Download citation
Download citation
link to html
In the crystal structures of the title compounds, C6H2I2N2S, (I), and C12H4I2N4S2, (II), respectively, a large number of short inter-heteroatom contacts, such as S...N, I...I and N...I, are observed. In (II), which is non-centrosymmetric, two halves of the mol­ecule are related by a crystallographic twofold axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008296/ta1368sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008296/ta1368Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008296/ta1368IIsup3.hkl
Contains datablock II

CCDC references: 192962; 192963

Comment top

Compounds containing a 2,1,3-benzothiadiazole ring have received much interest, due to their potential use as fungicides, herbicides, fluorescent materials (Mataka et al., 1982) and organic conductors (Yamashita et al., 1996). We have recently synthesized 4,7-diiodo-2,1,3-benzothiadiazole, (I), and 7,7'-diiodo-4,4'-bis(2,1,3-benzothiadiazole), (II), as important synthetic intermediates for functional materials with 2,1,3-benzothiadiazole rings. From the viewpoint of crystal engineering, the peripheral S, N and I atoms of (I) and (II) are expected to form short interheteroatom contacts, which can result in unique molecular networks (Yamashita & Tomura, 1998). However, only two examples (Mikhno et al., 1973; Ono et al., 1994) of structures containing a 4-halogeno-2,1,3-benzothiadiazole unit are known in the Cambridge Structural Database (CSD, Version 5.22; Allen & Kennard, 1993). Therefore, we have carried out X-ray analyses of (I) and (II) and report here their molecular and crystal structures. \sch

The noncentrosymmetric space group of (II) is interesting from the standpoint of nonlinear optical properties. The molecular structures of (I) and (II) are shown in Figs. 1 and 2, and selected geometric parameters are given in Tables 1 and 3, respectively.

The planar 2,1,3-benzothiadiazole rings of (I) and (II) have almost similar geometries. The geometric parameters of the 1,2,5-thiadiazole rings in (I) and (II) are almost same as those of 3,4-diphenyl-1,2,5-thiadiazole (Mellini & Merlino, 1976). Considerable shortening of the C1—C6 and C4—C5 bonds in (I) and (II) is observed. Such double-bond fixation suggests the quinonoid character of the 2,1,3-benzothiadiazole ring in (I) and (II). The angle between the planes for the two 2,1,3-benzothiadiazole rings of (II) is 48.4 (1)°.

Fig. 3 shows the packing diagram for (I) viewed along the c axis. The molecules stack along the c axis. Short S···N interheteroatom contacts (Table 2) are found between the two 1,2,5-thiadiazole rings. The S···N distance is 7.7% shorter than the sum of the corresponding van der Waals radii (Pauling, 1960). Short I···I contacts within the sum of the van der Waals radii are also observed, as shown in Table 2. Four I atoms [I1, I2ii, I2iii and I1iv in Fig. 3; symmetry codes: (ii) 3/2 - x, y + 1/2, 1 - z; (iii) x + 1/2, 3/2 - y, z + 1; (iv) 2 - x, 2 - y, 2 - z] form a planar I4 square cluster with short I···I contacts.

Fig. 4 shows the packing diagram for (II) viewed along the c axis. The molecules form uni-stacks along the c axis, and the interstack distance and the intermolecular I···I distance within the stack are 3.596 (5) and 3.942 (3) Å, respectively. In contrast with (I), short N···I contacts are observed [3.333 (8) Å] and are nearly linear [174.2 (4)°], as shown in Fig. 4. Although slightly longer than the typical N···I distance, the N···I contacts may control the crystal packing of (II) (Desiraju & Harlow, 1989; Xu et al., 1994; Walsh et al., 2001).

Studies on the construction of new molecular architectures using compounds (I) and (II) are now in progress.

Experimental top

The title compounds were synthesized according to the literature method of Suzuki (1994) for (I) and Fukushima et al. (1999) for (II). Pale-yellow crystals of (I) and (II) suitable for X-ray analysis were grown from an ethyl acetate and a dichloromethane solution, respectively.

Refinement top

All H atoms of (I) and (II) were placed in geometrically calculated positions, with C—H = 0.93 Å, and refined using a riding model.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (I); CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001) for (II). Cell refinement: MSC/AFC Diffractometer Control Software for (I); CrystalClear for (II). For both compounds, data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); SIR97 (Altomare et al., 1999) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-III (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) 1/2 - x, 1/2 - y, z].
[Figure 3] Fig. 3. The packing diagram for (I) viewed along the c axis. Dotted lines show the short S···N and I···I contacts [symmetry codes: (ii) 3/2 - x, y + 1/2, 1 - z; (iii) x + 1/2, 3/2 - y, z + 1; (iv) 2 - x, 2 - y, 2 - z].
[Figure 4] Fig. 4. The packing diagram for (II) viewed along the c axis. Dotted lines show the short N···I contacts [3.333 (8) Å for N2···I1v, 174.2 (4)° for N2···I1v—C1v; symmetry code: (v) 1/4 - x, y + 1/4, z + 1/4].
(I) 4,7-diiodo-2,1,3-benzothiadiazole top
Crystal data top
C6H2I2N2SF(000) = 696
Mr = 387.96Dx = 2.948 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2yabCell parameters from 25 reflections
a = 11.0515 (17) Åθ = 14.7–15.0°
b = 18.2104 (12) ŵ = 7.37 mm1
c = 4.3441 (11) ÅT = 296 K
β = 90.47 (2)°Plate, pale yellow
V = 874.2 (3) Å30.5 × 0.3 × 0.1 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
1763 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 023
Tmin = 0.109, Tmax = 0.479l = 55
2110 measured reflections3 standard reflections every 150 reflections
2014 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.027P)2 + 2.4993P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
2014 reflectionsΔρmax = 0.51 e Å3
101 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00185 (18)
Crystal data top
C6H2I2N2SV = 874.2 (3) Å3
Mr = 387.96Z = 4
Monoclinic, P21/aMo Kα radiation
a = 11.0515 (17) ŵ = 7.37 mm1
b = 18.2104 (12) ÅT = 296 K
c = 4.3441 (11) Å0.5 × 0.3 × 0.1 mm
β = 90.47 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
1763 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.109, Tmax = 0.4793 standard reflections every 150 reflections
2110 measured reflections intensity decay: 0.2%
2014 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 0.96Δρmax = 0.51 e Å3
2014 reflectionsΔρmin = 0.50 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.4475 (0.0074) x + 1.4243 (0.0197) y - 3.5325 (0.0026) z = 3.7930 (0.0179)

* 0.0053 (0.0019) S1 * 0.0003 (0.0026) N1 * 0.0021 (0.0025) N2 * -0.0079 (0.0028) C1 * -0.0011 (0.0030) C2 * -0.0049 (0.0031) C3 * -0.0086 (0.0029) C4 * 0.0084 (0.0030) C5 * 0.0064 (0.0030) C6 - 0.0394 (0.0044) I1 - 0.0664 (0.0043) I2

Rms deviation of fitted atoms = 0.0058

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.92875 (3)0.86097 (1)0.97967 (6)0.04361 (10)
I20.70115 (2)0.52629 (1)0.43698 (6)0.04253 (10)
S11.05020 (9)0.60054 (5)1.0837 (3)0.0431 (2)
N11.0228 (3)0.68765 (16)1.0701 (8)0.0372 (7)
N20.9411 (3)0.56889 (17)0.8728 (8)0.0363 (7)
C10.8637 (3)0.76214 (18)0.8123 (8)0.0302 (7)
C20.9233 (3)0.69599 (19)0.8924 (8)0.0291 (7)
C30.8763 (3)0.62727 (19)0.7799 (8)0.0294 (7)
C40.7709 (3)0.6262 (2)0.5881 (8)0.0327 (7)
C50.7181 (3)0.6910 (2)0.5131 (9)0.0371 (8)
H50.65020.69110.38540.045*
C60.7642 (3)0.7589 (2)0.6253 (9)0.0360 (8)
H60.72540.80220.56950.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05485 (18)0.02726 (14)0.04851 (16)0.00099 (10)0.01303 (12)0.00163 (10)
I20.04839 (16)0.03278 (14)0.04626 (16)0.00796 (10)0.00983 (11)0.00278 (10)
S10.0381 (5)0.0333 (5)0.0577 (6)0.0041 (4)0.0156 (4)0.0038 (4)
N10.0369 (16)0.0250 (14)0.0496 (18)0.0003 (12)0.0107 (13)0.0003 (13)
N20.0356 (16)0.0291 (15)0.0442 (17)0.0006 (12)0.0053 (13)0.0028 (13)
C10.0338 (17)0.0211 (15)0.0357 (17)0.0016 (12)0.0021 (13)0.0000 (13)
C20.0303 (16)0.0245 (15)0.0325 (16)0.0003 (13)0.0018 (13)0.0021 (13)
C30.0285 (16)0.0279 (16)0.0318 (16)0.0004 (13)0.0005 (13)0.0027 (13)
C40.0354 (18)0.0312 (17)0.0316 (16)0.0066 (14)0.0026 (14)0.0019 (14)
C50.0324 (18)0.0381 (19)0.0406 (19)0.0043 (15)0.0127 (15)0.0021 (16)
C60.0372 (18)0.0269 (17)0.0437 (19)0.0023 (14)0.0069 (15)0.0046 (15)
Geometric parameters (Å, º) top
I1—C12.068 (3)C1—C21.415 (5)
I2—C42.080 (4)C2—C31.439 (5)
S1—N11.616 (3)C3—C41.427 (5)
S1—N21.615 (3)C4—C51.355 (5)
N1—C21.347 (4)C5—C61.421 (5)
N2—C31.342 (4)C5—H50.9300
C1—C61.363 (5)C6—H60.9300
S1···N2i3.093 (3)I1···I2iii4.138 (1)
N2···S1i3.093 (3)I1···I2iv4.196 (1)
I1···I2ii3.789 (1)
N1—S1—N2101.00 (16)C4—C3—C2120.1 (3)
C2—N1—S1106.5 (2)C5—C4—C3118.4 (3)
C3—N2—S1106.4 (2)C5—C4—I2121.9 (3)
C6—C1—C2118.7 (3)C3—C4—I2119.7 (3)
C6—C1—I1121.6 (3)C4—C5—C6121.5 (3)
C2—C1—I1119.7 (2)C4—C5—H5119.3
N1—C2—C1127.8 (3)C6—C5—H5119.3
N1—C2—C3112.8 (3)C1—C6—C5121.9 (3)
C1—C2—C3119.4 (3)C1—C6—H6119.1
N2—C3—C4126.6 (3)C5—C6—H6119.1
N2—C3—C2113.3 (3)
N2—S1—N1—C20.1 (3)N1—C2—C3—C4179.9 (3)
N1—S1—N2—C30.1 (3)C1—C2—C3—C40.3 (5)
S1—N1—C2—C1179.9 (3)N2—C3—C4—C5178.8 (4)
S1—N1—C2—C30.3 (4)C2—C3—C4—C50.8 (5)
C6—C1—C2—N1179.3 (4)N2—C3—C4—I22.0 (5)
I1—C1—C2—N10.7 (5)C2—C3—C4—I2178.3 (2)
C6—C1—C2—C31.2 (5)C3—C4—C5—C61.1 (6)
I1—C1—C2—C3178.8 (2)I2—C4—C5—C6178.0 (3)
S1—N2—C3—C4179.9 (3)C2—C1—C6—C50.9 (6)
S1—N2—C3—C20.3 (4)I1—C1—C6—C5179.1 (3)
N1—C2—C3—N20.4 (4)C4—C5—C6—C10.2 (6)
C1—C2—C3—N2180.0 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x+3/2, y+1/2, z+2.
(II) 7,7'-diiodo-4,4'-bis(2,1,3-benzothiadiazole) top
Crystal data top
C12H4I2N4S2Dx = 2.523 Mg m3
Mr = 522.11Melting point: 311 K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: F 2 -2dCell parameters from 3274 reflections
a = 20.892 (14) Åθ = 3.1–27.5°
b = 33.38 (2) ŵ = 4.87 mm1
c = 3.942 (3) ÅT = 296 K
V = 2749 (3) Å3Needle, pale yellow
Z = 80.60 × 0.04 × 0.04 mm
F(000) = 1936
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1438 independent reflections
Radiation source: Rigaku rotating anode1394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 2622
Absorption correction: multi-scan
(Jacobson, 1998)
k = 3642
Tmin = 0.132, Tmax = 0.829l = 54
6500 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0648P)2 + 102.9652P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max < 0.001
S = 1.21Δρmax = 0.98 e Å3
1438 reflectionsΔρmin = 1.07 e Å3
92 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0012 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 538 Friedel pairs Query
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (8)
Crystal data top
C12H4I2N4S2V = 2749 (3) Å3
Mr = 522.11Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 20.892 (14) ŵ = 4.87 mm1
b = 33.38 (2) ÅT = 296 K
c = 3.942 (3) Å0.60 × 0.04 × 0.04 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1438 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1394 reflections with I > 2σ(I)
Tmin = 0.132, Tmax = 0.829Rint = 0.054
6500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0648P)2 + 102.9652P]
where P = (Fo2 + 2Fc2)/3
S = 1.21Δρmax = 0.98 e Å3
1438 reflectionsΔρmin = 1.07 e Å3
92 parametersAbsolute structure: Flack (1983); 538 Friedel pairs Query
1 restraintAbsolute structure parameter: 0.01 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.3358 (0.0495) x - 3.1514 (0.1294) y + 3.5956 (0.0045) z = 3.7555 (0.0296)

* -0.0094 (0.0065) S1 * 0.0071 (0.0098) N1 * -0.0043 (0.0087) N2 * -0.0081 (0.0104) C1 * 0.0150 (0.0103) C2 * -0.0022 (0.0103) C3 * 0.0104 (0.0093) C4 * -0.0045 (0.0089) C5 * -0.0040 (0.0102) C6 0.0277 (0.0151) I1

Rms deviation of fitted atoms = 0.0082

- 8.3358 (0.0493) x + 3.1514 (0.1289) y + 3.5956 (0.0045) z = 1.1633 (0.0484)

Angle to previous plane (with approximate e.s.d.) = 48.41 (0.14)

* -0.0094 (0.0065) S1_$1 * 0.0071 (0.0098) N1_$1 * -0.0043 (0.0087) N2_$1 * -0.0081 (0.0104) C1_$1 * 0.0150 (0.0102) C2_$1 * -0.0022 (0.0103) C3_$1 * 0.0104 (0.0093) C4_$1 * -0.0045 (0.0089) C5_$1 * -0.0040 (0.0102) C6_$1 0.0277 (0.0151) I1_$1

Rms deviation of fitted atoms = 0.0082

Operators for generating equivalent atoms: $1 - x + 1/2, -y + 1/2, z

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.17133 (4)0.08701 (2)0.7312 (2)0.0485 (4)
S10.07266 (13)0.21576 (9)1.0625 (9)0.0386 (9)
N10.0992 (4)0.1722 (3)0.967 (4)0.034 (2)
N20.1327 (4)0.2431 (2)0.949 (3)0.0285 (19)
C10.1995 (5)0.1463 (3)0.708 (3)0.025 (2)
C20.1575 (5)0.1771 (3)0.839 (3)0.025 (2)
C30.1774 (5)0.2185 (3)0.824 (3)0.025 (2)
C40.2387 (4)0.2293 (3)0.695 (3)0.025 (2)
C50.2763 (5)0.1985 (3)0.577 (3)0.026 (2)
H50.31630.20440.48620.031*
C60.2561 (6)0.1580 (3)0.588 (4)0.039 (4)
H60.28400.13840.50730.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0454 (5)0.0290 (4)0.0710 (7)0.0053 (3)0.0004 (5)0.0047 (4)
S10.0267 (13)0.0337 (14)0.055 (3)0.0008 (10)0.0127 (13)0.0007 (13)
N10.032 (4)0.029 (4)0.041 (6)0.003 (3)0.015 (5)0.006 (6)
N20.025 (4)0.022 (4)0.038 (5)0.004 (3)0.004 (4)0.007 (4)
C10.030 (5)0.020 (4)0.027 (6)0.002 (3)0.001 (4)0.003 (4)
C20.017 (4)0.020 (4)0.038 (7)0.001 (3)0.003 (4)0.002 (4)
C30.025 (5)0.015 (4)0.035 (7)0.002 (3)0.009 (4)0.001 (4)
C40.018 (4)0.022 (5)0.036 (6)0.002 (3)0.009 (4)0.006 (5)
C50.026 (5)0.027 (5)0.025 (6)0.000 (4)0.007 (4)0.002 (4)
C60.026 (5)0.019 (5)0.073 (11)0.000 (4)0.004 (5)0.011 (5)
Geometric parameters (Å, º) top
I1—C12.065 (9)C2—C31.445 (13)
S1—N11.599 (9)C3—C41.423 (13)
S1—N21.616 (9)C4—C51.376 (14)
N1—C21.331 (13)C4—C4i1.462 (18)
N2—C31.337 (13)C5—C61.417 (15)
C1—C61.332 (16)C5—H50.9300
C1—C21.446 (14)C6—H60.9300
N1—S1—N2100.3 (4)C2—C3—C4121.0 (9)
C2—N1—S1107.3 (7)C5—C4—C3116.4 (9)
C3—N2—S1107.2 (7)C5—C4—C4i121.5 (10)
C6—C1—C2117.1 (9)C3—C4—C4i122.1 (10)
C6—C1—I1123.4 (8)C4—C5—C6122.2 (10)
C2—C1—I1119.5 (7)C4—C5—H5118.9
N1—C2—C3113.2 (9)C6—C5—H5118.9
N1—C2—C1127.3 (9)C1—C6—C5123.8 (10)
C3—C2—C1119.5 (9)C1—C6—H6118.1
N2—C3—C2111.9 (9)C5—C6—H6118.1
N2—C3—C4127.1 (9)
N2—S1—N1—C20.1 (11)N1—C2—C3—C4179.7 (12)
N1—S1—N2—C30.6 (11)C1—C2—C3—C42.4 (17)
S1—N1—C2—C30.4 (14)N2—C3—C4—C5179.3 (11)
S1—N1—C2—C1178.1 (11)C2—C3—C4—C52.0 (17)
C6—C1—C2—N1179.5 (13)N2—C3—C4—C4i2.1 (17)
I1—C1—C2—N12.8 (18)C2—C3—C4—C4i176.5 (8)
C6—C1—C2—C32.0 (17)C3—C4—C5—C61.3 (17)
I1—C1—C2—C3179.6 (8)C4i—C4—C5—C6177.3 (9)
S1—N2—C3—C20.9 (13)C2—C1—C6—C51 (2)
S1—N2—C3—C4179.6 (10)I1—C1—C6—C5178.8 (10)
N1—C2—C3—N20.8 (15)C4—C5—C6—C11 (2)
C1—C2—C3—N2178.7 (11)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H2I2N2SC12H4I2N4S2
Mr387.96522.11
Crystal system, space groupMonoclinic, P21/aOrthorhombic, Fdd2
Temperature (K)296296
a, b, c (Å)11.0515 (17), 18.2104 (12), 4.3441 (11)20.892 (14), 33.38 (2), 3.942 (3)
α, β, γ (°)90, 90.47 (2), 9090, 90, 90
V3)874.2 (3)2749 (3)
Z48
Radiation typeMo KαMo Kα
µ (mm1)7.374.87
Crystal size (mm)0.5 × 0.3 × 0.10.60 × 0.04 × 0.04
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku Mercury CCD area-detector
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Multi-scan
(Jacobson, 1998)
Tmin, Tmax0.109, 0.4790.132, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
2110, 2014, 1763 6500, 1438, 1394
Rint0.0180.054
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.055, 0.96 0.055, 0.152, 1.21
No. of reflections20141438
No. of parameters10192
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.027P)2 + 2.4993P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0648P)2 + 102.9652P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.51, 0.500.98, 1.07
Absolute structure?Flack (1983); 538 Friedel pairs Query
Absolute structure parameter?0.01 (8)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001), MSC/AFC Diffractometer Control Software, CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000), SHELXS97 (Sheldrick, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-III (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
I1—C12.068 (3)C1—C61.363 (5)
I2—C42.080 (4)C1—C21.415 (5)
S1—N11.616 (3)C2—C31.439 (5)
S1—N21.615 (3)C3—C41.427 (5)
N1—C21.347 (4)C4—C51.355 (5)
N2—C31.342 (4)C5—C61.421 (5)
S1···N2i3.093 (3)I1···I2iii4.138 (1)
N2···S1i3.093 (3)I1···I2iv4.196 (1)
I1···I2ii3.789 (1)
N1—S1—N2101.00 (16)N2—C3—C4126.6 (3)
C2—N1—S1106.5 (2)N2—C3—C2113.3 (3)
C3—N2—S1106.4 (2)C4—C3—C2120.1 (3)
C6—C1—C2118.7 (3)C5—C4—C3118.4 (3)
N1—C2—C1127.8 (3)C4—C5—C6121.5 (3)
N1—C2—C3112.8 (3)C1—C6—C5121.9 (3)
C1—C2—C3119.4 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x+3/2, y+1/2, z+2.
Selected geometric parameters (Å, º) for (II) top
I1—C12.065 (9)C1—C21.446 (14)
S1—N11.599 (9)C2—C31.445 (13)
S1—N21.616 (9)C3—C41.423 (13)
N1—C21.331 (13)C4—C51.376 (14)
N2—C31.337 (13)C4—C4i1.462 (18)
C1—C61.332 (16)C5—C61.417 (15)
N1—S1—N2100.3 (4)N2—C3—C2111.9 (9)
C2—N1—S1107.3 (7)N2—C3—C4127.1 (9)
C3—N2—S1107.2 (7)C2—C3—C4121.0 (9)
C6—C1—C2117.1 (9)C5—C4—C3116.4 (9)
N1—C2—C3113.2 (9)C5—C4—C4i121.5 (10)
N1—C2—C1127.3 (9)C3—C4—C4i122.1 (10)
C3—C2—C1119.5 (9)C4—C5—C6122.2 (10)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds