Download citation
Download citation
link to html
The title complex, [Ni(C6H4NO2)2(H2O)4], consists of Ni atoms coordinated to two trans pyridyl­carboxyl­ate ligands, coordinated through the N atoms, and four water ligands. The Ni atom lies on a centre of symmetry. Extensive inter-complex hydrogen bonding occurs between the water ligands and the carboxyl­ate groups, resulting in a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800018730/ob6007sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800018730/ob6007Isup2.hkl
Contains datablock I

CCDC reference: 155833

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.025
  • wR factor = 0.058
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Pyridylcarboxylate ligands have recently been used in the construction of novel new coordination polymers with interesting microporous and non-linear optical properties (Lin et al., 1998; Evans, Xiong et al., 1999; Evans, Wang et al., 1999; Evans & Lin, 2000). A feature of this class of bridging ligand is the presence of two different coordinating functionalities – a pyridyl group and a carboxylate group. The ligands also offer the possibility of participating in hydrogen-bonding networks if monodentate coordination occurs. We report here the structure of NiL2(H2O)4 (L is pyridyl-4-carboxylate), (I), in which such a hydrogen-bonded network is found.

The structure of (I) is isomorphous with the previously reported manganese(II) (Hauptmann et al., 2000), iron(II) (Liu et al., 1999), cobalt(II) (Waizumi et al., 1998), copper(II) (Okabe et al., 1993; Waizumi et al., 1998), zinc(II) (Cingi et al., 1971) and cadmium(II) (Cingi et al., 1971) structures. It consists of mononuclear nickel complexes in which the metal ion is coordinated to the N atoms of two trans pyridyl-4-carboxylate ligands, and to four water ligands (Fig. 1). The octahedrally coordinated Ni atom (Table 1) lies on a centre of symmetry. The carboxylate group of the ligand is twisted slightly from the plane of the pyridyl group [the angle between the two planes is 13.93 (8)°].

Extensive hydrogen bonding between the water ligands and the uncoordinated carboxylate groups generates a complex three-dimensional network (Fig. 2). Each carboxylate O atom is hydrogen bonded to two separate water ligands (Table 2), and each water ligand hydrogen bonds to two separate carboxylates. Each complex is thus connected to six neighbours via 16 O—H···O hydrogen bonds.

Experimental top

The title compound was obtained from an aqueous solution containing nickel nitrate, sodium dicyanamide and pyridyl-4-carboxylic acid.

Refinement top

All H atoms were observed in difference syntheses, however only those of the water ligands were allowed to refine freely.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in (I), showing the extensive hydrogen bonding between complexes.
trans-Bis(pyridine-4-carboxylate)tetraaquonickel(II) top
Crystal data top
[Ni(C6H4NO2)2(H2O)4]Z = 1
Mr = 374.98F(000) = 194
Triclinic, P1Dx = 1.822 Mg m3
a = 6.2862 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8598 (2) ÅCell parameters from 3694 reflections
c = 9.2394 (4) Åθ = 2.4–28.3°
α = 96.511 (3)°µ = 1.47 mm1
β = 104.929 (2)°T = 123 K
γ = 113.692 (3)°Plate, blue
V = 341.77 (2) Å30.18 × 0.13 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1626 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 28.3°, θmin = 2.4°
ϕ and ω scansh = 88
Absorption correction: integration
(XPREP; Siemens, 1994)
k = 88
Tmin = 0.835, Tmax = 0.940l = 1112
3694 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0023P)2 + 0.1806P]
where P = (Fo2 + 2Fc2)/3
1626 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Ni(C6H4NO2)2(H2O)4]γ = 113.692 (3)°
Mr = 374.98V = 341.77 (2) Å3
Triclinic, P1Z = 1
a = 6.2862 (3) ÅMo Kα radiation
b = 6.8598 (2) ŵ = 1.47 mm1
c = 9.2394 (4) ÅT = 123 K
α = 96.511 (3)°0.18 × 0.13 × 0.05 mm
β = 104.929 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1626 independent reflections
Absorption correction: integration
(XPREP; Siemens, 1994)
1558 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.940Rint = 0.029
3694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.34 e Å3
1626 reflectionsΔρmin = 0.52 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All hydrogen atoms were found, however only those of the water ligands were allowed to refine freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.00985 (10)
O10.3201 (2)0.68358 (19)0.54174 (13)0.0133 (2)
H110.233 (4)0.716 (3)0.448 (2)0.022 (5)*
H120.406 (5)0.799 (4)0.603 (3)0.038 (7)*
O20.2785 (2)0.23654 (19)0.57230 (13)0.0146 (2)
H210.357 (5)0.179 (4)0.621 (3)0.031 (6)*
H220.169 (6)0.232 (5)0.609 (3)0.051 (8)*
N10.2618 (2)0.3588 (2)0.27200 (14)0.0115 (3)
C10.0173 (3)0.2869 (3)0.23226 (18)0.0146 (3)
H1A0.05350.28080.31190.017*
C20.1366 (3)0.2211 (2)0.08009 (18)0.0133 (3)
H2A0.30900.17090.05660.016*
C30.0356 (3)0.2294 (2)0.03765 (17)0.0113 (3)
C40.2166 (3)0.2947 (2)0.00326 (18)0.0127 (3)
H4A0.29110.29620.07420.015*
C50.3569 (3)0.3571 (2)0.15742 (17)0.0125 (3)
H5A0.52870.40090.18390.015*
C60.1921 (3)0.1762 (2)0.20519 (18)0.0127 (3)
O30.4223 (2)0.08506 (19)0.23781 (13)0.0176 (2)
O40.0777 (2)0.2321 (2)0.29873 (13)0.0183 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00868 (14)0.01290 (15)0.00829 (15)0.00532 (11)0.00296 (10)0.00170 (10)
O10.0129 (5)0.0160 (6)0.0113 (5)0.0083 (5)0.0023 (4)0.0013 (4)
O20.0127 (5)0.0171 (6)0.0164 (6)0.0071 (5)0.0069 (5)0.0072 (4)
N10.0113 (6)0.0131 (6)0.0103 (6)0.0059 (5)0.0033 (5)0.0024 (5)
C10.0133 (7)0.0178 (8)0.0141 (7)0.0071 (6)0.0069 (6)0.0033 (6)
C20.0102 (7)0.0133 (7)0.0156 (8)0.0053 (6)0.0042 (6)0.0011 (6)
C30.0129 (7)0.0079 (7)0.0127 (7)0.0051 (6)0.0028 (6)0.0023 (5)
C40.0139 (7)0.0126 (7)0.0129 (7)0.0062 (6)0.0060 (6)0.0034 (6)
C50.0101 (7)0.0150 (7)0.0132 (7)0.0063 (6)0.0041 (6)0.0031 (6)
C60.0147 (7)0.0106 (7)0.0134 (7)0.0076 (6)0.0030 (6)0.0019 (5)
O30.0124 (5)0.0210 (6)0.0161 (6)0.0065 (5)0.0019 (4)0.0036 (4)
O40.0177 (6)0.0286 (7)0.0129 (6)0.0131 (5)0.0065 (5)0.0071 (5)
Geometric parameters (Å, º) top
Ni1—O12.0669 (11)C1—C21.386 (2)
Ni1—O1i2.0669 (11)C1—H1A0.9500
Ni1—N1i2.0890 (13)C2—C31.389 (2)
Ni1—N12.0891 (13)C2—H2A0.9500
Ni1—O2i2.0932 (11)C3—C41.392 (2)
Ni1—O22.0932 (11)C3—C61.515 (2)
O1—H111.00 (2)C4—C51.379 (2)
O1—H120.80 (3)C4—H4A0.9500
O2—H210.83 (3)C5—H5A0.9500
O2—H220.83 (3)C6—O31.2575 (19)
N1—C11.342 (2)C6—O41.2591 (19)
N1—C51.344 (2)
O1—Ni1—O1i180.0C1—N1—C5117.60 (13)
O1—Ni1—N1i88.10 (5)C1—N1—Ni1122.94 (10)
O1i—Ni1—N1i91.90 (5)C5—N1—Ni1119.18 (10)
O1—Ni1—N191.90 (5)N1—C1—C2122.89 (14)
O1i—Ni1—N188.10 (5)N1—C1—H1A118.6
N1i—Ni1—N1180.0C2—C1—H1A118.6
O1—Ni1—O2i86.76 (5)C1—C2—C3119.19 (15)
O1i—Ni1—O2i93.24 (5)C1—C2—H2A120.4
N1i—Ni1—O2i90.76 (5)C3—C2—H2A120.4
N1—Ni1—O2i89.24 (5)C2—C3—C4117.91 (14)
O1—Ni1—O293.24 (5)C2—C3—C6121.39 (14)
O1i—Ni1—O286.76 (5)C4—C3—C6120.68 (14)
N1i—Ni1—O289.24 (5)C5—C4—C3119.29 (14)
N1—Ni1—O290.76 (5)C5—C4—H4A120.4
O2i—Ni1—O2180.000 (1)C3—C4—H4A120.4
Ni1—O1—H11114.6 (12)N1—C5—C4123.00 (14)
Ni1—O1—H12114.8 (18)N1—C5—H5A118.5
H11—O1—H12106 (2)C4—C5—H5A118.5
Ni1—O2—H21112.3 (16)O3—C6—O4126.02 (15)
Ni1—O2—H22126.5 (19)O3—C6—C3117.62 (14)
H21—O2—H22109 (2)O4—C6—C3116.34 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4ii1.00 (2)1.64 (2)2.634 (2)177 (2)
O1—H12···O3iii0.80 (2)2.00 (3)2.793 (2)172 (2)
O2—H21···O3iv0.83 (3)2.00 (3)2.825 (2)171 (2)
O2—H22···O4v0.83 (3)1.96 (3)2.786 (2)178 (3)
C1—H1A···O1vi0.952.473.381 (2)160
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C6H4NO2)2(H2O)4]
Mr374.98
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.2862 (3), 6.8598 (2), 9.2394 (4)
α, β, γ (°)96.511 (3), 104.929 (2), 113.692 (3)
V3)341.77 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.18 × 0.13 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionIntegration
(XPREP; Siemens, 1994)
Tmin, Tmax0.835, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
3694, 1626, 1558
Rint0.029
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.15
No. of reflections1626
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.52

Computer programs: COLLECT (Hooft, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O12.0669 (11)Ni1—O22.0932 (11)
Ni1—N12.0891 (13)
O1—Ni1—N191.90 (5)N1—Ni1—O290.76 (5)
O1—Ni1—O293.24 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4i1.00 (2)1.64 (2)2.634 (2)177 (2)
O1—H12···O3ii0.80 (2)2.00 (3)2.793 (2)172 (2)
O2—H21···O3iii0.83 (3)2.00 (3)2.825 (2)171 (2)
O2—H22···O4iv0.83 (3)1.96 (3)2.786 (2)178 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds