Download citation
Download citation
link to html
The structures of 4-nitro­benzene-1,2-di­amine [C6H7N3O2, (I)], 2-amino-5-nitro­anilinium chloride [C6H8N3O2+·Cl, (II)] and 2-amino-5-nitro­anilinium bromide monohydrate [C6H8N3O2+·Br·H2O, (III)] are reported and their hydrogen-bonded structures described. The amine group para to the nitro group in (I) adopts an approximately planar geometry, whereas the meta amine group is decidedly pyramidal. In the hydrogen halide salts (II) and (III), the amine group meta to the nitro group is protonated. Compound (I) displays a pleated-sheet hydrogen-bonded two-dimensional structure with R22(14) and R44(20) rings. The sheets are joined by additional hydrogen bonds, resulting in a three-dimensional extended structure. Hydro­halide salt (II) has two formula units in the asymmetric unit that are related by a pseudo-inversion center. The dominant hydrogen-bonding inter­actions involve the chloride ion and result in R42(8) rings linked to form a ladder-chain structure. The chains are joined by N—H...Cl and N—H...O hydrogen bonds to form sheets parallel to (010). In hydrated hydro­halide salt (III), bromide ions are hydrogen bonded to amine and ammonium groups to form R42(8) rings. The water behaves as a double donor/single acceptor and, along with the bromide anions, forms hydrogen bonds involving the nitro, amine, and ammonium groups. The result is sheets parallel to (001) composed of alternating R55(15) and R64(24) rings. Ammonium N—H...Br inter­actions join the sheets to form a three-dimensional extended structure. Energy-minimized structures obtained using DFT and MP2 calculations are consistent with the solid-state structures. Consistent with (II) and (III), calculations show that protonation of the amine group meta to the nitro group results in a structure that is about 1.5 kJ mol−1 more stable than that obtained by protonation of the para-amine group. DFT calculations on single mol­ecules and hydrogen-bonded pairs of mol­ecules based on structural results obtained for (I) and for 3-nitro­benzene-1,2-di­amine, (IV) [Betz & Gerber (2011). Acta Cryst. E67, o1359] were used to estimate the strength of the N—H...O(nitro) inter­actions for three observed motifs. The hydrogen-bonding inter­action between the pairs of mol­ecules examined was found to correspond to 20–30 kJ mol−1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614013485/sk3544sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013485/sk3544Isup4.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S2053229614013485/sk3544Isup5.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S2053229614013485/sk3544Isup8.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013485/sk3544IIsup3.hkl
Contains datablock II

mol

MDL mol file https://doi.org/10.1107/S2053229614013485/sk3544IIsup6.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S2053229614013485/sk3544IIsup9.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S2053229614013485/sk3544IIIsup10.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013485/sk3544IIIsup2.hkl
Contains datablock III

mol

MDL mol file https://doi.org/10.1107/S2053229614013485/sk3544IIIsup7.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614013485/sk3544Isup11.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614013485/sk3544IIsup12.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614013485/sk3544IIIsup13.cml
Supplementary material

CCDC references: 1007681; 1007682; 1007683

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) 4-Nitrobenzene-1,2-diamine top
Crystal data top
C6H7N3O2Dx = 1.530 Mg m3
Mr = 153.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 99 reflections
a = 3.7492 (6) Åθ = 4.6–21.5°
b = 10.2864 (19) ŵ = 0.12 mm1
c = 17.238 (3) ÅT = 199 K
V = 664.8 (2) Å3Plate, clear orange
Z = 40.65 × 0.50 × 0.05 mm
F(000) = 320
Data collection top
Bruker SMART X2S benchtop
diffractometer
1170 independent reflections
Radiation source: sealed microfocus tube1010 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.066
Detector resolution: 8.3330 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.46, Tmax = 0.99l = 2020
7773 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.03917P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1170 reflectionsΔρmax = 0.12 e Å3
116 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack x determined using 354 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.8 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9592 (5)1.03420 (17)1.12307 (9)0.0569 (6)
O20.7070 (5)0.85290 (16)1.08963 (9)0.0520 (5)
N10.9475 (7)1.1026 (2)0.76269 (11)0.0475 (6)
H1A1.060 (7)1.174 (3)0.7478 (15)0.067 (10)*
H1B0.850 (7)1.055 (3)0.7259 (15)0.055 (8)*
N20.6432 (6)0.8605 (2)0.79985 (12)0.0391 (5)
H2A0.543 (7)0.902 (3)0.7594 (17)0.056 (8)*
H2B0.525 (8)0.804 (3)0.8184 (17)0.066 (10)*
N30.8486 (5)0.95831 (19)1.07251 (9)0.0363 (5)
C10.9249 (6)1.0660 (2)0.83812 (11)0.0300 (5)
C20.7666 (6)0.9449 (2)0.85884 (11)0.0286 (5)
C30.7492 (5)0.90992 (19)0.93576 (11)0.0294 (5)
H30.64610.82910.95020.035*
C40.8828 (5)0.9931 (2)0.99237 (11)0.0289 (5)
C51.0380 (5)1.11164 (19)0.97364 (12)0.0299 (5)
H51.12921.16711.0130.036*
C61.0567 (6)1.1467 (2)0.89689 (12)0.0323 (5)
H61.16151.22760.88330.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0906 (14)0.0496 (11)0.0305 (8)0.0074 (11)0.0053 (9)0.0078 (8)
O20.0811 (13)0.0360 (9)0.0389 (9)0.0070 (10)0.0097 (9)0.0071 (8)
N10.0657 (16)0.0484 (13)0.0282 (10)0.0118 (12)0.0008 (10)0.0069 (10)
N20.0504 (13)0.0339 (11)0.0329 (10)0.0044 (11)0.0031 (10)0.0060 (9)
N30.0470 (12)0.0314 (11)0.0304 (9)0.0057 (9)0.0025 (8)0.0011 (9)
C10.0306 (11)0.0293 (12)0.0301 (10)0.0047 (9)0.0025 (9)0.0018 (9)
C20.0298 (12)0.0248 (10)0.0312 (10)0.0044 (10)0.0001 (9)0.0042 (9)
C30.0324 (11)0.0212 (10)0.0347 (10)0.0026 (10)0.0039 (11)0.0014 (9)
C40.0335 (12)0.0249 (11)0.0282 (10)0.0058 (10)0.0022 (8)0.0013 (8)
C50.0318 (12)0.0264 (11)0.0316 (10)0.0009 (10)0.0002 (10)0.0050 (9)
C60.0335 (11)0.0253 (10)0.0380 (11)0.0010 (10)0.0023 (9)0.0009 (9)
Geometric parameters (Å, º) top
O1—N31.241 (2)C1—C61.399 (3)
O2—N31.243 (2)C1—C21.426 (3)
N1—C11.356 (3)C2—C31.375 (3)
N1—H1A0.88 (3)C3—C41.391 (3)
N1—H1B0.88 (3)C3—H30.95
N2—C21.415 (3)C4—C51.389 (3)
N2—H2A0.90 (3)C5—C61.373 (3)
N2—H2B0.80 (3)C5—H50.95
N3—C41.433 (3)C6—H60.95
C1—N1—H1A122.5 (18)N2—C2—C1119.50 (18)
C1—N1—H1B120.8 (17)C2—C3—C4119.89 (19)
H1A—N1—H1B117 (2)C2—C3—H3120.1
C2—N2—H2A113.6 (18)C4—C3—H3120.1
C2—N2—H2B110 (2)C5—C4—C3121.86 (18)
H2A—N2—H2B115 (3)C5—C4—N3118.74 (18)
O1—N3—O2121.65 (17)C3—C4—N3119.36 (18)
O1—N3—C4119.33 (19)C6—C5—C4118.40 (19)
O2—N3—C4119.02 (18)C6—C5—H5120.8
N1—C1—C6120.5 (2)C4—C5—H5120.8
N1—C1—C2120.6 (2)C5—C6—C1121.6 (2)
C6—C1—C2118.94 (17)C5—C6—H6119.2
C3—C2—N2121.1 (2)C1—C6—H6119.2
C3—C2—C1119.32 (18)
N1—C1—C2—C3179.6 (2)O2—N3—C4—C5179.37 (18)
C6—C1—C2—C30.4 (3)O1—N3—C4—C3178.08 (19)
N1—C1—C2—N22.1 (3)O2—N3—C4—C31.6 (3)
C6—C1—C2—N2177.9 (2)C3—C4—C5—C60.3 (3)
N2—C2—C3—C4177.97 (19)N3—C4—C5—C6177.4 (2)
C1—C2—C3—C40.5 (3)C4—C5—C6—C10.2 (3)
C2—C3—C4—C50.5 (3)N1—C1—C6—C5179.8 (2)
C2—C3—C4—N3177.19 (19)C2—C1—C6—C50.2 (3)
O1—N3—C4—C50.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.88 (3)2.37 (3)3.249 (3)177 (2)
N1—H1B···O1ii0.88 (3)2.31 (3)3.178 (3)169 (2)
N1—H1B···O2ii0.88 (3)2.54 (3)3.073 (3)120 (2)
N2—H2A···O1ii0.90 (3)2.44 (3)3.257 (3)151 (2)
N2—H2B···O2iii0.80 (3)2.55 (3)3.335 (3)165 (3)
C3—H3···O2iii0.952.593.411 (3)145
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+3/2, y+2, z1/2; (iii) x1/2, y+3/2, z+2.
(II) 2-Amino-5-nitroanilinium chloride top
Crystal data top
C6H8N3O2+·ClF(000) = 392
Mr = 189.60Dx = 1.547 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.4743 (11) ÅCell parameters from 123 reflections
b = 29.757 (7) Åθ = 0.2–20.7°
c = 6.1706 (15) ŵ = 0.43 mm1
β = 97.774 (8)°T = 200 K
V = 814.0 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.05 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2353 independent reflections
Radiation source: sealed microfocus tube1707 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.073
Detector resolution: 8.3330 pixels mm-1θmax = 25.1°, θmin = 2.7°
ω scansh = 54
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 3435
Tmin = 0.58, Tmax = 0.98l = 77
5088 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2353 reflectionsΔρmax = 0.44 e Å3
251 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack x determined using 460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.8425 (4)0.50092 (5)0.4491 (3)0.0314 (5)
Cl20.4721 (4)0.45202 (5)0.9346 (3)0.0304 (4)
N30.3963 (13)0.2867 (2)0.0126 (10)0.0315 (15)
O10.3220 (15)0.24711 (17)0.0179 (10)0.0579 (18)
O20.5645 (12)0.30679 (18)0.0977 (9)0.0437 (15)
N61.0347 (14)0.1643 (2)0.6032 (11)0.0345 (17)
O31.2238 (12)0.14523 (19)0.5058 (10)0.0452 (15)
O40.9319 (14)0.20114 (19)0.5553 (10)0.0528 (18)
N10.0631 (16)0.3809 (2)0.6825 (11)0.0326 (16)
H1A0.021 (16)0.405 (2)0.725 (12)0.04 (2)*
H1B0.182 (17)0.363 (3)0.748 (14)0.05 (3)*
N20.3191 (14)0.4262 (2)0.4200 (12)0.0296 (17)
H2A0.428 (19)0.428 (3)0.508 (15)0.044*
H2B0.174 (14)0.458 (2)0.461 (12)0.044*
H2C0.435 (18)0.436 (2)0.336 (14)0.044*
C10.0597 (15)0.3576 (2)0.5228 (13)0.0244 (17)
C20.2439 (15)0.3784 (2)0.3848 (12)0.0230 (16)
C30.3534 (14)0.3556 (2)0.2208 (12)0.0235 (17)
H30.47960.37010.13030.028*
C40.2770 (14)0.3110 (2)0.1892 (12)0.0251 (17)
C50.0995 (16)0.2888 (2)0.3176 (12)0.0280 (17)
H50.05060.25810.2910.034*
C60.0098 (16)0.3116 (2)0.4882 (13)0.0311 (19)
H60.13010.29630.58040.037*
N40.6182 (17)0.0721 (2)1.2972 (12)0.0339 (17)
H4A0.728 (15)0.049 (2)1.367 (12)0.04 (2)*
H4B0.538 (19)0.086 (3)1.364 (14)0.04 (3)*
N51.0075 (15)0.0276 (2)1.0387 (11)0.0276 (16)
H5A1.093 (18)0.018 (2)0.937 (13)0.041*
H5B0.796 (16)0.007 (2)1.028 (11)0.041*
H5C1.152 (16)0.025 (2)1.176 (14)0.041*
C70.7333 (15)0.0956 (2)1.1374 (12)0.0241 (17)
C80.9220 (15)0.0750 (2)1.0006 (12)0.0245 (17)
C91.0259 (16)0.0970 (2)0.8319 (12)0.0271 (17)
H91.15730.08250.74520.032*
C100.9352 (16)0.1412 (2)0.7896 (12)0.0276 (16)
C110.7525 (15)0.1635 (2)0.9185 (13)0.0300 (19)
H110.69610.1940.890.036*
C120.6552 (15)0.1405 (2)1.0886 (12)0.0253 (17)
H120.52940.15561.17720.03*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0422 (11)0.0317 (10)0.0222 (10)0.0059 (8)0.0111 (8)0.0012 (8)
Cl20.0399 (11)0.0302 (9)0.0231 (10)0.0051 (8)0.0111 (8)0.0013 (8)
N30.034 (4)0.037 (4)0.025 (4)0.005 (3)0.009 (3)0.002 (3)
O10.087 (5)0.029 (3)0.066 (5)0.002 (3)0.041 (4)0.015 (3)
O20.054 (4)0.050 (3)0.034 (4)0.002 (3)0.030 (3)0.002 (3)
N60.045 (4)0.035 (4)0.025 (4)0.009 (3)0.011 (3)0.000 (3)
O30.054 (4)0.054 (4)0.032 (3)0.001 (3)0.022 (3)0.005 (3)
O40.089 (5)0.029 (3)0.045 (5)0.004 (3)0.025 (4)0.017 (3)
N10.044 (4)0.032 (4)0.025 (4)0.012 (3)0.017 (3)0.005 (3)
N20.038 (4)0.029 (4)0.023 (4)0.006 (3)0.008 (3)0.001 (3)
C10.023 (4)0.027 (4)0.023 (5)0.000 (3)0.004 (3)0.003 (3)
C20.027 (4)0.022 (4)0.021 (4)0.000 (3)0.005 (3)0.004 (3)
C30.021 (4)0.029 (4)0.022 (5)0.000 (3)0.009 (3)0.001 (3)
C40.024 (4)0.026 (4)0.026 (5)0.006 (3)0.007 (3)0.003 (3)
C50.036 (4)0.024 (3)0.024 (5)0.005 (3)0.005 (3)0.000 (3)
C60.039 (5)0.031 (4)0.025 (5)0.004 (3)0.010 (4)0.003 (3)
N40.047 (5)0.032 (4)0.026 (4)0.007 (4)0.018 (4)0.004 (3)
N50.035 (4)0.027 (4)0.022 (4)0.011 (3)0.011 (3)0.000 (3)
C70.027 (4)0.030 (4)0.017 (4)0.006 (3)0.008 (3)0.003 (3)
C80.028 (4)0.026 (4)0.019 (4)0.004 (3)0.001 (3)0.003 (3)
C90.033 (4)0.029 (4)0.022 (5)0.000 (3)0.013 (4)0.006 (3)
C100.036 (4)0.029 (4)0.020 (4)0.004 (3)0.011 (3)0.002 (3)
C110.034 (4)0.020 (3)0.038 (5)0.002 (3)0.013 (4)0.002 (3)
C120.025 (4)0.029 (4)0.024 (4)0.007 (3)0.009 (3)0.010 (3)
Geometric parameters (Å, º) top
N3—O11.232 (8)C5—C61.395 (10)
N3—O21.235 (8)C5—H50.95
N3—C41.467 (9)C6—H60.95
N6—O41.210 (8)N4—C71.366 (9)
N6—O31.240 (8)N4—H4A0.91 (7)
N6—C101.460 (9)N4—H4B0.72 (8)
N1—C11.379 (9)N5—C81.473 (9)
N1—H1A0.84 (7)N5—H5A0.83 (8)
N1—H1B0.89 (8)N5—H5B1.12 (7)
N2—C21.471 (9)N5—H5C1.00 (8)
N2—H2A0.68 (8)C7—C121.403 (9)
N2—H2B1.19 (7)C7—C81.412 (9)
N2—H2C0.83 (9)C8—C91.364 (10)
C1—C21.407 (9)C9—C101.390 (9)
C1—C61.411 (9)C9—H90.95
C2—C31.364 (9)C10—C111.385 (10)
C3—C41.378 (8)C11—C121.373 (10)
C3—H30.95C11—H110.95
C4—C51.364 (10)C12—H120.95
O1—N3—O2123.4 (7)C5—C6—C1119.5 (7)
O1—N3—C4117.8 (6)C5—C6—H6120.3
O2—N3—C4118.8 (6)C1—C6—H6120.3
O4—N6—O3123.9 (7)C7—N4—H4A119 (5)
O4—N6—C10118.2 (7)C7—N4—H4B112 (7)
O3—N6—C10117.9 (7)H4A—N4—H4B117 (9)
C1—N1—H1A117 (5)C8—N5—H5A111 (5)
C1—N1—H1B110 (5)C8—N5—H5B108 (3)
H1A—N1—H1B130 (8)H5A—N5—H5B104 (6)
C2—N2—H2A109 (8)C8—N5—H5C110 (4)
C2—N2—H2B132 (3)H5A—N5—H5C107 (7)
H2A—N2—H2B96 (8)H5B—N5—H5C117 (5)
C2—N2—H2C113 (5)N4—C7—C12122.4 (7)
H2A—N2—H2C92 (9)N4—C7—C8121.6 (7)
H2B—N2—H2C106 (6)C12—C7—C8115.9 (6)
N1—C1—C2122.2 (6)C9—C8—C7122.8 (6)
N1—C1—C6119.7 (7)C9—C8—N5118.3 (6)
C2—C1—C6118.0 (7)C7—C8—N5118.9 (6)
C3—C2—C1121.9 (6)C8—C9—C10118.5 (7)
C3—C2—N2119.6 (6)C8—C9—H9120.8
C1—C2—N2118.5 (7)C10—C9—H9120.8
C2—C3—C4118.5 (7)C11—C10—C9121.7 (7)
C2—C3—H3120.7C11—C10—N6119.6 (6)
C4—C3—H3120.7C9—C10—N6118.7 (7)
C5—C4—C3122.4 (7)C12—C11—C10118.2 (6)
C5—C4—N3119.6 (6)C12—C11—H11120.9
C3—C4—N3118.1 (7)C10—C11—H11120.9
C4—C5—C6119.7 (7)C11—C12—C7123.0 (7)
C4—C5—H5120.2C11—C12—H12118.5
C6—C5—H5120.2C7—C12—H12118.5
N1—C1—C2—C3177.0 (6)N4—C7—C8—C9176.2 (7)
C6—C1—C2—C30.3 (10)C12—C7—C8—C90.5 (10)
N1—C1—C2—N23.0 (10)N4—C7—C8—N52.9 (10)
C6—C1—C2—N2179.7 (6)C12—C7—C8—N5178.5 (6)
C1—C2—C3—C40.8 (10)C7—C8—C9—C101.8 (11)
N2—C2—C3—C4179.2 (6)N5—C8—C9—C10177.3 (6)
C2—C3—C4—C50.8 (10)C8—C9—C10—C112.3 (11)
C2—C3—C4—N3179.9 (6)C8—C9—C10—N6177.3 (6)
O1—N3—C4—C52.4 (10)O4—N6—C10—C116.5 (10)
O2—N3—C4—C5177.7 (7)O3—N6—C10—C11172.3 (6)
O1—N3—C4—C3178.5 (6)O4—N6—C10—C9173.1 (7)
O2—N3—C4—C31.4 (9)O3—N6—C10—C98.1 (10)
C3—C4—C5—C60.2 (11)C9—C10—C11—C121.5 (11)
N3—C4—C5—C6178.9 (6)N6—C10—C11—C12178.1 (6)
C4—C5—C6—C11.3 (11)C10—C11—C12—C70.2 (11)
N1—C1—C6—C5176.0 (7)N4—C7—C12—C11175.3 (7)
C2—C1—C6—C51.3 (10)C8—C7—C12—C110.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.84 (7)2.64 (7)3.410 (7)152 (6)
N1—H1B···O2i0.89 (8)2.30 (8)3.176 (9)170 (7)
N2—H2A···Cl20.68 (8)2.70 (9)3.249 (7)139 (10)
N2—H2B···Cl1ii1.19 (7)1.95 (7)3.103 (7)161 (5)
N2—H2C···Cl10.83 (9)2.69 (7)3.217 (6)123 (7)
N2—H2C···Cl2iii0.83 (9)2.55 (9)3.254 (7)143 (7)
C3—H3···Cl2iii0.952.723.449 (7)134
C5—H5···O4ii0.952.463.134 (9)128
C6—H6···O2i0.952.583.390 (10)144
N4—H4A···Cl1iv0.91 (7)2.54 (7)3.426 (8)164 (6)
N4—H4B···O3i0.72 (8)2.48 (8)3.182 (10)166 (9)
N5—H5A···Cl1v0.83 (8)2.49 (8)3.269 (6)157 (7)
N5—H5A···Cl2iv0.83 (8)2.80 (7)3.225 (6)114 (6)
N5—H5B···Cl2vi1.12 (7)2.06 (7)3.128 (7)157 (5)
N5—H5C···Cl1iv1.00 (8)2.42 (8)3.240 (7)139 (6)
N5—H5C···N4vii1.00 (8)2.54 (7)3.253 (10)128 (6)
Symmetry codes: (i) x1, y, z+1; (ii) x1, y, z; (iii) x, y, z1; (iv) x+2, y1/2, z+2; (v) x+2, y1/2, z+1; (vi) x+1, y1/2, z+2; (vii) x+1, y, z.
(III) 2-Amino-4-nitroanilinium bromide monohydrate top
Crystal data top
C6H8N3O2+·Br·H2ODx = 1.791 Mg m3
Mr = 252.08Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Iba2Cell parameters from 3357 reflections
a = 14.352 (2) Åθ = 2.8–24.6°
b = 20.086 (3) ŵ = 4.38 mm1
c = 6.4851 (9) ÅT = 200 K
V = 1869.5 (5) Å3Plate, clear yellow
Z = 80.40 × 0.40 × 0.05 mm
F(000) = 1008
Data collection top
Bruker SMART X2S benchtop
diffractometer
1695 independent reflections
Radiation source: sealed microfocus tube1387 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.069
Detector resolution: 8.3330 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2424
Tmin = 0.48, Tmax = 0.81l = 77
8617 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0314P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1695 reflectionsΔρmax = 0.40 e Å3
146 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack x determined using 554 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40567 (3)0.86365 (3)1.00289 (17)0.0284 (2)
O1S0.1940 (4)0.8047 (3)0.9423 (9)0.0418 (16)
H1SA0.240 (6)0.830 (4)0.969 (13)0.07 (3)*
H1SB0.153 (5)0.827 (3)0.933 (10)0.02 (2)*
N10.1130 (4)0.5386 (3)1.0132 (19)0.0363 (14)
H1A0.069 (4)0.567 (3)0.973 (12)0.030 (19)*
H1B0.105 (4)0.500 (4)1.002 (19)0.041 (19)*
N20.1359 (4)0.6782 (3)1.0088 (19)0.0291 (12)
H2A0.152 (4)0.721 (4)1.008 (19)0.05 (2)*
H2B0.108 (6)0.671 (6)1.15 (2)0.09 (4)*
H2C0.099 (5)0.675 (5)0.918 (14)0.04 (3)*
N30.4682 (4)0.6423 (3)0.8891 (10)0.0387 (15)
O10.4761 (3)0.7017 (3)0.8467 (10)0.0555 (16)
O20.5364 (3)0.6047 (3)0.9039 (8)0.0497 (15)
C10.1988 (4)0.5642 (3)0.9848 (15)0.0283 (15)
C20.2146 (4)0.6330 (3)0.9782 (16)0.0242 (16)
C30.3024 (5)0.6591 (4)0.9466 (9)0.0316 (19)
H30.31180.70590.94220.038*
C40.3762 (4)0.6159 (4)0.9216 (11)0.0293 (17)
C50.3645 (5)0.5471 (4)0.9300 (11)0.038 (2)
H50.41640.51810.91560.046*
C60.2769 (4)0.5222 (4)0.9592 (10)0.036 (2)
H60.26830.47530.96240.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0240 (3)0.0334 (3)0.0277 (3)0.0004 (3)0.0005 (5)0.0017 (6)
O1S0.028 (3)0.032 (3)0.065 (5)0.003 (3)0.002 (3)0.007 (3)
N10.034 (3)0.024 (3)0.051 (4)0.003 (2)0.005 (5)0.000 (6)
N20.029 (3)0.026 (3)0.033 (3)0.003 (2)0.008 (5)0.004 (5)
N30.030 (3)0.039 (4)0.047 (4)0.001 (3)0.003 (3)0.003 (3)
O10.030 (3)0.043 (4)0.093 (5)0.002 (3)0.003 (3)0.001 (3)
O20.026 (2)0.046 (3)0.078 (4)0.010 (3)0.003 (3)0.004 (3)
C10.032 (3)0.030 (3)0.022 (4)0.000 (2)0.005 (4)0.000 (4)
C20.023 (2)0.031 (3)0.019 (5)0.003 (2)0.002 (4)0.003 (3)
C30.034 (4)0.039 (4)0.022 (5)0.000 (3)0.004 (3)0.002 (3)
C40.019 (3)0.037 (4)0.032 (4)0.002 (3)0.001 (3)0.002 (3)
C50.031 (4)0.034 (4)0.049 (5)0.009 (3)0.006 (3)0.004 (3)
C60.036 (3)0.029 (4)0.042 (6)0.001 (3)0.007 (3)0.002 (3)
Geometric parameters (Å, º) top
O1S—H1SA0.85 (8)N3—C41.439 (9)
O1S—H1SB0.74 (7)C1—C21.401 (8)
N1—C11.347 (8)C1—C61.413 (8)
N1—H1A0.89 (6)C2—C31.380 (9)
N1—H1B0.79 (7)C3—C41.379 (9)
N2—C21.462 (8)C3—H30.95
N2—H2A0.89 (7)C4—C51.393 (10)
N2—H2B1.03 (12)C5—C61.366 (9)
N2—H2C0.80 (8)C5—H50.95
N3—O11.229 (7)C6—H60.95
N3—O21.239 (7)
H1SA—O1S—H1SB106 (8)C3—C2—C1121.8 (6)
C1—N1—H1A112 (4)C3—C2—N2119.3 (6)
C1—N1—H1B120 (5)C1—C2—N2118.9 (5)
H1A—N1—H1B120 (6)C4—C3—C2118.6 (7)
C2—N2—H2A113 (4)C4—C3—H3120.7
C2—N2—H2B110 (6)C2—C3—H3120.7
H2A—N2—H2B104 (10)C3—C4—C5121.8 (6)
C2—N2—H2C112 (7)C3—C4—N3119.4 (7)
H2A—N2—H2C104 (10)C5—C4—N3118.8 (6)
H2B—N2—H2C114 (7)C6—C5—C4118.6 (6)
O1—N3—O2122.4 (6)C6—C5—H5120.7
O1—N3—C4118.3 (6)C4—C5—H5120.7
O2—N3—C4119.3 (6)C5—C6—C1121.9 (6)
N1—C1—C2121.9 (6)C5—C6—H6119.1
N1—C1—C6120.9 (6)C1—C6—H6119.1
C2—C1—C6117.2 (6)
N1—C1—C2—C3179.2 (9)O2—N3—C4—C3167.0 (7)
C6—C1—C2—C30.5 (15)O1—N3—C4—C5167.7 (7)
N1—C1—C2—N21.7 (17)O2—N3—C4—C512.0 (10)
C6—C1—C2—N2178.6 (9)C3—C4—C5—C61.5 (11)
C1—C2—C3—C40.2 (14)N3—C4—C5—C6179.5 (6)
N2—C2—C3—C4178.9 (9)C4—C5—C6—C11.2 (11)
C2—C3—C4—C50.8 (11)N1—C1—C6—C5179.9 (8)
C2—C3—C4—N3179.8 (7)C2—C1—C6—C50.2 (14)
O1—N3—C4—C313.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SA···Br10.85 (8)2.48 (8)3.284 (6)158 (7)
O1S—H1SB···O2i0.74 (7)2.17 (7)2.914 (8)178 (7)
N1—H1A···Br1i0.89 (6)2.73 (6)3.565 (6)156 (6)
N1—H1B···Br1ii0.79 (7)2.74 (7)3.524 (6)173 (10)
N2—H2A···O1S0.89 (7)1.83 (8)2.708 (7)166 (12)
N2—H2B···Br1iii1.03 (12)2.38 (13)3.366 (12)160 (7)
N2—H2C···Br1iv0.80 (8)2.80 (9)3.439 (12)138 (7)
N2—H2C···Br1i0.80 (8)2.93 (8)3.410 (6)121 (7)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+3/2, z1/2.
Comparison of selected experimental and calculated parameters. top
C—NO2 (Å)C—Np (Å)C—No (Å)C—Nm (Å)N—O (Å)N···N (Å)O—N—C—C (°)
(I)1.433 (3)1.356 (3)1.415 (3)1.241 (2), 1.243 (2)2.813 (3)-0.3 (3)
(I) DFTi1.4641.3891.4041.228, 1.2292.7391.6
(I) MP2ii1.4631.4021.4041.244, 1.2442.7001.6
(IIa)1.467 (9)1.378 (9)1.471 (9)1.232 (8), 1.235 (8)2.848 (10)2.4 (10)
(IIb)1.460 (9)1.366 (9)1.472 (9)1.210 (8), 1.240 (8)2.843 (10)-6.5 (10)
(II) DFTi1.4921.4371.4791.216, 1.2212.6430.2
(III)1.440 (9)1.347 (8)1.462 (8)1.229 (7), 1.239 (7)2.824 (8)-12.0 (10)
(IV)iii1.4313 (15)1.3642 (15)1.4142 (16)1.2420 (16), 1.2318 (15)2.725-3.8
(IV) DFTi1.4581.3711.411.225, 1.2402.6963.3
Notes: (i) energy-minimized DFT-level calculations were performed with B3LYP/6-331++G**; (ii) energy-minimized Møller-Plesset level calculations were performed with MP2/6-31G**; (iii) structure previously reported (Betz & Gerber, 2011).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds