Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614014867/ky3057sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014867/ky3057Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014867/ky3057IIsup3.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614014867/ky3057Isup4.cml |
CCDC references: 1009992; 1009993
4-Aminophenylarsonic acid (p-arsanilic acid) has a long history as an antihelminth in veterinary applications (Thomas, 1905; Steverding, 2010) and more commonly as a previously employed antisyphilitic drug (Ehrlich & Bertheim, 1907; Burke, 1925), when used as the hydrated sodium salt, under a variety of common names, primarily atoxyl (Jolliffe, 1993; O'Neil, 2001; Bosch & Rosich, 2008). The crystal structure of the parent acid (Shimada, 1961; Nuttall & Hunter, 1996) has confirmed the presence of a Ph–NH3+–AsO3H- zwitterion in the solid state. These structures are among only a small number of examples in the crystallographic literature involving this acid in any form, including the complexes with silver, zinc, cadmium and lead (Lesikar-Parrish et al., 2013), uranium (Adelani et al., 2012) and the sodium salt of a hybrid organic–inorganic polyoxovanadate cluster complex formed with arsanilate anions (Breen & Schmitt, 2008). Similarly, structures involving phenylarsonic acid are uncommon and are restricted to the parent acid [Shimada, 1960; Lloyd et al., 2008 (which includes the 4-fluoro-, 4-fluoro-3-nitro-, 3-amino-4-hydroxy- and 3-amino-4-methoxy-derivatives)] and the salt adducts guanidinium phenylarsonate–guanidine–water (1/1/2) (Smith & Wermuth, 2010), bis(guanidinium) phenylarsonate–water (1/2) (Latham et al., 2011) and ammonium 4-nitrophenylarsonate (Yang et al., 2002).
Our 1:1 stoichiometric reaction of p-arsanilic acid with either ammonium carbonate or sodium carbonate in aqueous ethanol gave ammonium 4-aminophenylarsonate monohydrate, (I), the one-dimensional coordination polymer catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-µ-aqua], (II), the structures and hydrogen-bonded packing modes for which are reported herein. Trihydrate complex (II) is the commonly employed form of the pharmaceutical compound atoxyl (Bosch & Rosich, 2008).
The title compounds were synthesized by heating together under reflux for 10 min, 4-aminophenylarsonic acid (1 mmol, 217 mg) and either ammonium carbonate (1 mmol, 96 mg) [for (I)] or sodium carbonate (1 mmol, 106 mg) [for (II)] in 50% aqueous ethanol (30 ml). Room-temperature evaporation of the solutions gave colourless needles of both (I) and (II) from which specimens suitable for X-ray analyses were cleaved.
Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms involved in formal hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were allowed to ride, with N—H and O—H bond lengths restrained to 0.88±0.020 and 0.94±0.02 Å, respectively, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The aromatic H atoms were included in the refinement in calculated positions (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C). The Flack structure parameters (Flack, 1983), although not of relevance for the two molecular structures reported, were 0.002 (16) (937 Friedel pairs) for (I) and 0.020 (15) (991 Friedel pairs) for (II).
In the structure of ammonium salt (I), the ammonium cations, arsonate anions and water molecules (Fig. 1) interact through inter-species N—H···O and arsonate and water O—H···O hydrogen bonds (Table 2), giving two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through hydrogen-bonding interactions involving the para-related amine group acting both as a donor and acceptor (Fig. 2). Among the interactions are examples of expanded cyclic motifs, e.g. graph set R33(10) (Etter et al., 1990) (one ammonium and two arsenate species) and R54(12) (two ammonium and two arsenate species, and a water molecule). The formation of two-dimensional layers in ammonium salts of carboxylic acids is consistent with the observation (Odendal et al., 2010), with ammonium benzoate among examples of ammonium and aminium salt structures from the Cambridge Structural Database (Version 5.34; Allen, 2002), as well as in the ammonium salts of 4-nitrobenzoic acid and 2,4-dichlorobenzoic acid (Smith, 2014a). Expansion from two- into three-dimensional structures occurs only with hydrogen-bonding interactions between the layers through stereochemically sited donor/acceptor groups, such as found in (I) and in the ammonium 4-nitroanthranilate monohydrate structure (Smith, 2014b).
In the coordination polymeric structure of the sodium salt of p-arsanilate, (II), the basic NaO5 complex repeating unit (Fig. 3) comprises a single monodentate arsonate O-atom donor, two monodentate water O atoms (O1W and O3W) and two from the bridging water molecule (O2W and O2Wi) [symmetry code: (i) -x+1/2, y, z-1/2)] (Table 3). The complex stereochemistry is very distorted square pyramidal, with an Na—O bond-length range of 2.376 (4)–2.482 (5) Å. The single bridging link gives a one-dimensional chain polymer structure extending along the crystallographic c direction (Fig. 4), with an Na1···Na1i separation of 4.452 (3) Å. Unlike what is observed in sodium salts of aromatic benzoic acids having coordinatively associative p-related substituent groups, e.g. sodium 4-nitroanthranilate dihydrate (Smith, 2013), no inter-chain or inter-layer polymeric bonding extensions through dative interactions of the 4-amino group are present in (II). However, in the crystal, there are extensive hydrogen-bonding associations (Table 4) involving the coordinated water molecules and the arsonate group in O1—H···O links to primarily arsonate O-atom acceptors, with one exception (O2W—H···O1W), and to a single amine N-atom acceptor (O3W—H···N4). The amine H atoms form N—H···O hydrogen bonds to a water molecule (O3W), as well as to an arsonate O-atom acceptor (Table 4). These interactions form network linkages between the complex chains, generating a three-dimensional framework structure (Fig. 5).
The monoanionic arsenate groups in both (I) and (II) are similar in having delocalized As—O11 and As—O12 bonds, which are essentially equal [1.672 (3) and 1.677 (3) Å in (I), and 1.670 (3) and 1.659 (3) Å in (II), respectively]. These values are similar to the values of 1.656 (6) and 1.669 (6) Å in the zwitterionic parent acid (Nuttall & Hunter, 1996) and 1.655 (3) and 1.673 (3) in ammonium phenylarsonate (Yang et al., 2002). The As—O13(H) bonds in (I) and (II) are 1.746 (3) and 1.745 (4) Å, respectively, which can be compared with 1.737 (8) Å in the parent acid and 1.732 (2) Å in ammonium phenylarsonate.
The work reported here provides the first two examples of three-dimensional hydrogen-bonded structures in salts of p-arsanilic acid (the historically significant pharmaceutical arsenical, atoxyl), viz. an ammonium salt hydrate and a coordination polymeric sodium complex salt trihydrate.
For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for (I); SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012) for (II). For both compounds, molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).
NH4+·C6H7AsNO3−·H2O | F(000) = 512 |
Mr = 252.10 | Dx = 1.610 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 1760 reflections |
a = 11.4287 (18) Å | θ = 3.8–28.7° |
b = 12.068 (2) Å | µ = 3.26 mm−1 |
c = 7.5427 (13) Å | T = 200 K |
V = 1040.3 (3) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.35 × 0.08 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1506 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1385 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −14→14 |
Tmin = 0.670, Tmax = 0.980 | l = −9→5 |
3581 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0368P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
1506 reflections | Δρmax = 0.33 e Å−3 |
145 parameters | Δρmin = −0.55 e Å−3 |
10 restraints | Absolute structure: Flack (1983), 937 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.002 (17) |
NH4+·C6H7AsNO3−·H2O | V = 1040.3 (3) Å3 |
Mr = 252.10 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 11.4287 (18) Å | µ = 3.26 mm−1 |
b = 12.068 (2) Å | T = 200 K |
c = 7.5427 (13) Å | 0.35 × 0.35 × 0.08 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1506 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 1385 reflections with I > 2σ(I) |
Tmin = 0.670, Tmax = 0.980 | Rint = 0.031 |
3581 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | Δρmax = 0.33 e Å−3 |
S = 1.04 | Δρmin = −0.55 e Å−3 |
1506 reflections | Absolute structure: Flack (1983), 937 Friedel pairs |
145 parameters | Absolute structure parameter: 0.002 (17) |
10 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
As1 | 0.37887 (3) | 0.69813 (3) | 0.83352 (9) | 0.0184 (1) | |
O11 | 0.4879 (2) | 0.6316 (2) | 0.7310 (4) | 0.0260 (9) | |
O12 | 0.2461 (2) | 0.6448 (2) | 0.7922 (4) | 0.0299 (9) | |
O13 | 0.4115 (3) | 0.6822 (3) | 1.0582 (4) | 0.0285 (10) | |
N4 | 0.3830 (3) | 1.2004 (3) | 0.7348 (6) | 0.0287 (14) | |
C1 | 0.3801 (3) | 0.8535 (3) | 0.7905 (5) | 0.0192 (13) | |
C2 | 0.4733 (3) | 0.9058 (4) | 0.7062 (5) | 0.0257 (12) | |
C3 | 0.4747 (3) | 1.0208 (3) | 0.6881 (6) | 0.0260 (14) | |
C4 | 0.3824 (3) | 1.0852 (4) | 0.7514 (6) | 0.0210 (11) | |
C5 | 0.2882 (3) | 1.0317 (3) | 0.8357 (10) | 0.0397 (14) | |
C6 | 0.2862 (3) | 0.9167 (3) | 0.8519 (9) | 0.0364 (16) | |
O1W | 0.3081 (3) | 0.3203 (3) | 1.0573 (5) | 0.0356 (11) | |
N1 | 0.1296 (3) | 0.4874 (3) | 0.9783 (6) | 0.0267 (12) | |
H2 | 0.53630 | 0.86290 | 0.66090 | 0.0310* | |
H3 | 0.53930 | 1.05580 | 0.63190 | 0.0310* | |
H5 | 0.22540 | 1.07440 | 0.88200 | 0.0480* | |
H6 | 0.22080 | 0.88120 | 0.90490 | 0.0440* | |
H13 | 0.347 (3) | 0.676 (4) | 1.136 (6) | 0.0430* | |
H41 | 0.446 (3) | 1.223 (4) | 0.679 (6) | 0.0340* | |
H42 | 0.319 (3) | 1.220 (4) | 0.681 (6) | 0.0340* | |
H11W | 0.374 (3) | 0.328 (5) | 1.128 (7) | 0.0540* | |
H12W | 0.344 (5) | 0.298 (4) | 0.953 (5) | 0.0540* | |
H1A | 0.168 (4) | 0.544 (3) | 0.929 (6) | 0.0320* | |
H1B | 0.081 (3) | 0.455 (3) | 0.905 (5) | 0.0320* | |
H1C | 0.083 (4) | 0.519 (4) | 1.056 (5) | 0.0320* | |
H1D | 0.182 (3) | 0.440 (3) | 1.019 (6) | 0.0320* |
U11 | U22 | U33 | U12 | U13 | U23 | |
As1 | 0.0151 (2) | 0.0190 (2) | 0.0212 (2) | −0.0012 (1) | −0.0033 (3) | 0.0012 (3) |
O11 | 0.0264 (15) | 0.0247 (15) | 0.0270 (15) | 0.0031 (13) | 0.0003 (12) | −0.0028 (12) |
O12 | 0.0246 (13) | 0.0282 (14) | 0.037 (2) | −0.0111 (12) | −0.0114 (13) | 0.0069 (14) |
O13 | 0.0193 (14) | 0.046 (2) | 0.0202 (16) | −0.0035 (15) | −0.0036 (13) | 0.0061 (15) |
N4 | 0.026 (2) | 0.023 (2) | 0.037 (3) | −0.0002 (16) | 0.0050 (16) | 0.0062 (16) |
C1 | 0.0217 (18) | 0.0179 (19) | 0.018 (3) | −0.0023 (15) | −0.0028 (15) | −0.0024 (15) |
C2 | 0.022 (2) | 0.028 (2) | 0.027 (2) | 0.0048 (19) | 0.0086 (17) | 0.0001 (19) |
C3 | 0.019 (2) | 0.028 (2) | 0.031 (3) | −0.0003 (19) | 0.0076 (18) | 0.011 (2) |
C4 | 0.023 (2) | 0.021 (2) | 0.0190 (18) | −0.0007 (18) | 0.0011 (15) | −0.0011 (17) |
C5 | 0.030 (2) | 0.028 (2) | 0.061 (3) | 0.0056 (18) | 0.023 (3) | 0.003 (3) |
C6 | 0.0213 (17) | 0.026 (2) | 0.062 (4) | −0.0003 (17) | 0.020 (3) | 0.006 (3) |
O1W | 0.044 (2) | 0.0333 (18) | 0.0295 (18) | 0.0020 (17) | −0.0048 (16) | −0.0056 (15) |
N1 | 0.025 (2) | 0.027 (2) | 0.028 (2) | −0.0065 (18) | 0.0053 (15) | −0.0051 (17) |
As1—O11 | 1.672 (3) | N1—H1D | 0.88 (4) |
As1—O12 | 1.677 (2) | N1—H1A | 0.89 (4) |
As1—O13 | 1.746 (3) | C1—C6 | 1.396 (5) |
As1—C1 | 1.903 (4) | C1—C2 | 1.392 (5) |
O13—H13 | 0.95 (4) | C2—C3 | 1.395 (6) |
O1W—H12W | 0.93 (4) | C3—C4 | 1.395 (5) |
O1W—H11W | 0.93 (4) | C4—C5 | 1.407 (6) |
N4—C4 | 1.396 (6) | C5—C6 | 1.393 (5) |
N4—H42 | 0.87 (4) | C2—H2 | 0.9500 |
N4—H41 | 0.88 (4) | C3—H3 | 0.9500 |
N1—H1C | 0.88 (4) | C5—H5 | 0.9500 |
N1—H1B | 0.88 (4) | C6—H6 | 0.9500 |
O11—As1—O12 | 113.83 (13) | C2—C1—C6 | 119.5 (4) |
O11—As1—O13 | 103.70 (15) | As1—C1—C2 | 122.0 (3) |
O11—As1—C1 | 112.88 (14) | C1—C2—C3 | 120.3 (4) |
O12—As1—O13 | 109.35 (16) | C2—C3—C4 | 120.8 (4) |
O12—As1—C1 | 110.67 (13) | N4—C4—C3 | 121.4 (4) |
O13—As1—C1 | 105.81 (17) | N4—C4—C5 | 120.1 (4) |
As1—O13—H13 | 116 (2) | C3—C4—C5 | 118.5 (4) |
H11W—O1W—H12W | 99 (4) | C4—C5—C6 | 120.6 (4) |
C4—N4—H41 | 111 (3) | C1—C6—C5 | 120.2 (4) |
C4—N4—H42 | 108 (3) | C1—C2—H2 | 120.00 |
H41—N4—H42 | 113 (4) | C3—C2—H2 | 120.00 |
H1A—N1—H1B | 113 (4) | C2—C3—H3 | 120.00 |
H1A—N1—H1C | 104 (4) | C4—C3—H3 | 120.00 |
H1C—N1—H1D | 117 (4) | C4—C5—H5 | 120.00 |
H1A—N1—H1D | 108 (4) | C6—C5—H5 | 120.00 |
H1B—N1—H1C | 103 (4) | C1—C6—H6 | 120.00 |
H1B—N1—H1D | 111 (3) | C5—C6—H6 | 120.00 |
As1—C1—C6 | 118.4 (3) | ||
O11—As1—C1—C2 | −9.6 (4) | As1—C1—C6—C5 | 174.9 (5) |
O11—As1—C1—C6 | 172.8 (4) | C2—C1—C6—C5 | −2.8 (8) |
O12—As1—C1—C2 | −138.5 (3) | C1—C2—C3—C4 | −1.0 (6) |
O12—As1—C1—C6 | 44.0 (4) | C2—C3—C4—N4 | 179.7 (4) |
O13—As1—C1—C2 | 103.1 (3) | C2—C3—C4—C5 | 0.6 (7) |
O13—As1—C1—C6 | −74.4 (4) | N4—C4—C5—C6 | 179.5 (5) |
As1—C1—C2—C3 | −175.5 (3) | C3—C4—C5—C6 | −1.4 (8) |
C6—C1—C2—C3 | 2.0 (6) | C4—C5—C6—C1 | 2.5 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O12 | 0.89 (4) | 1.83 (4) | 2.711 (5) | 170 (4) |
N1—H1B···O11i | 0.88 (4) | 1.99 (4) | 2.857 (5) | 173 (4) |
N1—H1C···O11ii | 0.88 (4) | 2.06 (4) | 2.909 (5) | 162 (4) |
N1—H1D···O1W | 0.88 (4) | 2.06 (4) | 2.930 (5) | 168 (4) |
N4—H41···O13iii | 0.88 (4) | 2.19 (4) | 3.049 (5) | 167 (4) |
N4—H42···O1Wiv | 0.87 (4) | 2.11 (4) | 2.942 (5) | 161 (4) |
O13—H13···O12ii | 0.95 (4) | 1.63 (4) | 2.562 (4) | 167 (4) |
O1W—H11W···O11v | 0.93 (4) | 1.83 (4) | 2.737 (4) | 167 (5) |
O1W—H12W···N4vi | 0.93 (4) | 2.07 (4) | 2.957 (6) | 159 (5) |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1/2, y, z+1/2; (iii) −x+1, −y+2, z−1/2; (iv) −x+1/2, y+1, z−1/2; (v) −x+1, −y+1, z+1/2; (vi) x, y−1, z. |
[Na(C6H7AsNO3)(H2O)3] | F(000) = 592 |
Mr = 293.08 | Dx = 1.770 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 1282 reflections |
a = 10.4069 (13) Å | θ = 3.9–28.4° |
b = 13.6410 (17) Å | µ = 3.14 mm−1 |
c = 7.7494 (9) Å | T = 200 K |
V = 1100.1 (2) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.20 × 0.18 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1637 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1529 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.6° |
ω scans | h = −11→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −8→16 |
Tmin = 0.816, Tmax = 0.980 | l = −9→9 |
2790 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0311P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
1637 reflections | Δρmax = 0.67 e Å−3 |
163 parameters | Δρmin = −0.52 e Å−3 |
10 restraints | Absolute structure: Flack (1983), 991 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.020 (15) |
[Na(C6H7AsNO3)(H2O)3] | V = 1100.1 (2) Å3 |
Mr = 293.08 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 10.4069 (13) Å | µ = 3.14 mm−1 |
b = 13.6410 (17) Å | T = 200 K |
c = 7.7494 (9) Å | 0.25 × 0.20 × 0.18 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1637 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 1529 reflections with I > 2σ(I) |
Tmin = 0.816, Tmax = 0.980 | Rint = 0.037 |
2790 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.073 | Δρmax = 0.67 e Å−3 |
S = 1.00 | Δρmin = −0.52 e Å−3 |
1637 reflections | Absolute structure: Flack (1983), 991 Friedel pairs |
163 parameters | Absolute structure parameter: 0.020 (15) |
10 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
As1 | 0.61030 (4) | 0.28209 (3) | 0.83909 (8) | 0.0143 (1) | |
Na1 | 0.35537 (18) | 0.40646 (15) | 0.7093 (3) | 0.0215 (6) | |
O1W | 0.4553 (3) | 0.5655 (3) | 0.7299 (5) | 0.0224 (11) | |
O2W | 0.1892 (3) | 0.4587 (3) | 0.9084 (5) | 0.0227 (11) | |
O3W | 0.2208 (3) | 0.2715 (3) | 0.6391 (5) | 0.0210 (12) | |
O11 | 0.7486 (3) | 0.3375 (2) | 0.8884 (4) | 0.0201 (11) | |
O12 | 0.4826 (3) | 0.3308 (3) | 0.9344 (4) | 0.0211 (11) | |
O13 | 0.5776 (4) | 0.2987 (3) | 0.6202 (5) | 0.0247 (11) | |
N4 | 0.6110 (4) | −0.1607 (4) | 0.9238 (6) | 0.0230 (17) | |
C1 | 0.6174 (4) | 0.1445 (4) | 0.8751 (6) | 0.0177 (16) | |
C2 | 0.7147 (5) | 0.0870 (4) | 0.8007 (6) | 0.0193 (16) | |
C3 | 0.7128 (4) | −0.0130 (4) | 0.8161 (7) | 0.0193 (16) | |
C4 | 0.6126 (4) | −0.0592 (4) | 0.9063 (7) | 0.0173 (16) | |
C5 | 0.5199 (4) | −0.0018 (4) | 0.9866 (6) | 0.0190 (17) | |
C6 | 0.5207 (4) | 0.0982 (4) | 0.9698 (6) | 0.0187 (16) | |
H2 | 0.78250 | 0.11780 | 0.73920 | 0.0230* | |
H3 | 0.77930 | −0.05120 | 0.76570 | 0.0240* | |
H5 | 0.45510 | −0.03230 | 1.05410 | 0.0230* | |
H6 | 0.45510 | 0.13620 | 1.02280 | 0.0230* | |
H11W | 0.389 (4) | 0.597 (4) | 0.786 (6) | 0.0340* | |
H12W | 0.481 (5) | 0.602 (3) | 0.633 (5) | 0.0340* | |
H13 | 0.647 (4) | 0.300 (4) | 0.546 (6) | 0.0370* | |
H21W | 0.122 (4) | 0.451 (4) | 0.830 (6) | 0.0340* | |
H22W | 0.213 (5) | 0.5246 (18) | 0.918 (7) | 0.0340* | |
H31W | 0.151 (4) | 0.286 (4) | 0.569 (6) | 0.0320* | |
H32W | 0.272 (5) | 0.224 (3) | 0.589 (8) | 0.0320* | |
H41 | 0.642 (4) | −0.183 (4) | 0.828 (4) | 0.0270* | |
H42 | 0.540 (3) | −0.186 (4) | 0.962 (7) | 0.0270* |
U11 | U22 | U33 | U12 | U13 | U23 | |
As1 | 0.0129 (2) | 0.0163 (2) | 0.0138 (2) | −0.0013 (2) | −0.0018 (3) | 0.0010 (3) |
Na1 | 0.0219 (10) | 0.0212 (11) | 0.0215 (10) | 0.0004 (9) | −0.0025 (9) | 0.0008 (10) |
O1W | 0.0197 (19) | 0.025 (2) | 0.0225 (19) | 0.0030 (16) | 0.0018 (18) | 0.0004 (18) |
O2W | 0.027 (2) | 0.0199 (19) | 0.0212 (18) | −0.0005 (17) | −0.0030 (15) | 0.0009 (17) |
O3W | 0.019 (2) | 0.022 (2) | 0.022 (2) | −0.0005 (16) | −0.0007 (15) | −0.0005 (17) |
O11 | 0.0136 (17) | 0.0247 (19) | 0.022 (2) | −0.0058 (15) | −0.0053 (14) | 0.0045 (16) |
O12 | 0.0182 (19) | 0.026 (2) | 0.0190 (19) | 0.0023 (16) | 0.0019 (15) | 0.0000 (17) |
O13 | 0.020 (2) | 0.038 (2) | 0.0160 (19) | −0.0033 (17) | −0.0016 (16) | 0.0088 (18) |
N4 | 0.024 (3) | 0.018 (3) | 0.027 (3) | −0.0016 (19) | 0.007 (2) | 0.003 (2) |
C1 | 0.016 (2) | 0.013 (2) | 0.024 (4) | −0.0008 (18) | −0.004 (2) | 0.003 (2) |
C2 | 0.014 (2) | 0.024 (3) | 0.020 (3) | −0.003 (2) | 0.0046 (19) | 0.001 (2) |
C3 | 0.019 (2) | 0.021 (3) | 0.018 (3) | 0.0061 (19) | 0.002 (2) | −0.002 (3) |
C4 | 0.021 (3) | 0.016 (3) | 0.015 (2) | 0.003 (2) | −0.0034 (19) | 0.002 (2) |
C5 | 0.014 (3) | 0.023 (3) | 0.020 (3) | 0.002 (2) | 0.004 (2) | 0.002 (3) |
C6 | 0.015 (3) | 0.023 (3) | 0.018 (2) | 0.007 (2) | 0.005 (2) | 0.001 (2) |
Na1—O1W | 2.411 (4) | O13—H13 | 0.92 (4) |
Na1—O2W | 2.425 (4) | N4—C4 | 1.391 (8) |
Na1—O3W | 2.376 (4) | N4—H42 | 0.87 (4) |
Na1—O12 | 2.421 (4) | N4—H41 | 0.87 (4) |
Na1—O2Wi | 2.482 (5) | C1—C6 | 1.397 (6) |
As1—O11 | 1.670 (3) | C1—C2 | 1.405 (7) |
As1—O12 | 1.659 (3) | C2—C3 | 1.370 (8) |
As1—O13 | 1.745 (4) | C3—C4 | 1.405 (7) |
As1—C1 | 1.899 (5) | C4—C5 | 1.390 (7) |
O1W—H11W | 0.92 (5) | C5—C6 | 1.370 (8) |
O1W—H12W | 0.94 (4) | C2—H2 | 0.9500 |
O2W—H21W | 0.93 (4) | C3—H3 | 0.9500 |
O2W—H22W | 0.94 (3) | C5—H5 | 0.9500 |
O3W—H31W | 0.93 (4) | C6—H6 | 0.9500 |
O3W—H32W | 0.92 (5) | ||
O11—As1—O12 | 114.03 (16) | Na1—O3W—H32W | 107 (3) |
O11—As1—O13 | 109.38 (17) | H31W—O3W—H32W | 111 (5) |
O11—As1—C1 | 112.35 (16) | Na1—O3W—H31W | 116 (3) |
O12—As1—O13 | 102.98 (18) | As1—O13—H13 | 117 (3) |
O12—As1—C1 | 111.20 (19) | C4—N4—H42 | 116 (4) |
O13—As1—C1 | 106.2 (2) | H41—N4—H42 | 118 (5) |
O1W—Na1—O2W | 90.06 (14) | C4—N4—H41 | 105 (4) |
O1W—Na1—O3W | 165.12 (16) | As1—C1—C2 | 121.3 (4) |
O1W—Na1—O12 | 95.74 (15) | As1—C1—C6 | 119.8 (4) |
O1W—Na1—O2Wi | 83.37 (14) | C2—C1—C6 | 118.9 (5) |
O2W—Na1—O3W | 87.31 (14) | C1—C2—C3 | 120.7 (5) |
O2W—Na1—O12 | 93.26 (14) | C2—C3—C4 | 120.1 (5) |
O2W—Na1—O2Wi | 112.34 (14) | N4—C4—C3 | 120.3 (4) |
O3W—Na1—O12 | 99.03 (15) | N4—C4—C5 | 120.6 (4) |
O2Wi—Na1—O3W | 84.10 (15) | C3—C4—C5 | 119.0 (5) |
O2Wi—Na1—O12 | 154.36 (14) | C4—C5—C6 | 120.9 (4) |
Na1—O2W—Na1ii | 130.30 (17) | C1—C6—C5 | 120.3 (4) |
As1—O12—Na1 | 106.74 (16) | C1—C2—H2 | 120.00 |
Na1—O1W—H11W | 97 (3) | C3—C2—H2 | 120.00 |
Na1—O1W—H12W | 123 (3) | C2—C3—H3 | 120.00 |
H11W—O1W—H12W | 110 (4) | C4—C3—H3 | 120.00 |
H21W—O2W—H22W | 111 (5) | C4—C5—H5 | 120.00 |
Na1ii—O2W—H21W | 116 (3) | C6—C5—H5 | 120.00 |
Na1ii—O2W—H22W | 105 (3) | C1—C6—H6 | 120.00 |
Na1—O2W—H21W | 95 (3) | C5—C6—H6 | 120.00 |
Na1—O2W—H22W | 98 (3) | ||
O11—As1—O12—Na1 | 111.88 (17) | O2Wi—Na1—O12—As1 | −4.3 (5) |
O13—As1—O12—Na1 | −6.5 (2) | O1W—Na1—O2Wi—Na1i | −155.4 (2) |
C1—As1—O12—Na1 | −119.9 (2) | O2W—Na1—O2Wi—Na1i | −68.1 (3) |
O11—As1—C1—C2 | −53.3 (4) | O3W—Na1—O2Wi—Na1i | 16.6 (2) |
O11—As1—C1—C6 | 130.1 (4) | O12—Na1—O2Wi—Na1i | 115.1 (3) |
O12—As1—C1—C2 | 177.5 (4) | As1—C1—C2—C3 | −174.7 (4) |
O12—As1—C1—C6 | 0.9 (4) | C6—C1—C2—C3 | 2.0 (7) |
O13—As1—C1—C2 | 66.2 (4) | As1—C1—C6—C5 | 175.5 (3) |
O13—As1—C1—C6 | −110.4 (4) | C2—C1—C6—C5 | −1.2 (7) |
O1W—Na1—O2W—Na1ii | −111.2 (2) | C1—C2—C3—C4 | 0.3 (7) |
O3W—Na1—O2W—Na1ii | 83.4 (2) | C2—C3—C4—N4 | −179.3 (5) |
O12—Na1—O2W—Na1ii | −15.5 (2) | C2—C3—C4—C5 | −3.3 (7) |
O2Wi—Na1—O2W—Na1ii | 165.93 (19) | N4—C4—C5—C6 | −179.9 (4) |
O1W—Na1—O12—As1 | −90.9 (2) | C3—C4—C5—C6 | 4.1 (7) |
O2W—Na1—O12—As1 | 178.68 (19) | C4—C5—C6—C1 | −1.8 (7) |
O3W—Na1—O12—As1 | 90.9 (2) |
Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) −x+1/2, y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···O3Wiii | 0.87 (4) | 2.07 (4) | 2.908 (6) | 164 (5) |
N4—H42···O13iv | 0.87 (4) | 2.32 (5) | 3.117 (6) | 154 (4) |
O13—H13···O11v | 0.92 (4) | 1.71 (5) | 2.604 (5) | 161 (5) |
O1W—H11W···O11vi | 0.92 (5) | 1.89 (5) | 2.808 (5) | 177 (5) |
O1W—H12W···O12vii | 0.94 (4) | 1.83 (4) | 2.768 (5) | 175 (5) |
O2W—H21W···O1Wvi | 0.93 (4) | 1.91 (4) | 2.819 (5) | 163 (4) |
O2W—H22W···O11vi | 0.94 (3) | 1.93 (3) | 2.852 (5) | 168 (5) |
O3W—H31W···O12i | 0.93 (4) | 1.84 (5) | 2.766 (5) | 173 (5) |
O3W—H32W···N4viii | 0.92 (5) | 1.97 (6) | 2.852 (6) | 160 (5) |
Symmetry codes: (i) −x+1/2, y, z−1/2; (iii) x+1/2, −y, z; (iv) −x+1, −y, z+1/2; (v) −x+3/2, y, z−1/2; (vi) x−1/2, −y+1, z; (vii) −x+1, −y+1, z−1/2; (viii) −x+1, −y, z−1/2. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | NH4+·C6H7AsNO3−·H2O | [Na(C6H7AsNO3)(H2O)3] |
Mr | 252.10 | 293.08 |
Crystal system, space group | Orthorhombic, Pca21 | Orthorhombic, Pca21 |
Temperature (K) | 200 | 200 |
a, b, c (Å) | 11.4287 (18), 12.068 (2), 7.5427 (13) | 10.4069 (13), 13.6410 (17), 7.7494 (9) |
V (Å3) | 1040.3 (3) | 1100.1 (2) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 3.26 | 3.14 |
Crystal size (mm) | 0.35 × 0.35 × 0.08 | 0.25 × 0.20 × 0.18 |
Data collection | ||
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2013) | Multi-scan (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.670, 0.980 | 0.816, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3581, 1506, 1385 | 2790, 1637, 1529 |
Rint | 0.031 | 0.037 |
(sin θ/λ)max (Å−1) | 0.617 | 0.617 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.067, 1.04 | 0.033, 0.073, 1.00 |
No. of reflections | 1506 | 1637 |
No. of parameters | 145 | 163 |
No. of restraints | 10 | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.55 | 0.67, −0.52 |
Absolute structure | Flack (1983), 937 Friedel pairs | Flack (1983), 991 Friedel pairs |
Absolute structure parameter | 0.002 (17) | 0.020 (15) |
Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O12 | 0.89 (4) | 1.83 (4) | 2.711 (5) | 170 (4) |
N1—H1B···O11i | 0.88 (4) | 1.99 (4) | 2.857 (5) | 173 (4) |
N1—H1C···O11ii | 0.88 (4) | 2.06 (4) | 2.909 (5) | 162 (4) |
N1—H1D···O1W | 0.88 (4) | 2.06 (4) | 2.930 (5) | 168 (4) |
N4—H41···O13iii | 0.88 (4) | 2.19 (4) | 3.049 (5) | 167 (4) |
N4—H42···O1Wiv | 0.87 (4) | 2.11 (4) | 2.942 (5) | 161 (4) |
O13—H13···O12ii | 0.95 (4) | 1.63 (4) | 2.562 (4) | 167 (4) |
O1W—H11W···O11v | 0.93 (4) | 1.83 (4) | 2.737 (4) | 167 (5) |
O1W—H12W···N4vi | 0.93 (4) | 2.07 (4) | 2.957 (6) | 159 (5) |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1/2, y, z+1/2; (iii) −x+1, −y+2, z−1/2; (iv) −x+1/2, y+1, z−1/2; (v) −x+1, −y+1, z+1/2; (vi) x, y−1, z. |
Na1—O1W | 2.411 (4) | Na1—O12 | 2.421 (4) |
Na1—O2W | 2.425 (4) | Na1—O2Wi | 2.482 (5) |
Na1—O3W | 2.376 (4) |
Symmetry code: (i) −x+1/2, y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···O3Wii | 0.87 (4) | 2.07 (4) | 2.908 (6) | 164 (5) |
N4—H42···O13iii | 0.87 (4) | 2.32 (5) | 3.117 (6) | 154 (4) |
O13—H13···O11iv | 0.92 (4) | 1.71 (5) | 2.604 (5) | 161 (5) |
O1W—H11W···O11v | 0.92 (5) | 1.89 (5) | 2.808 (5) | 177 (5) |
O1W—H12W···O12vi | 0.94 (4) | 1.83 (4) | 2.768 (5) | 175 (5) |
O2W—H21W···O1Wv | 0.93 (4) | 1.91 (4) | 2.819 (5) | 163 (4) |
O2W—H22W···O11v | 0.94 (3) | 1.93 (3) | 2.852 (5) | 168 (5) |
O3W—H31W···O12i | 0.93 (4) | 1.84 (5) | 2.766 (5) | 173 (5) |
O3W—H32W···N4vii | 0.92 (5) | 1.97 (6) | 2.852 (6) | 160 (5) |
Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) x+1/2, −y, z; (iii) −x+1, −y, z+1/2; (iv) −x+3/2, y, z−1/2; (v) x−1/2, −y+1, z; (vi) −x+1, −y+1, z−1/2; (vii) −x+1, −y, z−1/2. |