Download citation
Download citation
link to html
Nonmesogenic 2,3,12,13-tetra­bromo-5,10,15,20-tetra­kis(4-butoxy­phenyl)­porphyrin crystallizes as the title 1,2-dichloro­ethane solvate, C60H58Br4N4O4·C2H4Cl2. The porphyrin ring shows a nonplanar conformation, with an average mean plane displacement of the [beta]-pyrrole C atoms from the 24-atom (C20N4) core of ±0.50 (3) Å. The 1,2-dichloro­ethane solvent is incorporated between the porphyrin units and induces the formation of one-dimensional chains via inter­halogen Cl...Br and butyl-aryl C-H...[pi] inter­actions. These chains are oriented along the unit-cell a axis, with the macrocyclic ring planes lying almost parallel to the (010) plane. The chains are arranged in an offset fashion by aligning the butoxy chains approximately above or below the faces of the adjacent porphyrin core, resulting in decreased inter­porphyrin [pi]-[pi] inter­actions, and they are held together by weak inter­molecular (C-Br...[pi], C-H...[pi] and C-H...Br) inter­actions. The nonplanar geometry of the macrocyclic ring is probably due to the weak inter­porphyrin inter­actions induced by the solvent mol­ecule and the peripheral butoxy groups. The nonplanarity of the mesogens could influence the mesogenic behaviour differently relative to planar porphyrin mesogens.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108009645/sq3133sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108009645/sq3133Isup2.hkl
Contains datablock I

CCDC reference: 663168

Comment top

Porphyrins and metalloporphyrins have been widely used as molecular scaffolds for the formation of clathrates by incorporating a wide range of guests (Byrn et al., 1993). Sterically crowded porphyrins have been developed as model compounds of nonplanar conformations of tetrapyrrole pigments in nature (Shelnutt et al., 1998). The variation in nonplanarity of the macrocyclic ring has been attributed to the degree of steric crowding around the periphery of the porphyrin (Senge, 2000). The crystal structure of 2,3,12,13-tetrabromo-5,10,15,20-tetraphenylporphyrin (TPPBr4) exhibits a nearly planar geometry of the porphyrin ring (Zou et al., 1995). In this study, the effect of substitution at the phenyl rings on the stereochemistry and intermolecular interactions of 2,3,12,13-tetrabromo-5,10,15,20-tetrakis[4-(1-butoxyphenyl)]porphyrin has been examined through the structure of the title 1,2-dichloroethane solvate, H2T(4-OC4P)PBr4.C2H4Cl2, (I), which reveals a nonplanar conformation of the macrocycle.

The nonplanarity of the macrocycle in (I) (Fig. 1a) is evidenced from the side-on view in Fig. 1(b), as well as from the diagram of the mean-plane deviations of the 24-atom core (Fig. 1c). The average deviation of the β-pyrrole C atoms is ±0.50 (3) Å, while the mean deviation of the meso C atoms is ±0.038 (3) Å. Interestingly, the β-pyrrole C atoms of the brominated pyrroles show a greater mean-plane displacement than their counterparts in the unbrominated pyrroles. The pyrrole groups themselves are alternately displaced up and down from the mean plane formed by the 24-atom core, indicating that the distortion of the ring is more of a saddle-shaped conformation combined with a gently ruffled conformation (Senge, 2000). This shows an enhanced distortion of the 24-atom core in (I) compared with the nearly planar free H2TPPBr4 molecule (Zou et al., 1995) and it is also greater than the distortion reported for the five-coordinated ZnTPPBr4(CH3OH).DMF structure (Terazono et al., 2002). The Cβ···Cβ distance along the transannular brominated pyrrole groups in (I) [8.48 (2) Å] is longer than the corresponding distance along the unbrominated pyrroles [8.25 (5) Å]. Similarly, the N···N distance along the brominated pyrroles [4.19 (1) Å] is longer than that in the opposite direction [4.07 (3) Å]. The corresponding Cβ···Cβ and N···N distances in H2TPPBr4 are slightly longer, as expected from the flattening of the macrocycle. An increase in the mean value of the torsion angles N—Cα—Cm—Cα' = 9.0 (8)° (e.g. N1—C4—C5—C6) and Cα—N—Cα—Cb = 3.0 (8)° is observed in (I), in contrast with the corresponding values of 4.9 and 0.7°, respectively, for H2TPPBr4. [Please define subscripts m and b]

Similar trends in behaviour were reported for the solvate-free structures H2TPPR4 (R = C6H5 or CH3) (Chan et al., 1994; Bhyrappa et al., 2007). The relaxation of the steric strain in the macrocyclic ring is reflected in the elongation of the core along the substituted pyrrole direction (Scheidt, 2000). In the case of (I), the meso-aryl and pyrrole groups make average dihedral angles of 68.1 (5) and 12.3 (7)°, respectively, with the mean plane of the 24-atom core. It is anticipated that the extent of steric crowding around the periphery of the porphyrin in (I) is comparable with that in the non-solvated structures H2TTPPR4 (R = CH3, Br or C6H5), since the alkoxy groups are farther away from the core. However, the presence of the solvent molecule and the weak interporphyrin interactions (see below) seem to have a greater influence on the nonplanar geometry of (I) (Krupitsky et al., 1994).

Notably, the solvate complex in (I) forms a one-dimensional array oriented approximately along the unit-cell a axis, with the macrocyclic ring planes lying almost parallel to the (010) plane. Atom Cl1 of the 1,2-dichloroethane solvate bridges two porphyrin molecules via Cl···Br and C—H···π interactions to form a one-dimensional array (Fig. 2). The short interhalogen contacts are Br1···Cl1i = 3.496 (2) Å, Br3···Cl1ii = 3.458 (2) Å and C—H···π (H60C···C45iii = 2.70 Å) [symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x + 1, -y + 1/2, z + 1/2; (iii) x - 1, y, z]. Such interhalogen and C—H ···π interactions are known to generate interesting structural motifs (Freytag & Jones, 2000; Desiraju & Steiner, 1999). These one-dimensional chains are stabilized further by weak intermolecular interactions. Selected intermolecular hydrogen-bonding distances are listed in Table 1. These chains are bridged by closest arrays from above and below the plane in a slipped stack fashion and are held together by C—H···Br [H52···Br2iv and H49B···Br3iv] and C—H···π [H56···C14v and H47A···C11iv] interactions (Table 1) [symmetry codes: (iv) x, -y + 1/2, z - 1/2; (v) -x + 1, -y, -z + 1]. These hydrogen-bonding distances are indicative of weak intermolecular interactions (Desiraju & Steiner, 1999). In addition, a weak intermolecular C—Br···π [Br4···C32i = 3.414 (5) Å] short contact is also observed. Fig. 3 shows the relative orientation of the one-dimensional chains, with the butoxy groups lying approximately on the faces of the other adjacent porphyrins, leading to decreased intermolecular ππ interactions that perhaps partly influence the distortion of the macrocyclic ring.

The structure of (I) shows decreased intermolecular ππ interactions and enhanced nonplanar geometry of the 24-atom core, in contrast with that found in unbrominated 5,10,15,20-tetrakis[4-(1-hexyloxyphenyl)]porphyrin (Walawalkar et al., 1993) and 5,10,15,20-tetrakis[4-(1-octyloxyphenyl)]porphinato zinc(II) (Chiaroni et al., 1988), suggesting that the Br atoms, alkoxy chains and solvate influence the conformational behaviour in this system.

Experimental top

Compound (I) was prepared by bromination of 5,10,15,20-tetrakis[4-(1-butoxyphenyl)]porphyrin using the procedure of Kumar et al. (2003) (yield 70%). UV–Vis data [CH2Cl2, λmax, nm (log ε)]: 447 (5.65), 545 (4.40), 595 (3.90), 625 (sh), 704 (4.10); 1H NMR (CDCl3, δ, p.p.m.): 8.70 (s, 4H, β-pyrrole-H), 8.09 (d, 8H, J = 8.56 Hz, o-phenyl-H), 7.32 (d, 8H, J = 8.56 Hz, m-phenyl-H), 4.26 (t, 8H, J = 6.52 Hz, α-CH2), 1.97 (qnt, 8H, J = 7.50 Hz, β-CH2), 1.65 (qnt, 8H, J = 7.49 Hz, γ-CH2), 1.10 (t, 12H,J = 7.38 Hz, –CH3), -2.71 (s, 2H, imino-H); MALDI-TOF mass spectrum in α-cyano-4-hydroxycinnamic acid as the matrix: m/z calculated for C60H58N4O4Br4: 1218.76; found 1220.36; analysis, calculated for C60H58N4O4Br4: C 59.14, H 4.82, N 4.61%; found: C 59.31, H 4.81, N 4.33%. Single crystals of (I) suitable for X-ray analysis were obtained by slow vapour diffusion of hexane into a 1,2-dichloroethane solution of the porphyrin over a period of 4 d.

Refinement top

All H atoms were placed in constrained positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C). Terminal atom C60 of one of the alkyl chains exhibits positional disorder and was refined with split positions of occupancy 0.52(s.u.?) and 0.48(s.u.?) [0.59 (15) and 0.41 (15) in CIF tables?]

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (a) A diagram of the H2T(4-OC4Ph)Br4.C2H4Cl2 complex, (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Please check added text] (b) A side-on view of the complex. Displacement ellipsoids are drawn at the 50% probability level. The meso-aryl groups and H atoms have been omitted for clarity. (c) The deviation of the core atoms from the mean plane formed by the 24-atom core. The deviations are in Å with s.u.s of 0.004 Å.
[Figure 2] Fig. 2. A molecular packing diagram for (I), viewed approximately down the unit-cell b axis. Intermolecular Br···Cl···Br and C—H···π short contacts are shown as dotted lines. [Symmetry codes: (i) 1+x, y, z; (ii) 1+x, 1/2-y, 1/2+z.]
[Figure 3] Fig. 3. A projection diagram of the packing in (I) along the b axis. Heavy molecules are in front and are oriented in a slipped stack fashion relative to the lighter molecules, which are at the back. Intermolecular Cl···Br and C—Br···π interactions are shown as dotted lines.
2,3,12,13-Tetrabromo-5,10,15,20-tetrakis(4-butoxyphenyl)porphyrin 1,2-dichloroethane solvate top
Crystal data top
C60H58Br4N4O4·C2H4Cl2F(000) = 2672
Mr = 1317.70Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7087 reflections
a = 18.8426 (4) Åθ = 2.0–28.3°
b = 17.1996 (4) ŵ = 2.91 mm1
c = 18.0722 (4) ÅT = 176 K
β = 97.080 (1)°Plate, brown
V = 5812.3 (2) Å30.31 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10251 independent reflections
Radiation source: fine-focus sealed tube7087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2022
Tmin = 0.445, Tmax = 0.554k = 1820
65317 measured reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2 + 16.8948P]
where P = (Fo2 + 2Fc2)/3
10251 reflections(Δ/σ)max < 0.001
693 parametersΔρmax = 1.10 e Å3
4 restraintsΔρmin = 0.71 e Å3
Crystal data top
C60H58Br4N4O4·C2H4Cl2V = 5812.3 (2) Å3
Mr = 1317.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.8426 (4) ŵ = 2.91 mm1
b = 17.1996 (4) ÅT = 176 K
c = 18.0722 (4) Å0.31 × 0.24 × 0.20 mm
β = 97.080 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10251 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
7087 reflections with I > 2σ(I)
Tmin = 0.445, Tmax = 0.554Rint = 0.037
65317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2 + 16.8948P]
where P = (Fo2 + 2Fc2)/3
10251 reflectionsΔρmax = 1.10 e Å3
693 parametersΔρmin = 0.71 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3904 (3)0.1304 (3)0.5815 (3)0.0366 (12)
C20.3356 (3)0.1527 (3)0.6281 (3)0.0385 (12)
C30.3686 (3)0.1551 (3)0.6986 (3)0.0384 (12)
C40.4438 (3)0.1361 (3)0.6967 (3)0.0385 (12)
C50.4965 (3)0.1285 (3)0.7579 (3)0.0392 (12)
C60.5698 (3)0.1231 (3)0.7532 (3)0.0392 (12)
C70.6248 (3)0.1159 (3)0.8143 (3)0.0464 (14)
H70.61780.10910.86390.056*
C80.6887 (3)0.1205 (3)0.7883 (3)0.0445 (13)
H80.73310.11830.81710.053*
C90.6769 (3)0.1294 (3)0.7092 (3)0.0361 (12)
C100.7304 (3)0.1377 (3)0.6628 (3)0.0375 (12)
C110.7185 (3)0.1436 (3)0.5846 (3)0.0336 (11)
C120.7728 (3)0.1606 (3)0.5352 (3)0.0343 (11)
C130.7376 (3)0.1615 (3)0.4654 (3)0.0374 (12)
C140.6634 (3)0.1409 (3)0.4698 (3)0.0363 (12)
C150.6122 (3)0.1222 (3)0.4100 (3)0.0365 (12)
C160.5403 (3)0.1063 (3)0.4157 (3)0.0373 (12)
C170.4878 (3)0.0817 (3)0.3574 (3)0.0488 (14)
H170.49620.06940.30910.059*
C180.4233 (3)0.0791 (3)0.3835 (3)0.0488 (14)
H180.38020.06470.35640.059*
C190.4333 (3)0.1023 (3)0.4594 (3)0.0387 (12)
C200.3787 (3)0.1133 (3)0.5048 (3)0.0369 (12)
C210.4768 (3)0.1212 (3)0.8351 (3)0.0412 (13)
C220.4498 (3)0.0522 (3)0.8584 (3)0.0407 (12)
H220.44350.01070.82530.049*
C230.4321 (3)0.0431 (3)0.9295 (3)0.0440 (13)
H230.41410.00410.94400.053*
C240.4410 (3)0.1043 (3)0.9793 (3)0.0448 (13)
C250.4688 (3)0.1735 (3)0.9582 (3)0.0546 (16)
H250.47580.21450.99190.065*
C260.4865 (3)0.1816 (3)0.8867 (3)0.0580 (17)
H260.50520.22860.87260.070*
C270.4237 (4)0.1514 (4)1.1003 (3)0.0631 (17)
H27A0.39890.19671.07810.076*
H27B0.47300.16551.11640.076*
C280.3879 (3)0.1224 (4)1.1658 (3)0.0581 (16)
H28A0.41290.07651.18640.070*
H28B0.39190.16201.20430.070*
C290.3102 (3)0.1028 (4)1.1447 (3)0.0609 (17)
H29A0.30680.05771.11220.073*
H29B0.28710.14591.11660.073*
C300.2703 (4)0.0861 (4)1.2103 (4)0.079 (2)
H30A0.29280.04351.23860.118*
H30B0.22170.07261.19270.118*
H30C0.27100.13141.24140.118*
C310.8042 (3)0.1398 (3)0.7041 (3)0.0392 (12)
C320.8348 (3)0.2084 (3)0.7341 (3)0.0521 (15)
H320.81070.25530.72500.063*
C330.9017 (3)0.2071 (4)0.7781 (3)0.0586 (17)
H330.92230.25320.79750.070*
C340.9367 (3)0.1376 (4)0.7924 (3)0.0573 (16)
C350.9072 (3)0.0712 (4)0.7631 (3)0.0556 (15)
H350.93170.02450.77220.067*
C360.8421 (3)0.0712 (3)0.7205 (3)0.0462 (14)
H360.82270.02440.70190.055*
C371.0306 (4)0.1920 (5)0.8754 (5)0.094 (3)
H37A0.99610.21390.90520.113*
H37B1.04290.23130.84070.113*
C381.0983 (4)0.1647 (5)0.9261 (5)0.090 (2)
H38A1.12000.20950.95250.108*
H38B1.08380.12910.96300.108*
C391.1533 (4)0.1258 (5)0.8868 (4)0.085 (2)
H39A1.16220.15700.84420.102*
H39B1.13510.07570.86830.102*
C401.2247 (4)0.1135 (4)0.9382 (4)0.077 (2)
H40A1.24590.16310.95160.115*
H40B1.25690.08350.91230.115*
H40C1.21560.08640.98250.115*
C410.6335 (3)0.1136 (3)0.3334 (3)0.0361 (11)
C420.6149 (3)0.1678 (3)0.2773 (3)0.0456 (13)
H420.58660.21000.28700.055*
C430.6371 (3)0.1607 (3)0.2071 (3)0.0435 (13)
H430.62390.19760.17030.052*
C440.6795 (3)0.0977 (3)0.1928 (3)0.0416 (13)
C450.6960 (3)0.0418 (3)0.2464 (3)0.0476 (14)
H450.72230.00170.23580.057*
C460.6739 (3)0.0498 (3)0.3161 (3)0.0454 (13)
H460.68620.01190.35210.054*
C470.6945 (4)0.1424 (3)0.0696 (3)0.0602 (17)
H47A0.71410.19180.08820.072*
H47B0.64390.14900.05340.072*
C480.7325 (4)0.1145 (4)0.0057 (3)0.0645 (19)
H48A0.71140.06560.01270.077*
H48B0.72500.15200.03460.077*
C490.8118 (4)0.1030 (4)0.0267 (4)0.074 (2)
H49A0.81940.06240.06410.089*
H49B0.83240.15060.04860.089*
C500.8505 (5)0.0808 (5)0.0403 (4)0.100 (3)
H50A0.82820.03570.06430.150*
H50B0.89980.06960.02340.150*
H50C0.84780.12320.07500.150*
C510.3046 (3)0.1067 (3)0.4670 (3)0.0371 (12)
C520.2763 (3)0.1628 (3)0.4163 (3)0.0501 (14)
H520.30580.20230.40270.060*
C530.2060 (3)0.1611 (4)0.3857 (3)0.0566 (16)
H530.18820.19980.35260.068*
C540.1612 (3)0.1016 (3)0.4041 (3)0.0481 (14)
C550.1893 (3)0.0429 (3)0.4510 (3)0.0494 (14)
H550.16060.00150.46200.059*
C560.2599 (3)0.0459 (3)0.4813 (3)0.0434 (13)
H560.27840.00570.51240.052*
C570.0424 (4)0.0524 (4)0.3977 (5)0.077 (2)
H57A0.04330.05530.45140.093*
H57B0.05380.00030.38420.093*
C580.0300 (4)0.0761 (6)0.3591 (7)0.134 (4)
H58A0.02760.08230.30610.160*
H58B0.04380.12560.37870.160*
C590.0852 (6)0.0154 (7)0.3711 (8)0.185 (6)
H59A0.10950.02960.41340.222*
H59B0.06220.03450.38150.222*
C60A0.1385 (13)0.010 (2)0.3017 (12)0.156 (7)0.412 (15)
H60A0.17270.03020.30810.234*0.412 (15)
H60B0.11390.00260.25980.234*0.412 (15)
H60C0.16280.05860.29310.234*0.412 (15)
C60B0.0919 (12)0.0252 (14)0.2966 (10)0.156 (7)0.588 (15)
H60D0.12500.06760.29660.234*0.588 (15)
H60E0.04600.04460.28770.234*0.588 (15)
H60F0.10900.01100.25800.234*0.588 (15)
C610.0631 (7)0.2619 (10)0.1665 (6)0.150 (5)
H61A0.10220.28930.19520.180*
H61B0.01980.27450.18800.180*
C620.0762 (8)0.1780 (11)0.1757 (9)0.196 (7)
H62A0.07910.16540.22830.236*
H62B0.12210.16590.15950.236*
N10.4547 (2)0.1246 (2)0.6242 (2)0.0360 (10)
N20.6045 (2)0.1295 (2)0.6905 (2)0.0379 (10)
H20.58330.13310.64570.045*
N30.6538 (2)0.1341 (2)0.5436 (2)0.0347 (9)
N40.5051 (2)0.1161 (2)0.4776 (2)0.0373 (10)
H40.52510.12900.52120.045*
O10.4204 (2)0.0894 (2)1.04804 (19)0.0546 (10)
O21.0029 (3)0.1279 (3)0.8379 (3)0.0824 (14)
O30.7054 (2)0.0845 (2)0.12650 (19)0.0543 (10)
O40.0921 (2)0.1063 (3)0.3726 (2)0.0696 (12)
Br10.24014 (3)0.18090 (4)0.60184 (3)0.05624 (18)
Br20.32209 (3)0.18440 (4)0.78014 (3)0.05624 (19)
Br30.87065 (3)0.17805 (3)0.55693 (3)0.04762 (16)
Br40.78050 (3)0.19637 (3)0.38306 (3)0.04771 (17)
Cl10.05423 (12)0.29781 (18)0.07614 (15)0.1196 (9)
Cl20.0120 (4)0.1203 (3)0.1274 (3)0.276 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.032 (3)0.036 (3)0.001 (2)0.016 (3)0.000 (2)
C20.043 (3)0.033 (3)0.042 (3)0.001 (2)0.019 (3)0.002 (2)
C30.045 (3)0.036 (3)0.039 (3)0.001 (2)0.026 (3)0.004 (2)
C40.050 (3)0.037 (3)0.032 (3)0.007 (2)0.018 (3)0.005 (2)
C50.050 (3)0.039 (3)0.032 (3)0.008 (2)0.018 (3)0.003 (2)
C60.052 (3)0.039 (3)0.030 (3)0.008 (2)0.020 (3)0.002 (2)
C70.057 (4)0.055 (3)0.030 (3)0.005 (3)0.019 (3)0.001 (2)
C80.048 (3)0.056 (3)0.030 (3)0.006 (3)0.009 (3)0.003 (2)
C90.041 (3)0.038 (3)0.031 (3)0.003 (2)0.012 (2)0.005 (2)
C100.049 (3)0.032 (3)0.034 (3)0.002 (2)0.014 (2)0.005 (2)
C110.039 (3)0.033 (3)0.031 (3)0.000 (2)0.013 (2)0.002 (2)
C120.032 (3)0.033 (3)0.041 (3)0.004 (2)0.015 (2)0.001 (2)
C130.048 (3)0.034 (3)0.035 (3)0.002 (2)0.021 (3)0.001 (2)
C140.046 (3)0.030 (2)0.036 (3)0.005 (2)0.020 (3)0.001 (2)
C150.048 (3)0.037 (3)0.027 (3)0.004 (2)0.014 (2)0.000 (2)
C160.044 (3)0.040 (3)0.030 (3)0.005 (2)0.011 (2)0.002 (2)
C170.051 (3)0.066 (4)0.032 (3)0.001 (3)0.015 (3)0.011 (3)
C180.043 (3)0.066 (4)0.037 (3)0.002 (3)0.009 (3)0.009 (3)
C190.042 (3)0.043 (3)0.033 (3)0.003 (2)0.012 (2)0.002 (2)
C200.044 (3)0.032 (3)0.038 (3)0.001 (2)0.015 (2)0.000 (2)
C210.044 (3)0.047 (3)0.037 (3)0.011 (2)0.020 (2)0.006 (2)
C220.048 (3)0.040 (3)0.036 (3)0.005 (2)0.015 (2)0.006 (2)
C230.056 (4)0.038 (3)0.042 (3)0.000 (2)0.024 (3)0.004 (2)
C240.054 (3)0.051 (3)0.034 (3)0.001 (3)0.022 (3)0.003 (2)
C250.065 (4)0.059 (4)0.045 (3)0.019 (3)0.029 (3)0.016 (3)
C260.085 (5)0.051 (3)0.045 (3)0.025 (3)0.034 (3)0.008 (3)
C270.081 (5)0.074 (4)0.039 (3)0.018 (4)0.025 (3)0.015 (3)
C280.078 (5)0.068 (4)0.031 (3)0.003 (3)0.021 (3)0.004 (3)
C290.072 (4)0.063 (4)0.051 (4)0.005 (3)0.022 (3)0.002 (3)
C300.093 (5)0.075 (5)0.076 (5)0.009 (4)0.043 (4)0.003 (4)
C310.039 (3)0.050 (3)0.031 (3)0.009 (2)0.014 (2)0.008 (2)
C320.062 (4)0.052 (3)0.047 (3)0.005 (3)0.025 (3)0.014 (3)
C330.051 (4)0.075 (4)0.052 (4)0.025 (3)0.017 (3)0.030 (3)
C340.041 (4)0.085 (5)0.047 (4)0.005 (3)0.013 (3)0.016 (3)
C350.047 (4)0.067 (4)0.053 (4)0.004 (3)0.009 (3)0.003 (3)
C360.045 (3)0.047 (3)0.048 (3)0.006 (3)0.015 (3)0.000 (3)
C370.079 (6)0.095 (6)0.110 (7)0.002 (5)0.022 (5)0.023 (5)
C380.059 (5)0.117 (7)0.089 (6)0.004 (4)0.002 (4)0.003 (5)
C390.088 (6)0.109 (6)0.060 (5)0.022 (5)0.022 (4)0.024 (4)
C400.065 (5)0.086 (5)0.076 (5)0.003 (4)0.002 (4)0.018 (4)
C410.037 (3)0.042 (3)0.031 (3)0.002 (2)0.010 (2)0.003 (2)
C420.052 (3)0.043 (3)0.045 (3)0.010 (3)0.017 (3)0.001 (2)
C430.058 (4)0.046 (3)0.027 (3)0.002 (3)0.009 (3)0.001 (2)
C440.061 (4)0.037 (3)0.031 (3)0.011 (2)0.020 (3)0.007 (2)
C450.073 (4)0.035 (3)0.040 (3)0.000 (3)0.023 (3)0.006 (2)
C460.069 (4)0.034 (3)0.037 (3)0.003 (3)0.022 (3)0.003 (2)
C470.099 (5)0.048 (3)0.039 (3)0.010 (3)0.032 (3)0.003 (3)
C480.109 (6)0.054 (4)0.037 (3)0.014 (4)0.031 (4)0.003 (3)
C490.090 (6)0.079 (5)0.060 (4)0.026 (4)0.034 (4)0.012 (4)
C500.115 (7)0.121 (7)0.074 (5)0.002 (5)0.056 (5)0.006 (5)
C510.038 (3)0.044 (3)0.031 (3)0.005 (2)0.011 (2)0.002 (2)
C520.051 (4)0.055 (3)0.047 (3)0.005 (3)0.015 (3)0.017 (3)
C530.057 (4)0.065 (4)0.048 (4)0.019 (3)0.009 (3)0.018 (3)
C540.049 (4)0.056 (3)0.037 (3)0.010 (3)0.001 (3)0.004 (3)
C550.050 (4)0.041 (3)0.057 (4)0.004 (3)0.007 (3)0.003 (3)
C560.050 (4)0.036 (3)0.045 (3)0.008 (2)0.011 (3)0.000 (2)
C570.060 (4)0.065 (4)0.102 (6)0.001 (4)0.006 (4)0.007 (4)
C580.066 (6)0.104 (7)0.224 (13)0.017 (5)0.012 (7)0.043 (8)
C590.166 (13)0.160 (13)0.227 (18)0.004 (10)0.018 (12)0.008 (12)
C60A0.130 (16)0.185 (19)0.156 (15)0.024 (12)0.033 (13)0.075 (13)
C60B0.130 (16)0.185 (19)0.156 (15)0.024 (12)0.033 (13)0.075 (13)
C610.121 (9)0.247 (16)0.089 (8)0.045 (10)0.044 (7)0.017 (9)
C620.154 (13)0.25 (2)0.170 (15)0.001 (13)0.055 (11)0.040 (14)
N10.040 (3)0.041 (2)0.030 (2)0.0015 (18)0.014 (2)0.0029 (18)
N20.042 (3)0.045 (2)0.028 (2)0.0041 (19)0.015 (2)0.0013 (18)
N30.042 (3)0.037 (2)0.028 (2)0.0002 (18)0.014 (2)0.0013 (17)
N40.041 (3)0.043 (2)0.030 (2)0.0004 (19)0.0116 (19)0.0032 (18)
O10.081 (3)0.053 (2)0.036 (2)0.003 (2)0.030 (2)0.0005 (17)
O20.067 (3)0.100 (4)0.078 (3)0.014 (3)0.003 (3)0.028 (3)
O30.094 (3)0.043 (2)0.033 (2)0.006 (2)0.033 (2)0.0030 (16)
O40.053 (3)0.080 (3)0.071 (3)0.007 (2)0.013 (2)0.008 (2)
Br10.0461 (3)0.0681 (4)0.0576 (4)0.0121 (3)0.0189 (3)0.0105 (3)
Br20.0616 (4)0.0668 (4)0.0464 (4)0.0101 (3)0.0311 (3)0.0068 (3)
Br30.0412 (3)0.0604 (3)0.0442 (3)0.0087 (2)0.0172 (3)0.0001 (3)
Br40.0522 (3)0.0582 (3)0.0371 (3)0.0055 (3)0.0232 (3)0.0047 (2)
Cl10.0763 (15)0.162 (2)0.122 (2)0.0025 (15)0.0185 (14)0.0052 (17)
Cl20.394 (8)0.223 (5)0.189 (4)0.092 (5)0.046 (5)0.067 (4)
Geometric parameters (Å, º) top
C1—N11.358 (6)C37—O21.364 (9)
C1—C201.408 (7)C37—C381.549 (11)
C1—C21.463 (6)C37—H37A0.9700
C2—C31.347 (7)C37—H37B0.9700
C2—Br11.867 (5)C38—C391.486 (10)
C3—C41.459 (7)C38—H38A0.9700
C3—Br21.874 (4)C38—H38B0.9700
C4—N11.365 (6)C39—C401.554 (10)
C4—C51.399 (7)C39—H39A0.9700
C5—C61.397 (7)C39—H39B0.9700
C5—C211.492 (6)C40—H40A0.9600
C6—N21.381 (6)C40—H40B0.9600
C6—C71.424 (8)C40—H40C0.9600
C7—C81.348 (7)C41—C421.390 (7)
C7—H70.9300C41—C461.393 (7)
C8—C91.427 (7)C42—C431.389 (7)
C8—H80.9300C42—H420.9300
C9—N21.365 (6)C43—C441.389 (7)
C9—C101.396 (6)C43—H430.9300
C10—C111.407 (7)C44—O31.366 (5)
C10—C311.496 (7)C44—C451.374 (7)
C11—N31.356 (6)C45—C461.381 (7)
C11—C121.467 (6)C45—H450.9300
C12—C131.351 (7)C46—H460.9300
C12—Br31.861 (5)C47—O31.427 (7)
C13—C141.454 (7)C47—C481.511 (7)
C13—Br41.877 (5)C47—H47A0.9700
C14—N31.374 (6)C47—H47B0.9700
C14—C151.395 (7)C48—C491.509 (9)
C15—C161.397 (7)C48—H48A0.9700
C15—C411.496 (6)C48—H48B0.9700
C16—N41.380 (6)C49—C501.538 (9)
C16—C171.419 (7)C49—H49A0.9700
C17—C181.357 (7)C49—H49B0.9700
C17—H170.9300C50—H50A0.9600
C18—C191.417 (7)C50—H50B0.9600
C18—H180.9300C50—H50C0.9600
C19—N41.373 (6)C51—C561.387 (7)
C19—C201.405 (6)C51—C521.390 (7)
C20—C511.482 (7)C52—C531.372 (8)
C21—C221.378 (7)C52—H520.9300
C21—C261.393 (7)C53—C541.393 (8)
C22—C231.376 (7)C53—H530.9300
C22—H220.9300C54—O41.358 (7)
C23—C241.381 (7)C54—C551.380 (8)
C23—H230.9300C55—C561.376 (8)
C24—O11.370 (6)C55—H550.9300
C24—C251.374 (7)C56—H560.9300
C25—C261.382 (7)C57—O41.431 (8)
C25—H250.9300C57—C581.509 (10)
C26—H260.9300C57—H57A0.9700
C27—O11.421 (7)C57—H57B0.9700
C27—C281.518 (7)C58—C591.508 (15)
C27—H27A0.9700C58—H58A0.9700
C27—H27B0.9700C58—H58B0.9700
C28—C291.505 (8)C59—C60B1.509 (2)
C28—H28A0.9700C59—C60A1.510 (2)
C28—H28B0.9700C59—H59A0.9700
C29—C301.509 (8)C59—H59B0.9700
C29—H29A0.9700C60A—H60A0.9600
C29—H29B0.9700C60A—H60B0.9600
C30—H30A0.9600C60A—H60C0.9600
C30—H30B0.9600C60B—H60D0.9600
C30—H30C0.9600C60B—H60E0.9600
C31—C361.392 (7)C60B—H60F0.9600
C31—C321.392 (7)C61—C621.470 (18)
C32—C331.406 (9)C61—Cl11.734 (12)
C32—H320.9300C61—H61A0.9700
C33—C341.376 (9)C61—H61B0.9700
C33—H330.9300C62—Cl21.717 (16)
C34—C351.349 (8)C62—H62A0.9700
C34—O21.416 (8)C62—H62B0.9700
C35—C361.366 (8)N2—H20.8600
C35—H350.9300N4—H40.8600
C36—H360.9300
N1—C1—C20124.5 (4)H38A—C38—H38B107.5
N1—C1—C2109.6 (4)C38—C39—C40112.3 (6)
C20—C1—C2125.9 (5)C38—C39—H39A109.1
C3—C2—C1106.0 (4)C40—C39—H39A109.1
C3—C2—Br1123.4 (4)C38—C39—H39B109.1
C1—C2—Br1130.4 (4)C40—C39—H39B109.1
C2—C3—C4107.9 (4)H39A—C39—H39B107.9
C2—C3—Br2123.1 (4)C39—C40—H40A109.5
C4—C3—Br2128.9 (4)C39—C40—H40B109.5
N1—C4—C5124.6 (5)H40A—C40—H40B109.5
N1—C4—C3108.5 (4)C39—C40—H40C109.5
C5—C4—C3126.9 (4)H40A—C40—H40C109.5
C6—C5—C4124.7 (4)H40B—C40—H40C109.5
C6—C5—C21114.4 (5)C42—C41—C46117.5 (4)
C4—C5—C21120.8 (4)C42—C41—C15122.5 (4)
N2—C6—C5128.1 (5)C46—C41—C15120.1 (4)
N2—C6—C7105.7 (4)C43—C42—C41121.9 (5)
C5—C6—C7126.1 (4)C43—C42—H42119.0
C8—C7—C6108.7 (5)C41—C42—H42119.0
C8—C7—H7125.7C42—C43—C44119.0 (5)
C6—C7—H7125.7C42—C43—H43120.5
C7—C8—C9108.7 (5)C44—C43—H43120.5
C7—C8—H8125.7O3—C44—C45115.4 (5)
C9—C8—H8125.7O3—C44—C43124.6 (5)
N2—C9—C10128.6 (5)C45—C44—C43120.0 (4)
N2—C9—C8106.0 (4)C44—C45—C46120.4 (5)
C10—C9—C8125.3 (5)C44—C45—H45119.8
C9—C10—C11125.0 (5)C46—C45—H45119.8
C9—C10—C31113.4 (4)C45—C46—C41121.1 (5)
C11—C10—C31121.5 (4)C45—C46—H46119.4
N3—C11—C10124.1 (4)C41—C46—H46119.4
N3—C11—C12109.9 (4)O3—C47—C48106.9 (5)
C10—C11—C12126.1 (5)O3—C47—H47A110.3
C13—C12—C11105.8 (4)C48—C47—H47A110.3
C13—C12—Br3123.7 (4)O3—C47—H47B110.3
C11—C12—Br3130.6 (4)C48—C47—H47B110.3
C12—C13—C14108.1 (4)H47A—C47—H47B108.6
C12—C13—Br4122.3 (4)C49—C48—C47113.3 (5)
C14—C13—Br4129.2 (4)C49—C48—H48A108.9
N3—C14—C15124.8 (4)C47—C48—H48A108.9
N3—C14—C13108.5 (4)C49—C48—H48B108.9
C15—C14—C13126.3 (4)C47—C48—H48B108.9
C14—C15—C16124.9 (4)H48A—C48—H48B107.7
C14—C15—C41120.0 (4)C48—C49—C50112.7 (6)
C16—C15—C41115.0 (4)C48—C49—H49A109.1
N4—C16—C15127.2 (5)C50—C49—H49A109.1
N4—C16—C17106.1 (4)C48—C49—H49B109.1
C15—C16—C17126.6 (4)C50—C49—H49B109.1
C18—C17—C16108.9 (5)H49A—C49—H49B107.8
C18—C17—H17125.6C49—C50—H50A109.5
C16—C17—H17125.6C49—C50—H50B109.5
C17—C18—C19108.1 (5)H50A—C50—H50B109.5
C17—C18—H18126.0C49—C50—H50C109.5
C19—C18—H18126.0H50A—C50—H50C109.5
N4—C19—C20127.3 (5)H50B—C50—H50C109.5
N4—C19—C18106.8 (4)C56—C51—C52117.1 (5)
C20—C19—C18125.7 (5)C56—C51—C20122.1 (5)
C19—C20—C1124.5 (5)C52—C51—C20120.8 (5)
C19—C20—C51115.9 (4)C53—C52—C51121.6 (5)
C1—C20—C51119.6 (4)C53—C52—H52119.2
C22—C21—C26117.4 (4)C51—C52—H52119.2
C22—C21—C5120.2 (4)C52—C53—C54120.1 (5)
C26—C21—C5122.4 (4)C52—C53—H53119.9
C23—C22—C21121.7 (5)C54—C53—H53119.9
C23—C22—H22119.2O4—C54—C55125.2 (6)
C21—C22—H22119.2O4—C54—C53115.6 (5)
C22—C23—C24119.9 (5)C55—C54—C53119.1 (5)
C22—C23—H23120.1C56—C55—C54119.7 (5)
C24—C23—H23120.1C56—C55—H55120.1
O1—C24—C25125.0 (5)C54—C55—H55120.1
O1—C24—C23115.0 (5)C55—C56—C51122.2 (5)
C25—C24—C23120.0 (5)C55—C56—H56118.9
C24—C25—C26119.4 (5)C51—C56—H56118.9
C24—C25—H25120.3O4—C57—C58105.6 (6)
C26—C25—H25120.3O4—C57—H57A110.6
C25—C26—C21121.6 (5)C58—C57—H57A110.6
C25—C26—H26119.2O4—C57—H57B110.6
C21—C26—H26119.2C58—C57—H57B110.6
O1—C27—C28106.5 (5)H57A—C57—H57B108.7
O1—C27—H27A110.4C57—C58—C59110.3 (9)
C28—C27—H27A110.4C57—C58—H58A109.6
O1—C27—H27B110.4C59—C58—H58A109.6
C28—C27—H27B110.4C57—C58—H58B109.6
H27A—C27—H27B108.6C59—C58—H58B109.6
C29—C28—C27112.8 (5)H58A—C58—H58B108.1
C29—C28—H28A109.0C58—C59—C60B100.1 (13)
C27—C28—H28A109.0C58—C59—C60A108.9 (16)
C29—C28—H28B109.0C58—C59—H59A109.9
C27—C28—H28B109.0C60B—C59—H59A145.6
H28A—C28—H28B107.8C60A—C59—H59A109.9
C28—C29—C30114.0 (5)C58—C59—H59B109.9
C28—C29—H29A108.7C60B—C59—H59B75.5
C30—C29—H29A108.7C60A—C59—H59B109.9
C28—C29—H29B108.7H59A—C59—H59B108.3
C30—C29—H29B108.7C59—C60A—H60A109.5
H29A—C29—H29B107.6C59—C60A—H60B109.5
C29—C30—H30A109.5H60A—C60A—H60B109.5
C29—C30—H30B109.5C59—C60A—H60C109.5
H30A—C30—H30B109.5H60A—C60A—H60C109.5
C29—C30—H30C109.5H60B—C60A—H60C109.5
H30A—C30—H30C109.5C59—C60B—H60D109.5
H30B—C30—H30C109.5C59—C60B—H60E109.5
C36—C31—C32117.3 (5)H60D—C60B—H60E109.5
C36—C31—C10120.4 (5)C59—C60B—H60F109.5
C32—C31—C10122.0 (5)H60D—C60B—H60F109.5
C31—C32—C33120.4 (6)H60E—C60B—H60F109.5
C31—C32—H32119.8C62—C61—Cl1116.9 (11)
C33—C32—H32119.8C62—C61—H61A108.1
C34—C33—C32119.7 (5)Cl1—C61—H61A108.1
C34—C33—H33120.1C62—C61—H61B108.1
C32—C33—H33120.1Cl1—C61—H61B108.1
C35—C34—C33119.9 (6)H61A—C61—H61B107.3
C35—C34—O2114.8 (6)C61—C62—Cl2114.3 (10)
C33—C34—O2125.3 (6)C61—C62—H62A108.7
C34—C35—C36121.2 (6)Cl2—C62—H62A108.7
C34—C35—H35119.4C61—C62—H62B108.7
C36—C35—H35119.4Cl2—C62—H62B108.7
C35—C36—C31121.5 (5)H62A—C62—H62B107.6
C35—C36—H36119.3C1—N1—C4107.8 (4)
C31—C36—H36119.3C9—N2—C6110.9 (4)
O2—C37—C38106.6 (7)C9—N2—H2124.6
O2—C37—H37A110.4C6—N2—H2124.6
C38—C37—H37A110.4C11—N3—C14107.6 (4)
O2—C37—H37B110.4C19—N4—C16110.1 (4)
C38—C37—H37B110.4C19—N4—H4125.0
H37A—C37—H37B108.6C16—N4—H4125.0
C39—C38—C37115.3 (7)C24—O1—C27117.9 (4)
C39—C38—H38A108.5C37—O2—C34116.7 (6)
C37—C38—H38A108.5C44—O3—C47118.7 (4)
C39—C38—H38B108.5C54—O4—C57117.4 (5)
C37—C38—H38B108.5
N1—C1—C2—C33.5 (5)O1—C27—C28—C2962.5 (7)
C20—C1—C2—C3173.4 (5)C27—C28—C29—C30170.8 (6)
N1—C1—C2—Br1172.1 (4)C9—C10—C31—C3688.1 (6)
C20—C1—C2—Br111.0 (7)C11—C10—C31—C3691.8 (6)
C1—C2—C3—C41.1 (5)C9—C10—C31—C3285.3 (6)
Br1—C2—C3—C4174.9 (3)C11—C10—C31—C3294.7 (6)
C1—C2—C3—Br2177.8 (3)C36—C31—C32—C330.9 (7)
Br1—C2—C3—Br21.8 (6)C10—C31—C32—C33174.5 (5)
C2—C3—C4—N11.5 (5)C31—C32—C33—C340.9 (8)
Br2—C3—C4—N1174.9 (3)C32—C33—C34—C351.1 (9)
C2—C3—C4—C5176.9 (5)C32—C33—C34—O2177.5 (5)
Br2—C3—C4—C56.7 (8)C33—C34—C35—C361.3 (9)
N1—C4—C5—C613.1 (8)O2—C34—C35—C36177.4 (5)
C3—C4—C5—C6168.7 (5)C34—C35—C36—C311.3 (8)
N1—C4—C5—C21163.6 (4)C32—C31—C36—C351.1 (7)
C3—C4—C5—C2114.6 (8)C10—C31—C36—C35174.8 (5)
C4—C5—C6—N24.9 (8)O2—C37—C38—C3956.6 (10)
C21—C5—C6—N2178.2 (5)C37—C38—C39—C40169.7 (7)
C4—C5—C6—C7179.6 (5)C14—C15—C41—C42108.4 (6)
C21—C5—C6—C73.6 (7)C16—C15—C41—C4274.6 (6)
N2—C6—C7—C82.0 (6)C14—C15—C41—C4671.3 (6)
C5—C6—C7—C8173.7 (5)C16—C15—C41—C46105.7 (6)
C6—C7—C8—C91.1 (6)C46—C41—C42—C432.0 (8)
C7—C8—C9—N20.2 (6)C15—C41—C42—C43177.6 (5)
C7—C8—C9—C10178.7 (5)C41—C42—C43—C440.2 (8)
N2—C9—C10—C113.9 (8)C42—C43—C44—O3179.4 (5)
C8—C9—C10—C11177.5 (5)C42—C43—C44—C452.9 (8)
N2—C9—C10—C31176.2 (5)O3—C44—C45—C46178.7 (5)
C8—C9—C10—C312.4 (7)C43—C44—C45—C463.4 (8)
C9—C10—C11—N37.0 (8)C44—C45—C46—C411.0 (9)
C31—C10—C11—N3172.9 (4)C42—C41—C46—C451.6 (8)
C9—C10—C11—C12173.1 (5)C15—C41—C46—C45178.1 (5)
C31—C10—C11—C127.0 (7)O3—C47—C48—C4960.2 (7)
N3—C11—C12—C130.7 (5)C47—C48—C49—C50175.5 (6)
C10—C11—C12—C13179.4 (5)C19—C20—C51—C56111.4 (5)
N3—C11—C12—Br3179.1 (3)C1—C20—C51—C5669.1 (6)
C10—C11—C12—Br30.8 (7)C19—C20—C51—C5269.7 (6)
C11—C12—C13—C143.3 (5)C1—C20—C51—C52109.8 (5)
Br3—C12—C13—C14176.5 (3)C56—C51—C52—C534.6 (8)
C11—C12—C13—Br4170.0 (3)C20—C51—C52—C53174.3 (5)
Br3—C12—C13—Br410.2 (6)C51—C52—C53—C541.2 (9)
C12—C13—C14—N34.9 (5)C52—C53—C54—O4178.2 (5)
Br4—C13—C14—N3167.7 (3)C52—C53—C54—C552.6 (9)
C12—C13—C14—C15168.2 (5)O4—C54—C55—C56178.0 (5)
Br4—C13—C14—C1519.1 (7)C53—C54—C55—C562.9 (8)
N3—C14—C15—C1611.3 (8)C54—C55—C56—C510.6 (8)
C13—C14—C15—C16176.7 (5)C52—C51—C56—C554.3 (7)
N3—C14—C15—C41165.4 (4)C20—C51—C56—C55174.6 (5)
C13—C14—C15—C416.6 (7)O4—C57—C58—C59170.5 (9)
C14—C15—C16—N49.3 (8)C57—C58—C59—C60B102.4 (14)
C41—C15—C16—N4173.9 (5)C57—C58—C59—C60A144.7 (15)
C14—C15—C16—C17175.2 (5)Cl1—C61—C62—Cl257.3 (16)
C41—C15—C16—C171.7 (7)C20—C1—N1—C4172.5 (4)
N4—C16—C17—C181.6 (6)C2—C1—N1—C44.5 (5)
C15—C16—C17—C18174.7 (5)C5—C4—N1—C1174.7 (5)
C16—C17—C18—C190.2 (7)C3—C4—N1—C13.7 (5)
C17—C18—C19—N41.8 (6)C10—C9—N2—C6177.3 (5)
C17—C18—C19—C20174.5 (5)C8—C9—N2—C61.5 (5)
N4—C19—C20—C19.7 (8)C5—C6—N2—C9173.4 (5)
C18—C19—C20—C1174.7 (5)C7—C6—N2—C92.1 (5)
N4—C19—C20—C51169.8 (5)C10—C11—N3—C14177.6 (4)
C18—C19—C20—C515.8 (7)C12—C11—N3—C142.4 (5)
N1—C1—C20—C1912.5 (8)C15—C14—N3—C11168.9 (4)
C2—C1—C20—C19171.0 (5)C13—C14—N3—C114.4 (5)
N1—C1—C20—C51168.0 (4)C20—C19—N4—C16173.4 (5)
C2—C1—C20—C518.5 (7)C18—C19—N4—C162.9 (6)
C6—C5—C21—C22101.6 (6)C15—C16—N4—C19173.5 (5)
C4—C5—C21—C2275.4 (7)C17—C16—N4—C192.7 (5)
C6—C5—C21—C2676.4 (7)C25—C24—O1—C274.2 (9)
C4—C5—C21—C26106.6 (6)C23—C24—O1—C27175.9 (5)
C26—C21—C22—C230.9 (9)C28—C27—O1—C24171.7 (5)
C5—C21—C22—C23179.0 (5)C38—C37—O2—C34174.8 (6)
C21—C22—C23—C240.2 (8)C35—C34—O2—C37172.7 (6)
C22—C23—C24—O1178.8 (5)C33—C34—O2—C376.0 (9)
C22—C23—C24—C251.3 (9)C45—C44—O3—C47175.9 (5)
O1—C24—C25—C26178.9 (6)C43—C44—O3—C476.3 (8)
C23—C24—C25—C261.2 (9)C48—C47—O3—C44176.4 (5)
C24—C25—C26—C210.1 (10)C55—C54—O4—C579.1 (8)
C22—C21—C26—C251.0 (9)C53—C54—O4—C57171.8 (6)
C5—C21—C26—C25179.0 (6)C58—C57—O4—C54174.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···Br2i0.933.003.772 (5)142
C49—H49B···Br3i0.973.033.945 (5)157
C56—H56···C14ii0.932.753.588 (7)151
C47—H47A···C11i0.972.833.714 (7)151
C60A—H60C···C45iii0.972.703.202 (5)113
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC60H58Br4N4O4·C2H4Cl2
Mr1317.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)176
a, b, c (Å)18.8426 (4), 17.1996 (4), 18.0722 (4)
β (°) 97.080 (1)
V3)5812.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.31 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.445, 0.554
No. of measured, independent and
observed [I > 2σ(I)] reflections
65317, 10251, 7087
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.07
No. of reflections10251
No. of parameters693
No. of restraints4
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0531P)2 + 16.8948P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.10, 0.71

Computer programs: APEX2 (Bruker, 2004), XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997) and Mercury (Bruno et al., 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···Br2i0.933.003.772 (5)142
C49—H49B···Br3i0.973.0333.945 (5)157
C56—H56···C14ii0.932.753.588 (7)151
C47—H47A···C11i0.972.833.714 (7)151
C60A—H60C···C45iii0.972.703.202 (5)113
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds