Download citation
Download citation
link to html
Structural studies performed in this laboratory of organo­phospho­rus pesticides continue with these related compounds. The –NO2 groups of methyl para­thion (systematic name: dimethyl 4-nitro­phenyl phospho­rothio­ate, C8H10NO5PS) and dicapthon (systematic name: 2-chloro-4-nitro­phenyl dimethyl phospho­rothio­ate, C8H9ClNO5PS) make dihedral angles of 10.67 (8) and 5.8 (1)°, respectively, with the planes of their attached rings, which accompanies angular distortion at the ring C atoms to which the –NO2 groups are attached. Similar distortions are observed at the C atom to which the thio­phosphate groups are attached. Significant differences in distances and angles around the phenolic O, versus the –OMe groups, explain why it is the site of hydrolysis for these compounds. A comparison of a torsion angle involving the thio­phosphate group and phenolic O atom with similar pesticide structures is given and indicates steric influences on that angle.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614020233/qs3043sup1.cif
Contains datablocks MeParatI, DicapthonII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020233/qs3043MeParatIsup2.hkl
Contains datablock MeParatI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020233/qs3043DicapthonIIsup3.hkl
Contains datablock DicapthonII

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614020233/qs3043MeParatIsup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614020233/qs3043DicapthonIIsup5.cml
Supplementary material

CCDC references: 1023405; 1023406

Introduction top

Determinations of the structures of methyl para­thion, (I), and dicapthon, (I), were undertaken as part of an ongoing study of organo­phospho­rus insecticides. The structure of (I) has been determined previously (Bally, 1970) from room-temperature film work (R = 16%). However, the current determination has made it possible to make more precise geometric comparisons. An initial attempt in this laboratory to determine the structure of (I) at room temperature produced poor results since the melting point of (I) is \sim 20 K above room temperature. Data reported here for (I) were collected at 100 K to produce better results.

Dicapthon, (II), is the 2-chloro derivative of Methyl Para­thion and has noticable differences in toxicity, as determined by LD50 values (0.018 versus 0.027 p.p.m. for mosquito larva and 15 versus 400 mg kg-1 for rats for methyl para­thion and dicapthon, respectively; White-Stevens, 1971). So dicapthon is less toxic to mosquitos while being 27 times less toxic to mammals (rat). Structural differences, as noted below, between (I) and (II) presumably account for most of the notable differences in toxicity.

Experimental top

Synthesis and crystallization top

Methyl para­thion, (I), was commercially available (Sigma–Aldrich) and crystals were grown by slow evaporation of a solution in cyclo­hexane. Dicapthon, (II), was also commercially available (Chem Service) and crystals were grown by slow evaporation of a solution in ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The approximate positions of the H atoms were first obtained from a difference map, then placed in ideal positions. Bond lengths were constrained at 0.93 Å (AFIX 43) for aryl C—H groups and at 0.96 Å (AFIX 137) for methyl C—H groups; the Uiso(H) values were fixed at 1.5Ueq(C) for the methyl H atoms and at 1.2Ueq(C) for the aryl H atoms. For (II), the methyl H atoms were disordered and the occupancies were refined. In the final stages of refinement of (II), four reflections with very small or negative Fo values were deemed to be in high disagreement with their Fc values and were eliminated from the final refinement. No reflections were eliminated for (I).

Results and discussion top

For (I) (Fig. 1) and (II) (Fig. 2), the angles (Table 2) about atoms C3, C4, and C5 indicate distortions (from an ideal of 120°) that are likely due to the presence of the –NO2 group at C4. Differences between (I) and (II) involving atom C1 are noted in Table 3; four angles have large (> 5) Δ/σ values. The pattern of increased C2—C1—C6 and C3—C4—C5 angles for p-nitro­thio­phosphates is comparable to similar compounds (cf. Table 4).

The plane defined by atoms C4/N1/O4/O5 in (I) makes a dihedral angle of 10.76 (8)° with that of the ring [the corresponding angle is 5.8 (1)° in (II)]. The tipped –NO2 groups imply slightly diminished π-overlaps with the rings versus an ideal (coplanar) geometry.

For (I) and (II), the P1—O1 distances are significantly (52σ and 32σ, respectively) greater than the averages of the P1—O2 and P1—O3 distances (Table 2). In addition, the O1—C1 distances are ~41σ and 23σ, respectively, shorter than the corresponding average meth­oxy O—C distance, thus indicating some double-bond character with atoms O1 and C1. Both effects likely contribute to O1 being the site of known hydrolysis of organo­phospho­rus pesticides.

When atom P1 is bonded to two meth­oxy groups, the C2—C1—O1—P1 torsion angles (per the numbering used here) for some similar thio­phosphate pesticides (Table 3) are in the range ~90–117°; the range for the other substituents is ~100–165° (most of which are greater than the –OMe range). For those containing the smaller –OMe angles, it is likely that the torsion angles are more influenced by intra­molecular rather than inter­molecular forces.

The C2—C1—O1—P1 torsion angles [90.42 (12) and 113.28 (19)° for (I) and (II), respectively] indicate that P1 leans away from Cl1 in (II), while S1 is tipped towards Cl1 [C1—O1—P1—S1 = -37.32 (18)°, versus -42.48 (10)° for (I)]. This `scorpion-like' appearance (Figs. 1 and 2) has been noted in previous structures; see citations in Table 3. No intra- or inter­molecular hydrogen bonding is observed in the title compounds.

Related literature top

For related literature, see: Bally (1970); White-Stevens (1971).

Computing details top

Data collection: APEX2 (Bruker, 2008) for MeParatI; XSCANS (Bruker, 1996) for DicapthonII. Cell refinement: APEX2 (Bruker, 2008) for MeParatI; XSCANS (Bruker, 1996) for DicapthonII. Data reduction: SADABS and SAINT (Bruker, 2008) for MeParatI; XSCANS (Bruker, 1996) for DicapthonII. For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the labeling of the non-H atoms. Displacement ellipsoids are drawn at the 50% probability levels and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The asymmetric unit of (II) showing the labeling of the non-H atoms. Displacement ellipsoids are drawn at the 50% probability levels and H atoms have been omitted for clarity.
(MeParatI) Dimethyl 4-nitrophenyl phosphorothioate top
Crystal data top
C8H10NO5PSF(000) = 544
Mr = 263.20Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9098 reflections
a = 7.0232 (3) Åθ = 2.6–27.5°
b = 21.1563 (8) ŵ = 0.43 mm1
c = 7.9679 (3) ÅT = 100 K
β = 104.4284 (4)°Parallelepiped, colorless
V = 1146.57 (8) Å30.53 × 0.45 × 0.31 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2619 independent reflections
Radiation source: normal-focus sealed tube2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scans; a full Eward sphere was collected.θmax = 27.5°, θmin = 1.9°
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.80, Tmax = 0.88k = 2727
13180 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.035P)2 + 0.601P]
where P = (Fo2 + 2Fc2)/3
2619 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C8H10NO5PSV = 1146.57 (8) Å3
Mr = 263.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0232 (3) ŵ = 0.43 mm1
b = 21.1563 (8) ÅT = 100 K
c = 7.9679 (3) Å0.53 × 0.45 × 0.31 mm
β = 104.4284 (4)°
Data collection top
Bruker APEXII
diffractometer
2619 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 2008)
2489 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.88Rint = 0.017
13180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2619 reflectionsΔρmin = 0.36 e Å3
147 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor, wR, and goodness of fit, S, are based on F2, conventional R-factors, R, are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.71351 (4)0.650889 (14)0.95845 (4)0.01876 (9)
P10.49957 (4)0.604017 (14)0.81734 (4)0.01366 (9)
O10.34735 (13)0.64565 (4)0.67538 (11)0.01658 (18)
O20.54622 (13)0.55080 (4)0.69687 (11)0.01832 (19)
O30.37555 (13)0.56917 (4)0.92679 (11)0.01931 (19)
O40.15843 (16)0.93043 (4)0.77112 (14)0.0293 (2)
O50.05299 (15)0.88617 (5)0.89039 (13)0.0276 (2)
N10.08003 (16)0.88373 (5)0.81565 (14)0.0203 (2)
C10.28390 (17)0.70508 (5)0.71516 (14)0.0150 (2)
C20.38926 (18)0.75822 (6)0.68980 (15)0.0167 (2)
H20.50760.75400.65100.020*
C30.32064 (18)0.81738 (6)0.72072 (15)0.0172 (2)
H30.39000.85500.70390.021*
C40.14957 (18)0.82104 (6)0.77789 (15)0.0165 (2)
C50.04286 (18)0.76823 (6)0.80226 (15)0.0178 (2)
H50.07500.77260.84170.021*
C60.11124 (17)0.70906 (6)0.76944 (15)0.0170 (2)
H60.04000.67150.78360.020*
C70.6579 (2)0.56617 (6)0.57091 (17)0.0216 (3)
H7A0.69440.52790.52230.032*0.645 (18)
H7B0.77420.58910.62710.032*0.645 (18)
H7C0.57870.59160.48030.032*0.645 (18)
H7D0.67050.61120.56420.032*0.355 (18)
H7E0.59060.55000.45930.032*0.355 (18)
H7F0.78620.54750.60620.032*0.355 (18)
C80.2118 (2)0.52777 (7)0.8468 (2)0.0271 (3)
H8A0.12010.52630.91820.041*0.92 (2)
H8B0.26050.48600.83540.041*0.92 (2)
H8C0.14720.54380.73440.041*0.92 (2)
H8D0.23180.51110.74040.041*0.08 (2)
H8E0.09140.55140.82320.041*0.08 (2)
H8F0.20470.49360.92420.041*0.08 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01532 (15)0.01926 (16)0.01971 (16)0.00199 (10)0.00065 (11)0.00190 (11)
P10.01408 (15)0.01236 (15)0.01455 (15)0.00054 (10)0.00356 (11)0.00027 (10)
O10.0186 (4)0.0142 (4)0.0151 (4)0.0018 (3)0.0007 (3)0.0018 (3)
O20.0220 (4)0.0136 (4)0.0217 (4)0.0009 (3)0.0099 (3)0.0024 (3)
O30.0211 (4)0.0187 (4)0.0194 (4)0.0049 (3)0.0074 (3)0.0001 (3)
O40.0351 (6)0.0155 (4)0.0379 (6)0.0015 (4)0.0100 (5)0.0010 (4)
O50.0306 (5)0.0291 (5)0.0252 (5)0.0104 (4)0.0110 (4)0.0013 (4)
N10.0226 (5)0.0190 (5)0.0171 (5)0.0050 (4)0.0006 (4)0.0016 (4)
C10.0167 (5)0.0148 (5)0.0117 (5)0.0019 (4)0.0002 (4)0.0005 (4)
C20.0165 (5)0.0186 (6)0.0151 (5)0.0001 (4)0.0041 (4)0.0010 (4)
C30.0195 (6)0.0164 (5)0.0147 (5)0.0015 (4)0.0025 (4)0.0011 (4)
C40.0190 (6)0.0157 (6)0.0130 (5)0.0036 (4)0.0006 (4)0.0003 (4)
C50.0158 (5)0.0221 (6)0.0150 (5)0.0016 (4)0.0029 (4)0.0009 (4)
C60.0159 (5)0.0179 (6)0.0161 (5)0.0017 (4)0.0019 (4)0.0011 (4)
C70.0243 (6)0.0213 (6)0.0225 (6)0.0003 (5)0.0121 (5)0.0023 (5)
C80.0256 (7)0.0242 (7)0.0327 (7)0.0112 (5)0.0095 (6)0.0013 (6)
Geometric parameters (Å, º) top
S1—P11.9139 (4)C4—C51.3857 (17)
P1—O31.5624 (9)C5—C61.3889 (17)
P1—O21.5663 (9)C5—H50.9599
P1—O11.6110 (9)C6—H60.9596
O1—C11.3966 (14)C7—H7A0.9600
O2—C71.4562 (15)C7—H7B0.9600
O3—C81.4594 (15)C7—H7C0.9599
O4—N11.2257 (15)C7—H7D0.9601
O5—N11.2277 (15)C7—H7E0.9600
N1—C41.4701 (15)C7—H7F0.9600
C1—C61.3877 (17)C8—H8A0.9600
C1—C21.3880 (17)C8—H8B0.9601
C2—C31.3852 (17)C8—H8C0.9600
C2—H20.9601C8—H8D0.9600
C3—C41.3891 (17)C8—H8E0.9600
C3—H30.9600C8—H8F0.9600
O3—P1—O2103.51 (5)O2—C7—H7D109.5
O3—P1—O1106.57 (5)H7A—C7—H7D141.1
O2—P1—O199.57 (5)H7B—C7—H7D56.3
O3—P1—S1112.45 (4)H7C—C7—H7D56.3
O2—P1—S1118.62 (4)O2—C7—H7E109.5
O1—P1—S1114.56 (4)H7A—C7—H7E56.3
C1—O1—P1121.75 (7)H7B—C7—H7E141.1
C7—O2—P1119.52 (8)H7C—C7—H7E56.2
C8—O3—P1121.85 (8)H7D—C7—H7E109.5
O4—N1—O5123.89 (11)O2—C7—H7F109.5
O4—N1—C4118.15 (11)H7A—C7—H7F56.3
O5—N1—C4117.96 (11)H7B—C7—H7F56.2
C6—C1—C2122.36 (11)H7C—C7—H7F141.1
C6—C1—O1118.57 (11)H7D—C7—H7F109.5
C2—C1—O1118.97 (10)H7E—C7—H7F109.5
C3—C2—C1118.95 (11)O3—C8—H8A109.5
C3—C2—H2120.5O3—C8—H8B109.5
C1—C2—H2120.5H8A—C8—H8B109.5
C2—C3—C4118.45 (11)O3—C8—H8C109.5
C2—C3—H3120.9H8A—C8—H8C109.5
C4—C3—H3120.7H8B—C8—H8C109.5
C5—C4—C3122.90 (11)O3—C8—H8D109.5
C5—C4—N1118.67 (11)H8A—C8—H8D141.1
C3—C4—N1118.42 (11)H8B—C8—H8D56.3
C4—C5—C6118.42 (11)H8C—C8—H8D56.2
C4—C5—H5120.6O3—C8—H8E109.5
C6—C5—H5120.9H8A—C8—H8E56.3
C1—C6—C5118.90 (11)H8B—C8—H8E141.1
C1—C6—H6120.5H8C—C8—H8E56.3
C5—C6—H6120.6H8D—C8—H8E109.5
O2—C7—H7A109.5O3—C8—H8F109.5
O2—C7—H7B109.5H8A—C8—H8F56.3
H7A—C7—H7B109.5H8B—C8—H8F56.2
O2—C7—H7C109.5H8C—C8—H8F141.1
H7A—C7—H7C109.5H8D—C8—H8F109.5
H7B—C7—H7C109.5H8E—C8—H8F109.5
O3—P1—O1—C182.55 (9)C1—C2—C3—C40.69 (17)
O2—P1—O1—C1170.15 (9)C2—C3—C4—C51.21 (18)
S1—P1—O1—C142.48 (10)C2—C3—C4—N1178.21 (10)
O3—P1—O2—C7178.51 (9)O4—N1—C4—C5169.94 (11)
O1—P1—O2—C768.76 (9)O5—N1—C4—C510.23 (16)
S1—P1—O2—C756.14 (10)O4—N1—C4—C310.62 (16)
O2—P1—O3—C847.32 (11)O5—N1—C4—C3169.21 (11)
O1—P1—O3—C857.15 (10)C3—C4—C5—C60.59 (18)
S1—P1—O3—C8176.54 (9)N1—C4—C5—C6178.83 (10)
P1—O1—C1—C693.16 (12)C2—C1—C6—C51.05 (18)
P1—O1—C1—C290.42 (12)O1—C1—C6—C5177.34 (10)
C6—C1—C2—C30.42 (18)C4—C5—C6—C10.54 (17)
O1—C1—C2—C3176.69 (10)
(DicapthonII) 2-Chloro-4-nitrophenyl dimethyl phosphorothioate top
Crystal data top
C8H9ClNO5PSF(000) = 608
Mr = 297.66Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 100 reflections
a = 10.9108 (14) Åθ = 9.5–16.2°
b = 17.0968 (19) ŵ = 0.60 mm1
c = 6.8940 (6) ÅT = 295 K
β = 101.65 (5)°Block cut from larger crystal, colorless
V = 1259.5 (2) Å30.49 × 0.48 × 0.43 mm
Z = 4
Data collection top
Bruker P4
diffractometer
1841 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
θ/2θ; a little over one quadrant of data was collected. scansh = 1212
Absorption correction: integration
(XSHELL; Bruker, 1999)
k = 120
Tmin = 0.706, Tmax = 0.791l = 18
2989 measured reflections3 standard reflections every 100 reflections
2206 independent reflections intensity decay: 2.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3678P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2206 reflectionsΔρmax = 0.35 e Å3
155 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.097 (4)
Crystal data top
C8H9ClNO5PSV = 1259.5 (2) Å3
Mr = 297.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9108 (14) ŵ = 0.60 mm1
b = 17.0968 (19) ÅT = 295 K
c = 6.8940 (6) Å0.49 × 0.48 × 0.43 mm
β = 101.65 (5)°
Data collection top
Bruker P4
diffractometer
1841 reflections with I > 2σ(I)
Absorption correction: integration
(XSHELL; Bruker, 1999)
Rint = 0.025
Tmin = 0.706, Tmax = 0.7913 standard reflections every 100 reflections
2989 measured reflections intensity decay: 2.1%
2206 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
2206 reflectionsΔρmin = 0.21 e Å3
155 parameters
Special details top

Experimental. A little over one quadrant of data was collected.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor, wR, and goodness of fit, S, are based on F2, conventional R-factors, R, are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37550 (7)0.53209 (4)0.66806 (11)0.0716 (3)
S10.26547 (6)0.41051 (4)0.11872 (10)0.0601 (2)
P10.14382 (5)0.39892 (3)0.27916 (8)0.0475 (2)
O10.19664 (14)0.40801 (9)0.5140 (2)0.0512 (4)
O20.03273 (15)0.45803 (11)0.2539 (3)0.0628 (5)
O30.07694 (16)0.31815 (10)0.2504 (2)0.0624 (5)
O40.7479 (2)0.34501 (16)0.9468 (4)0.1053 (8)
O50.67985 (19)0.22736 (14)0.9190 (4)0.0898 (7)
N10.6654 (2)0.29774 (16)0.8946 (3)0.0685 (6)
C10.31313 (19)0.38014 (13)0.6058 (3)0.0449 (5)
C20.4053 (2)0.43300 (13)0.6867 (3)0.0483 (5)
C30.5212 (2)0.40649 (14)0.7826 (3)0.0549 (6)
H30.58630.44250.83850.066*
C40.5407 (2)0.32679 (14)0.7954 (3)0.0512 (5)
C50.4499 (2)0.27324 (14)0.7199 (3)0.0541 (6)
H50.46620.21810.73400.065*
C60.3350 (2)0.30057 (14)0.6240 (3)0.0531 (6)
H60.26980.26440.56970.064*
C70.0557 (3)0.54154 (17)0.2618 (5)0.0766 (8)
H7A0.02240.56910.24400.115*
H7B0.10630.55470.38830.115*
H7C0.09870.55600.15880.115*
C80.0247 (3)0.2976 (2)0.3494 (4)0.0788 (8)
H8A0.05280.24550.31220.118*
H8B0.00490.29990.49020.118*
H8C0.09280.33360.31130.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0773 (5)0.0498 (4)0.0818 (5)0.0019 (3)0.0020 (4)0.0046 (3)
S10.0642 (4)0.0630 (4)0.0583 (4)0.0049 (3)0.0248 (3)0.0039 (3)
P10.0456 (3)0.0517 (4)0.0448 (3)0.0014 (2)0.0084 (2)0.0007 (2)
O10.0464 (8)0.0614 (10)0.0451 (8)0.0036 (7)0.0078 (7)0.0047 (7)
O20.0514 (9)0.0741 (12)0.0621 (10)0.0137 (8)0.0094 (8)0.0043 (9)
O30.0616 (10)0.0664 (11)0.0586 (10)0.0159 (8)0.0110 (8)0.0082 (8)
O40.0631 (13)0.1064 (18)0.129 (2)0.0085 (12)0.0220 (13)0.0148 (15)
O50.0699 (13)0.0825 (15)0.1140 (17)0.0187 (11)0.0117 (12)0.0253 (13)
N10.0543 (13)0.0875 (17)0.0624 (13)0.0041 (12)0.0089 (10)0.0145 (12)
C10.0446 (11)0.0546 (12)0.0364 (10)0.0005 (9)0.0104 (9)0.0003 (9)
C20.0559 (13)0.0492 (12)0.0404 (11)0.0033 (10)0.0109 (9)0.0010 (9)
C30.0531 (13)0.0621 (14)0.0473 (12)0.0101 (11)0.0052 (10)0.0005 (11)
C40.0486 (12)0.0641 (14)0.0412 (11)0.0003 (10)0.0096 (9)0.0081 (10)
C50.0597 (14)0.0505 (12)0.0535 (13)0.0005 (11)0.0147 (11)0.0051 (10)
C60.0528 (13)0.0536 (13)0.0525 (13)0.0082 (11)0.0098 (10)0.0017 (11)
C70.086 (2)0.0673 (17)0.0775 (18)0.0270 (15)0.0189 (16)0.0038 (14)
C80.0736 (18)0.093 (2)0.0707 (17)0.0266 (16)0.0158 (14)0.0066 (16)
Geometric parameters (Å, º) top
Cl1—C21.725 (2)C2—C31.379 (3)
S1—P11.9019 (11)C3—C41.379 (3)
P1—O31.5558 (17)C3—H30.9600
P1—O21.5606 (17)C4—C51.372 (3)
P1—O11.6123 (16)C5—C61.375 (3)
O1—C11.385 (3)C5—H50.9602
O2—C71.449 (3)C6—H60.9601
O3—C81.458 (3)C7—H7A0.9600
O4—N11.210 (3)C7—H7B0.9600
O5—N11.221 (3)C7—H7C0.9599
N1—C41.479 (3)C8—H8A0.9600
C1—C61.382 (3)C8—H8B0.9600
C1—C21.383 (3)C8—H8C0.9599
O3—P1—O2103.11 (10)C5—C4—C3123.0 (2)
O3—P1—O1106.09 (9)C5—C4—N1118.5 (2)
O2—P1—O199.31 (10)C3—C4—N1118.5 (2)
O3—P1—S1112.50 (7)C4—C5—C6118.3 (2)
O2—P1—S1119.02 (8)C4—C5—H5120.7
O1—P1—S1115.08 (7)C6—C5—H5121.0
C1—O1—P1122.32 (14)C5—C6—C1120.1 (2)
C7—O2—P1120.63 (17)C5—C6—H6120.1
C8—O3—P1122.41 (18)C1—C6—H6119.8
O4—N1—O5123.3 (2)O2—C7—H7A109.7
O4—N1—C4118.2 (3)O2—C7—H7B109.2
O5—N1—C4118.4 (2)H7A—C7—H7B109.5
C6—C1—C2120.5 (2)O2—C7—H7C109.5
C6—C1—O1120.39 (19)H7A—C7—H7C109.5
C2—C1—O1119.0 (2)H7B—C7—H7C109.5
C3—C2—C1120.0 (2)O3—C8—H8A109.4
C3—C2—Cl1119.95 (18)O3—C8—H8B109.3
C1—C2—Cl1120.05 (18)H8A—C8—H8B109.5
C4—C3—C2118.1 (2)O3—C8—H8C109.7
C4—C3—H3121.0H8A—C8—H8C109.5
C2—C3—H3120.9H8B—C8—H8C109.5
O3—P1—O1—C187.76 (18)O1—C1—C2—Cl11.3 (3)
O2—P1—O1—C1165.59 (17)C1—C2—C3—C40.4 (3)
S1—P1—O1—C137.32 (18)Cl1—C2—C3—C4179.52 (18)
O3—P1—O2—C7177.31 (19)C2—C3—C4—C51.0 (4)
O1—P1—O2—C773.6 (2)C2—C3—C4—N1178.9 (2)
S1—P1—O2—C752.0 (2)O4—N1—C4—C5174.2 (3)
O2—P1—O3—C847.1 (2)O5—N1—C4—C55.6 (3)
O1—P1—O3—C856.8 (2)O4—N1—C4—C35.6 (4)
S1—P1—O3—C8176.54 (18)O5—N1—C4—C3174.6 (3)
P1—O1—C1—C669.6 (2)C3—C4—C5—C61.3 (3)
P1—O1—C1—C2113.28 (19)N1—C4—C5—C6178.6 (2)
C6—C1—C2—C31.5 (3)C4—C5—C6—C10.1 (3)
O1—C1—C2—C3178.6 (2)C2—C1—C6—C51.2 (3)
C6—C1—C2—Cl1178.44 (17)O1—C1—C6—C5178.3 (2)

Experimental details

(MeParatI)(DicapthonII)
Crystal data
Chemical formulaC8H10NO5PSC8H9ClNO5PS
Mr263.20297.66
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100295
a, b, c (Å)7.0232 (3), 21.1563 (8), 7.9679 (3)10.9108 (14), 17.0968 (19), 6.8940 (6)
β (°) 104.4284 (4) 101.65 (5)
V3)1146.57 (8)1259.5 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.430.60
Crystal size (mm)0.53 × 0.45 × 0.310.49 × 0.48 × 0.43
Data collection
DiffractometerBruker APEXII
diffractometer
Bruker P4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SADABS; Bruker, 2008)
Integration
(XSHELL; Bruker, 1999)
Tmin, Tmax0.80, 0.880.706, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
13180, 2619, 2489 2989, 2206, 1841
Rint0.0170.025
(sin θ/λ)max1)0.6500.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.05 0.035, 0.098, 1.04
No. of reflections26192206
No. of parameters147155
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.360.35, 0.21

Computer programs: APEX2 (Bruker, 2008), XSCANS (Bruker, 1996), SADABS and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008).

Comparison of selected distances (Å) and angles (°) for (I) and (II). top
Atoms(I)(II)Δ*Δ/σ*
P1—O11.6110 (9)1.6123 (16)-0.0013-0.81
P1—O21.5663 (9)1.5606 (17)0.00573.4
P1—O31.5624 (9)1.5558 (17)0.00663.9
O1—C11.3966 (14)1.385 (3)0.01163.9
O2—C71.4562 (15)1.449 (3)0.00722.4
O3—C81.4594 (15)1.458 (3)0.00140.47
C2—C11.3880 (17)1.383 (3)0.00501.7
C2—C31.3852 (17)1.379 (3)0.00622.1
C2—C1—O1118.97 (10)119.0 (2)-0.30-0.15
C6—C1—O1118.57 (11)120.39 (19)-1.82-9.1
C6—C1—C2122.36 (11)120.5 (2)1.869.3
C3—C2—C1118.95 (11)120.0 (2)-1.05-5.3
C4—C3—C2118.45 (11)118.1 (2)0.351.8
C3—C4—N1118.42 (10)118.5 (2)-0.08-0.40
C5—C4—N1118.67 (11)118.5 (2)0.170.85
C5—C4—C3122.90 (11)123.0 (2)-0.10-0.50
C4—C5—C6118.42 (11)118.3 (2)0.120.60
C5—C6—C1118.90 (11)120.1 (2)-1.20-6.0
S1—P1—O1—C1-42.48 (10)-37.32 (18)-5.16-28.7
P1—O1—C1—C6-93.13 (12)-69.6 (2)-23.56-117.8
P1—O1—C1—C290.42 (12)113.28 (19)-22.86-120.3
Note: (*) D = (I) - (II); σ = σ of (II) (i.e. the larger value).
Comparison of C2—C1—O1—P1 torsion angles (°) (numbering according to this work) for selected 2-chlorinated thiophosphate pesticides. See Scheme for definitions of the Ri groups. top
PesticideReferenceR1R2R3R4C2—C1—O1—P1
Methyl parathionThis workOMeOMeNO2H90.42 (12)
DicapthonThis workOMeOMeNO2H113.3 (2)
RonnelBaughman & Jacobson (1975)OMeOMeClCl110.5
BromophosBaughman & Jacobson (1976)OMeOMeBrCl103.4
ChlorpyifosBaughman et al. (1978)OEtOEtClH145.9
IPATLapp & Jacobson (1980a)OMeOiPrClCl164.9
LeptophosLapp & Jacobson (1980b)PhOMeBrCl100.1
IodofenphosBaughman & Yu (1982)OMeOMeICl116.9 (8)
Comparison of ring plane and ring/NO2 dihedral angles (°) for selected O2N–C6H4para-OP(S) compounds.
In each case, per the Scheme, R3 = NO2 and R4 = R5 = H (i.e. no Cl). Notation used on column headings for angluar values about central C atoms is `C1'C2—C1—C6 etc.
top
CodeaR1R2C1C2C3C4C5C6C1–C6 with C4/N1/O4/O5
MeParatbOMeOMe122.4 (1)118.0 (1)118.5 (1)122.9 (1)118.4 (1)118.9 (1)10.67 (8)
ICEROYc, Molecule 1121.6119.5117.9122.0119.3118.9~2
ICEROYc, Molecule 2122.2118.6118.9122.8119.2118.9
ICERUEc122.1119.3118.2122.5119.0118.8~4
ENPHPSC6H5OEt122.5119.6118.0122.7119.5117.7~14
XOYWUDdC6H5118.3119.6118.0122.9118.3119.7~3
Notes: (a) from the Cambridge Structural Database (Version 5.35 [OK?]; Allen, 2002); s.u. values not available but likely ~0.5°; (b) this work; (c) R1 = -O—C(Me)CH2C(Me)O- and R2 = bidentate; (d R2 = -NHC(CH2)Np (Np is ???).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds