
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104008273/av1177sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270104008273/av1177Isup2.hkl |
CCDC reference: 243584
A mixture of Cu(CH3COO)2·H2O (0.303 g,1.5 mmol), 1,2,4,5-benzenetetracarboxylic acid (0.064 g, 0.25 mmol) and 4,4'-bpy (0.039 g, 0.25 mmol) was dissolved in H2O (18 ml) and kept at 418 K for 3 d in a 23 ml Teflon-lined bomb. After slow cooling of the reaction mixture to room temperature, blue crystals of (I) appeared.
H atoms bonded to C atoms were located theoretically, with C—H distances of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). Please check added text. H atoms bonded to O atoms were located in difference maps and refined isotropically; the four O—H distances involving the water molecules were restrained from 0.79 to 0.82 Å.
Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
[Cu6(C10H2O8)3(C10H8N2)3(H2O)2]·2H2O | Z = 1 |
Mr = 1672.20 | F(000) = 838 |
Triclinic, P1 | Dx = 1.976 Mg m−3 |
a = 10.2545 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.8207 (8) Å | Cell parameters from 2833 reflections |
c = 13.7264 (10) Å | θ = 1.5–25.1° |
α = 91.305 (1)° | µ = 2.34 mm−1 |
β = 90.461 (2)° | T = 293 K |
γ = 112.655 (2)° | Prism, blue |
V = 1404.97 (17) Å3 | 0.36 × 0.20 × 0.16 mm |
Siemens SMART CCD area-detector diffractometer | 4938 independent reflections |
Radiation source: fine-focus sealed tube | 3554 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→12 |
Tmin = 0.523, Tmax = 0.688 | k = −11→12 |
7378 measured reflections | l = −15→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
4938 reflections | (Δ/σ)max = 0.006 |
463 parameters | Δρmax = 0.86 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Cu6(C10H2O8)3(C10H8N2)3(H2O)2]·2H2O | γ = 112.655 (2)° |
Mr = 1672.20 | V = 1404.97 (17) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.2545 (7) Å | Mo Kα radiation |
b = 10.8207 (8) Å | µ = 2.34 mm−1 |
c = 13.7264 (10) Å | T = 293 K |
α = 91.305 (1)° | 0.36 × 0.20 × 0.16 mm |
β = 90.461 (2)° |
Siemens SMART CCD area-detector diffractometer | 4938 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3554 reflections with I > 2σ(I) |
Tmin = 0.523, Tmax = 0.688 | Rint = 0.036 |
7378 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.86 e Å−3 |
4938 reflections | Δρmin = −0.55 e Å−3 |
463 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.85137 (7) | 0.44331 (7) | 0.50733 (5) | 0.0173 (2) | |
Cu2 | 0.88223 (8) | 0.12335 (7) | 0.19502 (5) | 0.0190 (2) | |
Cu3 | 1.19740 (8) | 0.24913 (7) | 0.15456 (5) | 0.0218 (2) | |
O1 | 0.9421 (4) | 0.4765 (4) | 0.3818 (3) | 0.0205 (9) | |
O1W | 1.4814 (6) | 0.0578 (6) | 0.1287 (4) | 0.0459 (15) | |
H1WA | 1.430 (9) | −0.015 (8) | 0.097 (6) | 0.069* | |
H1WB | 1.547 (10) | 0.082 (9) | 0.097 (6) | 0.069* | |
O2 | 0.7331 (5) | 0.4742 (4) | 0.3371 (3) | 0.0293 (11) | |
O2W | 1.4004 (5) | 0.2611 (5) | 0.1941 (3) | 0.0291 (11) | |
H2WB | 1.390 (8) | 0.251 (7) | 0.255 (5) | 0.044* | |
H2WA | 1.437 (8) | 0.211 (7) | 0.177 (5) | 0.044* | |
O3 | 0.9062 (4) | 0.9559 (4) | 0.1982 (3) | 0.0203 (9) | |
O4 | 1.1232 (4) | 1.0313 (4) | 0.1349 (3) | 0.0195 (9) | |
O5 | 1.0722 (5) | 0.8573 (4) | −0.0563 (3) | 0.0217 (10) | |
O6 | 1.2825 (5) | 0.8663 (4) | −0.0051 (3) | 0.0321 (11) | |
O7 | 1.1304 (4) | 0.3977 (4) | 0.1492 (3) | 0.0220 (10) | |
O8 | 0.9049 (4) | 0.3103 (4) | 0.2000 (3) | 0.0206 (9) | |
O11 | 0.8853 (4) | 0.6372 (4) | 0.5197 (3) | 0.0184 (9) | |
O12 | 1.1173 (4) | 0.7244 (4) | 0.4845 (3) | 0.0183 (9) | |
O13 | 1.1202 (4) | 1.2093 (4) | 0.2852 (3) | 0.0195 (9) | |
O14 | 1.3088 (5) | 1.2185 (4) | 0.3729 (3) | 0.0288 (11) | |
N1 | 0.7105 (5) | 0.3978 (5) | 0.6105 (3) | 0.0201 (11) | |
N2 | 0.2702 (5) | 0.2803 (5) | 1.0193 (3) | 0.0219 (12) | |
N3 | 0.7430 (5) | 0.0756 (5) | 0.3046 (3) | 0.0183 (11) | |
C1 | 0.6215 (7) | 0.4603 (6) | 0.6188 (4) | 0.0246 (14) | |
H1 | 0.6220 | 0.5203 | 0.5712 | 0.030* | |
C2 | 0.5282 (7) | 0.4399 (6) | 0.6951 (4) | 0.0249 (15) | |
H2 | 0.4680 | 0.4858 | 0.6984 | 0.030* | |
C3 | 0.5259 (6) | 0.3509 (6) | 0.7659 (4) | 0.0206 (13) | |
C4 | 0.6180 (6) | 0.2843 (6) | 0.7565 (4) | 0.0242 (15) | |
H4 | 0.6190 | 0.2231 | 0.8027 | 0.029* | |
C5 | 0.7065 (7) | 0.3095 (6) | 0.6792 (4) | 0.0268 (15) | |
H5 | 0.7665 | 0.2637 | 0.6736 | 0.032* | |
C6 | 0.4324 (6) | 0.3265 (6) | 0.8515 (4) | 0.0208 (13) | |
C7 | 0.3892 (7) | 0.4246 (6) | 0.8910 (4) | 0.0268 (15) | |
H7 | 0.4134 | 0.5065 | 0.8610 | 0.032* | |
C8 | 0.3109 (7) | 0.3994 (6) | 0.9743 (4) | 0.0239 (14) | |
H8 | 0.2849 | 0.4663 | 1.0008 | 0.029* | |
C9 | 0.3079 (7) | 0.1866 (6) | 0.9788 (4) | 0.0232 (14) | |
H9 | 0.2784 | 0.1039 | 1.0081 | 0.028* | |
C10 | 0.3876 (7) | 0.2042 (6) | 0.8966 (4) | 0.0263 (15) | |
H10 | 0.4111 | 0.1351 | 0.8716 | 0.032* | |
C21 | 0.9319 (6) | 0.5839 (5) | 0.2369 (4) | 0.0148 (12) | |
C22 | 0.9316 (6) | 0.7111 (6) | 0.2302 (4) | 0.0177 (13) | |
H22 | 0.8790 | 0.7386 | 0.2742 | 0.021* | |
C23 | 1.0074 (6) | 0.7988 (5) | 0.1599 (4) | 0.0154 (12) | |
C24 | 1.0800 (6) | 0.7546 (6) | 0.0906 (4) | 0.0163 (13) | |
C25 | 1.0817 (6) | 0.6285 (6) | 0.0973 (4) | 0.0187 (13) | |
H25 | 1.1320 | 0.6002 | 0.0520 | 0.022* | |
C26 | 1.0096 (6) | 0.5413 (6) | 0.1711 (4) | 0.0155 (13) | |
C27 | 0.8576 (7) | 0.5019 (5) | 0.3224 (4) | 0.0174 (13) | |
C28 | 1.0127 (6) | 0.9408 (6) | 0.1624 (4) | 0.0151 (12) | |
C29 | 1.1537 (7) | 0.8365 (6) | 0.0038 (4) | 0.0219 (15) | |
C30 | 1.0159 (6) | 0.4060 (6) | 0.1737 (4) | 0.0169 (13) | |
C31 | 0.6705 (7) | 0.1526 (6) | 0.3265 (4) | 0.0244 (14) | |
H31 | 0.6849 | 0.2274 | 0.2893 | 0.029* | |
C32 | 0.5753 (7) | 0.1260 (6) | 0.4018 (4) | 0.0231 (14) | |
H32 | 0.5290 | 0.1833 | 0.4146 | 0.028* | |
C33 | 0.5483 (6) | 0.0136 (6) | 0.4587 (4) | 0.0209 (13) | |
C34 | 0.6209 (7) | −0.0671 (6) | 0.4333 (4) | 0.0258 (15) | |
H34 | 0.6060 | −0.1440 | 0.4681 | 0.031* | |
C35 | 0.7145 (7) | −0.0356 (6) | 0.3576 (4) | 0.0224 (14) | |
H35 | 0.7599 | −0.0930 | 0.3422 | 0.027* | |
C36 | 1.0002 (6) | 0.7313 (5) | 0.5032 (4) | 0.0148 (13) | |
C37 | 0.9987 (6) | 0.8695 (5) | 0.5033 (4) | 0.0149 (12) | |
C38 | 1.0841 (6) | 0.9638 (6) | 0.4377 (4) | 0.0186 (13) | |
H38 | 1.1421 | 0.9396 | 0.3962 | 0.022* | |
C39 | 1.0839 (6) | 1.0899 (6) | 0.4332 (4) | 0.0169 (13) | |
C40 | 1.1799 (7) | 1.1836 (6) | 0.3590 (4) | 0.0170 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0218 (4) | 0.0142 (4) | 0.0182 (4) | 0.0091 (3) | 0.0109 (3) | 0.0045 (3) |
Cu2 | 0.0272 (5) | 0.0142 (4) | 0.0181 (4) | 0.0103 (3) | 0.0133 (3) | 0.0052 (3) |
Cu3 | 0.0310 (5) | 0.0239 (4) | 0.0170 (4) | 0.0172 (4) | 0.0133 (3) | 0.0078 (3) |
O1 | 0.029 (2) | 0.020 (2) | 0.015 (2) | 0.0114 (19) | 0.0104 (18) | 0.0041 (17) |
O1W | 0.037 (3) | 0.055 (4) | 0.048 (3) | 0.020 (3) | 0.011 (3) | −0.010 (3) |
O2 | 0.022 (3) | 0.036 (3) | 0.031 (3) | 0.012 (2) | 0.011 (2) | 0.015 (2) |
O2W | 0.029 (3) | 0.044 (3) | 0.020 (2) | 0.019 (2) | 0.014 (2) | 0.003 (2) |
O3 | 0.030 (2) | 0.013 (2) | 0.022 (2) | 0.0128 (19) | 0.0100 (18) | 0.0023 (17) |
O4 | 0.025 (2) | 0.013 (2) | 0.023 (2) | 0.0097 (19) | 0.0141 (18) | 0.0029 (17) |
O5 | 0.033 (3) | 0.021 (2) | 0.018 (2) | 0.017 (2) | 0.0142 (19) | 0.0098 (18) |
O6 | 0.029 (3) | 0.032 (3) | 0.034 (3) | 0.011 (2) | 0.017 (2) | 0.008 (2) |
O7 | 0.029 (3) | 0.016 (2) | 0.025 (2) | 0.014 (2) | 0.0114 (19) | 0.0049 (18) |
O8 | 0.027 (2) | 0.011 (2) | 0.025 (2) | 0.0073 (19) | 0.0154 (19) | 0.0044 (17) |
O11 | 0.026 (2) | 0.012 (2) | 0.019 (2) | 0.0094 (19) | 0.0113 (18) | 0.0027 (17) |
O12 | 0.021 (2) | 0.012 (2) | 0.025 (2) | 0.0083 (18) | 0.0103 (18) | 0.0048 (17) |
O13 | 0.023 (2) | 0.023 (2) | 0.014 (2) | 0.0102 (19) | 0.0127 (17) | 0.0086 (17) |
O14 | 0.023 (3) | 0.035 (3) | 0.026 (2) | 0.007 (2) | 0.009 (2) | 0.012 (2) |
N1 | 0.023 (3) | 0.017 (3) | 0.021 (3) | 0.008 (2) | 0.010 (2) | 0.004 (2) |
N2 | 0.026 (3) | 0.022 (3) | 0.017 (3) | 0.009 (2) | 0.007 (2) | 0.005 (2) |
N3 | 0.022 (3) | 0.019 (3) | 0.015 (2) | 0.010 (2) | 0.005 (2) | 0.002 (2) |
C1 | 0.029 (4) | 0.027 (4) | 0.024 (3) | 0.017 (3) | 0.010 (3) | 0.008 (3) |
C2 | 0.027 (4) | 0.027 (4) | 0.027 (3) | 0.017 (3) | 0.015 (3) | 0.009 (3) |
C3 | 0.020 (3) | 0.019 (3) | 0.020 (3) | 0.005 (3) | 0.006 (3) | −0.001 (3) |
C4 | 0.023 (3) | 0.034 (4) | 0.019 (3) | 0.014 (3) | 0.012 (3) | 0.012 (3) |
C5 | 0.025 (4) | 0.033 (4) | 0.030 (4) | 0.019 (3) | 0.010 (3) | 0.002 (3) |
C6 | 0.018 (3) | 0.029 (4) | 0.015 (3) | 0.008 (3) | 0.005 (2) | 0.002 (3) |
C7 | 0.032 (4) | 0.027 (4) | 0.020 (3) | 0.009 (3) | 0.015 (3) | 0.012 (3) |
C8 | 0.026 (4) | 0.028 (4) | 0.024 (3) | 0.017 (3) | 0.014 (3) | 0.004 (3) |
C9 | 0.031 (4) | 0.020 (3) | 0.023 (3) | 0.015 (3) | 0.009 (3) | 0.003 (3) |
C10 | 0.030 (4) | 0.024 (4) | 0.025 (3) | 0.010 (3) | 0.012 (3) | 0.000 (3) |
C21 | 0.021 (3) | 0.012 (3) | 0.012 (3) | 0.007 (3) | 0.008 (2) | 0.007 (2) |
C22 | 0.022 (3) | 0.017 (3) | 0.013 (3) | 0.007 (3) | 0.008 (2) | 0.000 (2) |
C23 | 0.018 (3) | 0.014 (3) | 0.016 (3) | 0.008 (3) | 0.005 (2) | 0.003 (2) |
C24 | 0.014 (3) | 0.015 (3) | 0.016 (3) | 0.000 (2) | 0.010 (2) | 0.007 (2) |
C25 | 0.027 (3) | 0.019 (3) | 0.013 (3) | 0.011 (3) | 0.012 (3) | 0.005 (2) |
C26 | 0.021 (3) | 0.020 (3) | 0.009 (3) | 0.012 (3) | 0.007 (2) | 0.000 (2) |
C27 | 0.032 (4) | 0.011 (3) | 0.015 (3) | 0.014 (3) | 0.005 (3) | −0.002 (2) |
C28 | 0.027 (3) | 0.018 (3) | 0.003 (2) | 0.011 (3) | 0.004 (2) | 0.003 (2) |
C29 | 0.037 (4) | 0.008 (3) | 0.017 (3) | 0.005 (3) | 0.015 (3) | 0.003 (2) |
C30 | 0.028 (4) | 0.017 (3) | 0.007 (3) | 0.010 (3) | 0.005 (2) | 0.003 (2) |
C31 | 0.024 (3) | 0.018 (3) | 0.031 (4) | 0.007 (3) | 0.008 (3) | 0.001 (3) |
C32 | 0.031 (4) | 0.020 (3) | 0.024 (3) | 0.015 (3) | 0.013 (3) | 0.009 (3) |
C33 | 0.026 (3) | 0.025 (3) | 0.015 (3) | 0.013 (3) | 0.001 (3) | −0.001 (3) |
C34 | 0.030 (4) | 0.025 (4) | 0.028 (3) | 0.015 (3) | 0.013 (3) | 0.010 (3) |
C35 | 0.027 (4) | 0.019 (3) | 0.026 (3) | 0.014 (3) | 0.014 (3) | 0.007 (3) |
C36 | 0.028 (4) | 0.016 (3) | 0.003 (2) | 0.011 (3) | 0.007 (2) | 0.003 (2) |
C37 | 0.021 (3) | 0.012 (3) | 0.013 (3) | 0.007 (3) | 0.004 (2) | 0.002 (2) |
C38 | 0.023 (3) | 0.017 (3) | 0.017 (3) | 0.008 (3) | 0.007 (2) | −0.002 (2) |
C39 | 0.025 (3) | 0.018 (3) | 0.009 (3) | 0.010 (3) | 0.001 (2) | 0.000 (2) |
C40 | 0.029 (4) | 0.016 (3) | 0.013 (3) | 0.016 (3) | 0.007 (3) | 0.000 (2) |
Cu1—O1 | 1.939 (4) | C1—H1 | 0.9300 |
Cu1—N1 | 1.963 (5) | C2—C3 | 1.378 (8) |
Cu1—O12i | 1.966 (4) | C2—H2 | 0.9300 |
Cu1—O11 | 1.993 (4) | C3—C4 | 1.396 (8) |
Cu1—Cu1i | 2.8245 (14) | C3—C6 | 1.486 (8) |
Cu2—O3ii | 1.922 (4) | C4—C5 | 1.365 (8) |
Cu2—O8 | 1.945 (4) | C4—H4 | 0.9300 |
Cu2—O5iii | 1.961 (4) | C5—H5 | 0.9300 |
Cu2—N3 | 2.017 (5) | C6—C10 | 1.385 (8) |
Cu2—Cu3 | 3.0464 (10) | C6—C7 | 1.399 (9) |
Cu3—O13ii | 1.955 (4) | C7—C8 | 1.374 (8) |
Cu3—O7 | 1.979 (4) | C7—H7 | 0.9300 |
Cu3—N2iv | 1.994 (5) | C8—H8 | 0.9300 |
Cu3—O2W | 2.102 (5) | C9—C10 | 1.371 (8) |
Cu3—O4ii | 2.190 (4) | C9—H9 | 0.9300 |
O1—C27 | 1.294 (7) | C10—H10 | 0.9300 |
O1W—H1WA | 0.86 (8) | C21—C22 | 1.383 (8) |
O1W—H1WB | 0.76 (9) | C21—C26 | 1.392 (7) |
O2—C27 | 1.213 (7) | C21—C27 | 1.512 (7) |
O2W—H2WB | 0.85 (7) | C22—C23 | 1.386 (7) |
O2W—H2WA | 0.80 (7) | C22—H22 | 0.9300 |
O3—C28 | 1.266 (7) | C23—C24 | 1.399 (8) |
O3—Cu2v | 1.922 (4) | C23—C28 | 1.516 (7) |
O4—C28 | 1.247 (7) | C24—C25 | 1.376 (8) |
O4—Cu3v | 2.190 (4) | C24—C29 | 1.524 (7) |
O5—C29 | 1.254 (8) | C25—C26 | 1.408 (7) |
O5—Cu2iii | 1.961 (4) | C25—H25 | 0.9300 |
O6—C29 | 1.240 (8) | C26—C30 | 1.491 (7) |
O7—C30 | 1.260 (7) | C31—C32 | 1.384 (8) |
O8—C30 | 1.271 (7) | C31—H31 | 0.9300 |
O11—C36 | 1.251 (7) | C32—C33 | 1.398 (8) |
O12—C36 | 1.260 (7) | C32—H32 | 0.9300 |
O12—Cu1i | 1.966 (4) | C33—C34 | 1.389 (8) |
O13—C40 | 1.270 (7) | C33—C33vii | 1.471 (11) |
O13—Cu3v | 1.955 (4) | C34—C35 | 1.377 (8) |
O14—C40 | 1.239 (7) | C34—H34 | 0.9300 |
N1—C1 | 1.333 (7) | C35—H35 | 0.9300 |
N1—C5 | 1.347 (7) | C36—C37 | 1.501 (7) |
N2—C9 | 1.329 (7) | C37—C39viii | 1.397 (8) |
N2—C8 | 1.357 (7) | C37—C38 | 1.409 (7) |
N2—Cu3vi | 1.994 (5) | C38—C39 | 1.367 (8) |
N3—C31 | 1.344 (7) | C38—H38 | 0.9300 |
N3—C35 | 1.354 (7) | C39—C37viii | 1.397 (8) |
C1—C2 | 1.388 (8) | C39—C40 | 1.527 (8) |
O1—Cu1—N1 | 163.4 (2) | C7—C6—C3 | 122.3 (5) |
O1—Cu1—O12i | 90.11 (16) | C8—C7—C6 | 119.7 (6) |
N1—Cu1—O12i | 94.51 (18) | C8—C7—H7 | 120.2 |
O1—Cu1—O11 | 88.98 (15) | C6—C7—H7 | 120.2 |
N1—Cu1—O11 | 91.90 (18) | N2—C8—C7 | 122.2 (6) |
O12i—Cu1—O11 | 160.41 (17) | N2—C8—H8 | 118.9 |
O1—Cu1—Cu1i | 58.56 (13) | C7—C8—H8 | 118.9 |
N1—Cu1—Cu1i | 137.85 (16) | N2—C9—C10 | 124.2 (6) |
O12i—Cu1—Cu1i | 82.81 (12) | N2—C9—H9 | 117.9 |
O11—Cu1—Cu1i | 80.04 (12) | C10—C9—H9 | 117.9 |
O3ii—Cu2—O8 | 166.52 (18) | C9—C10—C6 | 119.0 (6) |
O3ii—Cu2—O5iii | 91.78 (16) | C9—C10—H10 | 120.5 |
O8—Cu2—O5iii | 88.36 (16) | C6—C10—H10 | 120.5 |
O3ii—Cu2—N3 | 93.51 (18) | C22—C21—C26 | 119.5 (5) |
O8—Cu2—N3 | 92.69 (17) | C22—C21—C27 | 117.4 (5) |
O5iii—Cu2—N3 | 151.87 (19) | C26—C21—C27 | 122.8 (5) |
O3ii—Cu2—Cu3 | 86.02 (13) | C21—C22—C23 | 122.0 (5) |
O8—Cu2—Cu3 | 81.76 (12) | C21—C22—H22 | 119.0 |
O5iii—Cu2—Cu3 | 65.68 (13) | C23—C22—H22 | 119.0 |
N3—Cu2—Cu3 | 142.26 (14) | C22—C23—C24 | 118.8 (5) |
O13ii—Cu3—O7 | 89.41 (16) | C22—C23—C28 | 119.1 (5) |
O13ii—Cu3—N2iv | 177.14 (19) | C24—C23—C28 | 122.0 (5) |
O7—Cu3—N2iv | 92.17 (18) | C25—C24—C23 | 119.4 (5) |
O13ii—Cu3—O2W | 95.20 (17) | C25—C24—C29 | 117.1 (5) |
O7—Cu3—O2W | 127.51 (19) | C23—C24—C29 | 123.5 (5) |
N2iv—Cu3—O2W | 85.7 (2) | C24—C25—C26 | 121.8 (5) |
O13ii—Cu3—O4ii | 84.77 (15) | C24—C25—H25 | 119.1 |
O7—Cu3—O4ii | 141.58 (17) | C26—C25—H25 | 119.1 |
N2iv—Cu3—O4ii | 92.52 (17) | C21—C26—C25 | 118.4 (5) |
O2W—Cu3—O4ii | 90.86 (18) | C21—C26—C30 | 122.8 (5) |
O13ii—Cu3—Cu2 | 56.35 (12) | C25—C26—C30 | 118.8 (5) |
O7—Cu3—Cu2 | 74.49 (12) | O2—C27—O1 | 124.1 (5) |
N2iv—Cu3—Cu2 | 121.85 (15) | O2—C27—C21 | 122.2 (5) |
O2W—Cu3—Cu2 | 146.37 (13) | O1—C27—C21 | 113.4 (5) |
O4ii—Cu3—Cu2 | 70.73 (11) | O4—C28—O3 | 126.6 (5) |
C27—O1—Cu1 | 106.9 (4) | O4—C28—C23 | 117.6 (5) |
H1WA—O1W—H1WB | 101 (9) | O3—C28—C23 | 115.7 (5) |
Cu3—O2W—H2WB | 100 (5) | O6—C29—O5 | 126.6 (5) |
Cu3—O2W—H2WA | 127 (6) | O6—C29—C24 | 118.7 (6) |
H2WB—O2W—H2WA | 105 (7) | O5—C29—C24 | 114.4 (6) |
C28—O3—Cu2v | 122.3 (4) | O7—C30—O8 | 126.4 (5) |
C28—O4—Cu3v | 130.3 (4) | O7—C30—C26 | 116.9 (5) |
C29—O5—Cu2iii | 120.8 (4) | O8—C30—C26 | 116.7 (5) |
C30—O7—Cu3 | 132.0 (4) | N3—C31—C32 | 123.1 (6) |
C30—O8—Cu2 | 123.7 (4) | N3—C31—H31 | 118.4 |
C36—O11—Cu1 | 124.8 (4) | C32—C31—H31 | 118.4 |
C36—O12—Cu1i | 122.5 (4) | C31—C32—C33 | 120.5 (6) |
C40—O13—Cu3v | 126.8 (4) | C31—C32—H32 | 119.7 |
C1—N1—C5 | 117.6 (5) | C33—C32—H32 | 119.7 |
C1—N1—Cu1 | 120.8 (4) | C34—C33—C32 | 115.6 (5) |
C5—N1—Cu1 | 121.4 (4) | C34—C33—C33vii | 123.1 (7) |
C9—N2—C8 | 117.3 (5) | C32—C33—C33vii | 121.3 (7) |
C9—N2—Cu3vi | 116.7 (4) | C35—C34—C33 | 121.3 (6) |
C8—N2—Cu3vi | 124.6 (4) | C35—C34—H34 | 119.3 |
C31—N3—C35 | 116.7 (5) | C33—C34—H34 | 119.3 |
C31—N3—Cu2 | 120.6 (4) | N3—C35—C34 | 122.6 (6) |
C35—N3—Cu2 | 122.6 (4) | N3—C35—H35 | 118.7 |
N1—C1—C2 | 123.0 (6) | C34—C35—H35 | 118.7 |
N1—C1—H1 | 118.5 | O11—C36—O12 | 127.9 (5) |
C2—C1—H1 | 118.5 | O11—C36—C37 | 116.6 (5) |
C3—C2—C1 | 119.1 (6) | O12—C36—C37 | 115.5 (5) |
C3—C2—H2 | 120.4 | C39viii—C37—C38 | 117.7 (5) |
C1—C2—H2 | 120.4 | C39viii—C37—C36 | 122.7 (5) |
C2—C3—C4 | 117.8 (5) | C38—C37—C36 | 119.6 (5) |
C2—C3—C6 | 122.5 (6) | C39—C38—C37 | 121.9 (5) |
C4—C3—C6 | 119.7 (5) | C39—C38—H38 | 119.1 |
C5—C4—C3 | 119.7 (6) | C37—C38—H38 | 119.1 |
C5—C4—H4 | 120.2 | C38—C39—C37viii | 120.4 (5) |
C3—C4—H4 | 120.2 | C38—C39—C40 | 117.4 (5) |
N1—C5—C4 | 122.8 (6) | C37viii—C39—C40 | 122.1 (5) |
N1—C5—H5 | 118.6 | O14—C40—O13 | 126.3 (5) |
C4—C5—H5 | 118.6 | O14—C40—C39 | 116.4 (5) |
C10—C6—C7 | 117.6 (5) | O13—C40—C39 | 117.0 (5) |
C10—C6—C3 | 120.0 (6) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y−1, z; (iii) −x+2, −y+1, −z; (iv) x+1, y, z−1; (v) x, y+1, z; (vi) x−1, y, z+1; (vii) −x+1, −y, −z+1; (viii) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O6ii | 0.86 (8) | 2.08 (9) | 2.888 (8) | 157 (8) |
O1W—H1WB···O6ix | 0.76 (9) | 2.07 (9) | 2.831 (7) | 175 (10) |
O2W—H2WB···O14ii | 0.85 (7) | 1.81 (7) | 2.623 (6) | 161 (7) |
O2W—H2WA···O1W | 0.80 (7) | 1.98 (7) | 2.768 (7) | 166 (8) |
Symmetry codes: (ii) x, y−1, z; (ix) −x+3, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu6(C10H2O8)3(C10H8N2)3(H2O)2]·2H2O |
Mr | 1672.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.2545 (7), 10.8207 (8), 13.7264 (10) |
α, β, γ (°) | 91.305 (1), 90.461 (2), 112.655 (2) |
V (Å3) | 1404.97 (17) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.34 |
Crystal size (mm) | 0.36 × 0.20 × 0.16 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.523, 0.688 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7378, 4938, 3554 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.162, 1.05 |
No. of reflections | 4938 |
No. of parameters | 463 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.86, −0.55 |
Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL.
Cu1—O1 | 1.939 (4) | Cu2—N3 | 2.017 (5) |
Cu1—N1 | 1.963 (5) | Cu2—Cu3 | 3.0464 (10) |
Cu1—O11 | 1.993 (4) | Cu3—O7 | 1.979 (4) |
Cu2—O8 | 1.945 (4) | Cu3—O2W | 2.102 (5) |
O1—Cu1—N1 | 163.4 (2) | O8—Cu2—Cu3 | 81.76 (12) |
O1—Cu1—O11 | 88.98 (15) | N3—Cu2—Cu3 | 142.26 (14) |
N1—Cu1—O11 | 91.90 (18) | O7—Cu3—O2W | 127.51 (19) |
O8—Cu2—N3 | 92.69 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O6i | 0.86 (8) | 2.08 (9) | 2.888 (8) | 157 (8) |
O1W—H1WB···O6ii | 0.76 (9) | 2.07 (9) | 2.831 (7) | 175 (10) |
O2W—H2WB···O14i | 0.85 (7) | 1.81 (7) | 2.623 (6) | 161 (7) |
O2W—H2WA···O1W | 0.80 (7) | 1.98 (7) | 2.768 (7) | 166 (8) |
Symmetry codes: (i) x, y−1, z; (ii) −x+3, −y+1, −z. |
The design of metal-organic materials with large tunnels and cavities has been extensively developed, due to their intriguing structural diversities and potential applications as microporous solids for molecular adsorption, ion exchange and heterogeneous catalysis. Recent elaboration has shown that hydrothermal reaction at relatively low temperature and autogeneous pressure provides a powerful tool for the construction of such materials. In particular, multidentate benzenecarboxylate ligands and the rod-like 4,4'-bpy ligand have been shown to be good building blocks in the design of materials with desired topologies under the hydrothermal reaction. Recently, some compounds constructed by 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,4'-bpy have been reported (Cao et al., 2002; Wu et al., 2001, 2002). Here, we present the title novel compound, (I), {[Cu6(btec)3(4,4'-bpy)3(H2O)2]·2H2O}n. \sch
The present crystal structure analysis reveals that (I) is a neutral three-dimensional polymer, which is very different from the structure of [Cu2(btec)4/4{Cu(Hbtec)2/2(4,4-Hbpy)(H2O)2}2·4H2O]n (Cao et al., 2002). The hexanuclear species [Cu6(btec)3(4,4'-bpy)3(H2O)2] constitutes the basic building block (Fig.1).
The most interesting feature of (I) is that the btec ligands exhibit two different coordination modes. One has a symmetric coordination mode, with two para carboxylate groups linking four Cu1 ions in a bidentate bridging coordination, with the Cu1—Cu1i distance being 2.8246 (14) Å [symmetry code: (i) 2 − x, 1 − y, 1 − z], while the remaining two carboxylate groups link the two Cu3 ions in the axial positions in a monodentate mode. The other btec ligand has an asymmetric coordination mode, with each para carboxylate group linking atoms Cu2 and Cu3 in a bidentate bridging coordination, with a Cu2—Cu3 distance of 3.0464 (10) Å, while the remaining two carboxylate groups link atoms Cu2 and Cu1 in axial positions in a monodentate mode (Figs. 1 and 2).
Atom Cu1 adopts a distorted tetrahedral coordination environment, consisting of one 4,4'-bpy N donor and three carboxylate O atoms. Atom Cu2 has a coordination mode similar to that for Cu1, except that these three carboxylate O atoms are all from three asymmetrically coordinated btec ligands. Atom Cu3 has a square-pyramidal coordination, with the basal plane consisting of one N donor and three O donors from three carboxylate groups of three individual btec anions. The apical site is occupied by an O donor from a coordinated water molecule.
As shown in Fig.2, each btec ligand connects another four asymmetrically and two symmetrically coordinated ligands by six CuII cations into an infinite two-dimensional lamellar [Cu6(btec)3(H2O)2]n subpolymer framework. These lamellae are integrated by 4,4'-bpy ligands to form a three-dimensional architecture, with vacancy dimensions of about 5.8 × 10.9 Å (Fig.3). These vacancies are filled with water molecules.