Download citation
Download citation
link to html
The title compound, (C16H38N4)[Fe(CN)5(NO)]·2H2O, contains one [Fe(CN)5(NO)]2- dianion, two half [H2teta]2+ dications (teta is 5,7,7,12,14,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane), each lying about an independent inversion centre, and two solvent water mol­ecules, all of which are held together by hydrogen bonds to form a three-dimensional supramolecular framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105035146/av1254sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105035146/av1254Isup2.hkl
Contains datablock I

CCDC reference: 605669

Comment top

There has been much interest in the synthesis of magnetic materials from inorgnic coordination complexes (Okawa et al., 2002; Cernak et al., 2002). Among them, cyanide-bridged bimetallic assemblies, derived from [M(CN)6]n (M = Fe, Cr, Mn) building blocks and coordinatively unsaturated transition metal complexes, have been studied structurally and magnetically in order to clarify the magneto–structure correlation of cyano-bridged bimetallic systems (Shen et al., 2001, 2003; Ohba et al., 1998).

Teta (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) is well known as a macrocyclic ligand and can coordinate selectively with some transition metal ions, resulting in macrocyclic complexes, such as [Ni(teta)]2+ and [Cu(teta)]2+. Zou et al. (1998) have reported a novel one-dimensional linear chain FeIII–CuII polymer, [Cu(teta)(H2O)2][Cu(teta)Fe(CN)6]ClO4·2H2O, using [Cu(teta)]2+ as a building block. Furthermore, some nitroprusside-bridged polymeric complexes have been prepared, and magnetic studies have showed that the nitroprusside anion transmits a very weak antiferromagnetic interaction (Yuan et al., 2003; Shyu et al., 1997). Recently, we attempted to prepare cyano-bridged bimetallic complexes using [Fe(CN)5NO]2− and [Ni(teta)]2+ as precursors. Unexpectedly, the compound [H2teta][Fe(CN)5NO]·2H2O, (I), was obtained. We report here the synthesis and crystal structure of this complex.

The asymmetric unit of (I) (Fig. 1) consists of one isolated [Fe(CN)5NO]2− anion, two half [H2teta]2+ cations and two solvent water molecules. As usual, the [Fe(CN)5NO]2− fragment exhibits a distorted octahedral structure (Table 1). Both [H2teta]2+ cations are centrosymmetric, and the dihedral angle between the two cations [H2teta]2+1 (defined by atoms N9, N9A, N10 and N10A) and [H2teta]2+2 (defined by atoms N7, N7A, N8 and N8A), in which atoms N9, N9A, N7 and N7A act as hydrogen-bond donors, is 50°. The apertures of [H2teta]2+1 and [H2teta]2+2 are 6.673 Å (C15···C15A), 4.641 Å (C17···C18A), 6.853 Å (C7···C7A) and 5.233 Å (C9···C10A). The title complex can probably be applied to adsorb and desorb preferentially metal ions through adjusting the pH values of solutions, because the [H2teta]2+ macrocycle has a large aperture and the complex is insoluble in water and many organic solvents. There is, therefore, a great deal of current research interest in this field.

The structural features of complex (I) reported above are different from those of [FeL]2[Fe(CN)5NO] (Shen et al., 2004; Yuan et al., 2003) derived from cyano-bridged interaction. Details of the intra- and intermolecular hydrogen bonds are given in Table 2. Atoms N9 and N9A in the macrocyclic unit [H2teta]2+1 act as hydrogen-bond donors, via H9A and H9B, respectively, to cyanide atoms N6iv and N2sym code? [please check; this interaction is not given in Table 2] atoms in the [Fe(CN)5NO]2− anions (symmetry codes as in Table 2). In addition, atom C18 is hydrogen bonded to atom N2vi, forming C18—H19B···N2vi bonds with a C18···N2vi distance of 3.429 (4) Å, which indicates that there is a very weak intermolecular interaction between atoms C18 and N2vi. Moreover, atom N9 interacts with atom N10v to form an intramolecular hydrogen bond with an N9···N10v distance of 2.845 (4) Å. This kind of hydrogen-bond interaction may help to stablize the configuration of macrocyclic dication [H2teta]2+. Atom N7 in the other cation, [H2teta]2+2, acts as a hydrogen-bond donor to the O2W water molecule.

Atoms N3, N4 and N5 in the anion act as hydrogen-bond acceptors, viaH1WA, H1WB and H2WC, respectively, to atom N9 in the [H2teta]2+1 cation and the two solvent water molecules. [Can this sentence be omitted?]

In addition, the O1W and O2W atoms of the solvent water molecules are hydrogen-bonded to the cyanide N atoms (N3, N4 and N5) and atom N7 (N7A) in the cation, with distances of O1W···N3i, O1W···N4ii, O2W···N5iii and O2Wi···N7 distances ranging from 2.845 (s.u.?) Å to 3.170 (4) Å. Simultaneously, two solvent water molecules themselves form an O2W—H2WD···O1W hydrogen bond, with an O2W···O1W distance of 2.623</span><span style=" font-weight:600;">(3) Å. It should be noted that only the O1···N3i, O2···O1 and N9···N6iv interactions are strong hydrogen bonds; the others are weak compared with these three [or compared with typical hydrogen bonds?]. [Please check ALL the hydrogen-bond data both in Table 2 and in the text, as these do match at present.]

As shown in Fig. 2, the hydrogen bonds involving the water molecules lead to the formation of a three-dimensional supramolecular framework, featuring an alternating arrangement of cations and anions.

Experimental top

[Ni(teta)](ClO4)2 was prepared according to the method described by Curtis (1964). Yellow block crystals of [H2teta][Fe(CN)5NO]·2H2O were obtained by slow diffusion of a yellow dimethylformamide (DMF) solution (15 ml) of [Ni(teta)](ClO4)2 (0.15 mmol) and an aqueous solution (15 ml) of Na2[Fe(CN)5NO]·2H2O (0.15 mmol) through a U-tube containing agar at room temperature. The resulting crystals were collected, washed with water and DMF sequentially, and dried in air. Analysis calculated for C21H42N10O3Fe: C 46.84, H 7.86, N 26.02%; found: C 46.88, H 7.84, N 26.00%.

Refinement top

H atoms were visible in difference maps and were subsequently treated as riding atoms with distances C—H = 0.89–0.99 Å, N—H = 0.90 Å and O—H = 0.85 Å. Uiso(H) values were set equal to 1.2 or 1.5 times Ueq of the parent atom. Please check changes to text.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1]
Fig. 1. Compound (I), with displacement ellipsoids at the 30% probability level. [Symmetry codes: @ 1 − x, 2 − y, 2 − z; # x, y − 1, z; $ −1 + x, y, z; % 1 − x, 2 − y, 1 − z; & 1 + x, y, z.]

Fig. 2. The hydrogen bonding interactions involving the [Fe(CN)5(NO)]2− unit.
5,7,7,12,14,14-hexamethyl-4,11-diaza-1,8-diazoniacyclotetradecane pentacyanonitrosoferrate(II) top
Crystal data top
(C16H38N4)[Fe(CN)5(NO)]·2H2OZ = 2
Mr = 538.50F(000) = 576
Triclinic, P1Dx = 1.211 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9527 (12) ÅCell parameters from 1759 reflections
b = 10.7737 (14) Åθ = 2.4–21.8°
c = 16.977 (2) ŵ = 0.55 mm1
α = 74.525 (2)°T = 293 K
β = 78.926 (2)°Block, yellow
γ = 70.318 (2)°0.3 × 0.2 × 0.2 mm
V = 1476.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5633 independent reflections
Radiation source: sealed tube3941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 116
Tmin = 0.88, Tmax = 0.90k = 1313
7878 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.4822P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5633 reflectionsΔρmax = 0.39 e Å3
322 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXS97
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.08 (2)
Crystal data top
(C16H38N4)[Fe(CN)5(NO)]·2H2Oγ = 70.318 (2)°
Mr = 538.50V = 1476.5 (3) Å3
Triclinic, P1Z = 2
a = 8.9527 (12) ÅMo Kα radiation
b = 10.7737 (14) ŵ = 0.55 mm1
c = 16.977 (2) ÅT = 293 K
α = 74.525 (2)°0.3 × 0.2 × 0.2 mm
β = 78.926 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5633 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3941 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.90Rint = 0.021
7878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
5633 reflectionsΔρmin = 0.42 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6222 (4)0.8314 (3)0.90112 (19)0.0416 (7)
C20.5316 (4)0.8996 (3)0.74703 (19)0.0426 (7)
C30.8205 (4)0.8927 (3)0.76850 (19)0.0404 (7)
C40.6209 (4)1.1282 (3)0.7161 (2)0.0460 (8)
C50.7101 (4)1.0599 (3)0.86984 (19)0.0413 (7)
C60.1893 (4)0.8180 (3)0.48918 (19)0.0474 (8)
C70.1026 (4)0.8360 (3)0.40152 (19)0.0491 (8)
H8C0.00470.83420.40560.059*
H8D0.15570.92600.37170.059*
C80.0880 (4)0.7370 (3)0.34794 (19)0.0472 (8)
H90.19280.72540.35000.057*
C90.0124 (4)0.4906 (3)0.3377 (2)0.0529 (8)
H10C0.01930.51140.27810.063*
H10D0.08920.47480.36050.063*
H11A0.22770.60260.61790.063*
H11B0.17970.69540.65830.063*
C100.1488 (5)0.6285 (4)0.6318 (2)0.0591 (9)
C110.3510 (4)0.8000 (4)0.4886 (2)0.0516 (8)
H12A0.38900.76100.54330.077*
H12B0.33990.74140.45260.077*
H12C0.42580.88640.46950.077*
C120.1943 (4)0.9265 (3)0.5285 (2)0.0499 (8)
H13A0.08740.92620.52980.075*
H13B0.24630.91160.58370.075*
H13C0.25241.01220.49760.075*
C130.0312 (4)0.7907 (4)0.26102 (19)0.0505 (8)
H14A0.04370.73870.22620.076*
H14B0.07940.78460.25690.076*
H14C0.09280.88350.24400.076*
C140.8468 (4)1.2781 (3)1.03550 (19)0.0422 (7)
C150.8476 (3)1.3857 (3)1.07939 (19)0.0409 (7)
H16A0.86021.46401.03770.049*
H16B0.94101.35011.10900.049*
C160.7005 (4)1.4339 (3)1.14028 (19)0.0410 (7)
H170.68031.35611.18120.049*
C170.3895 (4)1.5314 (3)1.1498 (2)0.0490 (8)
H18A0.36301.59981.18180.059*
H18B0.38971.44591.18740.059*
H19A0.83811.42540.87670.059*
H19B0.70891.50720.93600.059*
C180.7311 (4)1.4312 (3)0.90908 (19)0.0431 (7)
C191.0106 (4)1.2364 (3)0.98605 (19)0.0428 (7)
H20A1.00811.18130.95050.064*
H20B1.08981.18591.02300.064*
H20C1.03671.31560.95360.064*
C200.8221 (4)1.1539 (3)1.09854 (19)0.0419 (7)
H21A0.85771.07761.07320.063*
H21B0.71091.17051.11850.063*
H21C0.88241.13531.14370.063*
C210.7241 (4)1.5326 (3)1.1834 (2)0.0460 (7)
H22A0.72141.61641.14460.069*
H22B0.82541.49491.20490.069*
H22C0.64021.54871.22750.069*
Fe10.60682 (6)0.98620 (4)0.81045 (3)0.04097 (14)
N10.4323 (4)1.0719 (3)0.84598 (19)0.0552 (7)
N20.6168 (3)0.7449 (3)0.95651 (17)0.0447 (6)
N30.4842 (3)0.8482 (3)0.71013 (16)0.0492 (7)
N40.9455 (3)0.8352 (3)0.74465 (17)0.0483 (7)
N50.6319 (3)1.2114 (3)0.65849 (18)0.0526 (7)
N60.7569 (3)1.1055 (3)0.90819 (16)0.0449 (6)
N70.1005 (4)0.7010 (3)0.5499 (2)0.0596 (8)
H7A0.08530.63580.52260.072*
H7B0.00460.71100.54970.072*
N80.0332 (3)0.6007 (3)0.36791 (19)0.0567 (7)
H8A0.13230.60780.36170.068*
N90.7337 (3)1.3049 (3)0.97340 (17)0.0529 (7)
H9A0.72621.23430.95730.063*
H9B0.64151.33701.00410.063*
N100.5504 (3)1.5200 (3)1.10216 (18)0.0549 (7)
H10A0.56241.59681.06830.066*
O10.3180 (3)1.1250 (3)0.87686 (17)0.0672 (7)
O1W0.2595 (3)0.7749 (2)0.64821 (13)0.0490 (5)
H1WA0.34660.77880.65880.059*
H1WB0.20680.74680.69270.059*
O2W0.2311 (3)0.6843 (2)0.52436 (14)0.0512 (6)
H2WD0.24020.71280.56480.061*
H2WC0.31900.67050.49330.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0462 (18)0.0385 (16)0.0382 (16)0.0121 (14)0.0010 (14)0.0085 (14)
C20.0374 (16)0.0514 (18)0.0425 (17)0.0181 (14)0.0003 (13)0.0136 (14)
C30.0344 (17)0.0408 (16)0.0434 (17)0.0081 (13)0.0030 (14)0.0102 (14)
C40.0426 (18)0.0464 (18)0.0451 (18)0.0115 (15)0.0085 (15)0.0036 (15)
C50.0467 (18)0.0344 (15)0.0421 (17)0.0105 (14)0.0046 (14)0.0094 (13)
C60.052 (2)0.0490 (18)0.0390 (16)0.0161 (16)0.0017 (14)0.0079 (14)
C70.052 (2)0.0525 (19)0.0414 (18)0.0156 (16)0.0081 (15)0.0068 (15)
C80.0503 (19)0.0475 (18)0.0426 (17)0.0159 (15)0.0041 (14)0.0132 (14)
C90.057 (2)0.059 (2)0.0413 (18)0.0179 (17)0.0030 (16)0.0097 (15)
C100.060 (2)0.057 (2)0.065 (2)0.0130 (18)0.0084 (18)0.0269 (19)
C110.050 (2)0.056 (2)0.0496 (19)0.0157 (16)0.0058 (16)0.0114 (16)
C120.055 (2)0.0428 (18)0.0477 (18)0.0085 (16)0.0003 (16)0.0157 (15)
C130.055 (2)0.058 (2)0.0390 (17)0.0152 (17)0.0086 (15)0.0115 (15)
C140.0466 (18)0.0375 (16)0.0417 (17)0.0145 (14)0.0017 (14)0.0072 (13)
C150.0333 (15)0.0409 (16)0.0508 (18)0.0115 (13)0.0089 (13)0.0104 (14)
C160.0455 (17)0.0379 (16)0.0400 (16)0.0112 (14)0.0067 (14)0.0097 (13)
C170.057 (2)0.0424 (17)0.0486 (18)0.0104 (15)0.0168 (16)0.0093 (14)
C180.0417 (17)0.0445 (17)0.0407 (16)0.0133 (14)0.0025 (14)0.0100 (14)
C190.0390 (17)0.0395 (16)0.0466 (17)0.0108 (14)0.0068 (14)0.0037 (14)
C200.0433 (17)0.0405 (16)0.0403 (16)0.0113 (14)0.0048 (14)0.0082 (13)
C210.0501 (19)0.0441 (17)0.0487 (18)0.0147 (15)0.0116 (15)0.0135 (15)
Fe10.0410 (3)0.0402 (3)0.0420 (3)0.0124 (2)0.00426 (19)0.00954 (19)
N10.0485 (17)0.0519 (17)0.0616 (19)0.0097 (14)0.0039 (15)0.0153 (15)
N20.0423 (15)0.0419 (15)0.0505 (16)0.0144 (12)0.0036 (12)0.0101 (13)
N30.0488 (16)0.0619 (18)0.0450 (15)0.0217 (14)0.0010 (13)0.0230 (14)
N40.0439 (16)0.0540 (16)0.0506 (16)0.0172 (14)0.0003 (13)0.0180 (13)
N50.0536 (18)0.0524 (17)0.0519 (17)0.0189 (14)0.0120 (14)0.0036 (14)
N60.0471 (16)0.0423 (14)0.0492 (16)0.0140 (13)0.0086 (13)0.0138 (12)
N70.0542 (18)0.0546 (17)0.070 (2)0.0163 (15)0.0164 (15)0.0077 (15)
N80.0446 (16)0.0559 (17)0.0675 (19)0.0146 (14)0.0090 (14)0.0086 (15)
N90.0467 (16)0.0607 (17)0.0468 (15)0.0212 (14)0.0117 (13)0.0065 (13)
N100.0502 (17)0.0554 (17)0.0534 (17)0.0164 (14)0.0156 (14)0.0045 (14)
O10.0511 (16)0.0682 (17)0.0768 (18)0.0113 (13)0.0003 (14)0.0202 (14)
O1W0.0489 (13)0.0560 (13)0.0467 (12)0.0224 (11)0.0024 (10)0.0121 (10)
O2W0.0562 (14)0.0522 (13)0.0450 (12)0.0180 (11)0.0017 (11)0.0107 (10)
Geometric parameters (Å, º) top
C1—N21.140 (4)C14—C201.526 (4)
C1—Fe11.931 (3)C14—C191.530 (4)
C2—N31.151 (4)C14—C151.539 (4)
C2—Fe11.929 (3)C15—C161.541 (4)
C3—N41.137 (4)C15—H16A0.9700
C3—Fe11.934 (3)C15—H16B0.9700
C4—N51.151 (4)C16—N101.503 (4)
C4—Fe11.915 (3)C16—C211.529 (4)
C5—N61.120 (4)C16—H170.9800
C5—Fe11.945 (3)C17—N101.493 (4)
C6—C121.478 (4)C17—C18ii1.495 (4)
C6—N71.493 (4)C17—H18A0.9700
C6—C111.526 (5)C17—H18B0.9700
C6—C71.536 (4)C18—C17ii1.495 (4)
C7—C81.537 (4)C18—N91.497 (4)
C7—H8C0.9700C18—H19A0.9996
C7—H8D0.9700C18—H19B0.9866
C8—C131.492 (4)C19—H20A0.9600
C8—N81.500 (4)C19—H20B0.9600
C8—H90.9800C19—H20C0.9600
C9—N81.490 (4)C20—H21A0.9600
C9—C10i1.496 (5)C20—H21B0.9600
C9—H10C0.9700C20—H21C0.9600
C9—H10D0.9700C21—H22A0.9600
C10—N71.466 (5)C21—H22B0.9600
C10—C9i1.496 (5)C21—H22C0.9600
C10—H11A0.9307Fe1—N11.619 (3)
C10—H11B0.8879N1—O11.100 (3)
C11—H12A0.9600N7—H7A0.9001
C11—H12B0.9600N7—H7B0.8999
C11—H12C0.9600N8—H8A0.9000
C12—H13A0.9600N9—H9A0.8999
C12—H13B0.9600N9—H9B0.9000
C12—H13C0.9600N10—H10A0.8999
C13—H14A0.9600O1W—H1WA0.8499
C13—H14B0.9600O1W—H1WB0.8500
C13—H14C0.9600O2W—H2WD0.8500
C14—N91.507 (4)O2W—H2WC0.8500
N2—C1—Fe1173.8 (3)C21—C16—H17109.9
N3—C2—Fe1178.8 (3)C15—C16—H17109.9
N4—C3—Fe1178.6 (3)N10—C17—C18ii108.8 (3)
N5—C4—Fe1178.4 (3)N10—C17—H18A109.9
N6—C5—Fe1173.8 (3)C18ii—C17—H18A109.9
C12—C6—N797.8 (3)N10—C17—H18B109.9
C12—C6—C11115.1 (3)C18ii—C17—H18B109.9
N7—C6—C11107.7 (3)H18A—C17—H18B108.3
C12—C6—C7111.1 (3)C17ii—C18—N9114.2 (3)
N7—C6—C7114.7 (3)C17ii—C18—H19A108.3
C11—C6—C7110.0 (3)N9—C18—H19A111.7
C6—C7—C8120.0 (3)C17ii—C18—H19B108.2
C6—C7—H8C107.3N9—C18—H19B109.4
C8—C7—H8C107.3H19A—C18—H19B104.6
C6—C7—H8D107.3C14—C19—H20A109.5
C8—C7—H8D107.3C14—C19—H20B109.5
H8C—C7—H8D106.9H20A—C19—H20B109.5
C13—C8—N8102.5 (3)C14—C19—H20C109.5
C13—C8—C7110.1 (3)H20A—C19—H20C109.5
N8—C8—C7116.4 (3)H20B—C19—H20C109.5
C13—C8—H9109.2C14—C20—H21A109.5
N8—C8—H9109.2C14—C20—H21B109.5
C7—C8—H9109.2H21A—C20—H21B109.5
N8—C9—C10i102.8 (3)C14—C20—H21C109.5
N8—C9—H10C111.2H21A—C20—H21C109.5
C10i—C9—H10C111.2H21B—C20—H21C109.5
N8—C9—H10D111.2C16—C21—H22A109.5
C10i—C9—H10D111.2C16—C21—H22B109.5
H10C—C9—H10D109.1H22A—C21—H22B109.5
N7—C10—C9i110.3 (3)C16—C21—H22C109.5
N7—C10—H11A98.3H22A—C21—H22C109.5
C9i—C10—H11A111.9H22B—C21—H22C109.5
N7—C10—H11B99.4N1—Fe1—C493.13 (15)
C9i—C10—H11B116.3N1—Fe1—C296.40 (15)
H11A—C10—H11B117.8C4—Fe1—C290.53 (14)
C6—C11—H12A109.5N1—Fe1—C194.43 (14)
C6—C11—H12B109.5C4—Fe1—C1172.34 (14)
H12A—C11—H12B109.5C2—Fe1—C189.86 (14)
C6—C11—H12C109.5N1—Fe1—C3176.38 (15)
H12A—C11—H12C109.5C4—Fe1—C385.09 (13)
H12B—C11—H12C109.5C2—Fe1—C386.78 (13)
C6—C12—H13A109.5C1—Fe1—C387.29 (13)
C6—C12—H13B109.5N1—Fe1—C590.96 (14)
H13A—C12—H13B109.5C4—Fe1—C589.40 (14)
C6—C12—H13C109.5C2—Fe1—C5172.63 (13)
H13A—C12—H13C109.5C1—Fe1—C589.24 (13)
H13B—C12—H13C109.5C3—Fe1—C585.88 (13)
C8—C13—H14A109.5O1—N1—Fe1173.7 (3)
C8—C13—H14B109.5C10—N7—C6133.0 (3)
H14A—C13—H14B109.5C10—N7—H7A97.7
C8—C13—H14C109.5C6—N7—H7A98.1
H14A—C13—H14C109.5C10—N7—H7B109.1
H14B—C13—H14C109.5C6—N7—H7B107.6
N9—C14—C20104.1 (2)H7A—N7—H7B107.6
N9—C14—C19102.7 (2)C9—N8—C8116.6 (3)
C20—C14—C19108.5 (2)C9—N8—H8A117.6
N9—C14—C15123.1 (3)C8—N8—H8A111.2
C20—C14—C15110.2 (3)C18—N9—C14112.2 (3)
C19—C14—C15107.4 (3)C18—N9—H9A117.5
C14—C15—C16117.3 (3)C14—N9—H9A118.6
C14—C15—H16A108.0C18—N9—H9B98.6
C16—C15—H16A108.0C14—N9—H9B98.4
C14—C15—H16B108.0H9A—N9—H9B107.3
C16—C15—H16B108.0C17—N10—C16121.4 (3)
H16A—C15—H16B107.2C17—N10—H10A115.6
N10—C16—C21100.1 (2)C16—N10—H10A111.8
N10—C16—C15115.5 (3)H1WA—O1W—H1WB109.5
C21—C16—C15111.1 (3)H2WD—O2W—H2WC109.5
N10—C16—H17109.9
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+3, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N30.852.052.846 (4)155
O1W—H1WB···N4iii0.852.312.929 (4)130
O2W—H2WC···N5iv0.852.583.164 (4)127
O2W—H2WD···O1W0.851.782.628 (3)179
N7—H7B···O2W0.902.012.867 (4)159
N9—H9A···N60.901.722.600 (4)164
N9—H9B···N2v0.902.653.303 (4)130
N10—H10A···N2vi0.902.223.090 (4)162
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x+1, y+2, z+2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C16H38N4)[Fe(CN)5(NO)]·2H2O
Mr538.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9527 (12), 10.7737 (14), 16.977 (2)
α, β, γ (°)74.525 (2), 78.926 (2), 70.318 (2)
V3)1476.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.88, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
7878, 5633, 3941
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.126, 1.07
No. of reflections5633
No. of parameters322
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.42

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N30.852.052.846 (4)155
O1W—H1WB···N4i0.852.312.929 (4)130
O2W—H2WC···N5ii0.852.583.164 (4)127
O2W—H2WD···O1W0.851.782.628 (3)179
N7—H7B···O2W0.902.012.867 (4)159
N9—H9A···N60.901.722.600 (4)164
N9—H9B···N2iii0.902.653.303 (4)130
N10—H10A···N2iv0.902.223.090 (4)162
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z+2; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds