Download citation
Download citation
link to html
In the crystal structure of the title compound, C7H8N2O2, the mol­ecules are linked through N—H...O and N—H...N hydrogen bonds, forming an extended supramolecule, which contributes to the stability of the structure in the solid state. There are two molecules in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806006179/at2002sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806006179/at2002Isup2.hkl
Contains datablock I

CCDC reference: 601096

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.037
  • wR factor = 0.107
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O3 - N3 .. 6.58 su PLAT353_ALERT_3_C Long N-H Bond (0.87A) N4 - H4A ... 1.02 Ang. PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C8
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

2-Methyl-6-nitroaniline top
Crystal data top
C7H8N2O2F(000) = 640
Mr = 152.15Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2333 reflections
a = 8.9844 (16) Åθ = 2.9–23.4°
b = 11.359 (2) ŵ = 0.10 mm1
c = 14.785 (3) ÅT = 294 K
β = 103.814 (2)°Block, yellow
V = 1465.1 (5) Å30.22 × 0.16 × 0.14 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2589 independent reflections
Radiation source: fine-focus sealed tube1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.968, Tmax = 0.986k = 1313
7772 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1509P]
where P = (Fo2 + 2Fc2)/3
2589 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28792 (14)0.54144 (11)0.41093 (8)0.0733 (4)
O20.37257 (15)0.56793 (12)0.55800 (8)0.0800 (4)
O30.8289 (2)0.99462 (14)0.60405 (10)0.1025 (5)
O40.64899 (17)0.87510 (15)0.61259 (9)0.0954 (5)
N10.28697 (15)0.51650 (11)0.49186 (9)0.0551 (3)
N20.25384 (19)0.45531 (14)0.67751 (10)0.0657 (4)
H2A0.325 (2)0.5098 (17)0.6686 (14)0.088 (6)*
H2B0.246 (2)0.4356 (18)0.7308 (16)0.093 (7)*
N30.72369 (18)0.93022 (13)0.56607 (10)0.0694 (4)
N40.48473 (19)0.77306 (16)0.46317 (12)0.0755 (5)
H4A0.515 (3)0.776 (2)0.5342 (18)0.127 (8)*
H4B0.425 (2)0.7185 (16)0.4276 (13)0.076 (6)*
C10.0331 (2)0.29133 (16)0.70392 (11)0.0688 (5)
H1A0.04530.23250.69860.103*
H1B0.00240.36140.73090.103*
H1C0.12700.26230.74290.103*
C20.05660 (17)0.31901 (12)0.60917 (10)0.0502 (4)
C30.16933 (16)0.40320 (12)0.60046 (9)0.0453 (3)
C40.18314 (15)0.42848 (12)0.50911 (9)0.0452 (3)
C50.09387 (18)0.37194 (13)0.43156 (10)0.0550 (4)
H50.10640.38970.37240.066*
C60.0115 (2)0.29084 (14)0.44216 (11)0.0639 (4)
H60.07130.25240.39060.077*
C70.02885 (19)0.26593 (13)0.53135 (12)0.0607 (4)
H70.10190.21070.53800.073*
C80.4243 (2)0.75291 (17)0.26788 (13)0.0776 (5)
H8A0.42140.75840.20270.116*
H8B0.32660.77560.27800.116*
H8C0.44670.67330.28850.116*
C90.54645 (16)0.83340 (13)0.32171 (10)0.0514 (4)
C100.63353 (17)0.89972 (14)0.27732 (11)0.0579 (4)
H100.61510.89530.21280.069*
C110.74836 (19)0.97342 (14)0.32481 (12)0.0628 (4)
H110.80651.01700.29250.075*
C120.77552 (19)0.98172 (13)0.41864 (12)0.0602 (4)
H120.85291.03080.45110.072*
C130.68729 (17)0.91653 (13)0.46679 (10)0.0514 (4)
C140.57157 (16)0.83944 (12)0.42012 (10)0.0496 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0855 (9)0.0889 (9)0.0522 (7)0.0110 (7)0.0299 (6)0.0102 (6)
O20.0809 (8)0.0968 (9)0.0590 (7)0.0363 (7)0.0103 (6)0.0030 (7)
O30.1262 (13)0.1014 (11)0.0636 (9)0.0324 (10)0.0095 (8)0.0131 (7)
O40.1006 (10)0.1383 (13)0.0502 (7)0.0117 (9)0.0235 (7)0.0033 (8)
N10.0574 (8)0.0626 (8)0.0474 (8)0.0022 (6)0.0170 (6)0.0054 (6)
N20.0795 (10)0.0767 (10)0.0375 (8)0.0159 (8)0.0075 (7)0.0047 (7)
N30.0793 (10)0.0752 (10)0.0502 (8)0.0042 (8)0.0088 (8)0.0003 (7)
N40.0739 (10)0.0901 (11)0.0644 (10)0.0252 (9)0.0205 (8)0.0114 (9)
C10.0792 (12)0.0713 (11)0.0634 (11)0.0009 (9)0.0320 (9)0.0128 (8)
C20.0582 (9)0.0451 (8)0.0507 (9)0.0070 (7)0.0198 (7)0.0060 (6)
C30.0492 (8)0.0463 (8)0.0403 (8)0.0067 (6)0.0103 (6)0.0035 (6)
C40.0500 (8)0.0451 (8)0.0423 (8)0.0038 (6)0.0143 (6)0.0025 (6)
C50.0693 (10)0.0546 (9)0.0421 (8)0.0038 (8)0.0152 (7)0.0036 (7)
C60.0767 (11)0.0580 (9)0.0542 (10)0.0079 (8)0.0101 (8)0.0128 (8)
C70.0666 (10)0.0488 (8)0.0691 (11)0.0077 (7)0.0208 (9)0.0040 (8)
C80.0716 (11)0.0872 (13)0.0674 (11)0.0170 (10)0.0034 (9)0.0056 (10)
C90.0489 (8)0.0542 (8)0.0490 (9)0.0005 (7)0.0075 (7)0.0030 (7)
C100.0616 (10)0.0669 (10)0.0453 (8)0.0037 (8)0.0130 (7)0.0099 (7)
C110.0663 (10)0.0626 (10)0.0623 (10)0.0068 (8)0.0205 (8)0.0158 (8)
C120.0610 (10)0.0501 (9)0.0665 (11)0.0092 (7)0.0092 (8)0.0034 (7)
C130.0573 (9)0.0509 (8)0.0442 (8)0.0034 (7)0.0086 (7)0.0020 (6)
C140.0491 (8)0.0517 (8)0.0492 (9)0.0026 (7)0.0138 (7)0.0087 (6)
Geometric parameters (Å, º) top
O1—N11.2316 (17)C4—C51.390 (2)
O2—N11.2368 (17)C5—C61.357 (2)
O3—N31.2208 (19)C5—H50.9300
O4—N31.2393 (19)C6—C71.393 (2)
N1—C41.4312 (18)C6—H60.9300
N2—C31.346 (2)C7—H70.9300
N2—H2A0.92 (2)C8—C91.502 (2)
N2—H2B0.84 (2)C8—H8A0.9600
N3—C131.434 (2)C8—H8B0.9600
N4—C141.349 (2)C8—H8C0.9600
N4—H4A1.02 (3)C9—C101.362 (2)
N4—H4B0.902 (19)C9—C141.420 (2)
C1—C21.499 (2)C10—C111.383 (2)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11—C121.353 (2)
C1—H1C0.9600C11—H110.9300
C2—C71.362 (2)C12—C131.397 (2)
C2—C31.421 (2)C12—H120.9300
C3—C41.4149 (19)C13—C141.408 (2)
O1—N1—O2120.81 (13)C5—C6—C7119.08 (15)
O1—N1—C4119.33 (13)C5—C6—H6120.5
O2—N1—C4119.86 (12)C7—C6—H6120.5
C3—N2—H2A116.4 (13)C2—C7—C6122.81 (15)
C3—N2—H2B121.4 (14)C2—C7—H7118.6
H2A—N2—H2B122.0 (19)C6—C7—H7118.6
O3—N3—O4120.65 (15)C9—C8—H8A109.5
O3—N3—C13119.87 (16)C9—C8—H8B109.5
O4—N3—C13119.47 (15)H8A—C8—H8B109.5
C14—N4—H4A115.3 (14)C9—C8—H8C109.5
C14—N4—H4B116.0 (12)H8A—C8—H8C109.5
H4A—N4—H4B126.7 (18)H8B—C8—H8C109.5
C2—C1—H1A109.5C10—C9—C14119.86 (14)
C2—C1—H1B109.5C10—C9—C8120.83 (15)
H1A—C1—H1B109.5C14—C9—C8119.31 (14)
C2—C1—H1C109.5C9—C10—C11122.33 (15)
H1A—C1—H1C109.5C9—C10—H10118.8
H1B—C1—H1C109.5C11—C10—H10118.8
C7—C2—C3119.44 (13)C12—C11—C10119.52 (15)
C7—C2—C1121.31 (14)C12—C11—H11120.2
C3—C2—C1119.24 (14)C10—C11—H11120.2
N2—C3—C4123.94 (14)C11—C12—C13119.99 (15)
N2—C3—C2119.31 (14)C11—C12—H12120.0
C4—C3—C2116.74 (13)C13—C12—H12120.0
C5—C4—C3121.93 (13)C12—C13—C14121.50 (14)
C5—C4—N1116.63 (12)C12—C13—N3116.46 (14)
C3—C4—N1121.42 (13)C14—C13—N3122.03 (14)
C6—C5—C4119.98 (14)N4—C14—C13124.00 (15)
C6—C5—H5120.0N4—C14—C9119.23 (15)
C4—C5—H5120.0C13—C14—C9116.77 (13)
C7—C2—C3—N2179.85 (14)C14—C9—C10—C110.5 (2)
C1—C2—C3—N20.8 (2)C8—C9—C10—C11179.06 (16)
C7—C2—C3—C41.3 (2)C9—C10—C11—C120.7 (3)
C1—C2—C3—C4178.07 (13)C10—C11—C12—C130.3 (3)
N2—C3—C4—C5179.65 (14)C11—C12—C13—C141.4 (2)
C2—C3—C4—C51.6 (2)C11—C12—C13—N3179.88 (15)
N2—C3—C4—N12.3 (2)O3—N3—C13—C121.3 (2)
C2—C3—C4—N1176.52 (12)O4—N3—C13—C12179.67 (15)
O1—N1—C4—C53.1 (2)O3—N3—C13—C14177.17 (16)
O2—N1—C4—C5178.11 (14)O4—N3—C13—C141.9 (2)
O1—N1—C4—C3175.05 (13)C12—C13—C14—N4178.90 (16)
O2—N1—C4—C33.7 (2)N3—C13—C14—N40.5 (2)
C3—C4—C5—C60.8 (2)C12—C13—C14—C91.5 (2)
N1—C4—C5—C6177.38 (14)N3—C13—C14—C9179.88 (13)
C4—C5—C6—C70.3 (2)C10—C9—C14—N4179.85 (15)
C3—C2—C7—C60.3 (2)C8—C9—C14—N40.3 (2)
C1—C2—C7—C6179.04 (15)C10—C9—C14—C130.5 (2)
C5—C6—C7—C20.5 (3)C8—C9—C14—C13179.87 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O10.902 (19)2.341 (19)3.161 (2)151.2 (16)
N4—H4A···O41.02 (3)1.84 (2)2.616 (2)130 (2)
N2—H2B···O4i0.84 (2)2.38 (2)3.151 (2)152.6 (18)
N2—H2A···N10.92 (2)2.55 (2)2.915 (2)103.8 (14)
N2—H2A···O20.92 (2)1.90 (2)2.607 (2)131.4 (17)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds