Download citation
Download citation
link to html
The title compound, UCu0.60(4)Sb2, crystallizes in the tetra­gonal space group P4/nmm. The U atom and one independent Sb atom have 4mm site symmetry, whereas the Cu atom and the other Sb atom have \overline{4}2m site symmetry. Zigzag USb sheets stack perpendicular to the c axis. These sheets are separated by square-planar nets of Sb atoms and Cu atoms. The length of the a axis for UCuxSb2 is invariant to x, whereas there is a linear relationship between Cu occupancy and the length of the c axis (following Vegard's Law) that holds for x between 0 and 1. This is explained in terms of the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108020386/sq3154sup1.cif
Contains datablocks I_100K, I_120K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108020386/sq3154I_100Ksup2.hkl
Contains datablock I_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108020386/sq3154I_120Ksup3.hkl
Contains datablock I_120K

Comment top

UCu0.60 (4)Sb2 crystallizes with two formula units in the tetragonal space group P4/nmm. It possesses the HfCuSi2 structure type (Andrukhiv et al., 1975). Zigzag U1Sb1 sheets stack perpendicular to the c axis (Fig. 1). These sheets are separated by square-planar nets of Sb2 atoms and Cu1 atoms, the repeating pattern being (a) Sb2 planar net, (b) U1Sb1 sheet, (c) Cu1 planar net and (d) U1Sb1 sheet [aligned antiparallel in the c direction to the (b) sheet]. The U1 and Sb1 atoms have 4mm site symmetry, whereas the Cu1 and Sb2 atoms have 42m site symmetry. The U1 atoms are surrounded by a square antiprism of Sb1 and Sb2 atoms. The geometry around the Sb1 atom is a square antiprism of Cu1 and U1 atoms. The Cu1 atoms are coordinated to four Sb1 atoms in a tetrahedral arrangement, and Sb2 atoms are coordinated to four U1 atoms, also in a tetrahedral arrangement.

Since the UMSb2 compounds (M is a transition metal) were first reported [M = Ni, Cu (Kaczorowski, 1992); M = Fe, Ru, Co, Pd, Ag, Au (Kaczorowski et al., 1998)], they have received considerable attention, mainly because of their interesting magnetic properties, including Kondo behaviour (Kaczorowski et al., 1998; Bukowski et al., 2005). Large stoichiometric variations are frequently encountered in these UMSb2 compounds, examples being UCo0.46Sb2 (Bukowski et al., 2004) and UNi0.5Sb2. Such variations are also common among rare-earth analogues (Wollesen et al., 1996). The compound UCu0.60 (4)Sb2 reported here is another stoichiometric variation in the UCuxSb2 system, for which the known compounds are UCu0.44Sb2 (Bobev et al., 2006), UCu0.83Sb2 (Bukowski et al., 2005) and UCuSb2 (Kaczorowski et al., 1998). Reaction conditions and starting compositions are presumably the determining factors in the final Cu occupancy. This family of compounds obeys Vegard's Law (Vegard, 1921): the cell constant c increases linearly with Cu occupancy, as shown in Fig. 2, even though the present structures were determined at 100 and 120 K and the previous structures were determined at 298 K. This linear relationship holds at all Cu occupancies, including the `zero occupancy', i.e. USb2. The structures of USb2 and UCuSb2 are indeed related (Fig. 3). In UCuSb2, the voids between adjacent USb zigzag sheets are filled with Cu atoms, effectively pulling the sheets apart and preventing interlayer U—Sb bonding along the c axis. This simple geometric consideration explains why the c axis lengthens but the a axis remains unchanged when the Cu occupancy is increased.

Experimental top

USb2 was obtained from the reaction of U powder [0.63 mmol, ORNL, prepared from turnings as described elsewhere (Haneveld & Jellinek, 1969)] and Sb (1.26 mmol, Aldrich, 99.5%) in a carbon-coated fused-silica tube. The tube was heated to 1273 K in 20 h, held there for 111 h, cooled to 773 K in 20 h, and then air-cooled to 293 K. Single crystals of uranium copper antimonide, UCu0.60 (4)Sb2, were obtained from the reaction of USb2 (0.093 mmol) and CuO (0.093 mmol, Aldrich, 99.99%) in a carbon-coated fused-silica tube. The tube was heated to 773 K in 10 h, further heated to 973 K in 60 h, held there for 70 h, heated to 1173 K in 20 h, held there for 180 h, cooled to 773 K over a period of 100 h, and finally cooled to 293 K in 60 h. The product consisted mainly of UO2 powder and elemental Sb, among which a few small black plates were found. Energy-dispersive X-ray analysis showed the presence of U, Cu, and Sb in these plates.

Refinement top

A numerical face-indexed absorption correction was performed using the program SADABS (Bruker, 2003). A correction was made for extinction. All atoms were given anisotropic displacement parameters. Data sets on the same crystal were collected at 100, 120, 200, and 298 K. The corresponding refined Cu occupancies were 0.634 (12), 0.600 (13), 0.608 (13) and 0.586 (12). We choose to report its value as 0.60 (4) and we report only the structure determinations at 100 and 120 K here. The structure was standardized by means of the program STRUCTURETIDY (Gelato & Parthé, 1987). The final difference electron densities show no significant residual peaks. The highest peaks are 1.24 and 0.07 Å from U, and the deepest holes are 1.29 and 0.89 Å from U, at 100 and 120 K, respectively.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of UCu0.60 (4)Sb2, approximately along [010]. Displacement ellipsoids are shown at the 75% probability level.
[Figure 2] Fig. 2. The dependence of the length of the c axis on x in the known UCuxSb2 compounds.
[Figure 3] Fig. 3. Comparison of the structures of USb2 (left) and UCuSb2 (right).
(I_100K) uranium copper diantimonide top
Crystal data top
UCu0.60(4)Sb2Dx = 9.943 Mg m3
Mr = 521.84Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nmmCell parameters from 1655 reflections
Hall symbol: -P 4a 2aθ = 4.4–28.5°
a = 4.320 (4) ŵ = 65.20 mm1
c = 9.341 (9) ÅT = 100 K
V = 174.3 (3) Å3Plate, black
Z = 20.14 × 0.08 × 0.05 mm
F(000) = 424.80
Data collection top
Bruker SMART 1000 CCD
diffractometer
155 independent reflections
Radiation source: fine-focus sealed tube155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 28.1°, θmin = 2.2°
Absorption correction: numerical
face-indexed (SADABS; Bruker, 2003)
h = 55
Tmin = 0.020, Tmax = 0.086k = 55
1951 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.6422P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max < 0.001
S = 1.20Δρmax = 1.32 e Å3
155 reflectionsΔρmin = 3.32 e Å3
13 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0174 (16)
Crystal data top
UCu0.60(4)Sb2Z = 2
Mr = 521.84Mo Kα radiation
Tetragonal, P4/nmmµ = 65.20 mm1
a = 4.320 (4) ÅT = 100 K
c = 9.341 (9) Å0.14 × 0.08 × 0.05 mm
V = 174.3 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
155 independent reflections
Absorption correction: numerical
face-indexed (SADABS; Bruker, 2003)
155 reflections with I > 2σ(I)
Tmin = 0.020, Tmax = 0.086Rint = 0.075
1951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02413 parameters
wR(F2) = 0.0580 restraints
S = 1.20Δρmax = 1.32 e Å3
155 reflectionsΔρmin = 3.32 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.25000.25000.25716 (6)0.0067 (3)
Sb10.25000.25000.65348 (12)0.0087 (4)
Sb20.75000.25000.00000.0062 (4)
Cu10.75000.25000.50000.0080 (13)0.634 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0045 (4)0.0045 (4)0.0113 (5)0.0000.0000.000
Sb10.0054 (4)0.0054 (4)0.0153 (7)0.0000.0000.000
Sb20.0045 (5)0.0045 (5)0.0097 (7)0.0000.0000.000
Cu10.0095 (15)0.0095 (15)0.0051 (18)0.0000.0000.000
Geometric parameters (Å, º) top
U1—Cu1i3.132 (2)Sb1—U1ii3.167 (3)
U1—Cu13.132 (2)Sb2—Sb2viii3.055 (3)
U1—Cu1ii3.132 (2)Sb2—Sb2vi3.055 (3)
U1—Cu1iii3.132 (2)Sb2—Sb2vii3.055 (3)
U1—Sb1i3.167 (3)Sb2—Sb2ix3.055 (3)
U1—Sb1iv3.167 (3)Sb2—U1vi3.231 (2)
U1—Sb1v3.167 (3)Sb2—U1x3.231 (2)
U1—Sb1ii3.167 (3)Sb2—U1vii3.231 (2)
U1—Sb2iii3.231 (2)Cu1—Sb1ii2.593 (2)
U1—Sb2vi3.231 (2)Cu1—Sb1x2.593 (2)
U1—Sb23.231 (2)Cu1—Sb1i2.593 (2)
U1—Sb2vii3.231 (2)Cu1—Cu1xi3.055 (3)
Sb1—Cu1ii2.593 (2)Cu1—Cu1ii3.055 (3)
Sb1—Cu1iii2.593 (2)Cu1—Cu1i3.055 (3)
Sb1—Cu1i2.593 (2)Cu1—Cu1xii3.055 (3)
Sb1—Cu12.593 (2)Cu1—U1i3.132 (2)
Sb1—U1i3.167 (3)Cu1—U1ii3.132 (2)
Sb1—U1iv3.167 (3)Cu1—U1x3.132 (2)
Sb1—U1v3.167 (3)
Cu1i—U1—Cu158.37 (5)U1i—Sb1—U1105.28 (3)
Cu1i—U1—Cu1ii87.20 (8)U1iv—Sb1—U1105.28 (3)
Cu1—U1—Cu1ii58.37 (5)U1v—Sb1—U1105.28 (3)
Cu1i—U1—Cu1iii58.37 (5)U1ii—Sb1—U1105.28 (3)
Cu1—U1—Cu1iii87.20 (8)Sb2viii—Sb2—Sb2vi180.0
Cu1ii—U1—Cu1iii58.37 (5)Sb2viii—Sb2—Sb2vii90.0
Cu1i—U1—Sb1i48.603 (15)Sb2vi—Sb2—Sb2vii90.0
Cu1—U1—Sb1i48.603 (15)Sb2viii—Sb2—Sb2ix90.0
Cu1ii—U1—Sb1i106.23 (5)Sb2vi—Sb2—Sb2ix90.0
Cu1iii—U1—Sb1i106.23 (5)Sb2vii—Sb2—Sb2ix180.0
Cu1i—U1—Sb1iv106.23 (5)Sb2viii—Sb2—U1vi118.22 (2)
Cu1—U1—Sb1iv106.23 (5)Sb2vi—Sb2—U1vi61.78 (2)
Cu1ii—U1—Sb1iv48.603 (15)Sb2vii—Sb2—U1vi118.22 (2)
Cu1iii—U1—Sb1iv48.603 (15)Sb2ix—Sb2—U1vi61.78 (2)
Sb1i—U1—Sb1iv149.44 (6)Sb2viii—Sb2—U1x61.78 (2)
Cu1i—U1—Sb1v48.603 (15)Sb2vi—Sb2—U1x118.22 (2)
Cu1—U1—Sb1v106.23 (5)Sb2vii—Sb2—U1x118.22 (2)
Cu1ii—U1—Sb1v106.23 (5)Sb2ix—Sb2—U1x61.78 (2)
Cu1iii—U1—Sb1v48.603 (15)U1vi—Sb2—U1x123.56 (5)
Sb1i—U1—Sb1v86.016 (15)Sb2viii—Sb2—U1118.22 (2)
Sb1iv—U1—Sb1v86.016 (15)Sb2vi—Sb2—U161.78 (2)
Cu1i—U1—Sb1ii106.23 (5)Sb2vii—Sb2—U161.78 (2)
Cu1—U1—Sb1ii48.603 (15)Sb2ix—Sb2—U1118.22 (2)
Cu1ii—U1—Sb1ii48.603 (15)U1vi—Sb2—U1123.56 (5)
Cu1iii—U1—Sb1ii106.23 (5)U1x—Sb2—U183.93 (8)
Sb1i—U1—Sb1ii86.016 (15)Sb2viii—Sb2—U1vii61.78 (2)
Sb1iv—U1—Sb1ii86.016 (15)Sb2vi—Sb2—U1vii118.22 (2)
Sb1v—U1—Sb1ii149.44 (6)Sb2vii—Sb2—U1vii61.78 (2)
Cu1i—U1—Sb2iii122.58 (5)Sb2ix—Sb2—U1vii118.22 (2)
Cu1—U1—Sb2iii178.364 (13)U1vi—Sb2—U1vii83.93 (8)
Cu1ii—U1—Sb2iii122.58 (5)U1x—Sb2—U1vii123.56 (5)
Cu1iii—U1—Sb2iii94.43 (8)U1—Sb2—U1vii123.56 (5)
Sb1i—U1—Sb2iii130.699 (18)Sb1ii—Cu1—Sb1x107.80 (4)
Sb1iv—U1—Sb2iii74.92 (5)Sb1ii—Cu1—Sb1i112.86 (8)
Sb1v—U1—Sb2iii74.92 (5)Sb1x—Cu1—Sb1i107.80 (4)
Sb1ii—U1—Sb2iii130.699 (18)Sb1ii—Cu1—Sb1107.80 (4)
Cu1i—U1—Sb2vi178.364 (13)Sb1x—Cu1—Sb1112.86 (8)
Cu1—U1—Sb2vi122.58 (5)Sb1i—Cu1—Sb1107.80 (4)
Cu1ii—U1—Sb2vi94.43 (8)Sb1ii—Cu1—Cu1xi126.10 (2)
Cu1iii—U1—Sb2vi122.58 (5)Sb1x—Cu1—Cu1xi53.90 (2)
Sb1i—U1—Sb2vi130.699 (18)Sb1i—Cu1—Cu1xi53.90 (2)
Sb1iv—U1—Sb2vi74.92 (5)Sb1—Cu1—Cu1xi126.10 (2)
Sb1v—U1—Sb2vi130.699 (18)Sb1ii—Cu1—Cu1ii53.90 (2)
Sb1ii—U1—Sb2vi74.92 (5)Sb1x—Cu1—Cu1ii126.10 (2)
Sb2iii—U1—Sb2vi56.44 (5)Sb1i—Cu1—Cu1ii126.10 (2)
Cu1i—U1—Sb2122.58 (5)Sb1—Cu1—Cu1ii53.90 (2)
Cu1—U1—Sb294.43 (8)Cu1xi—Cu1—Cu1ii180.0
Cu1ii—U1—Sb2122.58 (5)Sb1ii—Cu1—Cu1i126.10 (2)
Cu1iii—U1—Sb2178.364 (13)Sb1x—Cu1—Cu1i126.10 (2)
Sb1i—U1—Sb274.92 (5)Sb1i—Cu1—Cu1i53.90 (2)
Sb1iv—U1—Sb2130.699 (18)Sb1—Cu1—Cu1i53.90 (2)
Sb1v—U1—Sb2130.699 (18)Cu1xi—Cu1—Cu1i90.0
Sb1ii—U1—Sb274.92 (5)Cu1ii—Cu1—Cu1i90.0
Sb2iii—U1—Sb283.93 (8)Sb1ii—Cu1—Cu1xii53.90 (2)
Sb2vi—U1—Sb256.44 (5)Sb1x—Cu1—Cu1xii53.90 (2)
Cu1i—U1—Sb2vii94.43 (8)Sb1i—Cu1—Cu1xii126.10 (2)
Cu1—U1—Sb2vii122.58 (5)Sb1—Cu1—Cu1xii126.10 (2)
Cu1ii—U1—Sb2vii178.364 (13)Cu1xi—Cu1—Cu1xii90.0
Cu1iii—U1—Sb2vii122.58 (5)Cu1ii—Cu1—Cu1xii90.0
Sb1i—U1—Sb2vii74.92 (5)Cu1i—Cu1—Cu1xii180.0
Sb1iv—U1—Sb2vii130.699 (18)Sb1ii—Cu1—U1i167.17 (2)
Sb1v—U1—Sb2vii74.92 (5)Sb1x—Cu1—U1i66.39 (4)
Sb1ii—U1—Sb2vii130.699 (18)Sb1i—Cu1—U1i79.97 (8)
Sb2iii—U1—Sb2vii56.44 (5)Sb1—Cu1—U1i66.39 (4)
Sb2vi—U1—Sb2vii83.93 (8)Cu1xi—Cu1—U1i60.81 (2)
Sb2—U1—Sb2vii56.44 (5)Cu1ii—Cu1—U1i119.19 (2)
Cu1ii—Sb1—Cu1iii72.20 (4)Cu1i—Cu1—U1i60.81 (2)
Cu1ii—Sb1—Cu1i112.86 (8)Cu1xii—Cu1—U1i119.19 (2)
Cu1iii—Sb1—Cu1i72.20 (4)Sb1ii—Cu1—U166.39 (4)
Cu1ii—Sb1—Cu172.20 (4)Sb1x—Cu1—U1167.17 (2)
Cu1iii—Sb1—Cu1112.86 (8)Sb1i—Cu1—U166.39 (4)
Cu1i—Sb1—Cu172.20 (4)Sb1—Cu1—U179.97 (8)
Cu1ii—Sb1—U1i135.568 (16)Cu1xi—Cu1—U1119.19 (2)
Cu1iii—Sb1—U1i135.568 (16)Cu1ii—Cu1—U160.81 (2)
Cu1i—Sb1—U1i65.00 (4)Cu1i—Cu1—U160.81 (2)
Cu1—Sb1—U1i65.00 (4)Cu1xii—Cu1—U1119.19 (2)
Cu1ii—Sb1—U1iv65.00 (4)U1i—Cu1—U1121.63 (5)
Cu1iii—Sb1—U1iv65.00 (4)Sb1ii—Cu1—U1ii79.97 (8)
Cu1i—Sb1—U1iv135.568 (16)Sb1x—Cu1—U1ii66.39 (4)
Cu1—Sb1—U1iv135.568 (16)Sb1i—Cu1—U1ii167.17 (2)
U1i—Sb1—U1iv149.44 (6)Sb1—Cu1—U1ii66.39 (4)
Cu1ii—Sb1—U1v135.568 (16)Cu1xi—Cu1—U1ii119.19 (2)
Cu1iii—Sb1—U1v65.00 (4)Cu1ii—Cu1—U1ii60.81 (2)
Cu1i—Sb1—U1v65.00 (4)Cu1i—Cu1—U1ii119.19 (2)
Cu1—Sb1—U1v135.568 (16)Cu1xii—Cu1—U1ii60.81 (2)
U1i—Sb1—U1v86.016 (15)U1i—Cu1—U1ii87.20 (8)
U1iv—Sb1—U1v86.016 (15)U1—Cu1—U1ii121.63 (5)
Cu1ii—Sb1—U1ii65.00 (4)Sb1ii—Cu1—U1x66.39 (4)
Cu1iii—Sb1—U1ii135.568 (16)Sb1x—Cu1—U1x79.97 (8)
Cu1i—Sb1—U1ii135.568 (16)Sb1i—Cu1—U1x66.39 (4)
Cu1—Sb1—U1ii65.00 (4)Sb1—Cu1—U1x167.17 (2)
U1i—Sb1—U1ii86.016 (15)Cu1xi—Cu1—U1x60.81 (2)
U1iv—Sb1—U1ii86.016 (15)Cu1ii—Cu1—U1x119.19 (2)
U1v—Sb1—U1ii149.43 (6)Cu1i—Cu1—U1x119.19 (2)
Cu1ii—Sb1—U156.43 (4)Cu1xii—Cu1—U1x60.81 (2)
Cu1iii—Sb1—U156.43 (4)U1i—Cu1—U1x121.63 (5)
Cu1i—Sb1—U156.43 (4)U1—Cu1—U1x87.20 (8)
Cu1—Sb1—U156.43 (4)U1ii—Cu1—U1x121.63 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+2, y+1, z; (ix) x+2, y, z; (x) x+1, y, z; (xi) x+2, y+1, z+1; (xii) x+2, y, z+1.
(I_120K) uranium copper diantimonide top
Crystal data top
UCu0.60(4)Sb2Dx = 9.834 Mg m3
Mr = 519.65Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nmmCell parameters from 1591 reflections
Hall symbol: -P 4a 2aθ = 4.4–28.6°
a = 4.331 (4) ŵ = 64.56 mm1
c = 9.355 (9) ÅT = 120 K
V = 175.5 (3) Å3Plate, black
Z = 20.14 × 0.08 × 0.05 mm
F(000) = 422.8
Data collection top
Bruker SMART 1000 CCD
diffractometer
160 independent reflections
Radiation source: fine-focus sealed tube157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 28.8°, θmin = 2.2°
Absorption correction: numerical
face-indexed (SADABS; Bruker, 2003)
h = 55
Tmin = 0.016, Tmax = 0.086k = 55
1966 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.8954P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.012
S = 1.32Δρmax = 3.26 e Å3
160 reflectionsΔρmin = 4.14 e Å3
13 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.021 (2)
Crystal data top
UCu0.60(4)Sb2Z = 2
Mr = 519.65Mo Kα radiation
Tetragonal, P4/nmmµ = 64.56 mm1
a = 4.331 (4) ÅT = 120 K
c = 9.355 (9) Å0.14 × 0.08 × 0.05 mm
V = 175.5 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
160 independent reflections
Absorption correction: numerical
face-indexed (SADABS; Bruker, 2003)
157 reflections with I > 2σ(I)
Tmin = 0.016, Tmax = 0.086Rint = 0.061
1966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02713 parameters
wR(F2) = 0.0660 restraints
S = 1.32Δρmax = 3.26 e Å3
160 reflectionsΔρmin = 4.14 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.25000.25000.25724 (6)0.0069 (4)
Sb10.25000.25000.65345 (12)0.0091 (4)
Sb20.75000.25000.00000.0063 (4)
Cu10.75000.25000.50000.0056 (14)0.600 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0056 (4)0.0056 (4)0.0096 (5)0.0000.0000.000
Sb10.0064 (5)0.0064 (5)0.0144 (7)0.0000.0000.000
Sb20.0057 (5)0.0057 (5)0.0074 (7)0.0000.0000.000
Cu10.0073 (16)0.0073 (16)0.0021 (19)0.0000.0000.000
Geometric parameters (Å, º) top
U1—Cu1i3.138 (2)Sb1—U1iv3.174 (3)
U1—Cu13.138 (2)Sb1—U1v3.174 (3)
U1—Cu1ii3.138 (2)Sb1—U1ii3.174 (3)
U1—Cu1iii3.138 (2)Sb2—Sb2viii3.062 (3)
U1—Sb1i3.174 (3)Sb2—Sb2vi3.062 (3)
U1—Sb1iv3.174 (3)Sb2—Sb2vii3.062 (3)
U1—Sb1v3.174 (3)Sb2—Sb2ix3.062 (3)
U1—Sb1ii3.174 (3)Sb2—U1vi3.237 (2)
U1—Sb2iii3.237 (2)Sb2—U1x3.237 (2)
U1—Sb2vi3.237 (2)Sb2—U1vii3.237 (2)
U1—Sb23.237 (2)Cu1—Sb1ii2.598 (2)
U1—Sb2vii3.237 (2)Cu1—Sb1x2.598 (2)
Sb1—Cu1ii2.598 (2)Cu1—Sb1i2.598 (2)
Sb1—Cu1iii2.598 (2)Cu1—U1i3.138 (2)
Sb1—Cu1i2.598 (2)Cu1—U1x3.138 (2)
Sb1—Cu12.598 (2)Cu1—U1ii3.138 (2)
Sb1—U1i3.174 (3)
Cu1i—U1—Cu158.41 (5)Cu1—Sb1—U1iv135.563 (16)
Cu1i—U1—Cu1ii87.28 (8)U1i—Sb1—U1iv149.48 (6)
Cu1—U1—Cu1ii58.41 (5)Cu1ii—Sb1—U1v135.563 (16)
Cu1i—U1—Cu1iii58.41 (5)Cu1iii—Sb1—U1v64.97 (4)
Cu1—U1—Cu1iii87.28 (8)Cu1i—Sb1—U1v64.97 (4)
Cu1ii—U1—Cu1iii58.41 (5)Cu1—Sb1—U1v135.563 (16)
Cu1i—U1—Sb1i48.605 (16)U1i—Sb1—U1v86.028 (15)
Cu1—U1—Sb1i48.605 (16)U1iv—Sb1—U1v86.028 (15)
Cu1ii—U1—Sb1i106.28 (5)Cu1ii—Sb1—U1ii64.97 (4)
Cu1iii—U1—Sb1i106.28 (5)Cu1iii—Sb1—U1ii135.563 (16)
Cu1i—U1—Sb1iv106.28 (5)Cu1i—Sb1—U1ii135.563 (16)
Cu1—U1—Sb1iv106.28 (5)Cu1—Sb1—U1ii64.97 (4)
Cu1ii—U1—Sb1iv48.605 (16)U1i—Sb1—U1ii86.028 (15)
Cu1iii—U1—Sb1iv48.605 (16)U1iv—Sb1—U1ii86.028 (15)
Sb1i—U1—Sb1iv149.48 (6)U1v—Sb1—U1ii149.48 (6)
Cu1i—U1—Sb1v48.605 (16)Cu1ii—Sb1—U156.46 (4)
Cu1—U1—Sb1v106.28 (5)Cu1iii—Sb1—U156.46 (4)
Cu1ii—U1—Sb1v106.28 (5)Cu1i—Sb1—U156.46 (4)
Cu1iii—U1—Sb1v48.605 (16)Cu1—Sb1—U156.46 (4)
Sb1i—U1—Sb1v86.028 (15)U1i—Sb1—U1105.26 (3)
Sb1iv—U1—Sb1v86.028 (15)U1iv—Sb1—U1105.26 (3)
Cu1i—U1—Sb1ii106.28 (5)U1v—Sb1—U1105.26 (3)
Cu1—U1—Sb1ii48.605 (16)U1ii—Sb1—U1105.26 (3)
Cu1ii—U1—Sb1ii48.605 (16)Sb2viii—Sb2—Sb2vi180.0
Cu1iii—U1—Sb1ii106.28 (5)Sb2viii—Sb2—Sb2vii90.0
Sb1i—U1—Sb1ii86.028 (15)Sb2vi—Sb2—Sb2vii90.0
Sb1iv—U1—Sb1ii86.028 (15)Sb2viii—Sb2—Sb2ix90.0
Sb1v—U1—Sb1ii149.48 (6)Sb2vi—Sb2—Sb2ix90.0
Cu1i—U1—Sb2iii122.55 (5)Sb2vii—Sb2—Sb2ix180.0
Cu1—U1—Sb2iii178.345 (14)Sb2viii—Sb2—U1vi118.23 (2)
Cu1ii—U1—Sb2iii122.55 (5)Sb2vi—Sb2—U1vi61.77 (2)
Cu1iii—U1—Sb2iii94.38 (8)Sb2vii—Sb2—U1vi118.23 (2)
Sb1i—U1—Sb2iii130.689 (19)Sb2ix—Sb2—U1vi61.77 (2)
Sb1iv—U1—Sb2iii74.89 (5)Sb2viii—Sb2—U1x61.77 (2)
Sb1v—U1—Sb2iii74.89 (5)Sb2vi—Sb2—U1x118.23 (2)
Sb1ii—U1—Sb2iii130.689 (19)Sb2vii—Sb2—U1x118.23 (2)
Cu1i—U1—Sb2vi178.345 (14)Sb2ix—Sb2—U1x61.77 (2)
Cu1—U1—Sb2vi122.55 (5)U1vi—Sb2—U1x123.54 (5)
Cu1ii—U1—Sb2vi94.38 (8)Sb2viii—Sb2—U1118.23 (2)
Cu1iii—U1—Sb2vi122.55 (5)Sb2vi—Sb2—U161.77 (2)
Sb1i—U1—Sb2vi130.689 (19)Sb2vii—Sb2—U161.77 (2)
Sb1iv—U1—Sb2vi74.89 (5)Sb2ix—Sb2—U1118.23 (2)
Sb1v—U1—Sb2vi130.689 (19)U1vi—Sb2—U1123.54 (5)
Sb1ii—U1—Sb2vi74.89 (5)U1x—Sb2—U183.96 (8)
Sb2iii—U1—Sb2vi56.46 (5)Sb2viii—Sb2—U1vii61.77 (2)
Cu1i—U1—Sb2122.55 (5)Sb2vi—Sb2—U1vii118.23 (2)
Cu1—U1—Sb294.38 (8)Sb2vii—Sb2—U1vii61.77 (2)
Cu1ii—U1—Sb2122.55 (5)Sb2ix—Sb2—U1vii118.23 (2)
Cu1iii—U1—Sb2178.345 (14)U1vi—Sb2—U1vii83.96 (8)
Sb1i—U1—Sb274.89 (5)U1x—Sb2—U1vii123.54 (5)
Sb1iv—U1—Sb2130.689 (19)U1—Sb2—U1vii123.54 (5)
Sb1v—U1—Sb2130.689 (19)Sb1ii—Cu1—Sb1x107.78 (4)
Sb1ii—U1—Sb274.89 (5)Sb1ii—Cu1—Sb1i112.92 (8)
Sb2iii—U1—Sb283.96 (8)Sb1x—Cu1—Sb1i107.78 (4)
Sb2vi—U1—Sb256.46 (5)Sb1ii—Cu1—Sb1107.78 (4)
Cu1i—U1—Sb2vii94.38 (8)Sb1x—Cu1—Sb1112.92 (8)
Cu1—U1—Sb2vii122.55 (5)Sb1i—Cu1—Sb1107.78 (4)
Cu1ii—U1—Sb2vii178.345 (14)Sb1ii—Cu1—U166.43 (4)
Cu1iii—U1—Sb2vii122.55 (5)Sb1x—Cu1—U1167.18 (2)
Sb1i—U1—Sb2vii74.89 (5)Sb1i—Cu1—U166.43 (4)
Sb1iv—U1—Sb2vii130.689 (19)Sb1—Cu1—U179.90 (8)
Sb1v—U1—Sb2vii74.89 (5)Sb1ii—Cu1—U1i167.18 (2)
Sb1ii—U1—Sb2vii130.689 (19)Sb1x—Cu1—U1i66.43 (4)
Sb2iii—U1—Sb2vii56.46 (5)Sb1i—Cu1—U1i79.90 (8)
Sb2vi—U1—Sb2vii83.96 (8)Sb1—Cu1—U1i66.43 (4)
Sb2—U1—Sb2vii56.46 (5)U1—Cu1—U1i121.59 (5)
Cu1ii—Sb1—Cu1iii72.22 (4)Sb1ii—Cu1—U1x66.43 (4)
Cu1ii—Sb1—Cu1i112.92 (8)Sb1x—Cu1—U1x79.90 (8)
Cu1iii—Sb1—Cu1i72.22 (4)Sb1i—Cu1—U1x66.43 (4)
Cu1ii—Sb1—Cu172.22 (4)Sb1—Cu1—U1x167.18 (2)
Cu1iii—Sb1—Cu1112.92 (8)U1—Cu1—U1x87.28 (8)
Cu1i—Sb1—Cu172.22 (4)U1i—Cu1—U1x121.59 (5)
Cu1ii—Sb1—U1i135.563 (16)Sb1ii—Cu1—U1ii79.90 (8)
Cu1iii—Sb1—U1i135.563 (16)Sb1x—Cu1—U1ii66.43 (4)
Cu1i—Sb1—U1i64.97 (4)Sb1i—Cu1—U1ii167.18 (2)
Cu1—Sb1—U1i64.97 (4)Sb1—Cu1—U1ii66.43 (4)
Cu1ii—Sb1—U1iv64.97 (4)U1—Cu1—U1ii121.59 (5)
Cu1iii—Sb1—U1iv64.97 (4)U1i—Cu1—U1ii87.28 (8)
Cu1i—Sb1—U1iv135.563 (16)U1x—Cu1—U1ii121.59 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+2, y+1, z; (ix) x+2, y, z; (x) x+1, y, z.

Experimental details

(I_100K)(I_120K)
Crystal data
Chemical formulaUCu0.60(4)Sb2UCu0.60(4)Sb2
Mr521.84519.65
Crystal system, space groupTetragonal, P4/nmmTetragonal, P4/nmm
Temperature (K)100120
a, c (Å)4.320 (4), 9.341 (9)4.331 (4), 9.355 (9)
V3)174.3 (3)175.5 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)65.2064.56
Crystal size (mm)0.14 × 0.08 × 0.050.14 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Absorption correctionNumerical
face-indexed (SADABS; Bruker, 2003)
Numerical
face-indexed (SADABS; Bruker, 2003)
Tmin, Tmax0.020, 0.0860.016, 0.086
No. of measured, independent and
observed [I > 2σ(I)] reflections
1951, 155, 155 1966, 160, 157
Rint0.0750.061
(sin θ/λ)max1)0.6630.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.20 0.027, 0.066, 1.32
No. of reflections155160
No. of parameters1313
Δρmax, Δρmin (e Å3)1.32, 3.323.26, 4.14

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I_100K) top
U1—Cu1i3.132 (2)Sb1—Cu1iii2.593 (2)
U1—Sb1i3.167 (3)Sb2—Sb2iv3.055 (3)
U1—Sb2ii3.231 (2)Cu1—Cu1v3.055 (3)
Sb1iii—Cu1—Sb1i112.86 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z; (v) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds