Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013839/sk1339sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013839/sk1339Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013839/sk1339IIsup3.hkl |
CCDC references: 142758; 142759
The title compound, commercially available (ICN Pharmaceuticals Inc., Plainview, NY) was recrystallized from pure benzene solution at room temperature. Structure determination was performed with two data sets measured at 293 K (Data set I) and at 103 K (Data set II) using the same sample.
The absorption correction was done using Meulenaer-Tompa analytical method (Meulenaer & Tompa, 1965) incorporated in PLATON computer program (Spek, 1998). All hydrogen atoms were located from difference Fourier map and refined without constraints.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992) for (I); CAD-4 EXPRESS (Enraf Nonius, 1992) for (II). For both compounds, cell refinement: CAD-4 EXPRESS and CELDIM routine; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PLATON.
C13H8Br2O | F(000) = 656 |
Mr = 339.99 | Dx = 1.887 Mg m−3 |
Orthorhombic, Ccc2 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: C 2 -2yc | Cell parameters from 25 reflections |
a = 7.3969 (4) Å | θ = 43.9–47.7° |
b = 26.7030 (9) Å | µ = 8.38 mm−1 |
c = 6.0594 (3) Å | T = 293 K |
V = 1196.85 (10) Å3 | Prism, colourless |
Z = 4 | 0.18 × 0.14 × 0.07 mm |
Enraf-Nonius CAD-4 diffractometer | 581 reflections with I > 2σ(I) |
Radiation source: fine-focused sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 74.1°, θmin = 3.3° |
ω/2θ scans | h = 0→9 |
Absorption correction: analytical (PLATON; Spek, 1998) | k = −33→0 |
Tmin = 0.386, Tmax = 0.591 | l = 0→7 |
744 measured reflections | 3 standard reflections every 60 min |
679 independent reflections | intensity decay: 0.8% |
Refinement on F2 | Calculated w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3857P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max = 0.001 |
R[F2 > 2σ(F2)] = 0.022 | Δρmax = 0.24 e Å−3 |
wR(F2) = 0.066 | Δρmin = −0.25 e Å−3 |
S = 1.05 | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
679 reflections | Extinction coefficient: 0.00085 (11) |
91 parameters | Absolute structure: Flack (1983) |
1 restraint | Absolute structure parameter: −0.02 (4) |
All H-atom parameters refined |
C13H8Br2O | V = 1196.85 (10) Å3 |
Mr = 339.99 | Z = 4 |
Orthorhombic, Ccc2 | Cu Kα radiation |
a = 7.3969 (4) Å | µ = 8.38 mm−1 |
b = 26.7030 (9) Å | T = 293 K |
c = 6.0594 (3) Å | 0.18 × 0.14 × 0.07 mm |
Enraf-Nonius CAD-4 diffractometer | 581 reflections with I > 2σ(I) |
Absorption correction: analytical (PLATON; Spek, 1998) | Rint = 0.000 |
Tmin = 0.386, Tmax = 0.591 | 3 standard reflections every 60 min |
744 measured reflections | intensity decay: 0.8% |
679 independent reflections |
R[F2 > 2σ(F2)] = 0.022 | All H-atom parameters refined |
wR(F2) = 0.066 | Δρmax = 0.24 e Å−3 |
S = 1.05 | Δρmin = −0.25 e Å−3 |
679 reflections | Absolute structure: Flack (1983) |
91 parameters | Absolute structure parameter: −0.02 (4) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.27572 (7) | 0.04457 (1) | 0.60433 (10) | 0.0835 (2) | |
O | 0.25000 | 0.25000 | 1.2615 (7) | 0.0706 (18) | |
C1 | 0.25000 | 0.25000 | 1.0600 (8) | 0.0447 (16) | |
C2 | 0.2476 (4) | 0.20123 (14) | 0.9414 (6) | 0.0404 (10) | |
C3 | 0.3244 (4) | 0.19552 (12) | 0.7313 (5) | 0.0380 (9) | |
C4 | 0.3341 (5) | 0.14898 (12) | 0.6338 (7) | 0.0443 (10) | |
C5 | 0.2629 (5) | 0.10770 (14) | 0.7433 (7) | 0.0495 (11) | |
C6 | 0.1862 (6) | 0.11297 (16) | 0.9492 (8) | 0.0563 (12) | |
C7 | 0.1792 (5) | 0.15910 (17) | 1.0471 (6) | 0.0502 (11) | |
H3 | 0.366 (4) | 0.2235 (12) | 0.665 (6) | 0.038 (9)* | |
H4 | 0.382 (6) | 0.1440 (13) | 0.489 (7) | 0.050 (11)* | |
H6 | 0.141 (6) | 0.0841 (16) | 1.009 (8) | 0.069 (13)* | |
H7 | 0.124 (5) | 0.1630 (15) | 1.192 (6) | 0.047 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.1008 (4) | 0.0463 (3) | 0.1034 (4) | 0.0032 (2) | −0.0013 (6) | −0.0070 (3) |
O | 0.104 (4) | 0.078 (3) | 0.0298 (18) | 0.022 (3) | 0.0000 | 0.0000 |
C1 | 0.044 (2) | 0.055 (3) | 0.035 (3) | 0.0102 (19) | 0.0000 | 0.0000 |
C2 | 0.0340 (15) | 0.054 (2) | 0.0331 (17) | 0.0063 (13) | 0.0017 (13) | 0.0052 (13) |
C3 | 0.0389 (15) | 0.0455 (16) | 0.0295 (15) | 0.0015 (13) | 0.0013 (14) | 0.0060 (13) |
C4 | 0.0467 (17) | 0.0488 (15) | 0.0374 (18) | 0.0036 (12) | 0.0034 (17) | 0.0009 (18) |
C5 | 0.0503 (19) | 0.0423 (17) | 0.056 (2) | 0.0051 (14) | −0.0059 (18) | 0.0006 (18) |
C6 | 0.055 (2) | 0.054 (2) | 0.060 (2) | −0.0052 (16) | 0.007 (2) | 0.0173 (18) |
C7 | 0.0407 (18) | 0.071 (2) | 0.039 (2) | 0.0031 (17) | 0.0074 (14) | 0.0142 (16) |
Br—C5 | 1.887 (4) | C5—C6 | 1.378 (6) |
O—C1 | 1.221 (6) | C6—C7 | 1.368 (6) |
C1—C2 | 1.488 (4) | C3—H3 | 0.90 (3) |
C2—C3 | 1.402 (5) | C4—H4 | 0.96 (4) |
C2—C7 | 1.390 (6) | C6—H6 | 0.92 (4) |
C3—C4 | 1.378 (5) | C7—H7 | 0.97 (4) |
C4—C5 | 1.390 (5) | ||
O—C1—C2 | 118.9 (2) | C5—C6—C7 | 120.0 (4) |
O—C1—C2i | 118.9 (2) | C2—C7—C6 | 121.0 (4) |
C2—C1—C2i | 122.2 (4) | C2—C3—H3 | 117 (2) |
C1—C2—C3 | 121.9 (3) | C4—C3—H3 | 123 (2) |
C1—C2—C7 | 119.4 (3) | C3—C4—H4 | 123 (2) |
C3—C2—C7 | 118.5 (3) | C5—C4—H4 | 118 (2) |
C2—C3—C4 | 120.6 (3) | C5—C6—H6 | 115 (3) |
C3—C4—C5 | 119.4 (4) | C7—C6—H6 | 125 (3) |
Br—C5—C4 | 118.4 (3) | C2—C7—H7 | 119 (2) |
Br—C5—C6 | 121.1 (3) | C6—C7—H7 | 120 (2) |
C4—C5—C6 | 120.5 (4) | ||
O—C1—C2—C3 | −151.4 (2) | C3—C2—C7—C6 | 0.0 (5) |
O—C1—C2—C7 | 23.9 (3) | C2—C3—C4—C5 | 1.6 (5) |
C2i—C1—C2—C3 | 28.6 (4) | C3—C4—C5—Br | 179.3 (3) |
C2i—C1—C2—C7 | −156.1 (3) | C3—C4—C5—C6 | −1.2 (6) |
C1—C2—C3—C4 | 174.3 (3) | Br—C5—C6—C7 | 179.7 (3) |
C7—C2—C3—C4 | −1.0 (5) | C4—C5—C6—C7 | 0.2 (6) |
C1—C2—C7—C6 | −175.4 (3) | C5—C6—C7—C2 | 0.4 (6) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
C13H8Br2O | F(000) = 656 |
Mr = 339.99 | Dx = 1.955 Mg m−3 |
Orthorhombic, Ccc2 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: C 2 -2yc | Cell parameters from 25 reflections |
a = 7.2242 (2) Å | θ = 44.1–47.8° |
b = 26.5957 (9) Å | µ = 8.68 mm−1 |
c = 6.0118 (2) Å | T = 103 K |
V = 1155.06 (6) Å3 | Prism, colourless |
Z = 4 | 0.18 × 0.14 × 0.07 mm |
Enraf-Nonius CAD-4 diffractometer | 630 reflections with I > 2σ(I) |
Radiation source: fine-focused sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 73.9°, θmin = 3.3° |
ω/2θ scans | h = 0→9 |
Absorption correction: analytical (PLATON; Spek, 1998) | k = −32→0 |
Tmin = 0.349, Tmax = 0.581 | l = 0→7 |
713 measured reflections | 3 standard reflections every 60 min |
649 independent reflections | intensity decay: 2.2% |
Refinement on F2 | Calculated w = 1/[σ2(Fo2) + (0.0211P)2 + 0.5575P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.019 | Δρmax = 0.62 e Å−3 |
wR(F2) = 0.053 | Δρmin = −0.33 e Å−3 |
S = 1.16 | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
649 reflections | Extinction coefficient: 0.00057 (8) |
91 parameters | Absolute structure: Flack (1983) |
1 restraint | Absolute structure parameter: 0.00 (4) |
All H-atom parameters refined |
C13H8Br2O | V = 1155.06 (6) Å3 |
Mr = 339.99 | Z = 4 |
Orthorhombic, Ccc2 | Cu Kα radiation |
a = 7.2242 (2) Å | µ = 8.68 mm−1 |
b = 26.5957 (9) Å | T = 103 K |
c = 6.0118 (2) Å | 0.18 × 0.14 × 0.07 mm |
Enraf-Nonius CAD-4 diffractometer | 630 reflections with I > 2σ(I) |
Absorption correction: analytical (PLATON; Spek, 1998) | Rint = 0.000 |
Tmin = 0.349, Tmax = 0.581 | 3 standard reflections every 60 min |
713 measured reflections | intensity decay: 2.2% |
649 independent reflections |
R[F2 > 2σ(F2)] = 0.019 | All H-atom parameters refined |
wR(F2) = 0.053 | Δρmax = 0.62 e Å−3 |
S = 1.16 | Δρmin = −0.33 e Å−3 |
649 reflections | Absolute structure: Flack (1983) |
91 parameters | Absolute structure parameter: 0.00 (4) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.27716 (4) | 0.04333 (1) | 0.44883 (10) | 0.0244 (1) | |
O | 0.25000 | 0.25000 | 1.1119 (7) | 0.0221 (10) | |
C1 | 0.25000 | 0.25000 | 0.9079 (8) | 0.0115 (13) | |
C2 | 0.2474 (4) | 0.20127 (12) | 0.7862 (5) | 0.0121 (8) | |
C3 | 0.3249 (4) | 0.19550 (11) | 0.5750 (4) | 0.0118 (8) | |
C4 | 0.3352 (4) | 0.14839 (10) | 0.4761 (5) | 0.0126 (7) | |
C5 | 0.2638 (4) | 0.10675 (13) | 0.5886 (6) | 0.0154 (9) | |
C6 | 0.1842 (5) | 0.11163 (12) | 0.7985 (5) | 0.0176 (8) | |
C7 | 0.1774 (5) | 0.15871 (14) | 0.8967 (4) | 0.0153 (9) | |
H3 | 0.364 (5) | 0.2224 (12) | 0.506 (6) | 0.014 (9)* | |
H4 | 0.380 (7) | 0.1439 (14) | 0.329 (7) | 0.031 (12)* | |
H6 | 0.140 (7) | 0.0844 (16) | 0.860 (7) | 0.035 (12)* | |
H7 | 0.129 (6) | 0.1615 (16) | 1.042 (6) | 0.019 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0281 (2) | 0.0137 (2) | 0.0313 (2) | 0.0011 (1) | −0.0001 (3) | −0.0032 (2) |
O | 0.0300 (17) | 0.028 (2) | 0.0082 (16) | 0.0067 (14) | 0.0000 | 0.0000 |
C1 | 0.0105 (18) | 0.015 (2) | 0.009 (3) | 0.0034 (14) | 0.0000 | 0.0000 |
C2 | 0.0079 (11) | 0.0167 (15) | 0.0117 (14) | 0.0021 (11) | −0.0023 (10) | 0.0018 (13) |
C3 | 0.0084 (12) | 0.0153 (12) | 0.0117 (15) | 0.0015 (11) | −0.0007 (11) | 0.0031 (11) |
C4 | 0.0116 (11) | 0.0156 (11) | 0.0107 (16) | 0.0020 (9) | 0.0013 (12) | 0.0000 (15) |
C5 | 0.0126 (13) | 0.0133 (15) | 0.0202 (19) | 0.0010 (10) | −0.0036 (11) | 0.0013 (14) |
C6 | 0.0141 (12) | 0.0184 (14) | 0.0202 (15) | −0.0001 (12) | −0.0006 (13) | 0.0055 (13) |
C7 | 0.0133 (14) | 0.0217 (16) | 0.0108 (16) | 0.0022 (13) | 0.0017 (10) | 0.0045 (11) |
Br—C5 | 1.887 (4) | C5—C6 | 1.393 (5) |
O—C1 | 1.226 (6) | C6—C7 | 1.385 (5) |
C1—C2 | 1.488 (4) | C3—H3 | 0.87 (3) |
C2—C3 | 1.396 (4) | C4—H4 | 0.95 (4) |
C2—C7 | 1.407 (5) | C6—H6 | 0.87 (4) |
C3—C4 | 1.389 (4) | C7—H7 | 0.94 (4) |
C4—C5 | 1.396 (4) | ||
O—C1—C2 | 119.4 (2) | C5—C6—C7 | 119.0 (3) |
O—C1—C2i | 119.4 (2) | C2—C7—C6 | 120.9 (3) |
C2—C1—C2i | 121.1 (4) | C2—C3—H3 | 118 (2) |
C1—C2—C3 | 122.5 (3) | C4—C3—H3 | 121 (2) |
C1—C2—C7 | 118.2 (3) | C3—C4—H4 | 122 (2) |
C3—C2—C7 | 119.0 (3) | C5—C4—H4 | 119 (2) |
C2—C3—C4 | 120.7 (3) | C5—C6—H6 | 117 (3) |
C3—C4—C5 | 119.2 (3) | C7—C6—H6 | 124 (3) |
Br—C5—C4 | 118.3 (2) | C2—C7—H7 | 120 (3) |
Br—C5—C6 | 120.5 (3) | C6—C7—H7 | 119 (3) |
C4—C5—C6 | 121.2 (3) | ||
O—C1—C2—C3 | −151.5 (2) | C3—C2—C7—C6 | −0.2 (5) |
O—C1—C2—C7 | 23.3 (3) | C2—C3—C4—C5 | 1.2 (4) |
C2i—C1—C2—C3 | 28.5 (3) | C3—C4—C5—Br | 179.3 (2) |
C2i—C1—C2—C7 | −156.7 (3) | C3—C4—C5—C6 | −0.6 (5) |
C1—C2—C3—C4 | 173.9 (3) | Br—C5—C6—C7 | 179.7 (3) |
C7—C2—C3—C4 | −0.8 (4) | C4—C5—C6—C7 | −0.4 (5) |
C1—C2—C7—C6 | −175.1 (3) | C5—C6—C7—C2 | 0.8 (5) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C13H8Br2O | C13H8Br2O |
Mr | 339.99 | 339.99 |
Crystal system, space group | Orthorhombic, Ccc2 | Orthorhombic, Ccc2 |
Temperature (K) | 293 | 103 |
a, b, c (Å) | 7.3969 (4), 26.7030 (9), 6.0594 (3) | 7.2242 (2), 26.5957 (9), 6.0118 (2) |
V (Å3) | 1196.85 (10) | 1155.06 (6) |
Z | 4 | 4 |
Radiation type | Cu Kα | Cu Kα |
µ (mm−1) | 8.38 | 8.68 |
Crystal size (mm) | 0.18 × 0.14 × 0.07 | 0.18 × 0.14 × 0.07 |
Data collection | ||
Diffractometer | Enraf-Nonius CAD-4 diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | Analytical (PLATON; Spek, 1998) | Analytical (PLATON; Spek, 1998) |
Tmin, Tmax | 0.386, 0.591 | 0.349, 0.581 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 744, 679, 581 | 713, 649, 630 |
Rint | 0.000 | 0.000 |
(sin θ/λ)max (Å−1) | 0.624 | 0.623 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.066, 1.05 | 0.019, 0.053, 1.16 |
No. of reflections | 679 | 649 |
No. of parameters | 91 | 91 |
No. of restraints | 1 | 1 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.24, −0.25 | 0.62, −0.33 |
Absolute structure | Flack (1983) | Flack (1983) |
Absolute structure parameter | −0.02 (4) | 0.00 (4) |
Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1992), CAD-4 EXPRESS (Enraf Nonius, 1992), CAD-4 EXPRESS and CELDIM routine, HELENA (Spek, 1997), SIR97 (Altomare et al., 1996), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), PLATON.
Molecules of 4,4'-halogenated-benzophenones and their precursor benzophenone, in accord with the hybridization of the atoms involved, should be planar. However, the steric hindrances introduced by the hydrogen atoms (overcrowding effect) have caused puckering of these molecules. The halogenated molecules exhibit C2 symmetry with a crystallographic twofold axes through a carbonyl bond whereas benzophenone reveals an approximate C2 molecular symmetry. The puckering of the benzophenone skeleton can be illustrated by the dihedral angle between two phenyl rings. In these compounds their values range from 48.9 to 55.8° (4,4'-difluorobenzophenone 48.9°, Manginn & Davey, 1994; 4,4'-dichlorobenzophenone, room temperature phase 50.5°, Granger & Coillot, 1985; 4,4'-dichlorobenzophenone, low temperature phase 49.3°, Zúñiga & Criado, 1995; 4,4'-diiodobenzophenone 50.1°, van der Velden & Noordik, 1979, and benzophenone 55.8°, Fleischer et al., 1968). The existence of the phase transition of 4,4'-dichlorobenzophenone (Zúñiga & Criado, 1995) and the temperature dependent Raman spectra of 4,4'-dibromobenzophenone (Volovšek et al., 1995), motivated us to investigate the X-ray structure of 4,4'-dibromobenzophenone, (I), in the temperature range 100 K to 293 K. In order to provide more information, the unit cell and the possible phase transition were examined at 293 K, 223 K, 163 K and 103 K. For the unit cell determinations 25 reflections at high θ angle were used and additional ten reflections were examined on possible intensity changes. The correlation of the unit-cell dimensions with temperature revealed that Δa/a ≈ 5Δb/b ≈ 5Δc/c. An assumption that this effect might be related with the changes of dihedral angle between phenyl rings was not justified by the crystal structure determination at two different temperatures [50.10 (12)° at 293 K and 49.60 (15)° at 103 K]. Thus, our data have not revealed the change of the space group (Ccc2). The ORTEPII (Johnson, 1976) plot (Fig. 1) and crystal packing (Fig. 2) of 4,4'-dibromobenzophenone show the structure solved from low temperature data. The crystal packing (Fig. 2) is determined by van der Waals interactions. This type of packing is isostructural with that of the diiodo analogue (van der Velden & Noordik, 1979) but not with the packing of difluoro (Manginn & Davey, 1994) and dichloro (Granger & Coilot, 1985; Zúñiga & Criado, 1995) analogues. The carbonyl bonds of the dibromo and diiodo analogues are oriented along the polar twofold axes running along the c axes (in the space group Ccc2, Fig. 2). As the consequence of the space group symmetry a uniform orientation of the parallel polar groups (carbonyl) is maintained.