Download citation
Download citation
link to html
A three-dimensional coordination polymer of SrII based on dipicolinic acid (pydcH2) has been synthesized and characterized, namely poly[[di­aqua­bis­(μ3-6-carb­oxy­pyridine-2-car­box­yl­ato)bis­(μ4-pyridine-2,6-di­carboxyl­ato)tri­strontium(II)] di­hydrate], {[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]·2H2O}n. The asymmetric unit consists of two unique SrII centres (one of them situated on an inversion centre), two independent pydc2− ligands, and one coordinated and one uncoordinated water mol­ecule. The two independent SrII cations are surrounded by water and dipicolinate mol­ecules in distorted square-anti­prism and distorted tricapped trigonal prismatic geometries. The dipicolinate ligands adopt μ3- and μ4-bridging modes, linking the alkaline earth metal centres into a three-dimensional coordination framework. One dipicolin­ate ligand is doubly deprotonated, while the other is singly deprotonated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614009668/ov3048sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614009668/ov3048Isup2.hkl
Contains datablock I

CCDC reference: 1000180

Introduction top

There is continuing inter­est in the design and construction of coordination polymers, not only for their potential applications in gas adsorption, magnetism, luminescence and catalysis technologies and their photophysical and porous properties, but also for their charming architecture and topologies (Wang et al., 2012; Bu et al., 2004; Carlucci et al., 2003).

The construction of coordination polymers (CPs) is mainly dependent on the metal centres and organic ligands used (Liang et al., 2009; Martin et al., 2008; Kumar et al., 2007). The coordination features of the organic ligand, including the coordination mode and orientation of the donor groups, play an important role in controlling CP structures. Many reports demonstrate that aromatic di­carb­oxy­lic acids acting as organic linkers have been extensively utilized in the preparation of coordination polymers (Roesky & Andruh, 2003; Barnett & Champness, 2003; Dalai et al., 2002). Against this background, we present here the crystal structure of the title complex, (I), of Sr with dipicolinic acid (pydcH2), {[Sr2(pydc)(pydcH)(H2O)2].2H2O}n.

Experimental top

Synthesis and crystallization top

A mixture of pyridine-2,6-di­carb­oxy­lic acid (30 mg, 0.19 mmol), 2,9-di­methyl­phenanthroline (80 mg, 0.38 mmol) and Sr(NO3)2 (40 mg, 0.19 mmol) in water (10 ml) was stirred and heated to 353 K for 1 h. Colourless crystals of the title compound, (I), were obtained by slow evaporation of the solution at room temperature over a period of two months. Analysis, calculated for C14H10N2O10Sr1.50: C 33.75, H 2.01, N 5.63%; found: C 33.63, H 2.06, N 5.64%. Spectroscopic analysis: IR (KBr disc, ν, cm-1): 3598 (s), 3477 (s), 1610 (s), 1581 (s), 1566 (s), 1402 (s), 1381 (s), 908 (s), 823 (s), 766 (s), 655 (s).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The water and carboxyl­ate H atoms were initially observed in a Fourier difference map and included with O—H bond lengths set at 0.85 Å. The C-bound H atoms were included in geometrically calculated positions and treated as riding atoms, with C—H = 0.93 Å. All H atoms were refined, with Uiso(H) = 1.2Ueq(C,O).

Results and discussion top

As depicted in Fig. 1, the asymmetric unit of (I) consists of two unique SrII centres (one situated on an inversion centre), one doubly deprotonated pydc2- ligand, one singly deprotonated pydcH- ligand, and one coordinated and one uncoordinated water molecule.

In the synthesis of (I), we used dipicolinic acoid (pydcH2) and 2,9-di­methyl­phenanthroline (dmp) so as to form a coordination polymer containing the dmp fragment as an auxiliary ligand. However, the results show that only pydc2-/pydcH- contributes to the network of (I), forming a three-dimensional coordination polymer, as shown in Fig. 2.

There are two independent SrII cations in the structure of (I). Atom Sr1 is coordinated by one N atom, seven O atoms from the dipicolinate ligands and one O atom of a water molecule (Fig. 3). Thus, the coordination geometry around atom Sr1 is a distorted tricapped trigonal prism. Atom Sr2 is o­cta­coordinated by two N atoms (N1 and N1B) and six O atoms (O1, O1B, O4, O4B, O8A and O8AA) from the carboxyl­ate groups of pydcH- ligands (see Fig. 3 for symmetry codes). However, the coordination geometry around Sr2 is a distorted square anti­prism (Fig. 3). The two pydcH- ligands that bond to Sr2 are coplanar (the mean? deviation from the mean plane of the ring is 0.0087 Å and the angle between the plane of the rings is 0.0°).

Inter­estingly, there are two types of dipicolinate ligand in (I) which bridge several alkaline earth metal ions. One of the dipicolinate ligands bridges four SrII cations and the other bridges three SrII cations, creating a three-dimensional network from Sr1 and Sr2 units.

The Sr1—N2 bond distance is shorter than the Sr2—-N1 distance. The Sr1—O and Sr2—O bond lengths range from 2.470 (14) to 2.824 (15) Å. The range of bond distances for Sr2—O is smaller than that for Sr1—O, owing to a lowering of the steric hindrance in the Sr2 building blocks (coordination number = 8) compared with Sr1 (coordination number = 9).

Two types of four-membered Sr2O2 ring exist, with Sr···Sr distances of 4.281 (4) Å for two symmetry-related Sr1 atoms bridged by two symmetry-related O7 atoms, and 4.388 (3) Å for Sr1 and Sr2 bridged by O1 and O4 atoms (Fig. 3). The binuclear units comprised of Sr1 atoms are connected by Sr2 atoms to form the final framework.

This network is different from that of a previously reported SrII complex (Soleimannejad et al., 2007), which was composed of an anionic [Sr2(pydc)2(H2O)3]2- complex, a protonated 4,4'-bi­pyridine as counterion and three uncoordinated water molecules.

Inter- and intra­molecular O—H···O hydrogen-bond inter­actions between O atoms of the carboxyl­ate groups and water molecules support the three-dimensional structure of (I). An intra­molecular O—H···O hydrogen-bonding inter­action between atoms H9B and O3 of a carboxyl­ate group of the pydcH- ligand results in the formation of an R(8) ring [see Bernstein et al. (1995) for details of graph-set analysis]. The other H atom of the coordinated water molecule (H9A) forms an O—H···O hydrogen bond to atom O2 of the free water molecule. The two H atoms of this water molecule also contribute to the hydrogen bonding. One of the H atoms (H2B) forms a typical O—H···O hydrogen bond with atom O3 of one of the pydcH- ligands. The second H atom (H2A) forms bifurcated O—H···O hydrogen bonds to atoms O6 and O5 of two different pydc2- ligands (Table 2). Lastly, carb­oxy­lic acid atom O2 forms a strong hydrogen bond to carboxyl­ate atom O5 of a neighbouring independent pydc2- ligand.

Related literature top

For related literature, see: Barnett & Champness (2003); Bernstein et al. (1995); Bu et al. (2004); Carlucci et al. (2003); Dalai et al. (2002); Kumar et al. (2007); Liang et al. (2009); Martin et al. (2008); Roesky & Andruh (2003); Soleimannejad et al. (2007); Wang et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Representations of the three-dimensional structure of (I), (a) along the a axis and (b) along the b axis.

Fig. 3. The different coordination polyhedra around atoms Sr1 and Sr2 in (I). [Symmetry codes: (A) x - 1, y, z; (B) -x, -y, -z; (AA) -x + 1, -y, -z; (C) -x + 1, y - 1/2, -z + 1/2.]

Fig. 4. The four-membered Sr2O2 units of (I), each formed by two Sr atoms. The units formed by Sr1 atoms are shown in yellow and those formed by one Sr1 and one Sr2 atom are shown in violet.
Poly[[diaquabis(µ3-2-carboxypyridine-2-carboxylato)bis(µ4-pyridine-2,6-dicarboxylato)tristrontium(II)] dihydrate] top
Crystal data top
[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]·2H2OF(000) = 984
Mr = 997.36Dx = 1.947 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 9958 reflections
a = 10.3733 (5) Åθ = 2.5–27.5°
b = 9.1936 (4) ŵ = 4.78 mm1
c = 18.4182 (8) ÅT = 296 K
β = 104.469 (1)°Block, colourless
V = 1700.79 (13) Å30.43 × 0.38 × 0.36 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3839 independent reflections
Radiation source: fine-focus sealed tube3572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 1313
Tmin = 0.233, Tmax = 0.278k = 1111
21356 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0302P)2 + 1.4191P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3839 reflectionsΔρmax = 0.87 e Å3
251 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0174 (5)
Crystal data top
[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]·2H2OV = 1700.79 (13) Å3
Mr = 997.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.3733 (5) ŵ = 4.78 mm1
b = 9.1936 (4) ÅT = 296 K
c = 18.4182 (8) Å0.43 × 0.38 × 0.36 mm
β = 104.469 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3839 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
3572 reflections with I > 2σ(I)
Tmin = 0.233, Tmax = 0.278Rint = 0.032
21356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.06Δρmax = 0.87 e Å3
3839 reflectionsΔρmin = 0.40 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.429169 (15)0.052192 (18)0.096509 (9)0.00757 (7)
Sr20.00000.00000.00000.00860 (8)
N10.05890 (15)0.27558 (17)0.03896 (9)0.0103 (3)
N20.66963 (15)0.14008 (18)0.17779 (9)0.0095 (3)
C10.16033 (18)0.2930 (2)0.11886 (11)0.0133 (4)
C20.02716 (18)0.3615 (2)0.08591 (11)0.0116 (4)
C30.0028 (2)0.5018 (2)0.10372 (12)0.0160 (4)
H30.06090.55890.13580.019*
C40.1297 (2)0.5555 (2)0.07275 (13)0.0178 (4)
H40.15260.64960.08320.021*
C50.2218 (2)0.4658 (2)0.02592 (12)0.0153 (4)
H50.30850.49740.00560.018*
C60.18184 (18)0.3282 (2)0.00999 (11)0.0105 (4)
C70.27438 (18)0.2230 (2)0.04103 (10)0.0099 (4)
C80.75994 (18)0.0145 (2)0.09605 (11)0.0100 (4)
C90.78041 (18)0.0903 (2)0.16165 (10)0.0099 (3)
C100.90676 (18)0.1398 (2)0.19866 (11)0.0132 (4)
H100.98230.10040.18770.016*
C110.91831 (19)0.2481 (2)0.25183 (11)0.0150 (4)
H111.00140.28470.27620.018*
C120.80362 (19)0.3013 (2)0.26836 (11)0.0136 (4)
H120.80820.37460.30370.016*
C130.68158 (18)0.2424 (2)0.23068 (10)0.0101 (4)
C770.55270 (18)0.2977 (2)0.24504 (10)0.0097 (4)
O10.18794 (13)0.17345 (15)0.09723 (8)0.0150 (3)
O20.23705 (14)0.36889 (17)0.17132 (9)0.0236 (4)
H20.31590.33640.18620.028*
O30.39752 (12)0.24446 (16)0.05602 (8)0.0136 (3)
O40.22098 (12)0.11491 (15)0.06335 (8)0.0113 (3)
O50.44715 (12)0.23118 (15)0.21000 (8)0.0134 (3)
O60.55610 (13)0.40241 (16)0.28713 (8)0.0156 (3)
O70.64358 (13)0.02905 (15)0.05541 (8)0.0117 (3)
O80.86292 (13)0.07439 (15)0.08574 (8)0.0131 (3)
O90.46618 (14)0.30997 (16)0.05084 (8)0.0157 (3)
H9B0.51630.30690.02070.019*
H9A0.50630.37580.08040.019*
O2S0.57078 (18)0.55022 (17)0.14218 (9)0.0277 (4)
H2B0.52420.62160.12100.033*
H2A0.57840.56350.18870.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01112 (9)0.00716 (11)0.00555 (11)0.00024 (6)0.00421 (6)0.00065 (6)
Sr20.01046 (11)0.00764 (14)0.00920 (13)0.00101 (8)0.00523 (9)0.00166 (9)
N10.0138 (7)0.0086 (8)0.0104 (8)0.0004 (6)0.0064 (6)0.0017 (6)
N20.0146 (7)0.0083 (8)0.0062 (8)0.0003 (6)0.0037 (6)0.0008 (6)
C10.0152 (8)0.0126 (10)0.0136 (10)0.0008 (7)0.0063 (7)0.0037 (7)
C20.0141 (8)0.0111 (10)0.0110 (10)0.0004 (7)0.0055 (7)0.0013 (7)
C30.0180 (9)0.0127 (10)0.0176 (11)0.0015 (7)0.0048 (8)0.0045 (8)
C40.0219 (10)0.0089 (10)0.0233 (12)0.0032 (7)0.0066 (8)0.0038 (8)
C50.0164 (9)0.0117 (10)0.0180 (11)0.0026 (7)0.0047 (8)0.0000 (8)
C60.0143 (8)0.0089 (9)0.0096 (9)0.0010 (7)0.0054 (7)0.0007 (7)
C70.0159 (8)0.0074 (9)0.0076 (9)0.0005 (7)0.0054 (7)0.0025 (7)
C80.0163 (8)0.0080 (9)0.0083 (9)0.0007 (7)0.0076 (7)0.0032 (7)
C90.0155 (8)0.0091 (9)0.0063 (9)0.0000 (7)0.0053 (7)0.0020 (7)
C100.0134 (8)0.0161 (10)0.0110 (10)0.0012 (7)0.0051 (7)0.0024 (7)
C110.0151 (8)0.0195 (11)0.0099 (10)0.0038 (7)0.0022 (7)0.0002 (8)
C120.0207 (9)0.0119 (10)0.0087 (10)0.0023 (7)0.0045 (7)0.0019 (7)
C130.0163 (8)0.0093 (9)0.0056 (9)0.0004 (7)0.0046 (7)0.0017 (7)
C770.0157 (8)0.0101 (9)0.0034 (9)0.0016 (7)0.0028 (7)0.0022 (7)
O10.0148 (6)0.0125 (7)0.0175 (8)0.0020 (5)0.0038 (5)0.0068 (6)
O20.0165 (7)0.0208 (9)0.0286 (9)0.0050 (6)0.0035 (6)0.0156 (7)
O30.0133 (6)0.0137 (7)0.0141 (7)0.0012 (5)0.0041 (5)0.0010 (5)
O40.0144 (6)0.0083 (7)0.0117 (7)0.0009 (5)0.0039 (5)0.0023 (5)
O50.0141 (6)0.0142 (7)0.0125 (7)0.0008 (5)0.0045 (5)0.0044 (5)
O60.0213 (7)0.0146 (7)0.0113 (7)0.0026 (6)0.0051 (5)0.0060 (6)
O70.0149 (6)0.0126 (7)0.0090 (7)0.0002 (5)0.0055 (5)0.0021 (5)
O80.0162 (6)0.0124 (7)0.0138 (7)0.0025 (5)0.0093 (5)0.0006 (5)
O90.0235 (7)0.0134 (7)0.0124 (7)0.0011 (6)0.0089 (6)0.0009 (6)
O2S0.0483 (10)0.0182 (9)0.0167 (9)0.0110 (7)0.0084 (7)0.0025 (6)
Geometric parameters (Å, º) top
Sr1—O6i2.5197 (14)C4—C51.387 (3)
Sr1—O92.5754 (14)C4—H40.9300
Sr1—O4ii2.5958 (13)C5—C61.385 (3)
Sr1—O52.6301 (14)C5—H50.9300
Sr1—O72.6304 (13)C6—C71.513 (3)
Sr1—N22.6926 (15)C7—O31.253 (2)
Sr1—O7iii2.7183 (14)C7—O41.256 (2)
Sr1—O12.7425 (13)C7—Sr1ii3.0337 (19)
Sr1—O3ii2.8248 (14)C8—O81.257 (2)
Sr1—C7ii3.0337 (19)C8—O71.258 (2)
Sr1—Sr1iii4.2813 (4)C8—C91.518 (3)
Sr1—Sr24.3880 (3)C8—Sr2v3.3985 (18)
Sr2—O8iii2.4710 (13)C9—C101.394 (3)
Sr2—O8iv2.4710 (13)C10—C111.381 (3)
Sr2—O4ii2.5289 (13)C10—H100.9300
Sr2—O42.5289 (13)C11—C121.389 (3)
Sr2—N12.7434 (16)C11—H110.9300
Sr2—N1ii2.7434 (16)C12—C131.392 (3)
Sr2—O12.7939 (13)C12—H120.9300
Sr2—O1ii2.7939 (13)C13—C771.514 (2)
Sr2—C8iv3.3985 (18)C77—O61.231 (2)
Sr2—C8iii3.3985 (18)C77—O51.279 (2)
Sr2—Sr1ii4.3880 (2)O2—H20.8500
N1—C21.336 (2)O3—Sr1ii2.8248 (14)
N1—C61.343 (2)O4—Sr1ii2.5958 (13)
N2—C91.338 (2)O6—Sr1vi2.5197 (14)
N2—C131.338 (2)O7—Sr1iii2.7183 (14)
C1—O11.227 (2)O8—Sr2v2.4710 (13)
C1—O21.292 (2)O9—H9B0.8500
C1—C21.502 (3)O9—H9A0.8500
C2—C31.385 (3)O2S—H2B0.8500
C3—C41.389 (3)O2S—H2A0.8500
C3—H30.9300
O6i—Sr1—O9142.98 (5)O8iii—Sr2—C8iii16.85 (5)
O6i—Sr1—O4ii75.33 (4)O8iv—Sr2—C8iii163.15 (5)
O9—Sr1—O4ii130.61 (4)O4ii—Sr2—C8iii63.83 (4)
O6i—Sr1—O571.86 (5)O4—Sr2—C8iii116.17 (4)
O9—Sr1—O572.37 (4)N1—Sr2—C8iii109.87 (4)
O4ii—Sr1—O5116.54 (4)N1ii—Sr2—C8iii70.13 (4)
O6i—Sr1—O7102.34 (4)O1—Sr2—C8iii80.01 (4)
O9—Sr1—O787.80 (4)O1ii—Sr2—C8iii99.99 (4)
O4ii—Sr1—O7118.55 (4)C8iv—Sr2—C8iii180.00 (5)
O5—Sr1—O7120.61 (4)O8iii—Sr2—Sr162.68 (3)
O6i—Sr1—N280.80 (5)O8iv—Sr2—Sr1117.32 (3)
O9—Sr1—N273.29 (5)O4ii—Sr2—Sr131.56 (3)
O4ii—Sr1—N2155.38 (5)O4—Sr2—Sr1148.44 (3)
O5—Sr1—N259.90 (4)N1—Sr2—Sr193.60 (3)
O7—Sr1—N260.84 (4)N1ii—Sr2—Sr186.40 (3)
O6i—Sr1—O7iii140.81 (4)O1—Sr2—Sr137.17 (3)
O9—Sr1—O7iii76.20 (4)O1ii—Sr2—Sr1142.83 (3)
O4ii—Sr1—O7iii73.19 (4)C8iv—Sr2—Sr1126.49 (3)
O5—Sr1—O7iii144.43 (4)C8iii—Sr2—Sr153.51 (3)
O7—Sr1—O7iii73.67 (5)O8iii—Sr2—Sr1ii117.32 (3)
N2—Sr1—O7iii125.18 (4)O8iv—Sr2—Sr1ii62.68 (3)
O6i—Sr1—O194.56 (4)O4ii—Sr2—Sr1ii148.44 (3)
O9—Sr1—O180.69 (4)O4—Sr2—Sr1ii31.55 (3)
O4ii—Sr1—O162.30 (4)N1—Sr2—Sr1ii86.40 (3)
O5—Sr1—O168.00 (4)N1ii—Sr2—Sr1ii93.60 (3)
O7—Sr1—O1162.74 (4)O1—Sr2—Sr1ii142.83 (3)
N2—Sr1—O1126.51 (4)O1ii—Sr2—Sr1ii37.17 (3)
O7iii—Sr1—O191.02 (4)C8iv—Sr2—Sr1ii53.51 (3)
O6i—Sr1—O3ii71.05 (4)C8iii—Sr2—Sr1ii126.49 (3)
O9—Sr1—O3ii145.00 (4)Sr1—Sr2—Sr1ii180.0
O4ii—Sr1—O3ii48.05 (4)C2—N1—C6117.31 (16)
O5—Sr1—O3ii142.60 (4)C2—N1—Sr2124.01 (12)
O7—Sr1—O3ii72.59 (4)C6—N1—Sr2118.68 (12)
N2—Sr1—O3ii117.83 (4)C9—N2—C13118.30 (16)
O7iii—Sr1—O3ii70.65 (4)C9—N2—Sr1120.11 (12)
O1—Sr1—O3ii110.35 (4)C13—N2—Sr1121.36 (11)
O6i—Sr1—C7ii75.24 (5)O1—C1—O2125.19 (18)
O9—Sr1—C7ii140.08 (5)O1—C1—C2120.69 (17)
O4ii—Sr1—C7ii24.21 (4)O2—C1—C2114.10 (17)
O5—Sr1—C7ii135.72 (5)N1—C2—C3123.46 (17)
O7—Sr1—C7ii94.63 (5)N1—C2—C1114.34 (17)
N2—Sr1—C7ii140.93 (5)C3—C2—C1122.21 (17)
O7iii—Sr1—C7ii66.46 (5)C2—C3—C4118.63 (19)
O1—Sr1—C7ii86.21 (5)C2—C3—H3120.7
O3ii—Sr1—C7ii24.37 (4)C4—C3—H3120.7
O6i—Sr1—Sr1iii128.56 (3)C5—C4—C3118.65 (19)
O9—Sr1—Sr1iii79.92 (3)C5—C4—H4120.7
O4ii—Sr1—Sr1iii96.32 (3)C3—C4—H4120.7
O5—Sr1—Sr1iii146.03 (3)C6—C5—C4118.59 (18)
O7—Sr1—Sr1iii37.54 (3)C6—C5—H5120.7
N2—Sr1—Sr1iii93.81 (3)C4—C5—H5120.7
O7iii—Sr1—Sr1iii36.13 (3)N1—C6—C5123.31 (18)
O1—Sr1—Sr1iii126.73 (3)N1—C6—C7114.11 (16)
O3ii—Sr1—Sr1iii66.78 (3)C5—C6—C7122.57 (17)
C7ii—Sr1—Sr1iii78.23 (3)O3—C7—O4124.13 (18)
O6i—Sr1—Sr297.15 (3)O3—C7—C6119.32 (17)
O9—Sr1—Sr2100.79 (3)O4—C7—C6116.48 (16)
O4ii—Sr1—Sr230.65 (3)O3—C7—Sr1ii68.44 (10)
O5—Sr1—Sr2104.69 (3)O4—C7—Sr1ii57.96 (9)
O7—Sr1—Sr2134.24 (3)C6—C7—Sr1ii160.48 (13)
N2—Sr1—Sr2164.41 (3)O8—C8—O7126.06 (18)
O7iii—Sr1—Sr265.28 (3)O8—C8—C9116.28 (17)
O1—Sr1—Sr237.98 (3)O7—C8—C9117.60 (16)
O3ii—Sr1—Sr275.42 (3)O8—C8—Sr2v34.72 (9)
C7ii—Sr1—Sr251.27 (3)O7—C8—Sr2v114.41 (12)
Sr1iii—Sr1—Sr299.387 (6)C9—C8—Sr2v114.48 (11)
O8iii—Sr2—O8iv180.00 (8)N2—C9—C10122.33 (18)
O8iii—Sr2—O4ii79.07 (4)N2—C9—C8115.91 (16)
O8iv—Sr2—O4ii100.93 (4)C10—C9—C8121.58 (16)
O8iii—Sr2—O4100.93 (4)C11—C10—C9119.11 (17)
O8iv—Sr2—O479.07 (4)C11—C10—H10120.4
O4ii—Sr2—O4180.00 (5)C9—C10—H10120.4
O8iii—Sr2—N196.48 (5)C10—C11—C12118.85 (17)
O8iv—Sr2—N183.52 (5)C10—C11—H11120.6
O4ii—Sr2—N1120.04 (4)C12—C11—H11120.6
O4—Sr2—N159.96 (4)C11—C12—C13118.39 (18)
O8iii—Sr2—N1ii83.52 (5)C11—C12—H12120.8
O8iv—Sr2—N1ii96.48 (5)C13—C12—H12120.8
O4ii—Sr2—N1ii59.96 (4)N2—C13—C12122.95 (17)
O4—Sr2—N1ii120.04 (4)N2—C13—C77115.97 (16)
N1—Sr2—N1ii180.00 (6)C12—C13—C77121.01 (17)
O8iii—Sr2—O180.26 (4)O6—C77—O5125.29 (17)
O8iv—Sr2—O199.74 (4)O6—C77—C13118.99 (16)
O4ii—Sr2—O162.34 (4)O5—C77—C13115.70 (16)
O4—Sr2—O1117.66 (4)C1—O1—Sr1130.76 (12)
N1—Sr2—O158.03 (4)C1—O1—Sr2122.50 (12)
N1ii—Sr2—O1121.97 (4)Sr1—O1—Sr2104.85 (4)
O8iii—Sr2—O1ii99.74 (4)C1—O2—H2114.5
O8iv—Sr2—O1ii80.26 (4)C7—O3—Sr1ii87.19 (11)
O4ii—Sr2—O1ii117.66 (4)C7—O4—Sr2127.06 (12)
O4—Sr2—O1ii62.34 (4)C7—O4—Sr1ii97.83 (10)
N1—Sr2—O1ii121.97 (4)Sr2—O4—Sr1ii117.79 (5)
N1ii—Sr2—O1ii58.03 (4)C77—O5—Sr1125.58 (11)
O1—Sr2—O1ii180.0C77—O6—Sr1vi161.64 (13)
O8iii—Sr2—C8iv163.15 (5)C8—O7—Sr1123.58 (12)
O8iv—Sr2—C8iv16.85 (5)C8—O7—Sr1iii126.79 (11)
O4ii—Sr2—C8iv116.17 (4)Sr1—O7—Sr1iii106.33 (5)
O4—Sr2—C8iv63.83 (4)C8—O8—Sr2v128.43 (12)
N1—Sr2—C8iv70.13 (4)Sr1—O9—H9B110.4
N1ii—Sr2—C8iv109.87 (4)Sr1—O9—H9A122.4
O1—Sr2—C8iv99.99 (4)H9B—O9—H9A99.1
O1ii—Sr2—C8iv80.01 (4)H2B—O2S—H2A104.6
O6i—Sr1—Sr2—O8iii160.26 (5)O1—C1—C2—C3173.7 (2)
O9—Sr1—Sr2—O8iii52.27 (5)O2—C1—C2—C38.0 (3)
O4ii—Sr1—Sr2—O8iii115.70 (7)N1—C2—C3—C41.6 (3)
O5—Sr1—Sr2—O8iii126.68 (5)C1—C2—C3—C4177.87 (19)
O7—Sr1—Sr2—O8iii45.25 (6)C2—C3—C4—C50.7 (3)
N2—Sr1—Sr2—O8iii118.33 (13)C3—C4—C5—C62.2 (3)
O7iii—Sr1—Sr2—O8iii16.93 (5)C2—N1—C6—C50.7 (3)
O1—Sr1—Sr2—O8iii111.49 (6)Sr2—N1—C6—C5179.93 (15)
O3ii—Sr1—Sr2—O8iii92.03 (5)C2—N1—C6—C7178.51 (16)
C7ii—Sr1—Sr2—O8iii95.72 (6)Sr2—N1—C6—C70.9 (2)
Sr1iii—Sr1—Sr2—O8iii29.15 (4)C4—C5—C6—N11.5 (3)
O6i—Sr1—Sr2—O8iv19.74 (5)C4—C5—C6—C7179.36 (19)
O9—Sr1—Sr2—O8iv127.73 (5)N1—C6—C7—O3162.32 (17)
O4ii—Sr1—Sr2—O8iv64.30 (7)C5—C6—C7—O316.9 (3)
O5—Sr1—Sr2—O8iv53.32 (5)N1—C6—C7—O414.9 (2)
O7—Sr1—Sr2—O8iv134.75 (6)C5—C6—C7—O4165.93 (18)
N2—Sr1—Sr2—O8iv61.67 (13)N1—C6—C7—Sr1ii53.5 (4)
O7iii—Sr1—Sr2—O8iv163.07 (5)C5—C6—C7—Sr1ii125.7 (3)
O1—Sr1—Sr2—O8iv68.51 (6)C13—N2—C9—C101.0 (3)
O3ii—Sr1—Sr2—O8iv87.97 (5)Sr1—N2—C9—C10175.57 (14)
C7ii—Sr1—Sr2—O8iv84.28 (6)C13—N2—C9—C8174.17 (16)
Sr1iii—Sr1—Sr2—O8iv150.85 (4)Sr1—N2—C9—C80.5 (2)
O6i—Sr1—Sr2—O4ii44.57 (7)O8—C8—C9—N2172.30 (17)
O9—Sr1—Sr2—O4ii167.97 (7)O7—C8—C9—N210.6 (3)
O5—Sr1—Sr2—O4ii117.62 (7)Sr2v—C8—C9—N2149.19 (13)
O7—Sr1—Sr2—O4ii70.44 (7)O8—C8—C9—C1012.5 (3)
N2—Sr1—Sr2—O4ii125.97 (14)O7—C8—C9—C10164.59 (18)
O7iii—Sr1—Sr2—O4ii98.76 (7)Sr2v—C8—C9—C1026.0 (2)
O1—Sr1—Sr2—O4ii132.82 (8)N2—C9—C10—C112.6 (3)
O3ii—Sr1—Sr2—O4ii23.67 (6)C8—C9—C10—C11172.24 (18)
C7ii—Sr1—Sr2—O4ii19.97 (7)C9—C10—C11—C121.9 (3)
Sr1iii—Sr1—Sr2—O4ii86.54 (6)C10—C11—C12—C130.3 (3)
O6i—Sr1—Sr2—O4135.43 (7)C9—N2—C13—C121.4 (3)
O9—Sr1—Sr2—O412.03 (7)Sr1—N2—C13—C12173.15 (14)
O4ii—Sr1—Sr2—O4180.0C9—N2—C13—C77178.35 (16)
O5—Sr1—Sr2—O462.37 (7)Sr1—N2—C13—C773.8 (2)
O7—Sr1—Sr2—O4109.56 (7)C11—C12—C13—N22.0 (3)
N2—Sr1—Sr2—O454.02 (14)C11—C12—C13—C77178.84 (18)
O7iii—Sr1—Sr2—O481.24 (7)N2—C13—C77—O6172.34 (17)
O1—Sr1—Sr2—O447.18 (8)C12—C13—C77—O64.7 (3)
O3ii—Sr1—Sr2—O4156.33 (6)N2—C13—C77—O56.2 (2)
C7ii—Sr1—Sr2—O4160.03 (7)C12—C13—C77—O5176.83 (17)
Sr1iii—Sr1—Sr2—O493.46 (6)O2—C1—O1—Sr128.2 (3)
O6i—Sr1—Sr2—N1104.30 (5)C2—C1—O1—Sr1153.67 (13)
O9—Sr1—Sr2—N143.17 (5)O2—C1—O1—Sr2169.93 (15)
O4ii—Sr1—Sr2—N1148.86 (7)C2—C1—O1—Sr28.2 (3)
O5—Sr1—Sr2—N131.24 (5)O6i—Sr1—O1—C199.98 (18)
O7—Sr1—Sr2—N1140.69 (5)O9—Sr1—O1—C143.01 (18)
N2—Sr1—Sr2—N122.89 (13)O4ii—Sr1—O1—C1170.78 (19)
O7iii—Sr1—Sr2—N1112.37 (5)O5—Sr1—O1—C131.63 (17)
O1—Sr1—Sr2—N116.05 (6)O7—Sr1—O1—C191.8 (2)
O3ii—Sr1—Sr2—N1172.53 (4)N2—Sr1—O1—C118.0 (2)
C7ii—Sr1—Sr2—N1168.84 (6)O7iii—Sr1—O1—C1118.85 (18)
Sr1iii—Sr1—Sr2—N1124.59 (3)O3ii—Sr1—O1—C1171.45 (17)
O6i—Sr1—Sr2—N1ii75.70 (5)C7ii—Sr1—O1—C1174.82 (18)
O9—Sr1—Sr2—N1ii136.83 (5)Sr1iii—Sr1—O1—C1112.91 (17)
O4ii—Sr1—Sr2—N1ii31.14 (7)Sr2—Sr1—O1—C1164.2 (2)
O5—Sr1—Sr2—N1ii148.76 (5)O6i—Sr1—O1—Sr295.79 (5)
O7—Sr1—Sr2—N1ii39.31 (5)O9—Sr1—O1—Sr2121.22 (5)
N2—Sr1—Sr2—N1ii157.11 (13)O4ii—Sr1—O1—Sr224.98 (4)
O7iii—Sr1—Sr2—N1ii67.63 (5)O5—Sr1—O1—Sr2164.13 (6)
O1—Sr1—Sr2—N1ii163.95 (6)O7—Sr1—O1—Sr272.45 (15)
O3ii—Sr1—Sr2—N1ii7.47 (4)N2—Sr1—O1—Sr2177.72 (5)
C7ii—Sr1—Sr2—N1ii11.16 (6)O7iii—Sr1—O1—Sr245.38 (5)
Sr1iii—Sr1—Sr2—N1ii55.41 (3)O3ii—Sr1—O1—Sr224.32 (6)
O6i—Sr1—Sr2—O188.25 (6)C7ii—Sr1—O1—Sr220.94 (5)
O9—Sr1—Sr2—O159.21 (6)Sr1iii—Sr1—O1—Sr251.32 (6)
O4ii—Sr1—Sr2—O1132.82 (8)O8iii—Sr2—O1—C1108.86 (16)
O5—Sr1—Sr2—O115.19 (6)O8iv—Sr2—O1—C171.14 (16)
O7—Sr1—Sr2—O1156.74 (7)O4ii—Sr2—O1—C1168.44 (17)
N2—Sr1—Sr2—O16.84 (14)O4—Sr2—O1—C111.56 (17)
O7iii—Sr1—Sr2—O1128.42 (6)N1—Sr2—O1—C14.85 (15)
O3ii—Sr1—Sr2—O1156.48 (6)N1ii—Sr2—O1—C1175.15 (15)
C7ii—Sr1—Sr2—O1152.79 (7)C8iv—Sr2—O1—C154.03 (16)
Sr1iii—Sr1—Sr2—O1140.64 (5)C8iii—Sr2—O1—C1125.97 (16)
O6i—Sr1—Sr2—O1ii91.75 (6)Sr1—Sr2—O1—C1165.88 (18)
O9—Sr1—Sr2—O1ii120.79 (6)Sr1ii—Sr2—O1—C114.12 (18)
O4ii—Sr1—Sr2—O1ii47.18 (8)O8iii—Sr2—O1—Sr157.01 (5)
O5—Sr1—Sr2—O1ii164.81 (6)O8iv—Sr2—O1—Sr1122.99 (5)
O7—Sr1—Sr2—O1ii23.26 (7)O4ii—Sr2—O1—Sr125.68 (4)
N2—Sr1—Sr2—O1ii173.16 (14)O4—Sr2—O1—Sr1154.32 (4)
O7iii—Sr1—Sr2—O1ii51.58 (6)N1—Sr2—O1—Sr1161.02 (7)
O1—Sr1—Sr2—O1ii180.0N1ii—Sr2—O1—Sr118.98 (7)
O3ii—Sr1—Sr2—O1ii23.52 (6)C8iv—Sr2—O1—Sr1140.09 (5)
C7ii—Sr1—Sr2—O1ii27.21 (7)C8iii—Sr2—O1—Sr139.91 (5)
Sr1iii—Sr1—Sr2—O1ii39.36 (5)Sr1ii—Sr2—O1—Sr1180.0
O6i—Sr1—Sr2—C8iv36.45 (5)O4—C7—O3—Sr1ii16.85 (18)
O9—Sr1—Sr2—C8iv111.02 (5)C6—C7—O3—Sr1ii160.13 (15)
O4ii—Sr1—Sr2—C8iv81.01 (7)O3—C7—O4—Sr2152.46 (14)
O5—Sr1—Sr2—C8iv36.61 (5)C6—C7—O4—Sr224.6 (2)
O7—Sr1—Sr2—C8iv151.46 (6)Sr1ii—C7—O4—Sr2133.92 (13)
N2—Sr1—Sr2—C8iv44.96 (13)O3—C7—O4—Sr1ii18.5 (2)
O7iii—Sr1—Sr2—C8iv179.78 (5)C6—C7—O4—Sr1ii158.51 (13)
O1—Sr1—Sr2—C8iv51.80 (6)O8iii—Sr2—O4—C7108.39 (14)
O3ii—Sr1—Sr2—C8iv104.68 (5)O8iv—Sr2—O4—C771.61 (14)
C7ii—Sr1—Sr2—C8iv100.99 (6)N1—Sr2—O4—C717.18 (14)
Sr1iii—Sr1—Sr2—C8iv167.56 (4)N1ii—Sr2—O4—C7162.82 (14)
O6i—Sr1—Sr2—C8iii143.55 (5)O1—Sr2—O4—C723.75 (16)
O9—Sr1—Sr2—C8iii68.98 (5)O1ii—Sr2—O4—C7156.25 (16)
O4ii—Sr1—Sr2—C8iii98.99 (7)C8iv—Sr2—O4—C764.00 (14)
O5—Sr1—Sr2—C8iii143.39 (5)C8iii—Sr2—O4—C7116.00 (14)
O7—Sr1—Sr2—C8iii28.54 (6)Sr1—Sr2—O4—C753.77 (17)
N2—Sr1—Sr2—C8iii135.04 (13)Sr1ii—Sr2—O4—C7126.23 (17)
O7iii—Sr1—Sr2—C8iii0.22 (5)O8iii—Sr2—O4—Sr1ii125.38 (6)
O1—Sr1—Sr2—C8iii128.20 (6)O8iv—Sr2—O4—Sr1ii54.62 (6)
O3ii—Sr1—Sr2—C8iii75.32 (5)N1—Sr2—O4—Sr1ii143.41 (7)
C7ii—Sr1—Sr2—C8iii79.01 (6)N1ii—Sr2—O4—Sr1ii36.59 (7)
Sr1iii—Sr1—Sr2—C8iii12.44 (4)O1—Sr2—O4—Sr1ii149.98 (5)
O8iii—Sr2—N1—C275.13 (15)O1ii—Sr2—O4—Sr1ii30.02 (5)
O8iv—Sr2—N1—C2104.87 (15)C8iv—Sr2—O4—Sr1ii62.23 (6)
O4ii—Sr2—N1—C25.98 (16)C8iii—Sr2—O4—Sr1ii117.77 (6)
O4—Sr2—N1—C2174.03 (16)Sr1—Sr2—O4—Sr1ii180.0
O1—Sr2—N1—C20.89 (13)O6—C77—O5—Sr1164.23 (14)
O1ii—Sr2—N1—C2179.11 (13)C13—C77—O5—Sr114.2 (2)
C8iv—Sr2—N1—C2115.41 (15)O6i—Sr1—O5—C77101.25 (15)
C8iii—Sr2—N1—C264.59 (15)O9—Sr1—O5—C7769.03 (14)
Sr1—Sr2—N1—C212.24 (14)O4ii—Sr1—O5—C77163.76 (14)
Sr1ii—Sr2—N1—C2167.76 (14)O7—Sr1—O5—C777.38 (16)
O8iii—Sr2—N1—C6105.51 (14)N2—Sr1—O5—C7711.51 (14)
O8iv—Sr2—N1—C674.49 (14)O7iii—Sr1—O5—C7798.02 (15)
O4ii—Sr2—N1—C6173.38 (12)O1—Sr1—O5—C77155.89 (16)
O4—Sr2—N1—C66.62 (12)O3ii—Sr1—O5—C77109.00 (15)
O1—Sr2—N1—C6179.76 (15)C7ii—Sr1—O5—C77145.20 (14)
O1ii—Sr2—N1—C60.24 (15)Sr1iii—Sr1—O5—C7732.20 (17)
C8iv—Sr2—N1—C663.95 (13)Sr2—Sr1—O5—C77165.91 (14)
C8iii—Sr2—N1—C6116.05 (13)O5—C77—O6—Sr1vi91.0 (4)
Sr1—Sr2—N1—C6168.40 (13)C13—C77—O6—Sr1vi90.7 (4)
Sr1ii—Sr2—N1—C611.60 (13)O8—C8—O7—Sr1165.97 (14)
O6i—Sr1—N2—C9104.19 (14)C9—C8—O7—Sr117.2 (2)
O9—Sr1—N2—C9102.56 (14)Sr2v—C8—O7—Sr1155.85 (6)
O4ii—Sr1—N2—C989.93 (17)O8—C8—O7—Sr1iii37.4 (3)
O5—Sr1—N2—C9178.48 (15)C9—C8—O7—Sr1iii139.42 (13)
O7—Sr1—N2—C95.58 (13)Sr2v—C8—O7—Sr1iii0.78 (18)
O7iii—Sr1—N2—C943.64 (15)O6i—Sr1—O7—C859.64 (15)
O1—Sr1—N2—C9166.94 (12)O9—Sr1—O7—C884.40 (14)
O3ii—Sr1—N2—C941.41 (15)O4ii—Sr1—O7—C8139.49 (14)
C7ii—Sr1—N2—C951.70 (17)O5—Sr1—O7—C816.43 (16)
Sr1iii—Sr1—N2—C924.28 (14)N2—Sr1—O7—C812.34 (13)
Sr2—Sr1—N2—C9172.17 (10)O7iii—Sr1—O7—C8160.67 (17)
O6i—Sr1—N2—C1381.36 (14)O1—Sr1—O7—C8132.37 (16)
O9—Sr1—N2—C1371.89 (14)O3ii—Sr1—O7—C8124.99 (15)
O4ii—Sr1—N2—C1395.62 (17)C7ii—Sr1—O7—C8135.52 (14)
O5—Sr1—N2—C137.06 (13)Sr1iii—Sr1—O7—C8160.67 (17)
O7—Sr1—N2—C13168.87 (15)Sr2—Sr1—O7—C8172.65 (12)
O7iii—Sr1—N2—C13130.81 (13)O6i—Sr1—O7—Sr1iii139.69 (5)
O1—Sr1—N2—C137.52 (16)O9—Sr1—O7—Sr1iii76.27 (5)
O3ii—Sr1—N2—C13144.14 (13)O4ii—Sr1—O7—Sr1iii59.84 (6)
C7ii—Sr1—N2—C13133.85 (13)O5—Sr1—O7—Sr1iii144.24 (5)
Sr1iii—Sr1—N2—C13150.17 (13)N2—Sr1—O7—Sr1iii148.32 (7)
Sr2—Sr1—N2—C132.3 (2)O7iii—Sr1—O7—Sr1iii0.0
C6—N1—C2—C32.3 (3)O1—Sr1—O7—Sr1iii28.30 (16)
Sr2—N1—C2—C3178.36 (15)O3ii—Sr1—O7—Sr1iii74.34 (5)
C6—N1—C2—C1177.24 (16)C7ii—Sr1—O7—Sr1iii63.82 (5)
Sr2—N1—C2—C12.1 (2)Sr2—Sr1—O7—Sr1iii26.69 (7)
O1—C1—C2—N16.8 (3)O7—C8—O8—Sr2v81.2 (2)
O2—C1—C2—N1171.54 (17)C9—C8—O8—Sr2v95.67 (18)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.851.642.4666 (19)164
O9—H9B···O3v0.851.942.7615 (19)163
O9—H9A···O2S0.851.982.824 (2)170
O2S—H2B···O3vii0.851.972.808 (2)168
O2S—H2A···O5vi0.852.483.235 (2)148
O2S—H2A···O60.852.403.033 (2)132
Symmetry codes: (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]·2H2O
Mr997.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.3733 (5), 9.1936 (4), 18.4182 (8)
β (°) 104.469 (1)
V3)1700.79 (13)
Z2
Radiation typeMo Kα
µ (mm1)4.78
Crystal size (mm)0.43 × 0.38 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.233, 0.278
No. of measured, independent and
observed [I > 2σ(I)] reflections
21356, 3839, 3572
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.06
No. of reflections3839
No. of parameters251
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.40

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sr1—O6i2.5197 (14)Sr1—O12.7425 (13)
Sr1—O92.5754 (14)Sr1—O3ii2.8248 (14)
Sr1—O4ii2.5958 (13)Sr1—C7ii3.0337 (19)
Sr1—O52.6301 (14)Sr2—O8iv2.4710 (13)
Sr1—O72.6304 (13)Sr2—O42.5289 (13)
Sr1—N22.6926 (15)Sr2—N12.7434 (16)
Sr1—O7iii2.7183 (14)Sr2—O12.7939 (13)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.851.642.4666 (19)164.4
O9—H9B···O3v0.851.942.7615 (19)162.5
O9—H9A···O2S0.851.982.824 (2)169.8
O2S—H2B···O3vi0.851.972.808 (2)167.7
O2S—H2A···O5vii0.852.483.235 (2)147.8
O2S—H2A···O60.852.403.033 (2)132.2
Symmetry codes: (v) x+1, y, z; (vi) x, y+1, z; (vii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds