Download citation
Download citation
link to html
The title compound, namely octa­aqua­ytterbium(III) aqua­nona­chloro­tricadmate(II) hexa­hydrate, [Yb(H2O)8][Cd3Cl9(H2O)]·6H2O, was prepared by evaporation at 278 K from an aqueous solution of the ternary system YbCl3–CdCl2–H2O and was characterized by elemental chemical analysis and by X-ray powder and single-crystal diffraction studies. The crystal structure can be viewed as being built from layers of double chains of CdCl6 and CdCl5(H2O) octahedra separated by antiprismatic [Yb(H2O)8]3+ cations. The stabilization of the structure is ensured by O—H...O and O—H...Cl hydrogen bonds. A comparison with the structures of SrCd2Cl6·8H2O and CeCd4Cl11·13H2O is presented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103015877/bc1020sup1.cif
Contains datablocks golbal, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103015877/bc1020Isup2.hkl
Contains datablock I

Comment top

Investigations of hydrated rare earth (III) chlorides are very important for understanding their physical (magnetic, optical) and structural properties. The ternary systems ACl–LnCl3–H2O [where A is an alkali metal and Ln a rare earth (III) metal] have previously been investigated at various temperatures (Kost et al., 1980; Shirai et al., 1981; Lazorenko et al., 1983; Shirai et al., 1986; Storozhenko et al., 1987; Bunyakina et al., 1991; Bunyakina et al., 1992). However, all synthesized compounds were only characterized by powder X-ray diffraction and no single-crystal structures have been reported. The interest of other authors in these hydrated alkali metal/rare earth (III) chlorides was mainly based on the change of the coordination number of the rare earth ions and the parameters influencing these changes (Reuter et al., 1995; Fink et al., 1990).

To the best of our knowledge, only a few examples of divalent metal halide (MX2) rare earth (III) halide (MX3—H2O) systems have been investigated. In the case of the SrCl2–CdCl2–H2O and CeCl3–CdCl2–H2O systems, the hydrated phases SrCd2Cl6·8H2O and CeCd4Cl11.13H2O were isolated and their structures were determined (Yahyaoui et al., 2002; Yahyaoui et al., 2003). The room-temperature form of the first compound crystallizes in the P-1 triclinic system and is characterized by pseudo-monoclinic symmetry and the occurrence of twinning by twofold rotation around the c axis. SrCd2Cl6·8H2O undergoes a structural phase transition at 323 K, which is related to a change to higher symmetry and the disappearance of twinning. On the other hand, CeCd4Cl11.13H2O crystallizes in the monoclinic system with P21 symmetry. In comparison with SrCd2Cl6·8H2O, the substitution of strontium for cerium(III) cations leads to an increase of the symmetry, a disappearance of twinning phenomena and the preservation of the cation environments.

As part of our research, we have investigated the YbCl3–CdCl2–H2O system, in order to study further the influence of the substitution of strontium and cerium cations on the structural properties the double chloride salts formed in these sytems. We report here the results of a structural investigation of a new double-salt hydrate, namely YbCd3Cl9.15H2O. In contrast to CeCd4Cl11.13H2O, the structural arrangement of YbCd3Cl9.15H2O at room temperature is bidimensional (Fig. 1), with an increase in the unit-cell volume. Two types of octahedra are present around the cadmium cations; atoms Cd2 and Cd3 are each coordinated to six Cl atoms, while atom Cd1 is surrounded by five Cl atoms and one O atom (Table 2). Six of these octahedra share edges, thus generating short double chains that are themselves connected through atom Cl5 to form layers parallel to the (−1 1 1) plane (Figs. 1 and 2). These layers of double octahedral chains around Cd atoms have not been previously observed in complex hydrated cadmium chlorides, and the structural arrangement in YbCd3Cl9.15H2O differs from the infinite double chains of CdCl6 octahedra found in SrCd2Cl6·8H2O and CeCd4Cl11.13H2. The average Cd1—Cl, Cd2—Cl and Cd3—Cl distances in YbCd3Cl9.15H2O are 2.626, 2.633 and 2.622 Å, respectively, and the Cd1—O distance is 2.322 (3) Å [cf. Cd—O = 2.374 (17) Å in CeCd4Cl11.13H2O].

Three types of water molecules are present in the crystal structure of (I); the first type corresponds to six water molecules not coordinated to cations (atoms O10W–O15W), the second corresponds to the H2O molecule (O9W) bonded to atom Cd1 and the last category contains the remaining water molecules coordinating the ytterbium ions (atoms O1W–O8W). The ytterbium coordination sphere consists of eight water molecules at the corners of a distorted square antiprism, with an average Yb—O distance equal to 2.312 Å (Figs. 1 and 2, and Table 2). These square antiprisms are intercalated between the layers of cadmium octahedra. Compound (I) is the first known example of a complex hydrated cadmium chloride showing such a coordination environment, it having previously been observed only in (CH3NH3)3PrCl6·2H2O (Runge et al., 1990) and (CH3NH3)8[NdCl6][NdCl4(H2O) 2]2Cl3 (Runge et al., 1991). The coordination number of the rare-earth(III) ion decreases from nine in CeCd4Cl11.13H2O to eight in YbCd3Cl9.15H2O, in conjunction with a decrease of the rare-earth(III)–oxygen distance (cf. <Ce—O> = 2.542 Å).

A comparison can be made between the structures of YbCd3Cl9.15H2O and SrCd2Cl6·8H2O. The triclinic Sr compound was found to be twinned with a pseudo-monoclinic face-centered unit cell related to the triclinic unit-cell by the 100/001/1–4-1 transformation matrix. In SrCd2Cl6·8H2O, pairs of Cd, Cl and O atoms are related by a c/2 pseudo-translation, whereas in YbCd3Cl9.15H2O, similar atoms are related by a true b/2 translation. The twin rotation axis parallel to c in the Sr compound is replaced by a real 21 axis parallel to b in the Yb compound.

A projection view of the title compound, illustrating the hydrogen bonding, is depicted in Fig. 1. The hydrogen bonds are of two types, namely O—H···Cl and O—H···O (Table 3). The O—H···Cl bonds appear between layers of cadmium octahedra and water molecules, with distances ranging from 3.130 (3) to 3.346 (4) Å. Atoms Cl6, Cl7 and Cl9 atoms are each bonded to one Cd atom and establish the most hydrogen bonds; atom Cl9 forms four hydrogen bonds, and atoms Cl6 and Cl7 are involved in three hydrogen bonds. Atoms Cl1, Cl2, Cl5 and Cl8 atoms each bridge two Cd atoms and participate in fewer hydrogen bonds, i.e. one for atom Cl2 and two for atoms Cl1, Cl and Cl8. Atoms Cl3 and Cl4 are each bonded to three cd atoms and, whereas atom Cl3 is not involved in any hydrogen bonds, atom Cl4 can be considered to be engaged in a weak hydrogen bond with one water molecule (O6W). O—H···O hydrogen bonds connect the water molecules surrounding the ytterbium ions to water molecules not coordinated to cations, and only atoms O1W and O5W are not involved in any hydrogen bonds. The associated O···O distances vary from 2.681 (4) to 3.202 (5) Å.

Experimental top

Colorless single crystals of YbCd3Cl9.15H2O were grown from a heated mixture (T= 363 K) of ytterbium oxide Yb2O3(0.9852 g) and cadmium chloride CdCl2·H2O (1.14 g) in HCl solution (18 M) in a 1:4 molar ratio. This solution was allowed to evaporate slowly to dryness at 278 K and twinned needle shaped crystals were obtained. Susequently, several recrystallizations in acetone and methanol were performed, yielding colorless, transparent and parallelepiped-shaped single crystals. The hydrated double salt was characterized by X-ray powder diffraction, elemental chemical analysis and thermogravimetric studies in order to determine the water content. The formula was confirmed by density measurement and the refinement of the crystal structure.

Refinement top

All H atoms were found in difference Fourier maps but were introduced into the refinement as fixed contributors with Uiso values fixed at 0.06 Å2. The maximum electron-density residual peak is located 0.93 Å from the Yb atom and the largest hole is 0.90 Å from the same atom.

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1996); cell refinement: IPDS Software; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : A projection of the structure of YbCd3Cl9.15H2O on to the (001) plane. Hydrogen bonds are shown as dashed lines (blue for O—H···O bonds and purple for O—H···Cl bonds in the online version of the journal).
[Figure 2] Fig. 2. : A polyhedral representation of YbCd3Cl9.15H2O projected on to the (001) plane.
(I) top
Crystal data top
[Yb(H2O)8][Cd3Cl9(H2O)]·6H2OF(000) = 2068
Mr = 1099.53Dx = 2.641 Mg m3
Dm = 2.611 Mg m3
Dm measured by picnometry
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.2692 (12) ÅCell parameters from 8000 reflections
b = 20.057 (2) Åθ = 2.7–28.1°
c = 12.2820 (13) ŵ = 6.55 mm1
β = 113.803 (11)°T = 293 K
V = 2765.3 (5) Å3Prism, colorless
Z = 40.30 × 0.15 × 0.11 mm
Data collection top
Stoe IPDS image-plate
diffractometer
5551 reflections with I > 2σ(I)
ϕ scansRint = 0.037
Absorption correction: multi-scan
Symmetry-related measurements (Blessing R.H., 1995)
θmax = 26.4°, θmin = 2.7°
Tmin = 0.234, Tmax = 0.487h = 1515
22337 measured reflectionsk = 2525
5583 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0237P)2 + 7.9527P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 1.29Δρmax = 1.30 e Å3
5583 reflectionsΔρmin = 1.37 e Å3
254 parameters
Crystal data top
[Yb(H2O)8][Cd3Cl9(H2O)]·6H2OV = 2765.3 (5) Å3
Mr = 1099.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.2692 (12) ŵ = 6.55 mm1
b = 20.057 (2) ÅT = 293 K
c = 12.2820 (13) Å0.30 × 0.15 × 0.11 mm
β = 113.803 (11)°
Data collection top
Stoe IPDS image-plate
diffractometer
5583 independent reflections
Absorption correction: multi-scan
Symmetry-related measurements (Blessing R.H., 1995)
5551 reflections with I > 2σ(I)
Tmin = 0.234, Tmax = 0.487Rint = 0.037
22337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.064H-atom parameters not refined
S = 1.29Δρmax = 1.30 e Å3
5583 reflectionsΔρmin = 1.37 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.5288 (2)0.13359 (14)0.1917 (3)0.0190 (6)
O2W0.5499 (3)0.03709 (16)0.3597 (3)0.0274 (7)
O3W0.3997 (3)0.03810 (16)0.0328 (3)0.0246 (7)
O4W0.3919 (3)0.04907 (15)0.2016 (3)0.0232 (7)
O5W0.1831 (3)0.03346 (19)0.0766 (3)0.0295 (8)
O6W0.2808 (3)0.03299 (15)0.3214 (3)0.0202 (6)
O7W0.2810 (3)0.15819 (15)0.0994 (3)0.0266 (7)
O8W0.4082 (3)0.14753 (14)0.3451 (3)0.0180 (6)
O9W0.1145 (4)0.1289 (2)0.0251 (3)0.0392 (9)
O10W0.5397 (3)0.11698 (15)0.1160 (3)0.0202 (6)
O11W0.2595 (3)0.12971 (15)0.7199 (3)0.0231 (6)
O12W0.0543 (3)0.18712 (16)0.0416 (3)0.0243 (7)
O13W0.3495 (3)0.08114 (15)0.5457 (3)0.0204 (6)
O14W0.2460 (3)0.24517 (16)0.3246 (3)0.0230 (6)
O15W0.6441 (3)0.1617 (2)0.4794 (3)0.0327 (8)
Cl10.25058 (8)0.06585 (4)0.16893 (8)0.01562 (19)
Cl20.17734 (8)0.22504 (5)0.35945 (8)0.01651 (18)
Cl30.11762 (8)0.05316 (5)0.50273 (8)0.01420 (17)
Cl40.04803 (8)0.11968 (4)0.34331 (8)0.01398 (17)
Cl50.35158 (8)0.22862 (5)0.02754 (8)0.01664 (18)
Cl60.02429 (9)0.27641 (5)0.14161 (10)0.0231 (2)
Cl70.05083 (9)0.21747 (5)0.68159 (8)0.01752 (19)
Cl80.18369 (8)0.10367 (5)0.68271 (8)0.01576 (18)
Cl90.01707 (8)0.03583 (5)0.17868 (8)0.01748 (19)
Cd10.14417 (2)0.183803 (14)0.17724 (3)0.01466 (7)
Cd20.01025 (2)0.170568 (14)0.52435 (2)0.01333 (7)
Cd30.06851 (2)0.005187 (14)0.32702 (2)0.01304 (7)
Yb10.377998 (14)0.065643 (8)0.203399 (14)0.01206 (6)
H110.52480.17870.18890.060*
H120.59710.12260.18390.060*
H210.61500.06220.39390.060*
H220.57880.00560.38200.060*
H310.40870.00450.00700.060*
H320.39940.07640.01440.060*
H410.34720.07940.22860.060*
H420.43850.07530.17730.060*
H510.14150.04250.00120.060*
H520.13560.01390.09480.060*
H610.20920.00960.29200.060*
H620.28420.04690.38220.060*
H710.19920.16400.04100.060*
H720.31900.19940.09930.060*
H810.36490.18040.33720.060*
H820.48610.16420.40360.060*
H910.05680.14330.00340.060*
H920.12800.08800.00490.060*
H1010.48940.14770.06790.060*
H1020.59980.14610.18340.060*
H1110.19470.11640.73950.060*
H1120.24940.16780.76360.060*
H1210.03920.22980.02220.060*
H1220.03840.19560.11640.060*
H1310.30300.09070.57640.060*
H1320.38580.12350.54260.060*
H1410.24640.24730.39020.060*
H1420.15980.24300.27970.060*
H1510.68750.16070.55900.060*
H1520.69020.17710.44940.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0157 (13)0.0135 (13)0.0332 (16)0.0019 (11)0.0153 (13)0.0007 (12)
O2W0.0203 (15)0.0168 (15)0.0301 (17)0.0001 (12)0.0055 (13)0.0030 (13)
O3W0.0404 (19)0.0203 (15)0.0212 (15)0.0089 (14)0.0211 (14)0.0063 (12)
O4W0.0306 (17)0.0133 (14)0.0355 (18)0.0002 (12)0.0236 (15)0.0023 (12)
O5W0.0182 (15)0.045 (2)0.0198 (15)0.0136 (14)0.0018 (12)0.0079 (14)
O6W0.0200 (14)0.0256 (16)0.0195 (14)0.0091 (12)0.0126 (12)0.0053 (12)
O7W0.0181 (15)0.0162 (15)0.0348 (18)0.0013 (12)0.0005 (13)0.0086 (13)
O8W0.0163 (13)0.0170 (14)0.0213 (14)0.0008 (11)0.0081 (11)0.0058 (11)
O9W0.051 (2)0.042 (2)0.041 (2)0.0133 (18)0.0355 (19)0.0143 (17)
O10W0.0206 (14)0.0186 (14)0.0220 (14)0.0004 (12)0.0091 (12)0.0009 (12)
O11W0.0198 (15)0.0202 (15)0.0325 (17)0.0041 (12)0.0137 (13)0.0003 (13)
O12W0.0239 (16)0.0252 (16)0.0197 (15)0.0047 (13)0.0048 (13)0.0001 (12)
O13W0.0207 (15)0.0201 (15)0.0244 (15)0.0022 (12)0.0131 (12)0.0000 (12)
O14W0.0222 (15)0.0270 (16)0.0227 (15)0.0014 (13)0.0120 (13)0.0011 (12)
O15W0.0174 (15)0.054 (2)0.0254 (17)0.0083 (15)0.0072 (13)0.0013 (16)
Cl10.0125 (4)0.0137 (4)0.0184 (4)0.0011 (3)0.0039 (4)0.0002 (3)
Cl20.0156 (4)0.0187 (4)0.0157 (4)0.0038 (4)0.0068 (3)0.0008 (3)
Cl30.0131 (4)0.0150 (4)0.0148 (4)0.0004 (3)0.0060 (3)0.0006 (3)
Cl40.0129 (4)0.0131 (4)0.0167 (4)0.0005 (3)0.0068 (3)0.0011 (3)
Cl50.0144 (4)0.0163 (4)0.0188 (4)0.0035 (3)0.0063 (4)0.0019 (3)
Cl60.0194 (5)0.0206 (5)0.0309 (5)0.0004 (4)0.0118 (4)0.0075 (4)
Cl70.0223 (5)0.0154 (4)0.0191 (4)0.0013 (4)0.0126 (4)0.0000 (3)
Cl80.0131 (4)0.0149 (4)0.0178 (4)0.0007 (3)0.0046 (3)0.0013 (3)
Cl90.0154 (4)0.0220 (5)0.0166 (4)0.0016 (4)0.0082 (4)0.0036 (4)
Cd10.01379 (14)0.01606 (14)0.01483 (14)0.00063 (10)0.00649 (11)0.00156 (10)
Cd20.01360 (14)0.01250 (14)0.01439 (14)0.00098 (10)0.00616 (11)0.00054 (10)
Cd30.01390 (14)0.01207 (14)0.01372 (14)0.00078 (10)0.00618 (11)0.00028 (10)
Yb10.01166 (9)0.01163 (9)0.01377 (9)0.00127 (6)0.00605 (7)0.00058 (6)
Geometric parameters (Å, º) top
O1W—Yb12.349 (3)O11W—H1120.912
O1W—H110.906O12W—H1210.927
O1W—H120.908O12W—H1220.876
O2W—Yb12.279 (3)O13W—H1310.824
O2W—H210.893O13W—H1320.967
O2W—H220.925O14W—H1410.805
O3W—Yb12.283 (3)O14W—H1420.976
O3W—H310.866O15W—H1510.905
O3W—H320.962O15W—H1520.849
O4W—Yb12.308 (3)Cl1—Cd32.596 (1)
O4W—H410.964Cl1—Cd12.684 (1)
O4W—H420.911Cl2—Cd12.568 (1)
O5W—Yb12.356 (3)Cl2—Cd22.613 (1)
O5W—H510.877Cl3—Cd32.645 (1)
O5W—H520.806Cl3—Cd3i2.665 (1)
O6W—Yb12.312 (3)Cl3—Cd22.782 (1)
O6W—H610.931Cl4—Cd22.652 (1)
O6W—H620.782Cl4—Cd32.670 (1)
O7W—Yb12.295 (3)Cl4—Cd12.737 (1)
O7W—H710.977Cl5—Cd12.624 (1)
O7W—H720.949Cl5—Cd2ii2.629 (1)
O8W—Yb12.311 (3)Cl6—Cd12.515 (1)
O8W—H810.828Cl7—Cd22.519 (1)
O8W—H820.993Cl8—Cd3i2.577 (1)
O9W—Cd12.320 (3)Cl8—Cd22.602 (1)
O9W—H910.952Cl9—Cd32.577 (1)
O9W—H920.855Cd2—Cl5iii2.629 (1)
O10W—H1010.902Cd3—Cl8i2.577 (1)
O10W—H1021.038Cd3—Cl3i2.665 (1)
O11W—H1110.779
Yb1—O1W—H11123.4Cl7—Cd2—Cl891.50 (3)
Yb1—O1W—H12130.5Cl7—Cd2—Cl289.80 (3)
H11—O1W—H12106.0Cl8—Cd2—Cl2173.50 (3)
Yb1—O2W—H21127.1Cl7—Cd2—Cl5iii95.22 (3)
Yb1—O2W—H22126.6Cl8—Cd2—Cl5iii93.30 (3)
H21—O2W—H22102.7Cl2—Cd2—Cl5iii92.92 (3)
Yb1—O3W—H31142.7Cl7—Cd2—Cl4173.40 (3)
Yb1—O3W—H32112.8Cl8—Cd2—Cl493.51 (3)
H31—O3W—H32104.5Cl2—Cd2—Cl484.74 (3)
Yb1—O4W—H41124.8Cl5iii—Cd2—Cl488.77 (3)
Yb1—O4W—H42129.6Cl7—Cd2—Cl393.35 (3)
H41—O4W—H42105.5Cl8—Cd2—Cl383.94 (3)
Yb1—O5W—H51130.1Cl2—Cd2—Cl389.63 (3)
Yb1—O5W—H52127.2Cl5iii—Cd2—Cl3171.06 (3)
H51—O5W—H52102.4Cl4—Cd2—Cl382.93 (3)
Yb1—O6W—H61123.0Cl8i—Cd3—Cl993.96 (3)
Yb1—O6W—H62130.9Cl8i—Cd3—Cl194.14 (3)
H61—O6W—H62103.2Cl9—Cd3—Cl195.39 (3)
Yb1—O7W—H71130.8Cl8i—Cd3—Cl392.57 (3)
Yb1—O7W—H72124.1Cl9—Cd3—Cl3170.01 (3)
H71—O7W—H72104.8Cl1—Cd3—Cl391.67 (3)
Yb1—O8W—H81125.3Cl8i—Cd3—Cl3i86.82 (3)
Yb1—O8W—H82126.8Cl9—Cd3—Cl3i87.13 (3)
H81—O8W—H82101.6Cl1—Cd3—Cl3i177.23 (3)
Cd1—O9W—H91122.3Cl3—Cd3—Cl3i85.69 (3)
Cd1—O9W—H92127.9Cl8i—Cd3—Cl4177.83 (3)
H91—O9W—H92105.7Cl9—Cd3—Cl488.21 (3)
H101—O10W—H102102.5Cl1—Cd3—Cl485.76 (3)
H111—O11W—H112103.1Cl3—Cd3—Cl485.27 (3)
H121—O12W—H12296.2Cl3i—Cd3—Cl493.18 (3)
H131—O13W—H132103.2O2W—Yb1—O3W107.51 (13)
H141—O14W—H14297.8O2W—Yb1—O7W140.16 (11)
H151—O15W—H152105.7O3W—Yb1—O7W84.91 (13)
Cd3—Cl1—Cd197.25 (3)O2W—Yb1—O4W73.18 (12)
Cd1—Cl2—Cd298.10 (3)O3W—Yb1—O4W73.35 (11)
Cd3—Cl3—Cd3i94.31 (3)O7W—Yb1—O4W145.56 (12)
Cd3—Cl3—Cd294.61 (3)O2W—Yb1—O8W74.44 (11)
Cd3i—Cl3—Cd291.44 (3)O3W—Yb1—O8W145.07 (11)
Cd2—Cl4—Cd397.14 (3)O7W—Yb1—O8W74.57 (12)
Cd2—Cl4—Cd193.12 (3)O4W—Yb1—O8W136.53 (11)
Cd3—Cl4—Cd194.25 (3)O2W—Yb1—O6W86.40 (12)
Cd1—Cl5—Cd2ii135.32 (4)O3W—Yb1—O6W141.90 (11)
Cd3i—Cl8—Cd297.73 (3)O7W—Yb1—O6W107.17 (12)
O9W—Cd1—Cl685.25 (10)O4W—Yb1—O6W77.45 (11)
O9W—Cd1—Cl2170.47 (10)O8W—Yb1—O6W72.31 (10)
Cl6—Cd1—Cl2102.90 (4)O2W—Yb1—O1W73.32 (11)
O9W—Cd1—Cl591.21 (11)O3W—Yb1—O1W72.43 (11)
Cl6—Cd1—Cl595.45 (3)O7W—Yb1—O1W74.99 (11)
Cl2—Cd1—Cl592.88 (3)O4W—Yb1—O1W120.97 (10)
O9W—Cd1—Cl177.50 (10)O8W—Yb1—O1W75.08 (10)
Cl6—Cd1—Cl1162.57 (4)O6W—Yb1—O1W145.18 (10)
Cl2—Cd1—Cl194.09 (3)O2W—Yb1—O5W146.63 (12)
Cl5—Cd1—Cl187.48 (3)O3W—Yb1—O5W77.89 (12)
O9W—Cd1—Cl490.53 (11)O7W—Yb1—O5W72.17 (12)
Cl6—Cd1—Cl495.06 (3)O4W—Yb1—O5W77.29 (12)
Cl2—Cd1—Cl483.91 (3)O8W—Yb1—O5W120.26 (12)
Cl5—Cd1—Cl4169.45 (3)O6W—Yb1—O5W72.20 (11)
Cl1—Cd1—Cl482.75 (3)O1W—Yb1—O5W137.12 (11)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···Cl7iv0.9062.2673.130 (3)159.06
O10W—H101···Cl50.9022.2963.188 (3)170.04
O1W—H12···Cl1v0.9082.2583.141 (3)163.75
O2W—H21···O15W0.8932.2152.893 (5)132.35
O2W—H22···O13Wvi0.9251.8002.709 (4)168.50
O3W—H31···Cl10.8662.5683.190 (3)129.51
O3W—H32···O10Wv0.9621.8802.738 (4)147.26
O4W—H41···O11Wvii0.9641.7682.730 (4)175.63
O4W—H42···O10W0.9111.8872.791 (4)170.75
O5W—H51···Cl90.8772.2843.106 (3)156.20
O5W—H52···Cl9viii0.8062.3203.117 (3)170.52
O6W—H61···Cl9viii0.9312.3823.297 (3)167.40
O6W—H62···O13W0.7821.9622.713 (4)160.81
O7W—H71···O12W0.9771.7172.681 (4)167.92
O7W—H72···Cl7iv0.9492.2473.133 (3)154.94
O8W—H81···O14W0.8281.9122.731 (4)169.56
O8W—H82···O15W0.9931.7812.706 (4)153.50
O9W—H91···O12Wviii0.9521.8342.773 (5)167.99
O9W—H92···O5W0.8552.6173.469 (5)174.64
O10W—H102···Cl8ix1.0382.6383.306 (3)121.91
O11W—H111···Cl9i0.7792.5703.309 (3)159.25
O11W—H112···O14Wx0.9121.9112.808 (5)167.82
O12W—H121···O15Wxi0.9272.5253.202 (5)130.11
O12W—H121···Cl6viii0.9272.6063.310 (3)133.02
O12W—H122···Cl7i0.8762.3143.171 (3)166.07
O13W—H131···Cl8viii0.8242.3363.153 (3)171.11
O13W—H132···O8W0.9672.5953.130 (4)115.11
O13W—H132···Cl6xii0.9672.3763.236 (3)148.02
O14W—H141···Cl5xii0.8052.4823.214 (3)151.84
O14W—H142···Cl6viii0.9762.3103.229 (3)156.50
O15W—H151···O11Wv0.9051.9182.778 (5)157.89
O15W—H152···Cl2v0.8492.4973.346 (4)178.58
Symmetry codes: (i) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x, y, z+1; (viii) x, y, z; (ix) x+1, y, z+1; (x) x+1/2, y1/2, z1/2; (xi) x1/2, y+1/2, z1/2; (xii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Yb(H2O)8][Cd3Cl9(H2O)]·6H2O
Mr1099.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.2692 (12), 20.057 (2), 12.2820 (13)
β (°) 113.803 (11)
V3)2765.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.55
Crystal size (mm)0.30 × 0.15 × 0.11
Data collection
DiffractometerStoe IPDS image-plate
diffractometer
Absorption correctionMulti-scan
Symmetry-related measurements (Blessing R.H., 1995)
Tmin, Tmax0.234, 0.487
No. of measured, independent and
observed [I > 2σ(I)] reflections
22337, 5583, 5551
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.29
No. of reflections5583
No. of parameters254
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.30, 1.37

Computer programs: IPDS Software (Stoe & Cie, 1996), IPDS Software, X-RED (Stoe & Cie, 1996), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1W—Yb12.349 (3)Cl3—Cd22.782 (1)
O2W—Yb12.279 (3)Cl4—Cd22.652 (1)
O3W—Yb12.283 (3)Cl4—Cd32.670 (1)
O4W—Yb12.308 (3)Cl4—Cd12.737 (1)
O5W—Yb12.356 (3)Cl5—Cd12.624 (1)
O6W—Yb12.312 (3)Cl5—Cd2ii2.629 (1)
O7W—Yb12.295 (3)Cl6—Cd12.515 (1)
O8W—Yb12.311 (3)Cl7—Cd22.519 (1)
O9W—Cd12.320 (3)Cl8—Cd3i2.577 (1)
Cl1—Cd32.596 (1)Cl8—Cd22.602 (1)
Cl1—Cd12.684 (1)Cl9—Cd32.577 (1)
Cl2—Cd12.568 (1)Cd2—Cl5iii2.629 (1)
Cl2—Cd22.613 (1)Cd3—Cl8i2.577 (1)
Cl3—Cd32.645 (1)Cd3—Cl3i2.665 (1)
Cl3—Cd3i2.665 (1)
O9W—Cd1—Cl2170.47 (10)Cl8i—Cd3—Cl3i86.82 (3)
Cl6—Cd1—Cl595.45 (3)Cl9—Cd3—Cl3i87.13 (3)
Cl6—Cd1—Cl1162.57 (4)Cl1—Cd3—Cl3i177.23 (3)
Cl5—Cd1—Cl187.48 (3)Cl8i—Cd3—Cl4177.83 (3)
O9W—Cd1—Cl490.53 (11)O2W—Yb1—O3W107.51 (13)
Cl7—Cd2—Cl891.50 (3)O3W—Yb1—O7W84.91 (13)
Cl7—Cd2—Cl289.80 (3)O7W—Yb1—O4W145.56 (12)
Cl8—Cd2—Cl2173.50 (3)O4W—Yb1—O8W136.53 (11)
Cl2—Cd2—Cl389.63 (3)O2W—Yb1—O6W86.40 (12)
Cl5iii—Cd2—Cl3171.06 (3)O8W—Yb1—O6W72.31 (10)
Cl8i—Cd3—Cl392.57 (3)O7W—Yb1—O1W74.99 (11)
Cl9—Cd3—Cl3170.01 (3)O4W—Yb1—O1W120.97 (10)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···Cl7iv0.9062.2673.130 (3)159.06
O10W—H101···Cl50.9022.2963.188 (3)170.04
O1W—H12···Cl1v0.9082.2583.141 (3)163.75
O2W—H21···O15W0.8932.2152.893 (5)132.35
O2W—H22···O13Wvi0.9251.8002.709 (4)168.50
O3W—H31···Cl10.8662.5683.190 (3)129.51
O3W—H32···O10Wv0.9621.8802.738 (4)147.26
O4W—H41···O11Wvii0.9641.7682.730 (4)175.63
O4W—H42···O10W0.9111.8872.791 (4)170.75
O5W—H51···Cl90.8772.2843.106 (3)156.20
O5W—H52···Cl9viii0.8062.3203.117 (3)170.52
O6W—H61···Cl9viii0.9312.3823.297 (3)167.40
O6W—H62···O13W0.7821.9622.713 (4)160.81
O7W—H71···O12W0.9771.7172.681 (4)167.92
O7W—H72···Cl7iv0.9492.2473.133 (3)154.94
O8W—H81···O14W0.8281.9122.731 (4)169.56
O8W—H82···O15W0.9931.7812.706 (4)153.50
O9W—H91···O12Wviii0.9521.8342.773 (5)167.99
O9W—H92···O5W0.8552.6173.469 (5)174.64
O10W—H102···Cl8ix1.0382.6383.306 (3)121.91
O11W—H111···Cl9i0.7792.5703.309 (3)159.25
O11W—H112···O14Wx0.9121.9112.808 (5)167.82
O12W—H121···O15Wxi0.9272.5253.202 (5)130.11
O12W—H121···Cl6viii0.9272.6063.310 (3)133.02
O12W—H122···Cl7i0.8762.3143.171 (3)166.07
O13W—H131···Cl8viii0.8242.3363.153 (3)171.11
O13W—H132···O8W0.9672.5953.130 (4)115.11
O13W—H132···Cl6xii0.9672.3763.236 (3)148.02
O14W—H141···Cl5xii0.8052.4823.214 (3)151.84
O14W—H142···Cl6viii0.9762.3103.229 (3)156.50
O15W—H151···O11Wv0.9051.9182.778 (5)157.89
O15W—H152···Cl2v0.8492.4973.346 (4)178.58
Symmetry codes: (i) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x, y, z+1; (viii) x, y, z; (ix) x+1, y, z+1; (x) x+1/2, y1/2, z1/2; (xi) x1/2, y+1/2, z1/2; (xii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds