Download citation
Download citation
link to html
The title compound, tris(cyclo­hexane-1,2-diamine-κ2N,N′)cobalt penta­chloro­plum­bate sesquihydrate, [Co(C6H14N2)3][PbCl5]·1.5H2O, crystallizes in the monoclinic space group C2/c, with a tricationic cobalt complex, a penta­chloro­plumbate trianion, one water mol­ecule in a general position and a second water mol­ecule on a crystallographic twofold axis. The compound is the first example of an isolated [PbCl5]3− moiety; the Pb atom is coordinated in a square-pyramidal fashion, with four longer bonds to Cl atoms in the basal plane and a shorter distance to the apex. The ionic constituents and the solvent mol­ecules form a three-dimensional network of hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010600429X/av1278sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010600429X/av1278Isup2.hkl
Contains datablock I

CCDC reference: 286849

Comment top

Pentachlorometallates containing isolated MCl5n anions have been documented for both main group (M = In, Tl, Ge, Sn and Sb) and transition metals (M = V, Mn, Fe, Cu, Pt and Hg). For these elements, the Cambridge Structural Database (CSD. Version of August 2005; Allen, 2002) contains at least one error-free example, without disorder, for which three-dimensional atomic coordinates are available. The prototypic PbCl53− anion, presumably a simple building block, has not yet been structurally characterized; we communicate here the synthesis and first X-ray diffraction study on such a pentachloroplumbate. In the context of a systematic comparison of homo- and heterochiral crystals we performed a cocrystallization experiment on tris(trans-1,2-diaminocyclohexane)cobalttrichloride and PbCl2 in aqueous solution. The tricationic cobalt species represented the enantiomeric mixture of the thermodynamically stable isomers, namely the Δ configured complex of the (R,R)-diamine and its Λ-(S,S) mirror image (Kalf et al., 2002). From a solution containing both starting materials, a red crystalline product precipitates according to equation (1). Single-crystal X-ray diffraction showed that the solid (I) contains the expected complex cations (Fig. 1) and isolated PbCl53− (Fig. 2) anions. To the best of our knowledge, the latter moiety has not yet been documented in the solid. Earlier reports on `pentachloroplumbates' do not refer to structures with isolated PbCl53− building blocks but rather to compounds with chains of corner-sharing octahedra (Mousdis et al., 1998; Ng, 2000). We note that the formation of (I) necessarily competes with reprecipitation of lead(II) chloride, which is only sparingly soluble in cold water.

Fig. 2 shows that the pentachloroplumbate anion adopts an essentially square-pyramidal geometry, with a shorter apical bond and four longer coordination distances to the chloro substituents in the tetragonal plane. The metal atom lies 0.0368 (4) Å above this plane, in the direction of the apical ligand. Building blocks of an extended solid cannot be considered `isolated' in a strict sense. In the present case, however, this description of the anion as being `isolated' rather than being part of an extended moiety is justified: Additional neighbors of the central Pb atom are located at much longer distances and involve two C-bonded H atoms at 3.287 (3) and 3.485 (3) Å as well as a hydrate O atom at 3.5487 (17) Å. Our solid (I) contains a cation, an anion and a water molecule in a general position of the space group C2/c, and an additional water molecule on the twofold crystallographic axis; the compound is a sesquihydrate. All potential hydrogen-bond donors, viz. six NH and three symmetrically independent OH groups, are involved in moderate-to-weak hydrogen bonding, the acceptor atoms being either the plumbate Cl or the hydrate O atoms. Table 2 summarizes the hydrogen-bond geometry. To which structures should the new PbCl53− anion be compared? The apical PbII—Cl distance is almost as short as those in chloro complexes of PbIV (Olafsson et al., 2000; Cashin et al., 2002), whereas the longer bonds in the base closely match the mean Pb—Cl distance for more than 200 structures in the CSD: For 202 error-free observations of Pb—Cl distances, the mean value is 2.873 and the median is 2.864 Å. Distances and angles in the structurally characterized pentachloroantimonates cover a wide range. Several SbCl52− groups in the earlier literature (Zaleski and Pietraszko, 1995; Li et al., 1995; Derwahl et al., 1996; Ohta & Yamashita, 1997) not only adopt a square-pyramidal geometry but also match the metal–halide distance pattern of one shorter apical and four longer bonds. However, in these antimonates, the metal atom and the apical ligand are situated on opposite faces of the square plane, whereas in our pentachloroplumbate, the metal is slightly displaced towards the apex. In crystalline (I), loss of crystal water occurs at 443 K, and decomposition starts at ca 553 K. We have no direct evidence about the species present in solution, but 207Pb NMR data provide some insight: An aqueous solution of the tris(diaminocyclohexane)cobaltpentachloroplumbate shows a signal at −2224 p.p.m. This single resonance shifts to −1902 p.p.m. upon addition of LiCl (5 equivalents), i.e. when the Cl/Pb ratio is increased. Under the same conditions, a saturated solution of PbCl2, with a lower Cl/Pb ratio, shows a resonance at −2383 p.p.m. The `hydrated Pb2+ cation' is found at ca −2800 p.p.m. (Harrison et al., 1983). These numbers, which will surely depend on concentration or supersaturation and should not be overinterpreted, are in agreement with the presence of Pb2+ cations with variable numbers of solvent water molecules and chloride ions in the coordination environment.

Originally, our interest in homo- and heterochiral crystals had induced us to perform reaction (1), and we conclude our short report with the negative outcome of a closely related experiment. Our new pentachloroplumbate (I) exists in the form of racemic crystals. Their formation is obviously preferred over the statistically less popular crystallization alternative, namely a conglomerate, whereas the nitrate of the same cationic complex shows spontaneous resolution (Morooka et al., 1991). We therefore expected that the enantiomerically pure cobalt complex as a starting material would enforce a chiral space group and hence an independent second example for a solid of the chemical composition [Co(chxn)3]PbCl5 with the pentachloroplumbate in a different packing environment. However, when aqueous solutions of enantiomerically pure [Co(chxn)3]Cl3 and PbCl2 were mixed and evaporated under the same conditions, no precipitation of an analogous, necessarily homochiral compound is observed; after prolonged evaporation, PbCl2 reprecipitates. We conclude that the competition between (I) and lead chloride is a close one, and that the formation of further pentachloroplumbate derivatives will not be trivial.

Experimental top

From a solution containing [Co(chxn)3]Cl3·2H2O and PbCl2, the red crystalline product precipitates according to equation (1). [Co(chxn)3]Cl3·2H2O (0.272 g) [for the synthesis and structure of this compound see Kalf et al. (2002)] and PbCl2 (0.5 mmol, 0.139 g) were separately dissolved in water (10 ml each) at 318 K. The orange-coloured mixture was stirred for 30 min at 318 K and then allowed to cool to room temperature; after 2 d, the precipitation of dark-red crystals of [Co(chxn)3]PbCl5·1.5H2O began (yield 89%). The saturated solution should not be exposed to lower temperatures; cooling of a saturated solution of compound (I) to 279 K resulted in the formation of PbCl2. Analysis calculated for C36H90N12O3Cl10Co2Pb2: C, 26.59; H, 5.58; N, 10.34. Found: C, 26.23; H, 5.98; N, 10.17. 207Pb NMR spectra were recorded on a Varian Unity 500 instrument, 105 MHz, in D2O and externally referenced to Pb(CH3)4.

Refinement top

All H atoms were introduced in idealized positions (C—H = 0.98 Å, N—H = 0.92 Å, O—H = 0.80 Å) and treated as riding.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot [PLATON (Spek, 2003); 50% probability, H atoms with arbitrary radii] of the cation and the solvent water molecules in (I). The solvent molecule associated with atom O2 is located on a twofold crystallographic axis in space group C2/c.
[Figure 2] Fig. 2. A displacement ellipsoid plot [PLATON (Spek, 2003); 50% probability) of the pentachloroplumbate anion in (I).
Tris(cyclohexane-1,2-diamine-κ2N,N')cobalt pentachloroplumbate sesquihydrate, [Co(C6H14N2)3][PbCl5]·1.5H2O top
Crystal data top
[Co(C6H14N2)3][PbCl5]·1.5H2OF(000) = 3208
Mr = 812.97Dx = 1.854 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6549 reflections
a = 27.066 (2) Åθ = 2.5–29.8°
b = 12.4657 (11) ŵ = 6.83 mm1
c = 21.3066 (19) ÅT = 110 K
β = 125.889 (1)°Fragment, orange
V = 5824.0 (8) Å30.39 × 0.28 × 0.17 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
8402 independent reflections
Radiation source: fine-focus sealed tube6901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: analytical
(PLATON; Spek, 2003)
h = 3738
Tmin = 0.084, Tmax = 0.357k = 1717
42820 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.007P)2]
where P = (Fo2 + 2Fc2)/3
8402 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Co(C6H14N2)3][PbCl5]·1.5H2OV = 5824.0 (8) Å3
Mr = 812.97Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.066 (2) ŵ = 6.83 mm1
b = 12.4657 (11) ÅT = 110 K
c = 21.3066 (19) Å0.39 × 0.28 × 0.17 mm
β = 125.889 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8402 independent reflections
Absorption correction: analytical
(PLATON; Spek, 2003)
6901 reflections with I > 2σ(I)
Tmin = 0.084, Tmax = 0.357Rint = 0.066
42820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.01Δρmax = 1.46 e Å3
8402 reflectionsΔρmin = 1.19 e Å3
294 parameters
Special details top

Experimental. 207Pb NMR spectra were recorded on a Varian Unity 500 instrument, 105 MHz, in D2O and externally referenced to Pb(CH3)4.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.135742 (17)0.68974 (3)0.05905 (2)0.01518 (8)
N10.18198 (10)0.82202 (18)0.07312 (13)0.0172 (5)
H1A0.17790.87090.10210.021*
H1B0.22270.80610.09910.021*
N20.08336 (11)0.72956 (18)0.05093 (13)0.0184 (5)
H2A0.09460.69180.07780.022*
H2B0.04330.71370.07170.022*
N30.19030 (10)0.60252 (17)0.04742 (13)0.0163 (5)
H3A0.18450.61890.00140.020*
H3B0.23030.61680.08730.020*
N40.08743 (10)0.55766 (17)0.03306 (13)0.0170 (5)
H4A0.09290.53010.07680.020*
H4B0.04670.57250.00260.020*
N50.18574 (10)0.65689 (18)0.17074 (13)0.0176 (5)
H5A0.18490.58420.17760.021*
H5B0.22550.67650.19290.021*
N60.08289 (10)0.76716 (19)0.07947 (13)0.0181 (5)
H6A0.09170.83930.08530.022*
H6B0.04260.75830.03860.022*
C10.15798 (12)0.8692 (2)0.00485 (15)0.0166 (6)
H10.17720.83180.02580.020*
C20.09038 (13)0.8468 (2)0.05696 (16)0.0172 (6)
H20.07100.88540.03660.021*
C30.06140 (13)0.8839 (2)0.13933 (16)0.0208 (6)
H3C0.01740.86970.17110.025*
H3D0.07900.84450.16160.025*
C40.07287 (13)1.0042 (2)0.13875 (17)0.0229 (6)
H4C0.05651.02790.19140.028*
H4D0.05161.04360.12140.028*
C50.14062 (13)1.0291 (2)0.08535 (16)0.0214 (6)
H5C0.14651.10680.08430.026*
H5D0.16100.99550.10600.026*
C60.17023 (13)0.9892 (2)0.00264 (16)0.0189 (6)
H6C0.21431.00240.02890.023*
H6D0.15321.02800.02070.023*
C70.17669 (12)0.4873 (2)0.04842 (16)0.0161 (6)
H70.19330.46760.10190.019*
C80.10796 (12)0.4784 (2)0.00043 (16)0.0163 (6)
H80.09110.49940.05290.020*
C90.08688 (13)0.3653 (2)0.00048 (16)0.0190 (6)
H9A0.04230.36200.03530.023*
H9B0.09980.34570.05170.023*
C100.11387 (13)0.2859 (2)0.02770 (18)0.0217 (6)
H10A0.10290.21260.02360.026*
H10B0.09660.29970.08220.026*
C110.18317 (13)0.2964 (2)0.02111 (18)0.0228 (7)
H11A0.19920.24690.00140.027*
H11B0.20060.27620.07480.027*
C120.20258 (13)0.4108 (2)0.01934 (17)0.0194 (6)
H12A0.24720.41580.05220.023*
H12B0.18750.42990.03370.023*
C130.16269 (12)0.7147 (2)0.20960 (15)0.0170 (6)
H130.17950.78750.22150.020*
C140.09400 (13)0.7231 (2)0.15146 (16)0.0186 (6)
H140.07680.65060.14050.022*
C150.06615 (14)0.7894 (2)0.18399 (17)0.0236 (7)
H15A0.02170.79100.14670.028*
H15B0.08130.86330.19340.028*
C160.08386 (15)0.7383 (3)0.26005 (19)0.0275 (7)
H16A0.06790.78230.28260.033*
H16B0.06540.66700.24940.033*
C170.15304 (14)0.7285 (3)0.31792 (17)0.0280 (7)
H17A0.16290.69380.36520.034*
H17B0.17120.80040.33170.034*
C180.18039 (14)0.6632 (2)0.28438 (16)0.0220 (6)
H18A0.22490.66130.32140.026*
H18B0.16510.58940.27460.026*
Pb10.114580 (5)0.272844 (9)0.230932 (6)0.01924 (3)
Cl10.18149 (3)0.07962 (6)0.28765 (4)0.02208 (15)
Cl20.04703 (3)0.17369 (6)0.08105 (4)0.02275 (15)
Cl30.20126 (3)0.35868 (6)0.22727 (4)0.02552 (16)
Cl40.03941 (3)0.45312 (6)0.13972 (4)0.02687 (16)
Cl50.17754 (4)0.34501 (7)0.38838 (4)0.03137 (18)
O10.36516 (10)0.48067 (16)0.37283 (12)0.0293 (5)
H1O0.39480.51710.39170.038*
H2O0.34210.50430.32990.038*
O20.00000.3656 (3)0.25000.0850 (16)
H3O0.00140.40270.27950.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01478 (19)0.01641 (19)0.01275 (18)0.00002 (15)0.00717 (16)0.00044 (14)
N10.0151 (12)0.0168 (12)0.0149 (12)0.0005 (9)0.0061 (11)0.0029 (9)
N20.0188 (12)0.0151 (11)0.0173 (12)0.0017 (10)0.0084 (11)0.0007 (10)
N30.0195 (13)0.0175 (12)0.0118 (11)0.0018 (9)0.0090 (11)0.0012 (9)
N40.0167 (12)0.0186 (12)0.0161 (12)0.0010 (10)0.0099 (11)0.0007 (9)
N50.0170 (12)0.0197 (13)0.0171 (12)0.0015 (10)0.0105 (11)0.0004 (10)
N60.0156 (12)0.0197 (12)0.0156 (12)0.0008 (10)0.0073 (10)0.0012 (10)
C10.0183 (14)0.0166 (14)0.0144 (14)0.0002 (11)0.0093 (12)0.0002 (11)
C20.0207 (15)0.0127 (14)0.0174 (14)0.0002 (11)0.0107 (13)0.0006 (11)
C30.0195 (15)0.0209 (15)0.0175 (15)0.0014 (12)0.0084 (13)0.0017 (12)
C40.0226 (16)0.0213 (16)0.0197 (15)0.0003 (12)0.0095 (14)0.0045 (12)
C50.0254 (17)0.0185 (15)0.0214 (15)0.0018 (12)0.0143 (14)0.0009 (12)
C60.0204 (15)0.0177 (15)0.0191 (15)0.0023 (11)0.0119 (13)0.0008 (11)
C70.0179 (15)0.0168 (14)0.0145 (14)0.0014 (11)0.0100 (12)0.0003 (11)
C80.0169 (14)0.0167 (14)0.0158 (14)0.0017 (11)0.0099 (12)0.0003 (11)
C90.0185 (15)0.0177 (15)0.0191 (15)0.0000 (11)0.0102 (13)0.0003 (11)
C100.0261 (16)0.0168 (15)0.0242 (16)0.0021 (12)0.0158 (14)0.0023 (12)
C110.0223 (16)0.0183 (16)0.0274 (17)0.0027 (12)0.0143 (14)0.0009 (12)
C120.0199 (15)0.0188 (15)0.0203 (15)0.0003 (12)0.0122 (13)0.0021 (12)
C130.0185 (14)0.0188 (15)0.0140 (13)0.0017 (11)0.0098 (12)0.0036 (11)
C140.0199 (15)0.0174 (14)0.0182 (14)0.0010 (12)0.0110 (13)0.0021 (12)
C150.0210 (16)0.0266 (18)0.0254 (16)0.0004 (12)0.0149 (14)0.0056 (13)
C160.0320 (18)0.0293 (18)0.0336 (18)0.0009 (14)0.0261 (17)0.0046 (14)
C170.0342 (18)0.0356 (18)0.0179 (15)0.0030 (15)0.0174 (15)0.0010 (14)
C180.0270 (17)0.0241 (16)0.0158 (14)0.0024 (13)0.0130 (14)0.0003 (12)
Pb10.01684 (5)0.02238 (6)0.01659 (5)0.00008 (5)0.00872 (4)0.00000 (5)
Cl10.0206 (4)0.0241 (4)0.0175 (3)0.0015 (3)0.0090 (3)0.0015 (3)
Cl20.0193 (4)0.0238 (4)0.0188 (4)0.0003 (3)0.0076 (3)0.0005 (3)
Cl30.0206 (4)0.0341 (4)0.0219 (4)0.0000 (3)0.0125 (3)0.0034 (3)
Cl40.0221 (4)0.0210 (4)0.0264 (4)0.0017 (3)0.0080 (3)0.0013 (3)
Cl50.0375 (5)0.0387 (5)0.0222 (4)0.0149 (4)0.0199 (4)0.0096 (3)
O10.0352 (14)0.0246 (12)0.0239 (12)0.0052 (10)0.0150 (11)0.0041 (9)
O20.113 (4)0.052 (3)0.148 (5)0.0000.109 (4)0.000
Geometric parameters (Å, º) top
Co1—N21.963 (2)C7—C81.513 (4)
Co1—N31.963 (2)C7—C121.515 (4)
Co1—N41.969 (2)C7—H70.9800
Co1—N51.971 (2)C8—C91.518 (4)
Co1—N61.974 (2)C8—H80.9800
Co1—N11.984 (2)C9—C101.532 (4)
N1—C11.504 (3)C9—H9A0.9800
N1—H1A0.9200C9—H9B0.9800
N1—H1B0.9200C10—C111.526 (4)
N2—C21.489 (3)C10—H10A0.9800
N2—H2A0.9200C10—H10B0.9800
N2—H2B0.9200C11—C121.528 (4)
N3—C71.486 (3)C11—H11A0.9800
N3—H3A0.9200C11—H11B0.9800
N3—H3B0.9200C12—H12A0.9800
N4—C81.490 (3)C12—H12B0.9800
N4—H4A0.9200C13—C181.512 (4)
N4—H4B0.9200C13—C141.517 (4)
N5—C131.483 (3)C13—H130.9800
N5—H5A0.9200C14—C151.531 (4)
N5—H5B0.9200C14—H140.9800
N6—C141.485 (3)C15—C161.533 (4)
N6—H6A0.9200C15—H15A0.9800
N6—H6B0.9200C15—H15B0.9800
C1—C21.509 (4)C16—C171.528 (4)
C1—C61.528 (4)C16—H16A0.9800
C1—H10.9800C16—H16B0.9800
C2—C31.515 (4)C17—C181.530 (4)
C2—H20.9800C17—H17A0.9800
C3—C41.530 (4)C17—H17B0.9800
C3—H3C0.9800C18—H18A0.9800
C3—H3D0.9800C18—H18B0.9800
C4—C51.519 (4)Pb1—Cl32.6211 (7)
C4—H4C0.9800Pb1—Cl12.8241 (7)
C4—H4D0.9800Pb1—Cl22.8677 (7)
C5—C61.529 (4)Pb1—Cl52.8748 (8)
C5—H5C0.9800Pb1—Cl42.8863 (7)
C5—H5D0.9800O1—H1O0.80
C6—H6C0.9800O1—H2O0.80
C6—H6D0.9800O2—H3O0.80
N2—Co1—N393.43 (9)C5—C6—H6D109.9
N2—Co1—N488.85 (9)H6C—C6—H6D108.3
N3—Co1—N485.76 (9)N3—C7—C8106.2 (2)
N2—Co1—N5176.34 (10)N3—C7—C12115.1 (2)
N3—Co1—N590.14 (9)C8—C7—C12111.0 (2)
N4—Co1—N592.21 (10)N3—C7—H7108.1
N2—Co1—N691.71 (10)C8—C7—H7108.1
N3—Co1—N6174.04 (9)C12—C7—H7108.1
N4—Co1—N691.33 (9)N4—C8—C7106.4 (2)
N5—Co1—N684.76 (9)N4—C8—C9112.4 (2)
N2—Co1—N185.44 (9)C7—C8—C9112.4 (2)
N3—Co1—N191.43 (9)N4—C8—H8108.5
N4—Co1—N1173.47 (9)C7—C8—H8108.5
N5—Co1—N193.69 (9)C9—C8—H8108.5
N6—Co1—N191.99 (9)C8—C9—C10110.2 (2)
C1—N1—Co1109.40 (16)C8—C9—H9A109.6
C1—N1—H1A109.8C10—C9—H9A109.6
Co1—N1—H1A109.8C8—C9—H9B109.6
C1—N1—H1B109.8C10—C9—H9B109.6
Co1—N1—H1B109.8H9A—C9—H9B108.1
H1A—N1—H1B108.2C11—C10—C9110.8 (2)
C2—N2—Co1108.17 (16)C11—C10—H10A109.5
C2—N2—H2A110.1C9—C10—H10A109.5
Co1—N2—H2A110.1C11—C10—H10B109.5
C2—N2—H2B110.1C9—C10—H10B109.5
Co1—N2—H2B110.1H10A—C10—H10B108.1
H2A—N2—H2B108.4C10—C11—C12111.5 (2)
C7—N3—Co1108.81 (16)C10—C11—H11A109.3
C7—N3—H3A109.9C12—C11—H11A109.3
Co1—N3—H3A109.9C10—C11—H11B109.3
C7—N3—H3B109.9C12—C11—H11B109.3
Co1—N3—H3B109.9H11A—C11—H11B108.0
H3A—N3—H3B108.3C7—C12—C11109.2 (2)
C8—N4—Co1108.51 (16)C7—C12—H12A109.8
C8—N4—H4A110.0C11—C12—H12A109.8
Co1—N4—H4A110.0C7—C12—H12B109.8
C8—N4—H4B110.0C11—C12—H12B109.8
Co1—N4—H4B110.0H12A—C12—H12B108.3
H4A—N4—H4B108.4N5—C13—C18113.9 (2)
C13—N5—Co1110.93 (16)N5—C13—C14107.0 (2)
C13—N5—H5A109.5C18—C13—C14111.7 (2)
Co1—N5—H5A109.5N5—C13—H13108.0
C13—N5—H5B109.5C18—C13—H13108.0
Co1—N5—H5B109.5C14—C13—H13108.0
H5A—N5—H5B108.0N6—C14—C13106.2 (2)
C14—N6—Co1108.23 (17)N6—C14—C15114.4 (2)
C14—N6—H6A110.1C13—C14—C15111.1 (2)
Co1—N6—H6A110.1N6—C14—H14108.3
C14—N6—H6B110.1C13—C14—H14108.3
Co1—N6—H6B110.1C15—C14—H14108.3
H6A—N6—H6B108.4C14—C15—C16108.8 (2)
N1—C1—C2107.0 (2)C14—C15—H15A109.9
N1—C1—C6113.8 (2)C16—C15—H15A109.9
C2—C1—C6110.6 (2)C14—C15—H15B109.9
N1—C1—H1108.4C16—C15—H15B109.9
C2—C1—H1108.4H15A—C15—H15B108.3
C6—C1—H1108.4C17—C16—C15111.2 (2)
N2—C2—C1106.2 (2)C17—C16—H16A109.4
N2—C2—C3113.2 (2)C15—C16—H16A109.4
C1—C2—C3112.2 (2)C17—C16—H16B109.4
N2—C2—H2108.4C15—C16—H16B109.4
C1—C2—H2108.4H16A—C16—H16B108.0
C3—C2—H2108.4C16—C17—C18111.4 (2)
C2—C3—C4109.0 (2)C16—C17—H17A109.3
C2—C3—H3C109.9C18—C17—H17A109.3
C4—C3—H3C109.9C16—C17—H17B109.3
C2—C3—H3D109.9C18—C17—H17B109.3
C4—C3—H3D109.9H17A—C17—H17B108.0
H3C—C3—H3D108.3C13—C18—C17109.0 (2)
C5—C4—C3110.9 (2)C13—C18—H18A109.9
C5—C4—H4C109.5C17—C18—H18A109.9
C3—C4—H4C109.5C13—C18—H18B109.9
C5—C4—H4D109.5C17—C18—H18B109.9
C3—C4—H4D109.5H18A—C18—H18B108.3
H4C—C4—H4D108.0Cl3—Pb1—Cl190.01 (2)
C4—C5—C6112.6 (2)Cl3—Pb1—Cl298.06 (2)
C4—C5—H5C109.1Cl1—Pb1—Cl286.51 (2)
C6—C5—H5C109.1Cl3—Pb1—Cl588.76 (2)
C4—C5—H5D109.1Cl1—Pb1—Cl588.56 (2)
C6—C5—H5D109.1Cl2—Pb1—Cl5171.57 (2)
H5C—C5—H5D107.8Cl3—Pb1—Cl487.25 (2)
C1—C6—C5109.0 (2)Cl1—Pb1—Cl4166.97 (2)
C1—C6—H6C109.9Cl2—Pb1—Cl481.27 (2)
C5—C6—H6C109.9Cl5—Pb1—Cl4104.11 (2)
C1—C6—H6D109.9H1O—O1—H2O104.2
N2—Co1—N1—C17.06 (17)N2—C2—C3—C4178.3 (2)
N3—Co1—N1—C186.27 (18)C1—C2—C3—C458.1 (3)
N4—Co1—N1—C121.9 (9)C2—C3—C4—C555.6 (3)
N5—Co1—N1—C1176.50 (17)C3—C4—C5—C656.3 (3)
N6—Co1—N1—C198.62 (18)N1—C1—C6—C5176.7 (2)
N3—Co1—N2—C2113.01 (17)C2—C1—C6—C556.2 (3)
N4—Co1—N2—C2161.31 (17)C4—C5—C6—C155.6 (3)
N5—Co1—N2—C254.5 (16)Co1—N3—C7—C841.4 (2)
N6—Co1—N2—C270.01 (17)Co1—N3—C7—C12164.61 (19)
N1—Co1—N2—C221.85 (17)Co1—N4—C8—C740.4 (2)
N2—Co1—N3—C7104.13 (17)Co1—N4—C8—C9163.94 (18)
N4—Co1—N3—C715.54 (17)N3—C7—C8—N453.4 (3)
N5—Co1—N3—C776.66 (17)C12—C7—C8—N4179.2 (2)
N6—Co1—N3—C745.4 (10)N3—C7—C8—C9176.9 (2)
N1—Co1—N3—C7170.36 (17)C12—C7—C8—C957.3 (3)
N2—Co1—N4—C879.24 (18)N4—C8—C9—C10175.0 (2)
N3—Co1—N4—C814.28 (17)C7—C8—C9—C1054.9 (3)
N5—Co1—N4—C8104.26 (17)C8—C9—C10—C1154.1 (3)
N6—Co1—N4—C8170.93 (17)C9—C10—C11—C1256.8 (3)
N1—Co1—N4—C850.4 (9)N3—C7—C12—C11178.1 (2)
N2—Co1—N5—C139.2 (16)C8—C7—C12—C1157.5 (3)
N3—Co1—N5—C13176.71 (18)C10—C11—C12—C757.9 (3)
N4—Co1—N5—C1397.52 (18)Co1—N5—C13—C18156.8 (2)
N6—Co1—N5—C136.39 (18)Co1—N5—C13—C1432.9 (2)
N1—Co1—N5—C1385.28 (18)Co1—N6—C14—C1345.4 (2)
N2—Co1—N6—C14158.73 (18)Co1—N6—C14—C15168.33 (19)
N3—Co1—N6—C149.2 (10)N5—C13—C14—N650.7 (3)
N4—Co1—N6—C1469.85 (18)C18—C13—C14—N6176.0 (2)
N5—Co1—N6—C1422.25 (17)N5—C13—C14—C15175.6 (2)
N1—Co1—N6—C14115.78 (18)C18—C13—C14—C1559.1 (3)
Co1—N1—C1—C234.0 (2)N6—C14—C15—C16177.1 (2)
Co1—N1—C1—C6156.47 (18)C13—C14—C15—C1656.9 (3)
Co1—N2—C2—C145.9 (2)C14—C15—C16—C1756.2 (3)
Co1—N2—C2—C3169.43 (19)C15—C16—C17—C1857.4 (3)
N1—C1—C2—N251.9 (3)N5—C13—C18—C17178.9 (2)
C6—C1—C2—N2176.4 (2)C14—C13—C18—C1757.5 (3)
N1—C1—C2—C3176.0 (2)C16—C17—C18—C1356.6 (3)
C6—C1—C2—C359.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.922.062.931 (4)157
N1—H1B···Cl5i0.922.603.399 (3)146
N2—H2A···Cl5ii0.922.773.592 (3)149
N2—H2B···Cl2iii0.922.733.416 (3)133
N2—H2B···Cl4iii0.922.763.527 (3)141
N3—H3A···Cl5ii0.922.353.265 (3)175
N3—H3B···Cl1i0.922.363.190 (2)150
N4—H4A···Cl40.922.663.466 (3)146
N4—H4B···Cl4iii0.922.473.246 (2)143
N5—H5A···Cl30.922.943.854 (2)170
N5—H5B···Cl1i0.922.603.300 (3)134
N6—H6A···O1i0.922.012.901 (3)163
N6—H6B···Cl2iii0.922.423.241 (3)149
O1—H1O···Cl2i0.802.363.109 (3)158
O1—H2O···Cl1i0.802.383.122 (2)153
O2—H3O···Cl4iv0.802.553.2845 (19)154
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H14N2)3][PbCl5]·1.5H2O
Mr812.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)110
a, b, c (Å)27.066 (2), 12.4657 (11), 21.3066 (19)
β (°) 125.889 (1)
V3)5824.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)6.83
Crystal size (mm)0.39 × 0.28 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionAnalytical
(PLATON; Spek, 2003)
Tmin, Tmax0.084, 0.357
No. of measured, independent and
observed [I > 2σ(I)] reflections
42820, 8402, 6901
Rint0.066
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.048, 1.01
No. of reflections8402
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.46, 1.19

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
Pb1—Cl32.6211 (7)Pb1—Cl52.8748 (8)
Pb1—Cl12.8241 (7)Pb1—Cl42.8863 (7)
Pb1—Cl22.8677 (7)
Cl3—Pb1—Cl190.01 (2)Cl2—Pb1—Cl5171.57 (2)
Cl3—Pb1—Cl298.06 (2)Cl3—Pb1—Cl487.25 (2)
Cl1—Pb1—Cl286.51 (2)Cl1—Pb1—Cl4166.97 (2)
Cl3—Pb1—Cl588.76 (2)Cl2—Pb1—Cl481.27 (2)
Cl1—Pb1—Cl588.56 (2)Cl5—Pb1—Cl4104.11 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i.922.062.931 (4)157
N1—H1B···Cl5i.922.603.399 (3)146
N2—H2A···Cl5ii.922.773.592 (3)149
N2—H2B···Cl2iii.922.733.416 (3)133
N2—H2B···Cl4iii.922.763.527 (3)141
N3—H3A···Cl5ii.922.353.265 (3)175
N3—H3B···Cl1i.922.363.190 (2)150
N4—H4A···Cl4.922.663.466 (3)146
N4—H4B···Cl4iii.922.473.246 (2)143
N5—H5A···Cl3.922.943.854 (2)170
N5—H5B···Cl1i.922.603.300 (3)134
N6—H6A···O1i.922.012.901 (3)163
N6—H6B···Cl2iii.922.423.241 (3)149
O1—H1O···Cl2i.802.363.109 (3)158
O1—H2O···Cl1i.802.383.122 (2)153
O2—H3O···Cl4iv.802.553.2845 (19)154
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds