0086 (10)
O30.0332 (12)0.0439 (13)0.0275 (12)0.0073 (10)0.0042 (9)0.0069 (10)
O40.0371 (12)0.0416 (13)0.0267 (12)0.0075 (10)0.0043 (10)0.0053 (10)
N10.0246 (13)0.0318 (14)0.0264 (14)0.0018 (10)0.0001 (10)0.0059 (11)
N20.0264 (14)0.0558 (18)0.0270 (15)0.0062 (12)0.0020 (11)0.0069 (13)
C10.0297 (17)0.054 (2)0.0215 (16)0.0035 (15)0.0034 (13)0.0038 (15)
C20.0221 (15)0.0341 (17)0.0232 (16)0.0020 (12)0.0006 (12)0.0007 (13)
C30.0308 (17)0.046 (2)0.0292 (18)0.0116 (14)0.0021 (13)0.0075 (15)
C40.0338 (17)0.049 (2)0.0227 (16)0.0092 (15)0.0001 (13)0.0079 (14)
C50.0228 (15)0.0358 (17)0.0240 (16)0.0024 (12)0.0011 (12)0.0028 (13)
C60.0292 (16)0.046 (2)0.0252 (16)0.0006 (14)0.0052 (13)0.0036 (14)
C70.0215 (15)0.055 (2)0.0309 (18)0.0008 (14)0.0027 (13)0.0052 (15)
C80.0339 (17)0.0263 (16)0.0382 (19)0.0046 (13)0.0172 (15)0.0133 (14)
C90.043 (2)0.0316 (18)0.055 (2)0.0116 (15)0.0168 (17)0.0155 (16)
C100.0309 (16)0.0267 (16)0.0304 (17)0.0053 (13)0.0069 (13)0.0073 (13)
C110.0421 (19)0.050 (2)0.039 (2)0.0011 (16)0.0149 (16)0.0135 (16)
C120.066 (3)0.053 (2)0.050 (2)0.005 (2)0.013 (2)0.0212 (19)
Cl10.0641 (7)0.1268 (12)0.0844 (9)0.0106 (7)0.0168 (6)0.0466 (8)
Cl20.0961 (10)0.1107 (11)0.0603 (8)0.0354 (8)0.0234 (7)0.0074 (7)
Cl30.0962 (9)0.0542 (6)0.0657 (7)0.0054 (6)0.0237 (6)0.0126 (5)
Geometric parameters (Å, º) top
Cu1—O1i1.960 (2)C4—H40.9300
Cu1—O41.967 (2)C5—C71.382 (4)
Cu1—O21.969 (2)C5—C61.390 (4)
Cu1—O3i1.975 (2)C6—C7ii1.370 (4)
Cu1—N12.199 (2)C6—H60.9300
Cu1—Cu1i2.6332 (7)C7—H70.9300
O1—C81.257 (4)C8—C91.496 (4)
O2—C81.254 (4)C9—H9A0.9600
O3—C101.253 (4)C9—H9B0.9600
O4—C101.255 (3)C9—H9C0.9600
N1—C41.318 (4)C10—C111.500 (4)
N1—N21.334 (3)C11—H11A0.9600
N2—C11.314 (4)C11—H11B0.9600
C1—C21.402 (4)C11—H11C0.9600
C1—H10.9300C12—Cl21.743 (4)
C2—C31.364 (4)C12—Cl11.746 (4)
C2—C51.471 (4)C12—Cl31.759 (4)
C3—C41.374 (4)C12—H120.9800
C3—H30.9300
O1i—Cu1—O488.70 (9)C3—C4—H4118.1
O1i—Cu1—O2168.03 (9)C7—C5—C6118.5 (3)
O4—Cu1—O288.73 (9)C7—C5—C2120.8 (2)
O1i—Cu1—O3i89.99 (9)C6—C5—C2120.8 (3)
O4—Cu1—O3i168.07 (8)C7ii—C6—C5119.6 (3)
O2—Cu1—O3i90.12 (9)C7ii—C6—H6120.2
O1i—Cu1—N1101.31 (9)C5—C6—H6120.2
O4—Cu1—N1101.53 (9)C6ii—C7—C5121.9 (3)
O2—Cu1—N190.66 (9)C6ii—C7—H7119.1
O3i—Cu1—N190.35 (9)C5—C7—H7119.1
O1i—Cu1—Cu1i84.77 (7)O2—C8—O1125.3 (3)
O4—Cu1—Cu1i87.34 (6)O2—C8—C9117.4 (3)
O2—Cu1—Cu1i83.44 (6)O1—C8—C9117.3 (3)
O3i—Cu1—Cu1i80.74 (6)C8—C9—H9A109.5
N1—Cu1—Cu1i169.26 (6)C8—C9—H9B109.5
C8—O1—Cu1i122.62 (19)H9A—C9—H9B109.5
C8—O2—Cu1123.8 (2)C8—C9—H9C109.5
C10—O3—Cu1i127.26 (19)H9A—C9—H9C109.5
C10—O4—Cu1119.78 (19)H9B—C9—H9C109.5
C4—N1—N2119.2 (2)O3—C10—O4124.9 (3)
C4—N1—Cu1122.0 (2)O3—C10—C11117.1 (3)
N2—N1—Cu1118.30 (18)O4—C10—C11118.0 (3)
C1—N2—N1118.6 (2)C10—C11—H11A109.5
N2—C1—C2125.2 (3)C10—C11—H11B109.5
N2—C1—H1117.4H11A—C11—H11B109.5
C2—C1—H1117.4C10—C11—H11C109.5
C3—C2—C1114.7 (3)H11A—C11—H11C109.5
C3—C2—C5124.2 (3)H11B—C11—H11C109.5
C1—C2—C5121.1 (3)Cl2—C12—Cl1110.0 (2)
C2—C3—C4118.4 (3)Cl2—C12—Cl3110.4 (2)
C2—C3—H3120.8Cl1—C12—Cl3110.1 (2)
C4—C3—H3120.8Cl2—C12—H12108.8
N1—C4—C3123.8 (3)Cl1—C12—H12108.8
N1—C4—H4118.1Cl3—C12—H12108.8
O1i—Cu1—O2—C812.1 (6)N2—C1—C2—C33.1 (5)
O4—Cu1—O2—C889.7 (2)N2—C1—C2—C5178.2 (3)
O3i—Cu1—O2—C878.4 (2)C1—C2—C3—C42.2 (5)
N1—Cu1—O2—C8168.8 (2)C5—C2—C3—C4179.1 (3)
Cu1i—Cu1—O2—C82.2 (2)N2—N1—C4—C32.8 (5)
O1i—Cu1—O4—C1085.3 (2)Cu1—N1—C4—C3174.6 (3)
O2—Cu1—O4—C1083.0 (2)C2—C3—C4—N10.5 (5)
O3i—Cu1—O4—C101.6 (6)C3—C2—C5—C7137.3 (3)
N1—Cu1—O4—C10173.4 (2)C1—C2—C5—C744.1 (5)
Cu1i—Cu1—O4—C100.5 (2)C3—C2—C5—C642.8 (5)
O1i—Cu1—N1—C493.5 (2)C1—C2—C5—C6135.8 (3)
O4—Cu1—N1—C4175.5 (2)C7—C5—C6—C7ii0.2 (6)
O2—Cu1—N1—C486.7 (2)C2—C5—C6—C7ii179.9 (3)
O3i—Cu1—N1—C43.4 (2)C6—C5—C7—C6ii0.2 (6)
Cu1i—Cu1—N1—C430.2 (5)C2—C5—C7—C6ii179.9 (3)
O1i—Cu1—N1—N294.6 (2)Cu1—O2—C8—O10.9 (4)
O4—Cu1—N1—N23.6 (2)Cu1—O2—C8—C9179.95 (19)
O2—Cu1—N1—N285.2 (2)Cu1i—O1—C8—O21.9 (4)
O3i—Cu1—N1—N2175.3 (2)Cu1i—O1—C8—C9177.10 (19)
Cu1i—Cu1—N1—N2141.6 (3)Cu1i—O3—C10—O40.4 (4)
C4—N1—N2—C12.0 (4)Cu1i—O3—C10—C11178.9 (2)
Cu1—N1—N2—C1174.1 (2)Cu1—O4—C10—O30.7 (4)
N1—N2—C1—C21.0 (5)Cu1—O4—C10—C11178.6 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.982.833.541 (4)130
C12—H12···O40.982.503.298 (5)138
C12—H12···N20.982.713.496 (5)137

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H10N4[CuBr2(C14H10N4)][Cu2(C2H3O2)4(C14H10N4)]·2CHCl3
Mr234.26457.62836.25
Crystal system, space groupTriclinic, P1Monoclinic, P21/cTriclinic, P1
Temperature (K)296296296
a, b, c (Å)6.3588 (7), 6.9307 (9), 7.0681 (10)4.1377 (2), 12.5407 (7), 13.5301 (8)7.6349 (8), 8.0203 (8), 13.9312 (10)
α, β, γ (°)110.282 (3), 90.823 (3), 106.585 (2)90, 93.786 (4), 90104.601 (2), 103.993 (2), 90.123 (3)
V3)277.80 (6)700.54 (7)799.21 (13)
Z121
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.097.261.88
Crystal size (mm)0.26 × 0.23 × 0.200.24 × 0.20 × 0.190.27 × 0.15 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.203, 0.2510.630, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
2129, 1131, 894 3750, 1415, 1099 8062, 3283, 2688
Rint0.0280.0310.035
(sin θ/λ)max1)0.6260.6240.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.10 0.031, 0.070, 1.06 0.040, 0.090, 1.07
No. of reflections113114153283
No. of parameters10297201
H-atom treatmentAll H-atom parameters refinedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.180.54, 0.370.35, 0.41

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Version 1.70.01; Farrugia, 1999).

Selected bond lengths (Å) for (I) top
N1—C41.327 (3)C2—C31.376 (3)
N1—N21.345 (2)C2—C51.482 (2)
N2—C11.325 (2)C3—C41.387 (2)
C1—C21.393 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.91 (2)2.66 (2)3.399 (3)139 (2)
C3—H3···N2ii0.96 (2)2.65 (2)3.608 (2)175 (2)
Symmetry codes: (i) x+1, y+1, z1; (ii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Cu1—N22.005 (3)Cu1—Br1i3.2421 (4)
Cu1—Br12.4151 (4)
N2—Cu1—Br1ii90.57 (9)N2—Cu1—Br1i88.40 (9)
N2—Cu1—Br189.43 (9)Br1—Cu1—Br1i87.158 (12)
C1—C2—C5—C612.6 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Selected geometric parameters (Å, º) for (III) top
Cu1—O1i1.960 (2)Cu1—O3i1.975 (2)
Cu1—O41.967 (2)Cu1—N12.199 (2)
Cu1—O21.969 (2)Cu1—Cu1i2.6332 (7)
O1i—Cu1—O488.70 (9)O2—Cu1—O3i90.12 (9)
O1i—Cu1—O2168.03 (9)O1i—Cu1—N1101.31 (9)
O4—Cu1—O288.73 (9)O4—Cu1—N1101.53 (9)
O1i—Cu1—O3i89.99 (9)O2—Cu1—N190.66 (9)
O4—Cu1—O3i168.07 (8)
C1—C2—C5—C744.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.982.833.541 (4)130
C12—H12···O40.982.503.298 (5)138
C12—H12···N20.982.713.496 (5)137
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds