Download citation
Download citation
link to html
The structures of the title triethanol­amine (tea) complexes of CdII and HgII saccharinates, bis­(triethanol­amine)-κ3O,N,O′;κ4O,N,O′,O′′-cadmium(II) 1,2-benziso­thia­zol-3(2H)-onate 1,1-dioxide, [Cd(C6H15NO3)2](C7H4NO3S)2, (I), and bis­(tri­ethanol­amine)-κ3O,N,O′;κ4O,N,O′,O′′-mercury(II) 1,2-benz­iso­thia­zol-3(2H)-onate 1,1-dioxide, [Hg(C6H15NO3)2](C7H4NO3S)2, (II), or [M(tea)2](sac)2, where M is CdII or HgII and sac is the saccharinate anion, reveal seven-coordinate metal ions in both complexes. Both complex cations, [M(tea)2]2+, adopt a monocapped trigonal prism geometry in which the two tea ligands exhibit different coordination modes to achieve seven-coordination. One tea ligand acts as a tetradentate ligand using all its donor atoms, while the other behaves as a tridentate O,N,O′-donor ligand, with one of its ethanol groups remaining uncoordinated. The H atoms of the free and coordinated hydroxyl groups of the tea ligands are involved in hydrogen bonding with the amine N atom, and with the carbonyl and sulfonyl O atoms of neighbouring sac ions, forming an infinite three-dimensional network. A weak π–π interaction between the phenyl rings of the sac ions also occurs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101015049/av1088sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101015049/av1088Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101015049/av1088IIsup3.hkl
Contains datablock II

CCDC references: 162852; 162853

Comment top

Triethanolamine (tea) is an amino alcohol used in a number of commercial applications such as herbicides, surface-active agents, corrosion inhibitors and cement additives (Esker et al., 1999). Because of its double action as both a tertiary amine and a primary alcohol, tea readily coordinates to metal ions to form complexes and also stabilizes the anions by hydrogen bonding (Sen & Dotson, 1970; Brannon et al., 1971; Bajaj & Poonia, 1988). As part of our research effort on the preparation and spectral, thermal and structural characterization of transition metal complexes of tea (Icbudak et al., 1995; Yilmaz et al., 1997; Topcu et al., 2001a), we here report the structural characterization of the rather unusual seven-coordinate title compounds, (I) and (II). \sch

The aim of the present work was to prepare a series of mixed-ligand complexes containing both tea and sac ligands. However, it was observed that the bulky and polydentate tea ligand coordinates to the metal ions completely and does not leave any site available for the coordination of sac (Topcu et al., 2001b). Therefore, the sac ions are present as counterions in metal complexes with tea.

The structures of [Cd(tea)2](sac)2, (I), and [Hg(tea)2](sac)2, (II), are shown in Figs. 1 and 2, respectively. Tables 1 to 4 list their bond and hydrogen-bonding geometries. The structures resemble each other and consist of a complex cation and two sac ions. In the complex cation, two neutral tea ligands coordinate to the CdII or HgII ions. The two tea ligands exhibit different coordination modes in the same coordination polyhedron. One of them is coordinated to the central metal ion, acting as a tetradentate ligand using all donor atoms, i.e. the amino N atom and all three hydroxyl O atoms, while the other is bonded to the metal ion tridentately through its N atom and two hydroxyl O atoms, one hydroxyl O atom of the ethanolic groups being non-coordinated. A similar inequivalency of two tea ligands coordinated to the MnII ion in a distorted pentagonal bipyramidal geometry has been reported for the [Mn(tea)2](CF3COO)2 complex (Andruh et al., 1993). A coordination polyhedron containing the same ligand with two different coordination modes was also reported for the monoethanolamine complex with the CuII ion (Bombicz et al., 1997).

The tri- and tetradentate coordinations of the two tea ligands result in a relatively rare coordination number of seven for CdII and an unusual example for HgII, since CdII and HgII usually possess octahedral as well as tetrahedral geometry (Holloway & Melnik, 1995). Although eight-coordinate SrII (Naiini et al., 1995; Poonia et al., 1999) and YIII (Naiini et al., 1995) complexes containing two tetradentate tea ligands have recently been reported, only one CdII complex with eight-coordination, [Cd(tea)2](NO3)2, has been reported in the literature to date (Naiini et al., 1995). It should be noted that the tea complexes of CdII reported in this paper and in the literature have different coordination numbers and geometries. This may be attributed to the presence of different counterions such as nitrate or saccharinate.

The seven-coordination geometry around the CdII and HgII ions in (I) and (II) is described as a monocapped trigonal prism (C2v). Dihedral angles between the least-squares planes are as follows: 53.2 (1) and 46.0 (1)° between O2—O3—O4—O5 (plane 1) and O2—N1—O1—O5 (plane 2), 50.8 (1) and 51.2 (1)° between O3—O4—O1—N1 (plane 3) and plane 1, and 76.0 (1) and 82.9 (2)° between planes 2 and 3 for (I) and (II), respectively. The dihedral angle between two triangular planes, O2—O3—N1 and O5—O4—O1, is only 8.5 (1)° for (I) and 12.4 (4)° for (II). Dihedral angles between these triangular and square planes are in the range of 83.6 (1)–87.5 (1)° for (I) and 73.6 (2)–85.9 (2)° for (II). The central CdII and HgII ions are located 0.362 (1) and 0.378 (1) Å from the least-squares plane O2—O3—O4—O5, respectively.

All ethylene C atoms (C1—C6) of the tetradentately coordinated tea ligand and the free hydroxyl O atom (O6) of the tridentate tea ligand in (I) are noticeably disordered over two positions, with occupancies of 30 (1)% and 70 (1)% for the C atoms, and 56 (1)% and 44 (1)% for atom O6. In addition, atom O1 in (II) is slightly disordered and, therefore, the disorder was not resolved.

The M—N bond distances are 2.375 (2) and 2.392 (2) Å for (I), and 2.234 (5) and 2.239 (5) Å for (II). The M—O bonds are in the range 2.327 (2)–2.415 (2) Å for (I) and 2.468 (5)–2.730 (5) Å for (II). The bond lengths in (I) are somewhat shorter than those of the eight-coordinate CdII complex with tea (Naiini et al., 1995).

Both sac ions are essentially planar, with r.m.s. deviations of 0.0057 and 0.0292 Å in (I), and 0.023 and 0.024 Å in (II). In both complexes, the sac ions adopt a parallel alignment, and the dihedral angles between the corresponding planes are 3.5 (1) and 1.1 (1)° for (I) and (II), respectively. Thus, the phenyl rings approximately superimpose on each other and are connected by weak ππ interactions of 4.166 (1) Å in (I), and 4.038 (1) Å in (II).

The crystals of the two complexes feature numerous hydrogen bonds (Figs. 3 and 4). The H atoms of the free and coordinated hydroxyl H atoms of the tea ligands are involved in intermolecular hydrogen bonding with the negatively charged amine N atoms and the carbonyl and sulfonyl O atoms of neighbouring sac ions. An extensive network of hydrogen bonds and other intermolecular interactions maintains the crystal structure by forming an infinite three-dimensional lattice.

Related literature top

For related literature, see: Andruh et al. (1993); Bajaj & Poonia (1988); Bombicz et al. (1997); Brannon et al. (1971); Esker et al. (1999); Holloway & Melnik (1995); Icbudak et al. (1995); Naiini et al. (1995); Poonia et al. (1999); Sen & Dotson (1970); Topcu et al. (2001a, 2001b); Yilmaz et al. (1997).

Experimental top

The preparation and spectral characterization of tea complexes of first-row divalent transition metal saccharinates, including the present CdII and HgII saccharinates, have been reported elsewhere by Topcu et al. (2001b). The polycrystalline solid complexes, (I) and (II), were crystallized from solutions in methanol-2-propanol (1:1, v/v) at room temperature to obtain suitable single crystals for X-ray analysis.

Refinement top

Hydroxyl H atoms were located from the difference map for (II) and were geometrically positioned for (I). All hydroxyl H atoms were refined with a rotating model, with Uiso 1.5 times that of O atoms, while the other H atoms were placed in calculated positions and refined with a riding model, with Uiso 1.2 times that of their attached atoms.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular view of (I) with 40% displacement ellipsoids. Selected H atoms are shown as small spheres of arbitrary radii; the remainder have been omitted for clarity.
[Figure 2] Fig. 2. The molecular view of (II) with 40% displacement ellipsoids. Selected H atoms are shown as small spheres of arbitrary radii; the remainder have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for (I).
[Figure 4] Fig. 4. A packing diagram for (II).
(I) bis(triethanolamine)-κ3O,N,O';κ4O,N,O',O''-cadmium(II) 1,2-bensisothiazol-3(2H)-onate 1,1-dioxide top
Crystal data top
[Cd(C6H15NO3)2]2C7H4NO3SZ = 2
Mr = 775.12F(000) = 796
Triclinic, P1Dx = 1.664 Mg m3
a = 13.2825 (9) ÅMo Kα radiation, λ = 0.71069 Å
b = 14.9093 (11) ÅCell parameters from 24 reflections
c = 8.9376 (10) Åθ = 10.5–13.2°
α = 98.002 (8)°µ = 0.91 mm1
β = 102.662 (8)°T = 293 K
γ = 63.762 (5)°Prism, colourless
V = 1547.2 (2) Å30.4 × 0.2 × 0.2 mm
Data collection top
Rigaku AFC-7S
diffractometer
7948 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.025
Graphite monochromatorθmax = 32.5°, θmin = 2.3°
ω/2θ scansh = 020
Absorption correction: ψ-scan
(North et al., 1968)
k = 2022
Tmin = 0.797, Tmax = 0.834l = 1313
12760 measured reflections3 standard reflections every 150 reflections
11203 independent reflections intensity decay: 7.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.047P)2 + 0.051P]
where P = (Fo2 + 2Fc2)/3
11203 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.80 e Å3
145 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Cd(C6H15NO3)2]2C7H4NO3Sγ = 63.762 (5)°
Mr = 775.12V = 1547.2 (2) Å3
Triclinic, P1Z = 2
a = 13.2825 (9) ÅMo Kα radiation
b = 14.9093 (11) ŵ = 0.91 mm1
c = 8.9376 (10) ÅT = 293 K
α = 98.002 (8)°0.4 × 0.2 × 0.2 mm
β = 102.662 (8)°
Data collection top
Rigaku AFC-7S
diffractometer
7948 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.797, Tmax = 0.8343 standard reflections every 150 reflections
12760 measured reflections intensity decay: 7.7%
11203 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039145 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.80 e Å3
11203 reflectionsΔρmin = 0.87 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.01644 (1)0.28894 (1)0.27090 (2)0.0272 (1)
N20.10586 (17)0.21213 (15)0.0873 (2)0.0296 (4)
O10.05711 (18)0.43643 (14)0.4318 (2)0.0408 (4)
H10.09660.49500.39640.061*
O20.18230 (17)0.29080 (18)0.0987 (2)0.0507 (5)
H20.18950.24490.03390.076*
O30.03391 (19)0.12113 (15)0.3383 (3)0.0518 (5)
H30.09430.06670.33300.078*
O40.16688 (17)0.24907 (16)0.4093 (2)0.0447 (5)
H40.17990.28730.48470.067*
O50.04377 (17)0.41711 (14)0.1195 (2)0.0395 (4)
H50.11200.46370.10810.059*
N10.14402 (18)0.29567 (15)0.4284 (2)0.0370 (5)
C1A0.1232 (11)0.3535 (6)0.5727 (7)0.052 (2)0.307 (5)
H1A10.04880.31420.63130.062*0.307 (5)
H1A20.18010.36610.63450.062*0.307 (5)
C2A0.1283 (10)0.4520 (6)0.5382 (11)0.047 (3)0.307 (5)
H2A10.20630.49620.49650.057*0.307 (5)
H2A20.10410.48370.63240.057*0.307 (5)
C3A0.2617 (5)0.3342 (11)0.3411 (9)0.063 (3)0.307 (5)
H3A10.29310.40650.34010.076*0.307 (5)
H3A20.30830.31760.39200.076*0.307 (5)
C4A0.2667 (6)0.2911 (10)0.1780 (7)0.068 (3)0.307 (5)
H4A10.25710.22280.17870.081*0.307 (5)
H4A20.34190.32910.12020.081*0.307 (5)
C5A0.1048 (7)0.1969 (6)0.4934 (17)0.051 (3)0.307 (5)
H5A10.15040.16360.43500.061*0.307 (5)
H5A20.11810.20770.59820.061*0.307 (5)
C6A0.0181 (8)0.1298 (6)0.4927 (7)0.049 (2)0.307 (5)
H6A10.06590.15830.55930.059*0.307 (5)
H6A20.03740.06460.52830.059*0.307 (5)
C1B0.1880 (4)0.3945 (3)0.5109 (5)0.0466 (10)0.693 (5)
H1B10.21650.38970.59900.056*0.693 (5)
H1B20.25090.44230.44360.056*0.693 (5)
C2B0.0957 (5)0.4314 (4)0.5641 (5)0.0465 (14)0.693 (5)
H2B10.12610.49690.61610.056*0.693 (5)
H2B20.03340.38560.63470.056*0.693 (5)
C3B0.2414 (4)0.2823 (4)0.3237 (5)0.0478 (11)0.693 (5)
H3B10.30570.30710.37670.057*0.693 (5)
H3B20.21950.21140.29900.057*0.693 (5)
C4B0.2778 (3)0.3357 (4)0.1773 (5)0.0463 (11)0.693 (5)
H4B10.34340.32800.11490.056*0.693 (5)
H4B20.29790.40650.19920.056*0.693 (5)
C5B0.0789 (5)0.2120 (3)0.5316 (5)0.0464 (13)0.693 (5)
H5B10.13010.20750.58970.056*0.693 (5)
H5B20.02110.22620.60410.056*0.693 (5)
C6B0.0225 (4)0.1135 (3)0.4496 (6)0.0478 (11)0.693 (5)
H6B10.03220.06510.52330.057*0.693 (5)
H6B20.07940.08960.39990.057*0.693 (5)
C120.1431 (3)0.0592 (3)0.1009 (4)0.0545 (8)
H12A0.19810.00760.03210.065*
H12B0.10010.02970.17600.065*
O6A0.2021 (15)0.0933 (12)0.1778 (17)0.064 (2)0.56 (3)
H6A0.24750.04220.22900.096*0.56 (3)
O6B0.1648 (17)0.1042 (14)0.2136 (17)0.065 (2)0.44 (3)
H6B0.19360.05730.28430.097*0.44 (3)
C70.2218 (2)0.1573 (2)0.1758 (3)0.0366 (5)
H7A0.27710.13870.10900.044*
H7B0.22700.09620.21000.044*
C80.2516 (2)0.2183 (2)0.3149 (3)0.0416 (6)
H8A0.32610.17810.37250.050*
H8B0.25400.27650.28180.050*
C90.1017 (2)0.2912 (2)0.0018 (3)0.0376 (5)
H9A0.12370.26230.10030.045*
H9B0.15600.31670.05310.045*
C100.0161 (3)0.3764 (2)0.0275 (3)0.0406 (6)
H10A0.01700.42720.08560.049*
H10B0.07100.35220.08440.049*
C110.0631 (2)0.1427 (2)0.0107 (3)0.0394 (6)
H11A0.00350.18240.08270.047*
H11B0.03770.11310.05480.047*
S20.35369 (6)0.60541 (5)0.03679 (7)0.03579 (14)
N40.2564 (2)0.56690 (16)0.1148 (3)0.0388 (5)
O100.1960 (2)0.62917 (15)0.3460 (2)0.0519 (6)
O110.3020 (2)0.59600 (18)0.1672 (2)0.0526 (6)
O120.4318 (2)0.56060 (18)0.0570 (3)0.0569 (6)
C200.2628 (2)0.64105 (19)0.2207 (3)0.0355 (5)
C210.3575 (2)0.73971 (18)0.1733 (3)0.0321 (5)
C220.3885 (3)0.8320 (2)0.2535 (3)0.0422 (6)
H220.34880.83840.35090.051*
C230.4800 (3)0.9141 (2)0.1849 (4)0.0499 (7)
H230.50250.97640.23710.060*
C240.5384 (3)0.9044 (2)0.0392 (4)0.0499 (7)
H240.59900.96070.00520.060*
C250.5087 (2)0.8129 (2)0.0417 (3)0.0441 (6)
H250.54830.80630.13910.053*
C260.4171 (2)0.73126 (19)0.0295 (3)0.0337 (5)
S10.32615 (6)0.08103 (5)0.51871 (8)0.03649 (14)
O70.18760 (19)0.14470 (16)0.8900 (3)0.0540 (6)
O80.3911 (2)0.02466 (19)0.5098 (3)0.0590 (6)
O90.2768 (2)0.06974 (17)0.3842 (2)0.0521 (6)
N30.2298 (2)0.05921 (17)0.6727 (3)0.0419 (5)
C130.2481 (2)0.14247 (19)0.7642 (3)0.0356 (5)
C140.3498 (2)0.23353 (19)0.6988 (3)0.0329 (5)
C150.3886 (3)0.3315 (2)0.7561 (3)0.0452 (7)
H150.35300.34890.84970.054*
C160.4830 (3)0.4039 (2)0.6687 (4)0.0575 (9)
H160.51120.47030.70540.069*
C170.5356 (3)0.3784 (3)0.5283 (4)0.0552 (9)
H170.59750.42800.47150.066*
C180.4970 (2)0.2802 (2)0.4720 (3)0.0442 (7)
H180.53220.26240.37840.053*
C190.4041 (2)0.20944 (19)0.5600 (3)0.0331 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02796 (8)0.02723 (8)0.02494 (8)0.01058 (6)0.00641 (6)0.00203 (5)
N20.0306 (10)0.0295 (9)0.0272 (9)0.0123 (8)0.0071 (8)0.0054 (7)
O10.0562 (12)0.0298 (9)0.0352 (9)0.0172 (9)0.0116 (9)0.0035 (7)
O20.0351 (10)0.0607 (14)0.0467 (11)0.0200 (10)0.0015 (9)0.0175 (10)
O30.0495 (12)0.0313 (10)0.0668 (14)0.0036 (9)0.0213 (11)0.0081 (10)
O40.0349 (10)0.0490 (11)0.0374 (10)0.0143 (9)0.0011 (8)0.0128 (8)
O50.0436 (11)0.0313 (9)0.0313 (9)0.0028 (8)0.0111 (8)0.0022 (7)
N10.0376 (11)0.0343 (11)0.0400 (11)0.0126 (9)0.0156 (9)0.0002 (9)
C1A0.067 (5)0.050 (4)0.035 (4)0.020 (4)0.015 (4)0.001 (3)
C2A0.061 (5)0.049 (4)0.025 (4)0.020 (4)0.009 (4)0.005 (3)
C3A0.035 (4)0.069 (5)0.064 (4)0.002 (4)0.014 (4)0.008 (5)
C4A0.029 (4)0.064 (5)0.082 (5)0.006 (4)0.007 (4)0.030 (5)
C5A0.051 (4)0.056 (5)0.047 (5)0.020 (4)0.009 (4)0.015 (4)
C6A0.058 (4)0.038 (4)0.053 (5)0.017 (3)0.011 (4)0.012 (4)
C1B0.052 (2)0.041 (2)0.045 (2)0.0114 (18)0.0269 (19)0.0029 (17)
C2B0.066 (3)0.044 (2)0.0250 (19)0.021 (2)0.008 (2)0.0050 (17)
C3B0.030 (2)0.042 (2)0.071 (3)0.0108 (18)0.0112 (19)0.012 (2)
C4B0.0275 (19)0.046 (3)0.056 (2)0.0095 (18)0.0069 (17)0.0064 (19)
C5B0.052 (3)0.049 (2)0.037 (2)0.0154 (19)0.012 (2)0.0144 (18)
C6B0.051 (3)0.0333 (19)0.064 (3)0.0185 (17)0.010 (2)0.0153 (18)
C120.066 (2)0.0463 (17)0.0530 (18)0.0263 (16)0.0243 (16)0.0228 (14)
O6A0.071 (7)0.067 (3)0.063 (5)0.034 (5)0.042 (4)0.033 (3)
O6B0.072 (7)0.068 (3)0.063 (5)0.034 (5)0.042 (4)0.034 (3)
C70.0278 (11)0.0357 (12)0.0402 (13)0.0093 (10)0.0067 (10)0.0036 (10)
C80.0342 (13)0.0493 (16)0.0412 (14)0.0210 (12)0.0012 (11)0.0008 (12)
C90.0428 (14)0.0402 (14)0.0327 (12)0.0174 (12)0.0160 (11)0.0031 (10)
C100.0497 (16)0.0385 (13)0.0263 (11)0.0119 (12)0.0073 (11)0.0022 (10)
C110.0400 (14)0.0417 (14)0.0358 (13)0.0197 (12)0.0088 (11)0.0113 (11)
S20.0356 (3)0.0335 (3)0.0322 (3)0.0135 (3)0.0004 (2)0.0046 (2)
N40.0386 (12)0.0279 (10)0.0351 (11)0.0064 (9)0.0018 (9)0.0045 (8)
O100.0549 (13)0.0358 (10)0.0389 (10)0.0078 (9)0.0147 (9)0.0028 (8)
O110.0587 (14)0.0578 (14)0.0346 (10)0.0199 (11)0.0125 (10)0.0084 (9)
O120.0558 (14)0.0520 (13)0.0654 (15)0.0337 (11)0.0008 (12)0.0087 (11)
C200.0389 (13)0.0282 (11)0.0319 (12)0.0108 (10)0.0004 (10)0.0004 (9)
C210.0332 (12)0.0264 (10)0.0305 (11)0.0087 (9)0.0031 (9)0.0001 (9)
C220.0485 (16)0.0309 (12)0.0363 (13)0.0108 (11)0.0045 (12)0.0062 (10)
C230.0561 (19)0.0298 (13)0.0508 (17)0.0079 (13)0.0098 (14)0.0034 (12)
C240.0416 (16)0.0368 (14)0.0548 (18)0.0030 (12)0.0044 (13)0.0054 (13)
C250.0373 (14)0.0409 (14)0.0403 (14)0.0078 (12)0.0021 (11)0.0040 (12)
C260.0311 (12)0.0306 (11)0.0342 (12)0.0103 (10)0.0022 (9)0.0004 (9)
S10.0423 (3)0.0332 (3)0.0365 (3)0.0194 (3)0.0124 (3)0.0107 (2)
O70.0513 (13)0.0421 (11)0.0491 (12)0.0142 (10)0.0139 (10)0.0022 (9)
O80.0770 (17)0.0593 (14)0.0603 (14)0.0504 (14)0.0167 (13)0.0176 (11)
O90.0628 (14)0.0478 (12)0.0454 (12)0.0199 (11)0.0277 (11)0.0145 (9)
N30.0421 (13)0.0268 (10)0.0479 (13)0.0104 (9)0.0037 (10)0.0043 (9)
C130.0351 (13)0.0301 (11)0.0379 (13)0.0133 (10)0.0031 (10)0.0023 (10)
C140.0312 (12)0.0293 (11)0.0329 (11)0.0103 (9)0.0049 (9)0.0047 (9)
C150.0465 (16)0.0351 (13)0.0381 (14)0.0096 (12)0.0024 (12)0.0122 (11)
C160.060 (2)0.0326 (14)0.0543 (18)0.0019 (14)0.0061 (16)0.0091 (13)
C170.0403 (16)0.0474 (17)0.0489 (17)0.0051 (13)0.0027 (13)0.0026 (14)
C180.0325 (13)0.0528 (17)0.0370 (14)0.0128 (12)0.0039 (11)0.0077 (12)
C190.0300 (11)0.0348 (12)0.0330 (12)0.0136 (10)0.0081 (9)0.0064 (9)
Geometric parameters (Å, º) top
Cd1—O42.3274 (19)C6B—H6B10.9700
Cd1—O52.3464 (19)C6B—H6B20.9700
Cd1—O12.3676 (19)C12—O6A1.426 (5)
Cd1—N22.375 (2)C12—O6B1.427 (6)
Cd1—O22.3862 (19)C12—C111.502 (4)
Cd1—N12.392 (2)C12—H12A0.9700
Cd1—O32.415 (2)C12—H12B0.9700
N2—C71.482 (3)O6A—H6A0.8780
N2—C111.486 (3)O6A—H6B1.0354
N2—C91.487 (3)O6B—H6A1.1021
O1—C2B1.411 (4)O6B—H6B0.8844
O1—C2A1.411 (6)C7—C81.522 (4)
O1—H10.8586C7—H7A0.9700
O2—C4B1.435 (4)C7—H7B0.9700
O2—C4A1.449 (6)C8—H8A0.9700
O2—H20.8576C8—H8B0.9700
O3—C6B1.414 (5)C9—C101.510 (4)
O3—C6A1.421 (6)C9—H9A0.9700
O3—H30.8570C9—H9B0.9700
O4—C81.429 (4)C10—H10A0.9700
O4—H40.8596C10—H10B0.9700
O5—C101.422 (3)C11—H11A0.9700
O5—H50.8586C11—H11B0.9700
N1—C5B1.473 (3)S2—O121.433 (2)
N1—C3A1.476 (4)S2—O111.439 (2)
N1—C1B1.477 (3)S2—N41.621 (2)
N1—C5A1.484 (4)S2—C261.759 (3)
N1—C1A1.492 (4)N4—C201.337 (3)
N1—C3B1.495 (3)O10—C201.246 (3)
C1A—C2A1.511 (7)C20—C211.493 (3)
C1A—H1A10.9700C21—C261.375 (3)
C1A—H1A20.9700C21—C221.389 (3)
C2A—H2A10.9700C22—C231.385 (4)
C2A—H2A20.9700C22—H220.9300
C3A—C4A1.509 (7)C23—C241.387 (4)
C3A—H3A10.9700C23—H230.9300
C3A—H3A20.9700C24—C251.383 (4)
C4A—H4A10.9700C24—H240.9300
C4A—H4A20.9700C25—C261.391 (4)
C5A—C6A1.491 (7)C25—H250.9300
C5A—H5A10.9700S1—O81.432 (2)
C5A—H5A20.9700S1—O91.447 (2)
C6A—H6A10.9700S1—N31.619 (3)
C6A—H6A20.9700S1—C191.758 (3)
C1B—C2B1.516 (6)O7—C131.236 (3)
C1B—H1B10.9700N3—C131.344 (3)
C1B—H1B20.9700C13—C141.505 (4)
C2B—H2B10.9700C14—C191.379 (3)
C2B—H2B20.9700C14—C151.380 (4)
C3B—C4B1.501 (6)C15—C161.399 (4)
C3B—H3B10.9700C15—H150.9300
C3B—H3B20.9700C16—C171.387 (5)
C4B—H4B10.9700C16—H160.9300
C4B—H4B20.9700C17—C181.379 (5)
C5B—C6B1.492 (6)C17—H170.9300
C5B—H5B10.9700C18—C191.382 (4)
C5B—H5B20.9700C18—H180.9300
O4—Cd1—O5102.28 (8)C4B—C3B—H3B2109.0
O4—Cd1—O181.81 (7)H3B1—C3B—H3B2107.8
O5—Cd1—O172.95 (7)O2—C4B—C3B106.4 (3)
O4—Cd1—N274.86 (7)O2—C4B—H4B1110.4
O5—Cd1—N273.64 (7)C3B—C4B—H4B1110.4
O1—Cd1—N2133.59 (7)O2—C4B—H4B2110.4
O4—Cd1—O2166.01 (7)C3B—C4B—H4B2110.4
O5—Cd1—O282.73 (8)H4B1—C4B—H4B2108.6
O1—Cd1—O2112.18 (7)N1—C5B—C6B113.5 (3)
N2—Cd1—O294.39 (7)N1—C5B—H5B1108.9
O4—Cd1—N1111.99 (8)C6B—C5B—H5B1108.9
O5—Cd1—N1125.92 (7)N1—C5B—H5B2108.9
O1—Cd1—N172.11 (7)C6B—C5B—H5B2108.9
N2—Cd1—N1154.11 (7)H5B1—C5B—H5B2107.7
O2—Cd1—N173.97 (8)O3—C6B—C5B111.3 (4)
O4—Cd1—O380.07 (8)O3—C6B—H6B1109.4
O5—Cd1—O3158.08 (7)C5B—C6B—H6B1109.4
O1—Cd1—O3128.66 (7)O3—C6B—H6B2109.4
N2—Cd1—O386.21 (7)C5B—C6B—H6B2109.4
O2—Cd1—O390.46 (8)H6B1—C6B—H6B2108.0
N1—Cd1—O371.15 (7)O6A—C12—O6B20.1 (8)
C7—N2—C11111.6 (2)O6A—C12—C11111.8 (7)
C7—N2—C9111.2 (2)O6B—C12—C11106.9 (9)
C11—N2—C9112.4 (2)O6A—C12—H12A109.3
C7—N2—Cd1106.24 (15)O6B—C12—H12A127.9
C11—N2—Cd1106.04 (15)C11—C12—H12A109.3
C9—N2—Cd1108.97 (14)O6A—C12—H12B109.3
C2B—O1—C2A18.0 (6)O6B—C12—H12B93.8
C2B—O1—Cd1112.7 (2)C11—C12—H12B109.3
C2A—O1—Cd1116.4 (2)H12A—C12—H12B107.9
C2B—O1—H1109.2C12—O6A—H6A108.6
Cd1—O1—H1122.1C12—O6A—H6B99.5
C4B—O2—C4A24.6 (5)C12—O6B—H6A96.5
C4B—O2—Cd1109.0 (2)C12—O6B—H6B107.9
C4A—O2—Cd1112.5 (3)N2—C7—C8112.9 (2)
C4B—O2—H2109.7N2—C7—H7A109.0
Cd1—O2—H2129.1C8—C7—H7A109.0
C6B—O3—C6A28.8 (5)N2—C7—H7B109.0
C6B—O3—Cd1115.8 (2)C8—C7—H7B109.0
C6A—O3—Cd1105.8 (4)H7A—C7—H7B107.8
C6B—O3—H3109.2O4—C8—C7108.6 (2)
Cd1—O3—H3131.1O4—C8—H8A110.0
C8—O4—Cd1113.66 (15)C7—C8—H8A110.0
C8—O4—H4109.5O4—C8—H8B110.0
Cd1—O4—H4121.2C7—C8—H8B110.0
C10—O5—Cd1109.84 (16)H8A—C8—H8B108.3
C10—O5—H5109.1N2—C9—C10111.5 (2)
Cd1—O5—H5113.4N2—C9—H9A109.3
C5B—N1—C3A131.9 (7)C10—C9—H9A109.3
C5B—N1—C1B113.3 (3)N2—C9—H9B109.3
C3A—N1—C1B82.9 (5)C10—C9—H9B109.3
C5B—N1—C5A20.6 (6)H9A—C9—H9B108.0
C3A—N1—C5A113.7 (8)O5—C10—C9107.3 (2)
C1B—N1—C5A126.5 (6)O5—C10—H10A110.3
C5B—N1—C1A81.0 (4)C9—C10—H10A110.3
C3A—N1—C1A116.7 (6)O5—C10—H10B110.3
C1B—N1—C1A36.0 (4)C9—C10—H10B110.3
C5A—N1—C1A99.0 (7)H10A—C10—H10B108.5
C5B—N1—C3B111.1 (3)N2—C11—C12118.2 (2)
C3A—N1—C3B27.4 (5)N2—C11—H11A107.8
C1B—N1—C3B109.0 (3)C12—C11—H11A107.8
C5A—N1—C3B90.8 (5)N2—C11—H11B107.8
C1A—N1—C3B139.0 (6)C12—C11—H11B107.8
C5B—N1—Cd1106.3 (3)H11A—C11—H11B107.1
C3A—N1—Cd1109.8 (5)O12—S2—O11115.79 (15)
C1B—N1—Cd1109.9 (2)O12—S2—N4111.44 (15)
C5A—N1—Cd1110.6 (4)O11—S2—N4110.23 (14)
C1A—N1—Cd1106.4 (5)O12—S2—C26110.81 (14)
C3B—N1—Cd1107.1 (2)O11—S2—C26110.79 (14)
N1—C1A—C2A111.2 (5)N4—S2—C2696.06 (12)
N1—C1A—H1A1109.4C20—N4—S2112.11 (18)
C2A—C1A—H1A1109.4O10—C20—N4123.4 (2)
N1—C1A—H1A2109.4O10—C20—C21123.4 (2)
C2A—C1A—H1A2109.4N4—C20—C21113.2 (2)
H1A1—C1A—H1A2108.0C26—C21—C22120.2 (2)
O1—C2A—C1A110.4 (6)C26—C21—C20111.1 (2)
O1—C2A—H2A1109.6C22—C21—C20128.8 (2)
C1A—C2A—H2A1109.6C23—C22—C21118.3 (3)
O1—C2A—H2A2109.6C23—C22—H22120.8
C1A—C2A—H2A2109.6C21—C22—H22120.8
H2A1—C2A—H2A2108.1C22—C23—C24120.7 (3)
N1—C3A—C4A112.1 (5)C22—C23—H23119.7
N1—C3A—H3A1109.2C24—C23—H23119.7
C4A—C3A—H3A1109.2C25—C24—C23121.6 (3)
N1—C3A—H3A2109.2C25—C24—H24119.2
C4A—C3A—H3A2109.2C23—C24—H24119.2
H3A1—C3A—H3A2107.9C24—C25—C26116.9 (3)
O2—C4A—C3A115.1 (7)C24—C25—H25121.6
O2—C4A—H4A1108.5C26—C25—H25121.6
C3A—C4A—H4A1108.5C21—C26—C25122.3 (2)
O2—C4A—H4A2108.5C21—C26—S2107.56 (18)
C3A—C4A—H4A2108.5C25—C26—S2130.1 (2)
H4A1—C4A—H4A2107.5O8—S1—O9114.72 (14)
N1—C5A—C6A114.0 (5)O8—S1—N3111.56 (15)
N1—C5A—H5A1108.8O9—S1—N3110.80 (14)
C6A—C5A—H5A1108.8O8—S1—C19112.76 (14)
N1—C5A—H5A2108.8O9—S1—C19108.56 (13)
C6A—C5A—H5A2108.8N3—S1—C1997.04 (12)
H5A1—C5A—H5A2107.6C13—N3—S1111.34 (19)
O3—C6A—C5A106.4 (8)O7—C13—N3123.7 (3)
O3—C6A—H6A1110.5O7—C13—C14122.9 (2)
C5A—C6A—H6A1110.5N3—C13—C14113.4 (2)
O3—C6A—H6A2110.5C19—C14—C15120.1 (2)
C5A—C6A—H6A2110.5C19—C14—C13110.9 (2)
H6A1—C6A—H6A2108.6C15—C14—C13129.0 (2)
N1—C1B—C2B111.2 (3)C14—C15—C16117.8 (3)
N1—C1B—H1B1109.4C14—C15—H15121.1
C2B—C1B—H1B1109.4C16—C15—H15121.1
N1—C1B—H1B2109.4C17—C16—C15121.2 (3)
C2B—C1B—H1B2109.4C17—C16—H16119.4
H1B1—C1B—H1B2108.0C15—C16—H16119.4
O1—C2B—C1B106.9 (3)C18—C17—C16120.7 (3)
O1—C2B—H2B1110.3C18—C17—H17119.6
C1B—C2B—H2B1110.3C16—C17—H17119.6
O1—C2B—H2B2110.3C17—C18—C19117.4 (3)
C1B—C2B—H2B2110.3C17—C18—H18121.3
H2B1—C2B—H2B2108.6C19—C18—H18121.3
N1—C3B—C4B112.9 (3)C14—C19—C18122.7 (2)
N1—C3B—H3B1109.0C14—C19—S1107.26 (19)
C4B—C3B—H3B1109.0C18—C19—S1129.8 (2)
N1—C3B—H3B2109.0
O4—Cd1—N2—C717.88 (16)C1B—N1—C3A—C4A150.0 (12)
O5—Cd1—N2—C7125.88 (17)C5A—N1—C3A—C4A83.2 (14)
O1—Cd1—N2—C780.41 (18)C1A—N1—C3A—C4A162.5 (9)
O2—Cd1—N2—C7153.02 (16)C3B—N1—C3A—C4A47.6 (5)
N1—Cd1—N2—C791.4 (2)Cd1—N1—C3A—C4A41.4 (13)
O3—Cd1—N2—C762.85 (16)C4B—O2—C4A—C3A61.3 (9)
O4—Cd1—N2—C11136.77 (18)Cd1—O2—C4A—C3A25.4 (12)
O5—Cd1—N2—C11115.23 (17)N1—C3A—C4A—O246.0 (16)
O1—Cd1—N2—C11160.69 (15)C5B—N1—C5A—C6A61.9 (9)
O2—Cd1—N2—C1134.13 (17)C3A—N1—C5A—C6A143.8 (9)
N1—Cd1—N2—C1127.4 (3)C1B—N1—C5A—C6A117.2 (10)
O3—Cd1—N2—C1156.05 (17)C1A—N1—C5A—C6A91.7 (13)
O4—Cd1—N2—C9102.05 (17)C3B—N1—C5A—C6A128.3 (11)
O5—Cd1—N2—C95.95 (16)Cd1—N1—C5A—C6A19.7 (13)
O1—Cd1—N2—C939.51 (19)C6B—O3—C6A—C5A54.7 (6)
O2—Cd1—N2—C987.05 (17)Cd1—O3—C6A—C5A60.6 (9)
N1—Cd1—N2—C9148.63 (18)N1—C5A—C6A—O355.4 (14)
O3—Cd1—N2—C9177.23 (17)C5B—N1—C1B—C2B79.7 (5)
O4—Cd1—O1—C2B94.7 (3)C3A—N1—C1B—C2B147.5 (7)
O5—Cd1—O1—C2B159.7 (3)C5A—N1—C1B—C2B98.1 (6)
N2—Cd1—O1—C2B154.7 (3)C1A—N1—C1B—C2B51.8 (7)
O2—Cd1—O1—C2B85.2 (3)C3B—N1—C1B—C2B156.0 (4)
N1—Cd1—O1—C2B21.6 (3)Cd1—N1—C1B—C2B39.0 (4)
O3—Cd1—O1—C2B24.5 (3)C2A—O1—C2B—C1B57.7 (7)
O4—Cd1—O1—C2A114.1 (6)Cd1—O1—C2B—C1B48.3 (4)
O5—Cd1—O1—C2A140.3 (6)N1—C1B—C2B—O158.8 (5)
N2—Cd1—O1—C2A174.0 (6)C5B—N1—C3B—C4B154.9 (4)
O2—Cd1—O1—C2A65.9 (6)C3A—N1—C3B—C4B61.1 (11)
N1—Cd1—O1—C2A2.3 (6)C1B—N1—C3B—C4B79.6 (5)
O3—Cd1—O1—C2A43.8 (6)C5A—N1—C3B—C4B151.1 (7)
O4—Cd1—O2—C4B141.3 (4)C1A—N1—C3B—C4B104.2 (6)
O5—Cd1—O2—C4B106.7 (3)Cd1—N1—C3B—C4B39.2 (4)
O1—Cd1—O2—C4B38.5 (3)C4A—O2—C4B—C3B51.3 (5)
N2—Cd1—O2—C4B179.6 (3)Cd1—O2—C4B—C3B51.3 (4)
N1—Cd1—O2—C4B23.9 (3)N1—C3B—C4B—O263.0 (5)
O3—Cd1—O2—C4B94.2 (3)C3A—N1—C5B—C6B85.2 (7)
O4—Cd1—O2—C4A115.1 (7)C1B—N1—C5B—C6B173.0 (4)
O5—Cd1—O2—C4A132.8 (6)C5A—N1—C5B—C6B53.0 (13)
O1—Cd1—O2—C4A64.6 (6)C1A—N1—C5B—C6B156.8 (7)
N2—Cd1—O2—C4A154.3 (6)C3B—N1—C5B—C6B63.9 (6)
N1—Cd1—O2—C4A2.2 (6)Cd1—N1—C5B—C6B52.3 (6)
O3—Cd1—O2—C4A68.0 (6)C6A—O3—C6B—C5B60.4 (5)
O4—Cd1—O3—C6B108.5 (3)Cd1—O3—C6B—C5B14.9 (6)
O5—Cd1—O3—C6B153.3 (3)N1—C5B—C6B—O346.1 (7)
O1—Cd1—O3—C6B37.5 (3)C11—N2—C7—C8159.9 (2)
N2—Cd1—O3—C6B176.2 (3)C9—N2—C7—C873.7 (3)
O2—Cd1—O3—C6B81.8 (3)Cd1—N2—C7—C844.7 (3)
N1—Cd1—O3—C6B9.0 (3)Cd1—O4—C8—C736.7 (3)
O4—Cd1—O3—C6A79.5 (5)N2—C7—C8—O456.2 (3)
O5—Cd1—O3—C6A177.8 (5)C7—N2—C9—C10152.3 (2)
O1—Cd1—O3—C6A8.5 (5)C11—N2—C9—C1081.7 (3)
N2—Cd1—O3—C6A154.8 (5)Cd1—N2—C9—C1035.5 (2)
O2—Cd1—O3—C6A110.8 (5)Cd1—O5—C10—C952.1 (3)
N1—Cd1—O3—C6A37.9 (5)N2—C9—C10—O559.8 (3)
O5—Cd1—O4—C858.40 (19)C7—N2—C11—C1244.3 (4)
O1—Cd1—O4—C8128.9 (2)C9—N2—C11—C1281.4 (3)
N2—Cd1—O4—C810.65 (18)Cd1—N2—C11—C12159.6 (2)
O2—Cd1—O4—C851.3 (4)O6A—C12—C11—N246.2 (9)
N1—Cd1—O4—C8164.26 (18)O6B—C12—C11—N266.9 (9)
O3—Cd1—O4—C899.38 (19)O12—S2—N4—C20115.6 (2)
O4—Cd1—O5—C1095.32 (18)O11—S2—N4—C20114.4 (2)
O1—Cd1—O5—C10172.66 (19)C26—S2—N4—C200.4 (2)
N2—Cd1—O5—C1025.35 (18)S2—N4—C20—O10179.3 (3)
O2—Cd1—O5—C1071.42 (18)S2—N4—C20—C210.3 (3)
N1—Cd1—O5—C10135.56 (17)O10—C20—C21—C26179.6 (3)
O3—Cd1—O5—C101.4 (3)N4—C20—C21—C260.0 (4)
O4—Cd1—N1—C5B39.9 (3)O10—C20—C21—C220.1 (5)
O5—Cd1—N1—C5B165.0 (3)N4—C20—C21—C22179.7 (3)
O1—Cd1—N1—C5B112.9 (3)C26—C21—C22—C230.1 (5)
N2—Cd1—N1—C5B60.9 (3)C20—C21—C22—C23179.6 (3)
O2—Cd1—N1—C5B126.7 (3)C21—C22—C23—C240.5 (5)
O3—Cd1—N1—C5B30.6 (3)C22—C23—C24—C250.8 (6)
O4—Cd1—N1—C3A172.5 (6)C23—C24—C25—C260.4 (5)
O5—Cd1—N1—C3A47.3 (6)C22—C21—C26—C250.5 (4)
O1—Cd1—N1—C3A99.4 (6)C20—C21—C26—C25179.2 (3)
N2—Cd1—N1—C3A86.8 (6)C22—C21—C26—S2179.5 (2)
O2—Cd1—N1—C3A20.9 (6)C20—C21—C26—S20.3 (3)
O3—Cd1—N1—C3A117.1 (6)C24—C25—C26—C210.2 (5)
O4—Cd1—N1—C1B83.0 (2)C24—C25—C26—S2178.9 (3)
O5—Cd1—N1—C1B42.1 (3)O12—S2—C26—C21116.1 (2)
O1—Cd1—N1—C1B10.0 (2)O11—S2—C26—C21114.0 (2)
N2—Cd1—N1—C1B176.2 (2)N4—S2—C26—C210.4 (2)
O2—Cd1—N1—C1B110.3 (2)O12—S2—C26—C2565.1 (3)
O3—Cd1—N1—C1B153.5 (2)O11—S2—C26—C2564.9 (3)
O4—Cd1—N1—C5A61.2 (6)N4—S2—C26—C25179.2 (3)
O5—Cd1—N1—C5A173.7 (6)O8—S1—N3—C13117.3 (2)
O1—Cd1—N1—C5A134.2 (6)O9—S1—N3—C13113.5 (2)
N2—Cd1—N1—C5A39.6 (7)C19—S1—N3—C130.6 (2)
O2—Cd1—N1—C5A105.4 (6)S1—N3—C13—O7178.5 (3)
O3—Cd1—N1—C5A9.3 (6)S1—N3—C13—C141.6 (3)
O4—Cd1—N1—C1A45.3 (4)O7—C13—C14—C19178.0 (3)
O5—Cd1—N1—C1A79.8 (4)N3—C13—C14—C192.1 (4)
O1—Cd1—N1—C1A27.7 (4)O7—C13—C14—C154.6 (5)
N2—Cd1—N1—C1A146.1 (4)N3—C13—C14—C15175.3 (3)
O2—Cd1—N1—C1A148.1 (4)C19—C14—C15—C160.3 (5)
O3—Cd1—N1—C1A115.8 (4)C13—C14—C15—C16176.9 (3)
O4—Cd1—N1—C3B158.7 (2)C14—C15—C16—C170.6 (6)
O5—Cd1—N1—C3B76.1 (2)C15—C16—C17—C181.1 (6)
O1—Cd1—N1—C3B128.2 (2)C16—C17—C18—C190.6 (5)
N2—Cd1—N1—C3B58.0 (3)C15—C14—C19—C180.8 (4)
O2—Cd1—N1—C3B7.9 (2)C13—C14—C19—C18176.9 (3)
O3—Cd1—N1—C3B88.3 (2)C15—C14—C19—S1176.1 (2)
C5B—N1—C1A—C2A155.8 (10)C13—C14—C19—S11.6 (3)
C3A—N1—C1A—C2A71.6 (13)C17—C18—C19—C140.3 (5)
C1B—N1—C1A—C2A50.0 (5)C17—C18—C19—S1174.5 (3)
C5A—N1—C1A—C2A166.0 (8)O8—S1—C19—C14117.6 (2)
C3B—N1—C1A—C2A92.2 (10)O9—S1—C19—C14114.1 (2)
Cd1—N1—C1A—C2A51.4 (9)N3—S1—C19—C140.7 (2)
C2B—O1—C2A—C1A58.2 (7)O8—S1—C19—C1867.5 (3)
Cd1—O1—C2A—C1A23.9 (10)O9—S1—C19—C1860.8 (3)
N1—C1A—C2A—O151.3 (12)N3—S1—C19—C18175.5 (3)
C5B—N1—C3A—C4A95.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.861.902.749 (3)171
O2—H2···O7i0.861.832.679 (3)173
O3—H3···N3ii0.861.952.804 (3)178
O4—H4···O10iii0.861.862.715 (3)175
O5—H5···N40.861.862.714 (3)172
O6A—H6A···O90.881.972.778 (15)152
O6B—H6B···O90.881.932.78 (2)162
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+1, z+1.
(II) bis(triethanolamine)-κ3O,N,O';κ4O,N,O',O''-mercury(II) 1,2-bensisothiazol-3(2H)-onate 1,1-dioxide top
Crystal data top
[Hg(C6H15NO3)2]2C7H4NO3SZ = 2
Mr = 863.31F(000) = 860
Triclinic, P1Dx = 1.871 Mg m3
a = 12.588 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 15.934 (3) ÅCell parameters from 25 reflections
c = 7.9944 (14) Åθ = 20.4–26.8°
α = 91.791 (14)°µ = 5.23 mm1
β = 91.343 (14)°T = 293 K
γ = 72.965 (13)°Thin plate, colourless
V = 1532.2 (4) Å30.50 × 0.35 × 0.10 mm
Data collection top
Rigaku AFC-7S
diffractometer
5241 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.042
Graphite monochromatorθmax = 32.5°, θmin = 2.4°
ω/2θ scansh = 019
Absorption correction: ψ-scan
(North et al., 1968)
k = 2324
Tmin = 0.113, Tmax = 0.593l = 1212
11526 measured reflections3 standard reflections every 150 reflections
11091 independent reflections intensity decay: 4.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0765P)2]
where P = (Fo2 + 2Fc2)/3
11091 reflections(Δ/σ)max = 0.001
412 parametersΔρmax = 1.94 e Å3
0 restraintsΔρmin = 3.76 e Å3
Crystal data top
[Hg(C6H15NO3)2]2C7H4NO3Sγ = 72.965 (13)°
Mr = 863.31V = 1532.2 (4) Å3
Triclinic, P1Z = 2
a = 12.588 (2) ÅMo Kα radiation
b = 15.934 (3) ŵ = 5.23 mm1
c = 7.9944 (14) ÅT = 293 K
α = 91.791 (14)°0.50 × 0.35 × 0.10 mm
β = 91.343 (14)°
Data collection top
Rigaku AFC-7S
diffractometer
5241 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.113, Tmax = 0.5933 standard reflections every 150 reflections
11526 measured reflections intensity decay: 4.1%
11091 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.99Δρmax = 1.94 e Å3
11091 reflectionsΔρmin = 3.76 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.01084 (2)0.25302 (2)0.81924 (3)0.03477 (9)
O10.0417 (7)0.2680 (4)1.1382 (8)0.087 (3)
H10.05660.23121.19940.131*
O20.0262 (5)0.3673 (3)0.5962 (7)0.0478 (13)
H20.09270.36140.56530.072*
O30.1908 (5)0.2491 (4)0.6521 (7)0.0537 (15)
H30.19890.23360.55060.081*
O40.0351 (5)0.1171 (4)0.9305 (7)0.0503 (14)
H40.10040.11930.96150.075*
O50.1759 (5)0.2629 (4)0.9123 (7)0.0552 (15)
H50.17920.26931.01940.083*
O60.2015 (6)0.0232 (4)0.3932 (7)0.0565 (15)
H60.24570.00080.31280.085*
N10.1369 (5)0.3825 (4)0.8683 (7)0.0319 (12)
N20.1078 (5)0.1446 (4)0.6735 (6)0.0306 (12)
C10.1211 (10)0.4127 (6)1.0440 (11)0.066 (3)
H1A0.05470.43191.04740.079*
H1B0.18330.46381.06940.079*
C20.1113 (9)0.3506 (6)1.1770 (10)0.058 (2)
H2A0.08350.37301.27770.069*
H2B0.18450.34581.20060.069*
C30.1209 (8)0.4505 (6)0.7580 (14)0.067 (3)
H3A0.16830.45260.65990.080*
H3B0.14740.50680.81670.080*
C40.0090 (8)0.4415 (5)0.7009 (11)0.055 (2)
H4A0.00830.49330.64080.066*
H4B0.04130.43610.79640.066*
C50.2481 (8)0.3705 (7)0.8487 (13)0.066 (3)
H5A0.30270.42760.86110.079*
H5B0.25860.33500.93980.079*
C60.2722 (8)0.3290 (7)0.6886 (12)0.067 (3)
H6A0.34400.31840.69540.081*
H6B0.27610.36900.59820.081*
C70.1098 (7)0.0582 (5)0.7416 (10)0.0416 (17)
H7A0.16070.04570.83680.050*
H7B0.13750.01270.65680.050*
C80.0038 (7)0.0556 (5)0.7958 (11)0.0496 (19)
H8A0.05710.07120.70400.060*
H8B0.00050.00280.83140.060*
C90.2205 (6)0.1581 (5)0.6886 (9)0.0411 (16)
H9A0.27530.10490.65010.049*
H9B0.22300.20490.61550.049*
C100.2513 (7)0.1805 (6)0.8620 (10)0.0497 (19)
H10A0.24710.13530.93790.060*
H10B0.32690.18430.86490.060*
C110.0661 (6)0.1541 (5)0.4933 (8)0.0371 (15)
H11A0.00400.12980.48260.045*
H11B0.03770.21620.47110.045*
C120.1472 (8)0.1124 (6)0.3612 (10)0.051 (2)
H12A0.10870.11650.25380.061*
H12B0.20210.14390.35480.061*
S10.34415 (17)0.11775 (13)0.0159 (2)0.0425 (4)
N30.2483 (6)0.1548 (5)0.0652 (8)0.0458 (15)
O70.1969 (5)0.1979 (4)0.3206 (7)0.0576 (16)
O80.2977 (5)0.0293 (4)0.0785 (7)0.0583 (16)
O90.4123 (6)0.1776 (4)0.1336 (7)0.0664 (19)
C130.2613 (6)0.1702 (5)0.2315 (9)0.0399 (16)
C140.3608 (6)0.1490 (5)0.2961 (8)0.0344 (14)
C150.3982 (7)0.1556 (6)0.4592 (9)0.0472 (19)
H150.36180.17710.54540.057*
C160.4906 (8)0.1295 (7)0.4895 (10)0.059 (2)
H160.51870.13540.59720.070*
C170.5434 (8)0.0939 (7)0.3604 (12)0.059 (2)
H170.60360.07400.38460.071*
C180.5067 (7)0.0884 (6)0.1982 (10)0.0491 (19)
H180.54260.06710.11110.059*
C190.4138 (6)0.1161 (5)0.1702 (8)0.0342 (14)
S20.33536 (17)0.39041 (13)0.5671 (2)0.0412 (4)
N40.2387 (6)0.3528 (4)0.4873 (8)0.0444 (15)
O100.1888 (5)0.3063 (5)0.2332 (7)0.0597 (16)
O110.2893 (5)0.4805 (4)0.6231 (7)0.0561 (15)
O120.4004 (6)0.3331 (5)0.6901 (7)0.072 (2)
C200.2530 (7)0.3350 (5)0.3209 (9)0.0417 (17)
C210.3544 (6)0.3536 (5)0.2551 (9)0.0350 (15)
C220.3912 (7)0.3475 (6)0.0933 (9)0.048 (2)
H220.35450.32600.00750.058*
C230.4826 (8)0.3736 (6)0.0607 (10)0.056 (2)
H230.50790.37010.04840.067*
C240.5383 (7)0.4055 (6)0.1890 (11)0.056 (2)
H240.60040.42290.16450.067*
C250.5028 (6)0.4113 (5)0.3503 (10)0.0462 (18)
H250.54040.43160.43660.055*
C260.4098 (6)0.3862 (5)0.3808 (8)0.0357 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03639 (15)0.03228 (14)0.03249 (13)0.00562 (10)0.00007 (9)0.00323 (9)
O10.142 (7)0.053 (4)0.042 (3)0.011 (4)0.001 (4)0.008 (3)
O20.053 (3)0.042 (3)0.049 (3)0.014 (3)0.014 (3)0.007 (2)
O30.050 (3)0.065 (4)0.042 (3)0.013 (3)0.015 (3)0.013 (3)
O40.046 (3)0.057 (3)0.048 (3)0.015 (3)0.014 (3)0.006 (3)
O50.052 (4)0.063 (4)0.045 (3)0.011 (3)0.012 (3)0.013 (3)
O60.071 (4)0.052 (3)0.038 (3)0.005 (3)0.013 (3)0.009 (2)
N10.031 (3)0.036 (3)0.026 (3)0.003 (2)0.003 (2)0.002 (2)
N20.036 (3)0.035 (3)0.020 (2)0.008 (2)0.005 (2)0.006 (2)
C10.094 (8)0.055 (5)0.041 (5)0.011 (5)0.000 (5)0.003 (4)
C20.087 (7)0.048 (5)0.038 (4)0.020 (5)0.005 (4)0.004 (4)
C30.076 (7)0.039 (4)0.083 (7)0.009 (4)0.027 (5)0.016 (4)
C40.069 (6)0.044 (4)0.055 (5)0.022 (4)0.015 (4)0.004 (4)
C50.046 (5)0.070 (6)0.073 (6)0.004 (4)0.005 (5)0.003 (5)
C60.043 (5)0.091 (7)0.058 (6)0.007 (5)0.010 (4)0.013 (5)
C70.052 (5)0.029 (3)0.040 (4)0.007 (3)0.002 (3)0.001 (3)
C80.060 (5)0.046 (4)0.050 (5)0.025 (4)0.002 (4)0.007 (4)
C90.042 (4)0.048 (4)0.037 (4)0.020 (3)0.005 (3)0.006 (3)
C100.043 (4)0.059 (5)0.049 (4)0.019 (4)0.010 (4)0.010 (4)
C110.045 (4)0.043 (4)0.021 (3)0.011 (3)0.003 (3)0.008 (3)
C120.063 (6)0.051 (5)0.038 (4)0.017 (4)0.008 (4)0.001 (3)
S10.0534 (12)0.0487 (10)0.0217 (8)0.0094 (9)0.0025 (7)0.0041 (7)
N30.048 (4)0.060 (4)0.032 (3)0.019 (3)0.009 (3)0.001 (3)
O70.055 (4)0.083 (4)0.047 (3)0.039 (3)0.001 (3)0.001 (3)
O80.079 (4)0.053 (3)0.037 (3)0.011 (3)0.012 (3)0.018 (3)
O90.086 (5)0.073 (4)0.026 (3)0.001 (4)0.011 (3)0.006 (3)
C130.041 (4)0.046 (4)0.038 (4)0.021 (3)0.003 (3)0.001 (3)
C140.034 (4)0.038 (4)0.030 (3)0.008 (3)0.001 (3)0.000 (3)
C150.060 (5)0.060 (5)0.027 (3)0.026 (4)0.005 (3)0.006 (3)
C160.062 (6)0.083 (7)0.036 (4)0.029 (5)0.025 (4)0.007 (4)
C170.046 (5)0.081 (7)0.058 (5)0.029 (5)0.011 (4)0.003 (5)
C180.046 (5)0.059 (5)0.046 (4)0.022 (4)0.005 (4)0.008 (4)
C190.033 (4)0.037 (4)0.031 (3)0.007 (3)0.001 (3)0.005 (3)
S20.0483 (11)0.0522 (11)0.0222 (7)0.0142 (9)0.0025 (7)0.0036 (7)
N40.052 (4)0.054 (4)0.033 (3)0.025 (3)0.005 (3)0.003 (3)
O100.068 (4)0.086 (5)0.042 (3)0.050 (4)0.001 (3)0.013 (3)
O110.064 (4)0.063 (4)0.040 (3)0.019 (3)0.007 (3)0.023 (3)
O120.083 (5)0.096 (5)0.027 (3)0.010 (4)0.015 (3)0.013 (3)
C200.049 (5)0.051 (4)0.031 (3)0.024 (4)0.005 (3)0.003 (3)
C210.040 (4)0.034 (3)0.033 (3)0.013 (3)0.003 (3)0.004 (3)
C220.059 (5)0.065 (5)0.028 (3)0.030 (4)0.006 (3)0.013 (3)
C230.068 (6)0.072 (6)0.036 (4)0.033 (5)0.020 (4)0.009 (4)
C240.045 (5)0.067 (6)0.060 (5)0.025 (4)0.018 (4)0.012 (4)
C250.038 (4)0.058 (5)0.045 (4)0.019 (4)0.001 (3)0.012 (4)
C260.035 (4)0.041 (4)0.029 (3)0.008 (3)0.001 (3)0.003 (3)
Geometric parameters (Å, º) top
Hg1—N12.234 (5)C9—C101.492 (10)
Hg1—N22.239 (5)C9—H9A0.9700
Hg1—O12.581 (7)C9—H9B0.9700
Hg1—O22.730 (5)C10—H10A0.9700
Hg1—O32.618 (5)C10—H10B0.9700
Hg1—O42.468 (5)C11—C121.486 (11)
Hg1—O52.497 (6)C11—H11A0.9700
O1—C21.380 (11)C11—H11B0.9700
O1—H10.8407C12—H12A0.9700
O2—C41.393 (9)C12—H12B0.9700
O2—H20.8563S1—O81.437 (6)
O3—C61.408 (11)S1—O91.439 (6)
O3—H30.8535S1—N31.607 (7)
O4—C81.416 (10)S1—C191.749 (7)
O4—H40.8547N3—C131.350 (9)
O5—C101.429 (10)O7—C131.233 (9)
O5—H50.8608C13—C141.496 (10)
O6—C121.413 (10)C14—C191.369 (10)
O6—H60.8580C14—C151.387 (10)
N1—C51.472 (11)C15—C161.375 (12)
N1—C31.479 (10)C15—H150.9300
N1—C11.498 (10)C16—C171.407 (13)
N2—C71.490 (9)C16—H160.9300
N2—C91.497 (9)C17—C181.378 (12)
N2—C111.519 (8)C17—H170.9300
C1—C21.454 (12)C18—C191.390 (11)
C1—H1A0.9700C18—H180.9300
C1—H1B0.9700S2—O121.432 (6)
C2—H2A0.9700S2—O111.443 (6)
C2—H2B0.9700S2—N41.617 (7)
C3—C41.457 (12)S2—C261.767 (7)
C3—H3A0.9700N4—C201.356 (9)
C3—H3B0.9700O10—C201.234 (9)
C4—H4A0.9700C20—C211.502 (10)
C4—H4B0.9700C21—C221.376 (10)
C5—C61.488 (13)C21—C261.383 (10)
C5—H5A0.9700C22—C231.365 (12)
C5—H5B0.9700C22—H220.9300
C6—H6A0.9700C23—C241.395 (12)
C6—H6B0.9700C23—H230.9300
C7—C81.516 (11)C24—C251.367 (12)
C7—H7A0.9700C24—H240.9300
C7—H7B0.9700C25—C261.373 (10)
C8—H8A0.9700C25—H250.9300
C8—H8B0.9700
N1—Hg1—N2158.2 (2)C8—C7—H7B109.1
N1—Hg1—O4120.61 (19)H7A—C7—H7B107.8
N2—Hg1—O475.49 (19)O4—C8—C7106.5 (6)
N1—Hg1—O5108.9 (2)O4—C8—H8A110.4
N2—Hg1—O576.2 (2)C7—C8—H8A110.4
O4—Hg1—O5108.0 (2)O4—C8—H8B110.4
N1—Hg1—O172.9 (2)C7—C8—H8B110.4
N2—Hg1—O1128.7 (2)H8A—C8—H8B108.6
O4—Hg1—O169.0 (2)C10—C9—N2114.1 (6)
O5—Hg1—O180.9 (2)C10—C9—H9A108.7
N1—Hg1—O373.5 (2)N2—C9—H9A108.7
N2—Hg1—O396.75 (19)C10—C9—H9B108.7
O4—Hg1—O380.8 (2)N2—C9—H9B108.7
O5—Hg1—O3166.47 (19)H9A—C9—H9B107.6
O1—Hg1—O3112.2 (2)O5—C10—C9108.4 (7)
N1—Hg1—O273.05 (18)O5—C10—H10A110.0
N2—Hg1—O287.82 (18)C9—C10—H10A110.0
O4—Hg1—O2159.80 (18)O5—C10—H10B110.0
O5—Hg1—O278.23 (19)C9—C10—H10B110.0
O1—Hg1—O2131.2 (2)H10A—C10—H10B108.4
O3—Hg1—O290.11 (18)C12—C11—N2117.2 (6)
C2—O1—Hg1109.4 (5)C12—C11—H11A108.0
C2—O1—H1109.2N2—C11—H11A108.0
Hg1—O1—H1126.6C12—C11—H11B108.0
C4—O2—Hg195.6 (4)N2—C11—H11B108.0
C4—O2—H2109.3H11A—C11—H11B107.3
Hg1—O2—H2119.1O6—C12—C11111.9 (7)
C6—O3—Hg1106.8 (5)O6—C12—H12A109.2
C6—O3—H3109.1C11—C12—H12A109.2
Hg1—O3—H3130.1O6—C12—H12B109.2
C8—O4—Hg1103.6 (4)C11—C12—H12B109.2
C8—O4—H4109.3H12A—C12—H12B107.9
Hg1—O4—H4116.7O8—S1—O9115.2 (4)
C10—O5—Hg1104.7 (4)O8—S1—N3110.4 (4)
C10—O5—H5109.3O9—S1—N3111.8 (4)
Hg1—O5—H5110.9O8—S1—C19109.2 (4)
C12—O6—H6109.3O9—S1—C19112.1 (4)
C5—N1—C3112.6 (7)N3—S1—C1996.7 (3)
C5—N1—C1109.6 (7)C13—N3—S1111.7 (5)
C3—N1—C1106.3 (7)O7—C13—N3123.3 (7)
C5—N1—Hg1108.2 (5)O7—C13—C14123.8 (7)
C3—N1—Hg1111.3 (5)N3—C13—C14112.9 (6)
C1—N1—Hg1108.8 (5)C19—C14—C15120.7 (7)
C7—N2—C9110.5 (6)C19—C14—C13110.8 (6)
C7—N2—C11112.0 (5)C15—C14—C13128.5 (7)
C9—N2—C11110.5 (5)C16—C15—C14118.0 (7)
C7—N2—Hg1109.8 (4)C16—C15—H15121.0
C9—N2—Hg1107.9 (4)C14—C15—H15121.0
C11—N2—Hg1105.9 (4)C15—C16—C17121.1 (7)
C2—C1—N1117.9 (8)C15—C16—H16119.5
C2—C1—H1A107.8C17—C16—H16119.5
N1—C1—H1A107.8C18—C17—C16120.6 (8)
C2—C1—H1B107.8C18—C17—H17119.7
N1—C1—H1B107.8C16—C17—H17119.7
H1A—C1—H1B107.2C17—C18—C19117.2 (7)
O1—C2—C1113.2 (8)C17—C18—H18121.4
O1—C2—H2A108.9C19—C18—H18121.4
C1—C2—H2A108.9C14—C19—C18122.3 (7)
O1—C2—H2B108.9C14—C19—S1107.8 (5)
C1—C2—H2B108.9C18—C19—S1129.9 (6)
H2A—C2—H2B107.7O12—S2—O11114.9 (4)
C4—C3—N1118.0 (7)O12—S2—N4111.7 (4)
C4—C3—H3A107.8O11—S2—N4110.3 (4)
N1—C3—H3A107.8O12—S2—C26111.7 (4)
C4—C3—H3B107.8O11—S2—C26109.8 (4)
N1—C3—H3B107.8N4—S2—C2697.0 (3)
H3A—C3—H3B107.1C20—N4—S2111.5 (5)
O2—C4—C3109.6 (7)O10—C20—N4123.0 (7)
O2—C4—H4A109.7O10—C20—C21123.7 (6)
C3—C4—H4A109.7N4—C20—C21113.3 (6)
O2—C4—H4B109.7C22—C21—C26119.7 (7)
C3—C4—H4B109.7C22—C21—C20129.1 (7)
H4A—C4—H4B108.2C26—C21—C20111.1 (6)
N1—C5—C6116.8 (8)C23—C22—C21118.9 (7)
N1—C5—H5A108.1C23—C22—H22120.5
C6—C5—H5A108.1C21—C22—H22120.5
N1—C5—H5B108.1C22—C23—C24120.8 (7)
C6—C5—H5B108.1C22—C23—H23119.6
H5A—C5—H5B107.3C24—C23—H23119.6
O3—C6—C5112.2 (8)C25—C24—C23120.7 (8)
O3—C6—H6A109.2C25—C24—H24119.6
C5—C6—H6A109.2C23—C24—H24119.6
O3—C6—H6B109.2C24—C25—C26117.8 (7)
C5—C6—H6B109.2C24—C25—H25121.1
H6A—C6—H6B107.9C26—C25—H25121.1
N2—C7—C8112.7 (6)C25—C26—C21122.0 (7)
N2—C7—H7A109.1C25—C26—S2130.8 (6)
C8—C7—H7A109.1C21—C26—S2107.2 (5)
N2—C7—H7B109.1
N1—Hg1—O1—C25.5 (7)Hg1—O2—C4—C354.7 (7)
N2—Hg1—O1—C2171.6 (6)N1—C3—C4—O265.9 (12)
O4—Hg1—O1—C2139.1 (8)C3—N1—C5—C670.0 (11)
O5—Hg1—O1—C2107.6 (7)C1—N1—C5—C6171.9 (8)
O3—Hg1—O1—C269.1 (7)Hg1—N1—C5—C653.4 (10)
O2—Hg1—O1—C242.0 (8)Hg1—O3—C6—C522.2 (10)
N1—Hg1—O2—C431.4 (5)N1—C5—C6—O352.4 (12)
N2—Hg1—O2—C4159.2 (5)C9—N2—C7—C8156.5 (6)
O4—Hg1—O2—C4166.9 (5)C11—N2—C7—C879.8 (7)
O5—Hg1—O2—C482.8 (5)Hg1—N2—C7—C837.6 (7)
O1—Hg1—O2—C416.2 (6)Hg1—O4—C8—C752.2 (6)
O3—Hg1—O2—C4104.1 (5)N2—C7—C8—O464.4 (8)
N1—Hg1—O3—C62.6 (6)C7—N2—C9—C1075.3 (8)
N2—Hg1—O3—C6162.7 (6)C11—N2—C9—C10160.1 (6)
O4—Hg1—O3—C6123.2 (6)Hg1—N2—C9—C1044.8 (7)
O5—Hg1—O3—C6105.2 (9)Hg1—O5—C10—C943.9 (7)
O1—Hg1—O3—C660.5 (6)N2—C9—C10—O563.6 (9)
O2—Hg1—O3—C674.9 (6)C7—N2—C11—C1281.1 (8)
N1—Hg1—O4—C8137.8 (5)C9—N2—C11—C1242.6 (8)
N2—Hg1—O4—C826.2 (5)Hg1—N2—C11—C12159.3 (6)
O5—Hg1—O4—C896.1 (5)N2—C11—C12—O651.7 (9)
O1—Hg1—O4—C8168.6 (5)O8—S1—N3—C13114.7 (6)
O3—Hg1—O4—C873.3 (5)O9—S1—N3—C13115.7 (6)
O2—Hg1—O4—C89.0 (8)C19—S1—N3—C131.3 (6)
N1—Hg1—O5—C10174.9 (5)S1—N3—C13—O7179.2 (7)
N2—Hg1—O5—C1016.9 (5)S1—N3—C13—C140.1 (9)
O4—Hg1—O5—C1052.5 (5)O7—C13—C14—C19177.4 (8)
O1—Hg1—O5—C10116.8 (5)N3—C13—C14—C191.8 (9)
O3—Hg1—O5—C1076.6 (9)O7—C13—C14—C150.2 (13)
O2—Hg1—O5—C10107.6 (5)N3—C13—C14—C15179.1 (8)
N2—Hg1—N1—C592.2 (7)C19—C14—C15—C161.0 (12)
O4—Hg1—N1—C541.9 (6)C13—C14—C15—C16178.0 (8)
O5—Hg1—N1—C5167.5 (5)C14—C15—C16—C172.4 (14)
O1—Hg1—N1—C593.8 (6)C15—C16—C17—C183.2 (16)
O3—Hg1—N1—C526.5 (5)C16—C17—C18—C192.4 (14)
O2—Hg1—N1—C5121.7 (5)C15—C14—C19—C180.3 (12)
N2—Hg1—N1—C331.9 (9)C13—C14—C19—C18177.8 (7)
O4—Hg1—N1—C3166.1 (6)C15—C14—C19—S1179.9 (6)
O5—Hg1—N1—C368.3 (6)C13—C14—C19—S12.6 (7)
O1—Hg1—N1—C3142.1 (6)C17—C18—C19—C141.1 (12)
O3—Hg1—N1—C397.7 (6)C17—C18—C19—S1179.4 (7)
O2—Hg1—N1—C32.4 (6)O8—S1—C19—C14116.6 (5)
N2—Hg1—N1—C1148.7 (6)O9—S1—C19—C14114.4 (6)
O4—Hg1—N1—C177.1 (6)N3—S1—C19—C142.3 (6)
O5—Hg1—N1—C148.5 (6)O8—S1—C19—C1863.8 (8)
O1—Hg1—N1—C125.3 (6)O9—S1—C19—C1865.1 (9)
O3—Hg1—N1—C1145.5 (6)N3—S1—C19—C18178.1 (8)
O2—Hg1—N1—C1119.2 (6)O12—S2—N4—C20117.0 (6)
N1—Hg1—N2—C7146.3 (6)O11—S2—N4—C20113.9 (6)
O4—Hg1—N2—C75.9 (4)C26—S2—N4—C200.3 (7)
O5—Hg1—N2—C7107.2 (5)S2—N4—C20—O10179.4 (7)
O1—Hg1—N2—C741.0 (6)S2—N4—C20—C210.7 (9)
O3—Hg1—N2—C784.6 (5)O10—C20—C21—C223.7 (14)
O2—Hg1—N2—C7174.4 (5)N4—C20—C21—C22176.4 (8)
N1—Hg1—N2—C993.2 (7)O10—C20—C21—C26179.3 (8)
O4—Hg1—N2—C9126.4 (5)N4—C20—C21—C260.8 (10)
O5—Hg1—N2—C913.3 (4)C26—C21—C22—C230.4 (13)
O1—Hg1—N2—C979.4 (5)C20—C21—C22—C23175.6 (8)
O3—Hg1—N2—C9154.9 (4)C21—C22—C23—C240.3 (15)
O2—Hg1—N2—C965.1 (4)C22—C23—C24—C250.0 (15)
N1—Hg1—N2—C1125.2 (8)C23—C24—C25—C261.0 (14)
O4—Hg1—N2—C11115.2 (4)C24—C25—C26—C211.8 (12)
O5—Hg1—N2—C11131.7 (4)C24—C25—C26—S2175.8 (7)
O1—Hg1—N2—C11162.2 (4)C22—C21—C26—C251.5 (12)
O3—Hg1—N2—C1136.5 (4)C20—C21—C26—C25177.5 (7)
O2—Hg1—N2—C1153.3 (4)C22—C21—C26—S2176.6 (6)
C5—N1—C1—C269.5 (11)C20—C21—C26—S20.6 (8)
C3—N1—C1—C2168.6 (9)O12—S2—C26—C2565.7 (9)
Hg1—N1—C1—C248.6 (10)O11—S2—C26—C2563.1 (9)
Hg1—O1—C2—C116.9 (11)N4—S2—C26—C25177.6 (8)
N1—C1—C2—O144.6 (13)O12—S2—C26—C21116.5 (6)
C5—N1—C3—C4150.4 (9)O11—S2—C26—C21114.7 (6)
C1—N1—C3—C489.5 (10)N4—S2—C26—C210.2 (6)
Hg1—N1—C3—C428.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.842.242.951 (10)143
O2—H2···N40.861.922.775 (8)177
O3—H3···O7ii0.851.912.754 (8)172
O4—H4···N3i0.851.972.806 (8)164
O5—H5···O10iii0.861.802.650 (8)167
O6—H6···O80.862.002.813 (8)159
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd(C6H15NO3)2]2C7H4NO3S[Hg(C6H15NO3)2]2C7H4NO3S
Mr775.12863.31
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)13.2825 (9), 14.9093 (11), 8.9376 (10)12.588 (2), 15.934 (3), 7.9944 (14)
α, β, γ (°)98.002 (8), 102.662 (8), 63.762 (5)91.791 (14), 91.343 (14), 72.965 (13)
V3)1547.2 (2)1532.2 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.915.23
Crystal size (mm)0.4 × 0.2 × 0.20.50 × 0.35 × 0.10
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Rigaku AFC-7S
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
ψ-scan
(North et al., 1968)
Tmin, Tmax0.797, 0.8340.113, 0.593
No. of measured, independent and
observed [I > 2σ(I)] reflections
12760, 11203, 7948 11526, 11091, 5241
Rint0.0250.042
(sin θ/λ)max1)0.7560.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.02 0.050, 0.159, 0.99
No. of reflections1120311091
No. of parameters478412
No. of restraints1450
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.871.94, 3.76

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2000), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Cd1—O42.3274 (19)Cd1—O22.3862 (19)
Cd1—O52.3464 (19)Cd1—N12.392 (2)
Cd1—O12.3676 (19)Cd1—O32.415 (2)
Cd1—N22.375 (2)
O4—Cd1—O5102.28 (8)O5—Cd1—N1125.92 (7)
O4—Cd1—O181.81 (7)O1—Cd1—N172.11 (7)
O5—Cd1—O172.95 (7)N2—Cd1—N1154.11 (7)
O4—Cd1—N274.86 (7)O2—Cd1—N173.97 (8)
O5—Cd1—N273.64 (7)O4—Cd1—O380.07 (8)
O1—Cd1—N2133.59 (7)O5—Cd1—O3158.08 (7)
O4—Cd1—O2166.01 (7)O1—Cd1—O3128.66 (7)
O5—Cd1—O282.73 (8)N2—Cd1—O386.21 (7)
O1—Cd1—O2112.18 (7)O2—Cd1—O390.46 (8)
N2—Cd1—O294.39 (7)N1—Cd1—O371.15 (7)
O4—Cd1—N1111.99 (8)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.861.902.749 (3)171
O2—H2···O7i0.861.832.679 (3)173
O3—H3···N3ii0.861.952.804 (3)178
O4—H4···O10iii0.861.862.715 (3)175
O5—H5···N40.861.862.714 (3)172
O6A—H6A···O90.881.972.778 (15)152
O6B—H6B···O90.881.932.78 (2)162
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Hg1—N12.234 (5)Hg1—O32.618 (5)
Hg1—N22.239 (5)Hg1—O42.468 (5)
Hg1—O12.581 (7)Hg1—O52.497 (6)
Hg1—O22.730 (5)
N1—Hg1—N2158.2 (2)N2—Hg1—O396.75 (19)
N1—Hg1—O4120.61 (19)O4—Hg1—O380.8 (2)
N2—Hg1—O475.49 (19)O5—Hg1—O3166.47 (19)
N1—Hg1—O5108.9 (2)O1—Hg1—O3112.2 (2)
N2—Hg1—O576.2 (2)N1—Hg1—O273.05 (18)
O4—Hg1—O5108.0 (2)N2—Hg1—O287.82 (18)
N1—Hg1—O172.9 (2)O4—Hg1—O2159.80 (18)
N2—Hg1—O1128.7 (2)O5—Hg1—O278.23 (19)
O4—Hg1—O169.0 (2)O1—Hg1—O2131.2 (2)
O5—Hg1—O180.9 (2)O3—Hg1—O290.11 (18)
N1—Hg1—O373.5 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.842.242.951 (10)143
O2—H2···N40.861.922.775 (8)177
O3—H3···O7ii0.851.912.754 (8)172
O4—H4···N3i0.851.972.806 (8)164
O5—H5···O10iii0.861.802.650 (8)167
O6—H6···O80.862.002.813 (8)159
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds