Download citation
Download citation
link to html
The crystal structures of three isotypic ortho­rhom­bic dihydrogendiphosphates, namely dipotassium copper(II)/nickel(II)/zinc(II) bis­(dihydrogendiphosphate) dihydrate, K2M(H2P2O7)2·2H2O (M = Cu, Ni and Zn), have been refined from single-crystal data. The M2+ and K+ cations are located at sites of m symmetry, and the P atoms occupy general positions. These compounds also exist in triclinic forms with very similar structural features. The structures of both forms are compared, as well as the geometry of the MO6 octa­hedron, which is considerably elongated towards the water mol­ecules for M = Ni and Cu. Such elongation has not been observed among the other representatives of the family. A Raman study of the whole series K2M(H2P2O7)2·2H2O (M = Mn, Co, Ni, Cu, Zn and Mg) is reported.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105036656/bc1079sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105036656/bc1079Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105036656/bc1079IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105036656/bc1079IIIsup4.hkl
Contains datablock III

Comment top

Acidic metal diphosphates are especially known for their biological applications, notably their role in some enzyme-catalyzed reaction processes (Haromy et al., 1984). They are used as inhibitors in the formation and dissolution of apatite crystals in vitro (Mathew et al., 1993), and as additives in fertilizers (Frazier et al., 1965, 1966) or even in medicine (Fleisch & Russell, 1972). The present work is a continuation of our investigations of the system (A,M)x(H2P2O7)y.zH2O, where A is an alkaline earth or ammonium and M is a divalent 3dtransition metal (including Zn). We have previously reported the compounds (NH4)2M(H2P2O7)2·2H2O with M = Co (Essehli et al., 2005a), Ni (Essehli et al., 2005b) and Zn (Essehli et al., 2005c), as well as four K2M(H2P2O7)2·2H2O compounds with M = Mn (Alaoui Tahiri et al., 2003), Co (Alaoui Tahiri et al., 2002), Zn (Tahiri et al., 2003) and Ni (Tahiri et al., 2004). The K,Mg analogue has been studied by others (Harcharras, Capitelli et al., 2003). The known K2M(H2P2O7)2·2H2O compounds are either orthorhombic (Pnma) for M = Mn and Co, or triclinic (P1) for M = Ni, Zn or Mg. New orthorhombic structures for M = Cu, (I), Ni, (II), and Zn, (III), are described here, establishing that both crystalline forms exist for M = Ni and Zn.

The packing of the orthorhombic K2M(H2P2O7)2·2H2O structure is shown in Fig. 1. The basic building units of the structure, viz. (H2P2O7)2M(H2O)2 octahedra (Fig. 2), are connected by either K—O bonds or O—H····O hydrogen bonds (Tables 2, 4 and 6). The long M···M distances (Table 7) correspond to the fact that the building units are not directly connected, and distances of the same magnitude are found in K2CuP2O7 (5.276 Å for Cu···Cu; El Maadi et al., 1995) or in KCo(HP2O7)·2H2O (5.347 Å for Co···Co; Harcharras, Goubitz et al., 2003). However, there are no isolated octahedral units in these compounds and the metal cations are linked via an O—P—O bridge. Isolated building units exist in (NH4)2Zn(H2P2O7)2·2H2O (Essehli et al., 2005c) with a longer Zn···Zn distance of 7.007 Å, due to the larger size of the NH4+ cation.

The K+ cations occupy two symmetry-independent positions K1 and K2 in the mirror plane. Each position is coordinated by seven O atoms, forming strongly distorted monocapped octahedra. The P atoms occupy two symmetry-independent general positions P1 and P2, both corresponding to a slightly distorted tetrahedral conformation with typical average P—O distances (Table 7). The two tetrahedra share a vertex to form the diphosphate unit, with bridging P—O—P angles of 127.44 (13), 127.35 (10) and 129.32 (13)° for M = Cu, Ni and Zn, respectively.

The M2+ cations are located in the mirror plane within an octahedral coordination environment formed by two H2P2O7 groups and two water molecules (O6 and O9). There is virtually no difference in the geometry of the MO6 octahedron for M = Cu and Ni (Table 7). For M = Zn, however, the octahedron is less elongated along the M—O6 and M—O9 bonds by approximately 0.2 Å. This influences not only the octahedral angles but also the length of the hydrogen bonds, which are all shorter for M = Zn (Tables 4 and 6). The elongation of the MO6 octahedron towards the water molecules has been observed in all structures of the K2M(H2P2O7)2·2H2O family but is most pronounced in the present orthorhombic structures for M = Cu and Ni (Table 8). There is almost no elongation in the triclinic structure for M = Ni, but this difference cannot be attributed to the difference in symmetry since the Zn member shows a similar elongation in both forms. One could speculate that this is a result of stronger hydrogen bonding when the elongation is larger, but the data actually show that the reverse is true (Tables 4 and 6). Another reason for the elongation could be a better saturation of the K+ cation, as the K—O6 and K—O9 distances are longer by 0.1 Å for the Zn member. However, the other O atoms compensate for this change and similar bond-valence sums (Brown & Altermatt, 1985) around the K+ cations are observed for all the reported compounds (Table 8). We do not currently have an explanation for the elongated octahedra of the orthorhombic Ni and Cu compounds.

The cell volume of the orthorhombic form of K2M(H2P2O7)2·2H2O crystals is approximately four times larger than in the triclinic form. The triclinic cell can be transformed to a fourfold cell with angles differing from 90° by several degrees. In this transformed cell, the packing along the b axis (Fig. 3) reveals that the main difference from the orthorhombic form is the uniform orientation of the basic building unit (H2P2O7)2M(H2O)2. Although no hint of orthorhombic symmetry exists in the fourfold structure, the hydrogen bonding and even the coordination of K remains very similar in both forms. This is achieved by different rotation of the PO4 tetrahedra. The distances in the MO6 octahedron and bond-valence sums for K are given in Table 8. We do not see systematic behaviour in the MO6 elongation. On the other hand, the bond-valence sums seem to be regularly smaller for triclinic compounds. This indicates rather tighter connection of the basic building units in the orthorhombic compounds. The possible small differences in bond-valence sums for M cannot be reliably compared because of different atomic types of the central M atom.

The structures of both crystalline forms were determined at ambient temperature, suggesting that it is the method of synthesis rather than a phase transition that is responsible for the existence of a specific form. Up to now, the targeted preparation of either the triclinic or orthorhombic phase has been unsuccessful. The triclinic form sometimes accompanies the orthorhombic form as a minor component. The possibility of a phase transition near room temperature was excluded by measuring the cell parameters of the orthorhombic Ni representative between 270 and 330 K. Our results suggest that the orthorhombic forms for M = Mn, Co and Mg, as well as the triclinic form for M = Cu, probably exist and remain to be discovered.

Raman spectra of the series of dihydrogendiphosphates K2M(H2P2O7)2·2H2O (M = Mn, Co, Ni, Cu, Zn and Mg) collected under conditions of ambient pressure and temperature are shown in Fig. 4. The number of observed modes varies from 32 to 39 bands, significantly smaller than expected, especially for the orthorhombic structures. This may be attributed to the accidental degeneracy of a number of modes. Moreover, some weak bands are most likely overlapped by much stronger bands, and other bands are observed as weak shoulders. The interpretation of the Raman spectra can be made in terms of PO2 groups, P—OH bonds, P—O—P bridges and H2O (Sarr & Diop, 1987; Harcharras, Assaaoudi et al., 2003). Broad bands in the region of the stretching vibrations of water molecules are observed above 3000 cm−1. The frequencies of νOH are observed as very weak bands around 2525 cm−1. Bending vibrations ρOH are located between 1300 and 1370 cm−1. The band observed at 637.5 cm−1 is attributed to the libration of water molecules ρ(H2O). In the region 990–1220 cm−1, five to six bands attributed to the terminal stretching modes of the (P2O7)4− anions are observed. For all samples, the bands in the 1040–1055 cm−1 region are attributed to the symmetric terminal P—O stretching vibration of the PO2 group, as observed at 1048 cm−1 in K2Mg(H2P2O7)2·2H2O (Harcharras, Capitelli et al., 2003). The bridge vibrations give Raman peaks for the symmetric and antisymmetric modes between 730–760 cm−1 and 880–970 cm−1, respectively. The weak band observed in K2Mn(H2P2O7)2·2H2O, at 790.5 cm−1, has been attributed to the νP—OH mode (Harcharras, Assaaoudi et al., 2003; Ben Moussa et al., 2000; Assaaoudi et al., 2002). This band was observed at 797 cm−1 in Na4Mg2(H2P2O7)4·8H2O (Harcharras, Assaaoudi et al., 2003), but was absent in K2Mg(H2P2O7)2·2H2O (Harcharras, Capitelli et al., 2003) and did not appear in the present compounds either. The Raman modes between 40 and 350 cm−1 are attributed to the external, torsional and P—O—P deformation modes. The δPOP band is observed between 309 and 317 cm−1; this band was observed at 300 cm−1 in K2Mg(H2P2O7)2·2H2O (Harcharras, Capitelli et al., 2003) and at 317 cm−1 in Na4Mg2(H2P2O7)4·8H2O (Harcharras, Assaaoudi et al., 2003). The rocking and the PO2 deformation modes are observed in the region 330–640 cm−1 (Sarr & Diop, 1987; Harcharras, Goubitz et al., 2003). Most of the peaks shift in frequency with increasing M2+ radius. For example, νs(POP), observed as a strong band in K2Ni(H2P2O7)2·2H2O and centred at 757 cm−1, decreases in frequency and ocurs at 731 cm−1 in the Mn compound.

Overall, we note that the Raman spectra have the same general appearance with some differences. As an example, the K2Ni(H2P2O7)2·2H2O spectrum has more than one νs(POP) band around 752 cm−1 and looks similar to the spectrum of monoclinic K2Mg(H2P2O7)2·2H2O. Three νas(POP) modes are observed in K2M(H2P2O7)2·2H2O (M = Co, Ni and Zn), as opposed to only one in K2Cu(H2P2O7)2·2H2O and K2Mn(H2P2O7)2·2H2O. More bands were observed in the spectra of K2M(H2P2O7)2·2H2O (M = Mn, Co, Cu, Zn) than in the spectrum of the Ni compound. These changes are not completely understood. We may suggest that all these changes are due to some overlapping of bands and/or orientation of crystals. The spectrum of the Zn compound resembles those of the Co and Mn compounds and is quite distinct from that of the Ni phase.

Experimental top

Single crystals of K2M(H2P2O7)2·2H2O (M = Ni, Cu and Zn) were prepared by dissolution of the following reactants (Alaoui Tahiri et al., 2002, 2003; Tahiri et al., 2003, 2004): NiCl2·6H2O (0.16 g, 0.7 mmol) in K4P2O7 (0.3 g, 0.9 mmol); CuCl2·2H2O (0.13 g, 7.5 mmol) in K4P2O7 (0.5 g, 1.5 mmol); ZnCl2·6H2O (0.10, 0.7 mmol) in K4P2O7 (0.5 g, 1.5 mmol). The volume ratio of water/solutions was 8:2. In each case, the mixture was stirred for 12 h and the resulting solution was allowed to stand at room temperature. After a few days, light-green, light-blue and colourless crystals deposited for M = Ni, Cu and Zn, respectively. The crystals were filtered off and washed with an 80% ethanol–water solution. The crystals for M = Ni were of excellent quality, while only intergrown crystals were recovered for the other compounds, M = Cu and Zn.

Raman spectra were measured in a back-scattering arrangement, on both compression and decompression. They were collected at room temperature using a high-throughput holographic imaging spectrograph with volume transmission grating, holographic notch filter and thermoelectrically cooled CCD detector (Physics Spectra), with a resolution of 4 cm−1. A Ti3+ sapphire laser pumped by an argon ion laser was tuned at 785 nm. The laser was operated at 65 mW, except for the Cu compound (6 mW), and the laser beam was focused to a spot size of 5 mm to excite the sample. The spectrometer and the Raman spectra were calibrated using the Raman modes of diamond and sulfur, as well as the neon emission spectrum. An exposure time of 10 s was used with 50 accumulations.

Refinement top

The structures were solved by direct methods. The H atoms were located in difference Fourier maps and their coordinates were refined independently by constraining the O—H distances to 0.82 (1) Å. Uiso(H) values were calculated as 1.2Ueq of the parent atom. No extinction correction was required.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2000 (Petříček et al., 2000); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2000.

Figures top
[Figure 1] Fig. 1. The packing in orthorhombic K2Ni(H2P2O7)·2H2O, viewed along the b axis. Thin solid lines indicate bonds to K and dashed black lines are hydrogen bonds. Not all seven O atoms closest to K are visible in this projection.
[Figure 2] Fig. 2. The basic (H2P2O7)2Ni(H2O)2 building unit. Hydrogen bonds are indicated by dashed lines. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i), (ii), (iii), (iv), (v) Please complete.]
[Figure 3] Fig. 3. The triclinic form of K2Ni(H2P2O7)·2H2O, transformed to a fourfold supercell with cell parameters a = 9.6625 (8) Å, b = 11.3100 (9) Å, c = 13.4952 (9) Å, α = 81.23 (0)°, β = 77.59 (0)°, γ 88.06 (0)° and V = 1423.47 (79) Å3.
[Figure 4] Fig. 4. Raman spectra for K2M(H2P2O7)·2H2O (M = Mn, Co, Ni, Cu, Zn, Mg).
(I) Dipotassium copper(II) bis(dihydrogendiphosphate) dihydrate top
Crystal data top
K2Cu(H2P2O7)2·2H2OF(000) = 1052
Mr = 529.7Dx = 2.452 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 17123 reflections
a = 9.9128 (4) Åθ = 3.2–26.6°
b = 10.7830 (3) ŵ = 2.63 mm1
c = 13.4209 (5) ÅT = 292 K
V = 1434.56 (9) Å3Fragment, light blue
Z = 40.14 × 0.09 × 0.06 mm
Data collection top
Oxford Sapphire 2 CCD
diffractometer
1572 independent reflections
Radiation source: X-ray tube1244 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3438 pixels mm-1θmax = 26.6°, θmin = 3.2°
ω scansh = 1212
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
k = 1313
Tmin = 0.616, Tmax = 0.765l = 1616
17123 measured reflections
Refinement top
Refinement on F24 constraints
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.12(Δ/σ)max = 0.009
1572 reflectionsΔρmax = 0.46 e Å3
125 parametersΔρmin = 0.68 e Å3
4 restraints
Crystal data top
K2Cu(H2P2O7)2·2H2OV = 1434.56 (9) Å3
Mr = 529.7Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.9128 (4) ŵ = 2.63 mm1
b = 10.7830 (3) ÅT = 292 K
c = 13.4209 (5) Å0.14 × 0.09 × 0.06 mm
Data collection top
Oxford Sapphire 2 CCD
diffractometer
1572 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
1244 reflections with I > 3σ(I)
Tmin = 0.616, Tmax = 0.765Rint = 0.039
17123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0244 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.46 e Å3
1572 reflectionsΔρmin = 0.68 e Å3
125 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > n*σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.67307 (5)0.750.64217 (4)0.01549 (15)
P10.56335 (7)0.48594 (6)0.72254 (5)0.0147 (2)
P20.75487 (7)0.48645 (7)0.56108 (5)0.0146 (2)
K10.54845 (11)0.750.89704 (7)0.0284 (3)
K20.25362 (9)0.250.62748 (8)0.0282 (3)
O10.6918 (2)0.43428 (18)0.66384 (15)0.0206 (6)
O20.8855 (2)0.40942 (18)0.54965 (15)0.0191 (6)
O30.56250 (19)0.62498 (18)0.71274 (15)0.0203 (6)
O40.7861 (2)0.62249 (17)0.57584 (15)0.0208 (6)
O50.5734 (2)0.4345 (2)0.82492 (15)0.0247 (7)
O60.5222 (3)0.750.5096 (2)0.0244 (10)
O70.4366 (2)0.43174 (19)0.67056 (16)0.0247 (7)
O80.6604 (2)0.4551 (2)0.47877 (16)0.0257 (7)
O90.8012 (3)0.750.7944 (3)0.0322 (11)
H60.467 (3)0.693 (2)0.510 (2)0.0292*
H90.849 (3)0.690 (2)0.803 (3)0.0386*
H20.940 (3)0.420 (3)0.5937 (17)0.0229*
H70.410 (3)0.477 (3)0.6260 (18)0.0296*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0145 (3)0.0118 (3)0.0201 (3)00.0047 (2)0
P10.0152 (4)0.0133 (4)0.0156 (4)0.0003 (3)0.0010 (3)0.0006 (3)
P20.0134 (3)0.0140 (4)0.0165 (4)0.0008 (3)0.0002 (3)0.0000 (3)
K10.0360 (6)0.0307 (6)0.0185 (5)00.0001 (4)0
K20.0206 (5)0.0190 (5)0.0450 (6)00.0047 (4)0
O10.0233 (11)0.0175 (10)0.0210 (12)0.0047 (8)0.0065 (8)0.0023 (8)
O20.0161 (10)0.0207 (11)0.0204 (11)0.0046 (8)0.0021 (8)0.0065 (9)
O30.0198 (10)0.0139 (10)0.0271 (11)0.0011 (8)0.0063 (9)0.0010 (8)
O40.0193 (10)0.0159 (10)0.0273 (11)0.0010 (8)0.0069 (9)0.0025 (9)
O50.0227 (11)0.0341 (12)0.0173 (11)0.0054 (9)0.0027 (9)0.0070 (9)
O60.0207 (17)0.0231 (18)0.0292 (17)00.0023 (14)0
O70.0236 (12)0.0230 (12)0.0273 (13)0.0071 (9)0.0057 (10)0.0041 (9)
O80.0227 (11)0.0293 (12)0.0251 (12)0.0039 (9)0.0088 (9)0.0017 (9)
O90.0197 (18)0.0292 (19)0.048 (2)00.0102 (15)0
Geometric parameters (Å, º) top
Cu—O31.9788 (19)K2—O7ix2.732 (2)
Cu—O3i1.9788 (19)O1—O22.471 (3)
Cu—O41.984 (2)O1—O32.510 (3)
Cu—O4i1.984 (2)O1—O42.527 (3)
Cu—O62.324 (3)O1—O52.460 (3)
Cu—O92.405 (4)O1—O72.532 (3)
P1—P22.8809 (10)O1—O82.513 (3)
P1—O11.598 (2)O2—O42.525 (3)
P1—O31.505 (2)O2—O5x2.525 (3)
P1—O51.485 (2)O2—O82.475 (3)
P1—O71.551 (2)O2—H20.81 (2)
P2—O11.615 (2)O3—O3i2.696 (3)
P2—O21.546 (2)O3—O42.879 (3)
P2—O41.512 (2)O3—O52.549 (3)
P2—O81.487 (2)O3—O72.494 (3)
K1—O2ii2.753 (2)O3—O92.935 (3)
K1—O2iii2.753 (2)O3—O9iv2.922 (3)
K1—O32.820 (2)O4—O4i2.750 (3)
K1—O3i2.820 (2)O4—O82.551 (3)
K1—O4iv2.964 (2)O5—O72.476 (3)
K1—O4v2.964 (2)O6—O8vi2.863 (3)
K1—O92.859 (3)O6—O8xi2.863 (3)
K2—O4vi3.081 (2)O6—H60.82 (3)
K2—O4vii3.081 (2)O6—H6i0.82 (3)
K2—O5iv2.749 (2)O7—O8vi2.536 (3)
K2—O5viii2.749 (2)O7—H70.81 (3)
K2—O6vi2.885 (3)O9—H90.81 (3)
K2—O72.732 (2)
O3—Cu—O3i85.88 (8)O1—O3—O760.78 (8)
O3—Cu—O493.17 (8)O1—O3—O993.57 (8)
O3—Cu—O4i178.06 (9)O1—O3—O9iv145.29 (10)
O3—Cu—O690.57 (8)O3i—O3—O490.54 (8)
O3—Cu—O983.44 (8)O3i—O3—O5143.69 (10)
O3i—Cu—O385.88 (8)O3i—O3—O7146.67 (10)
O3i—Cu—O4178.06 (9)O3i—O3—O962.66 (6)
O3i—Cu—O4i93.17 (8)O3i—O3—O9iv62.52 (6)
O3i—Cu—O690.57 (8)O4—O3—O5109.68 (9)
O3i—Cu—O983.44 (8)O4—O3—O7103.44 (9)
O4—Cu—O4i87.72 (8)O4—O3—O967.80 (9)
O4—Cu—O691.13 (8)O4—O3—O9iv131.75 (10)
O4—Cu—O994.76 (8)O5—O3—O758.79 (8)
O4i—Cu—O487.72 (8)O5—O3—O996.63 (9)
O4i—Cu—O691.13 (8)O5—O3—O9iv115.38 (10)
O4i—Cu—O994.76 (8)O7—O3—O9150.67 (10)
O6—Cu—O9171.81 (11)O7—O3—O9iv86.24 (8)
P2—P1—O386.34 (8)O9—O3—O9iv121.00 (8)
P2—P1—O5130.72 (9)O9iv—O3—O9121.00 (8)
P2—P1—O7101.31 (9)Cu—O4—P2127.99 (12)
O1—P1—O3107.98 (11)Cu—O4—K1x96.82 (7)
O1—P1—O5105.81 (11)Cu—O4—O197.94 (9)
O1—P1—O7107.00 (11)Cu—O4—O2155.98 (11)
O3—P1—O5116.97 (12)Cu—O4—O8116.35 (10)
O3—P1—O7109.36 (11)P2—O4—K1x130.19 (11)
O5—P1—O7109.23 (12)P2—O4—O386.29 (9)
P1—P2—O2128.72 (8)P2—O4—O4i165.95 (13)
P1—P2—O492.18 (8)K1x—O4—O1129.75 (9)
P1—P2—O898.25 (9)K1x—O4—O295.55 (8)
O1—P2—O2102.81 (11)K1x—O4—O3126.35 (8)
O1—P2—O4107.77 (11)K1x—O4—O4i62.37 (6)
O1—P2—O8108.15 (12)K1x—O4—O8145.02 (9)
O2—P2—O4111.29 (11)O1—O4—O258.57 (8)
O2—P2—O8109.36 (12)O1—O4—O354.88 (7)
O4—P2—O8116.51 (12)O1—O4—O4i143.43 (10)
O2ii—K1—O2iii77.28 (6)O1—O4—O859.33 (8)
O2ii—K1—O3110.01 (6)O2—O4—O3113.44 (9)
O2ii—K1—O3i159.91 (7)O2—O4—O4i155.51 (10)
O2ii—K1—O4iv80.08 (6)O2—O4—O858.37 (8)
O2ii—K1—O4v114.01 (7)O3—O4—O4i89.46 (8)
O2ii—K1—O998.63 (7)O3—O4—O887.52 (8)
O2iii—K1—O2ii77.28 (6)O4i—O4—O8135.04 (10)
O2iii—K1—O3159.91 (7)P1—O5—K2x121.93 (11)
O2iii—K1—O3i110.01 (6)P1—O5—O2iv127.40 (12)
O2iii—K1—O4iv114.01 (7)K2x—O5—O183.88 (8)
O2iii—K1—O4v80.08 (6)K2x—O5—O2iv104.31 (9)
O2iii—K1—O998.63 (7)K2x—O5—O3138.41 (9)
O3—K1—O3i57.11 (6)K2x—O5—O7122.80 (10)
O3—K1—O4iv85.95 (6)O1—O5—O2iv159.68 (11)
O3—K1—O4v111.88 (6)O1—O5—O360.12 (8)
O3—K1—O962.23 (7)O1—O5—O761.71 (8)
O3i—K1—O357.11 (6)O2iv—O5—O3116.66 (10)
O3i—K1—O4iv111.88 (6)O2iv—O5—O798.78 (10)
O3i—K1—O4v85.95 (6)O3—O5—O759.49 (8)
O3i—K1—O962.23 (7)Cu—O6—K2vi89.58 (10)
O4iv—K1—O4v55.26 (5)Cu—O6—O8vi111.43 (9)
O4iv—K1—O9145.89 (6)Cu—O6—O8xi111.43 (9)
O4v—K1—O4iv55.26 (5)Cu—O6—H6115 (2)
O4v—K1—O9145.89 (6)Cu—O6—H6i115 (2)
O5iv—K2—O5viii92.70 (7)K2vi—O6—O8vi121.45 (8)
O5iv—K2—O6vi130.45 (5)K2vi—O6—O8xi121.45 (8)
O5iv—K2—O782.14 (6)K2vi—O6—H6121 (2)
O5iv—K2—O7ix154.33 (8)K2vi—O6—H6i121 (2)
O5iv—K2—H774.9 (6)O8vi—O6—O8xi101.19 (11)
O5iv—K2—H7ix163.9 (5)O8vi—O6—H6i98.9 (18)
O5viii—K2—O5iv92.70 (7)O8xi—O6—O8vi101.19 (11)
O5viii—K2—O6vi130.45 (5)O8xi—O6—H698.9 (18)
O5viii—K2—O7154.33 (8)H6—O6—H6i96 (3)
O5viii—K2—O7ix82.14 (6)H6i—O6—H696 (3)
O5viii—K2—H7163.9 (5)P1—O7—K2154.56 (12)
O5viii—K2—H7ix74.9 (6)P1—O7—O8vi118.77 (12)
O6vi—K2—O767.89 (6)P1—O7—H6vi106.3 (5)
O6vi—K2—O7ix67.89 (6)P1—O7—H9iv80.1 (6)
O6vi—K2—H765.3 (6)P1—O7—H7111 (2)
O6vi—K2—H7ix65.3 (6)K2—O7—O1131.58 (10)
O7—K2—O7ix91.65 (7)K2—O7—O3168.38 (10)
O7—K2—H716.3 (5)K2—O7—O5123.31 (10)
O7—K2—H7ix104.5 (6)K2—O7—O8vi85.76 (8)
O7ix—K2—O791.65 (7)K2—O7—H6vi73.2 (5)
O7ix—K2—H7104.5 (6)K2—O7—H9iv120.6 (6)
O7ix—K2—H7ix16.3 (5)K2—O7—H794 (2)
H7—K2—H7ix115.2 (9)O1—O7—O359.94 (8)
H7ix—K2—H7115.2 (9)O1—O7—O558.84 (8)
P1—O1—P2127.44 (13)O1—O7—O8vi110.22 (10)
P1—O1—O2164.34 (12)O1—O7—H6vi69.5 (5)
P1—O1—O4104.19 (10)O1—O7—H9iv106.8 (6)
P1—O1—O8110.94 (11)O1—O7—H7107 (2)
P2—O1—O397.79 (10)O3—O7—O561.72 (8)
P2—O1—O5159.17 (12)O3—O7—O8vi88.12 (9)
P2—O1—O7114.89 (11)O3—O7—H6vi114.2 (5)
O2—O1—O3130.37 (10)O3—O7—H9iv47.8 (6)
O2—O1—O460.67 (8)O3—O7—H780 (2)
O2—O1—O5156.33 (11)O5—O7—O8vi149.68 (12)
O2—O1—O7142.87 (11)O5—O7—H6vi121.2 (5)
O2—O1—O859.54 (8)O5—O7—H9iv92.9 (7)
O3—O1—O469.70 (8)O5—O7—H7142 (2)
O3—O1—O561.70 (8)O8vi—O7—H6vi72.1 (5)
O3—O1—O759.29 (8)O8vi—O7—H9iv61.7 (7)
O3—O1—O897.00 (9)H6vi—O7—H9iv129.2 (9)
O4—O1—O5125.90 (10)H6vi—O7—H777 (2)
O4—O1—O7113.25 (10)H9iv—O7—H755 (2)
O4—O1—O860.80 (8)P2—O8—O6vi122.23 (13)
O5—O1—O759.45 (8)P2—O8—O7vi135.79 (14)
O5—O1—O8144.02 (11)O1—O8—O259.38 (8)
O7—O1—O884.97 (9)O1—O8—O459.87 (8)
P2—O2—K1xii127.49 (11)O1—O8—O6vi87.45 (10)
P2—O2—O5x119.61 (12)O1—O8—O7vi150.59 (12)
P2—O2—H2114.5 (19)O2—O8—O460.29 (8)
K1xii—O2—O1135.56 (9)O2—O8—O6vi113.29 (10)
K1xii—O2—O4139.88 (9)O2—O8—O7vi137.86 (11)
K1xii—O2—O5x112.79 (9)O4—O8—O6vi145.87 (12)
K1xii—O2—O893.03 (8)O4—O8—O7vi104.39 (10)
K1xii—O2—H2118.0 (19)O6vi—O8—O7vi100.07 (10)
O1—O2—O460.77 (8)Cu—O9—K186.94 (10)
O1—O2—O5x98.51 (10)Cu—O9—O3x116.12 (13)
O1—O2—O861.08 (8)Cu—O9—O3xiii116.12 (13)
O1—O2—H293.1 (17)Cu—O9—H9116 (2)
O4—O2—O5x95.61 (9)Cu—O9—H9i116 (2)
O4—O2—O861.34 (8)K1—O9—O358.24 (7)
O4—O2—H292 (2)K1—O9—O3x142.44 (11)
O5x—O2—O8154.15 (11)K1—O9—O3xiii142.44 (11)
O8—O2—H2149.0 (19)K1—O9—O3i58.24 (7)
Cu—O3—P1135.84 (12)K1—O9—H9116 (2)
Cu—O3—K196.98 (7)K1—O9—H9i116 (2)
Cu—O3—O198.63 (9)O3—O9—O3x119.37 (7)
Cu—O3—O3i47.06 (6)O3—O9—O3xiii156.11 (15)
Cu—O3—O5143.93 (10)O3—O9—O3i54.68 (8)
Cu—O3—O7137.53 (11)O3—O9—H999 (2)
Cu—O3—O954.51 (8)O3—O9—H9i153 (2)
Cu—O3—O9iv99.27 (8)O3x—O9—O3119.37 (7)
P1—O3—K1113.57 (10)O3x—O9—O3xiii54.95 (8)
P1—O3—O3i174.98 (13)O3x—O9—O3i156.11 (15)
P1—O3—O492.42 (10)O3x—O9—H9i82 (2)
P1—O3—O9114.86 (10)O3xiii—O9—O3156.11 (15)
P1—O3—O9iv117.87 (10)O3xiii—O9—O3x54.95 (8)
K1—O3—O1130.24 (9)O3xiii—O9—O3i119.37 (7)
K1—O3—O3i61.45 (6)O3xiii—O9—H982 (2)
K1—O3—O4127.03 (8)O3i—O9—O354.68 (8)
K1—O3—O582.49 (7)O3i—O9—O3x156.11 (15)
K1—O3—O7125.01 (9)O3i—O9—O3xiii119.37 (7)
K1—O3—O959.53 (8)O3i—O9—H9153 (2)
K1—O3—O9iv76.37 (8)O3i—O9—H9i99 (2)
O1—O3—O3i144.99 (10)H9—O9—H9i106 (3)
O1—O3—O455.42 (7)H9i—O9—H9106 (3)
O1—O3—O558.18 (8)
Symmetry codes: (i) x, y+3/2, z; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y, z+3/2; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1; (viii) x1/2, y+1/2, z+3/2; (ix) x, y+1/2, z; (x) x+1/2, y, z+3/2; (xi) x+1, y+1/2, z+1; (xii) x+3/2, y+1, z1/2; (xiii) x+1/2, y+3/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O8vi0.81 (3)1.73 (3)2.536 (3)168 (3)
O6—H6···O8vi0.82 (3)2.05 (3)2.863 (3)174 (3)
O2—H2···O5x0.81 (2)1.72 (2)2.525 (3)172 (3)
O9—H9···O3x0.81 (3)2.24 (3)2.922 (3)142 (3)
Symmetry codes: (vi) x+1, y+1, z+1; (x) x+1/2, y, z+3/2.
(II) Dipotassium nickel(II) bis(dihydrogendiphosphate) dihydrate top
Crystal data top
K2Ni(H2P2O7)2·2H2OF(000) = 1048
Mr = 524.8Dx = 2.431 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 15622 reflections
a = 9.9117 (3) Åθ = 3.0–26.6°
b = 10.7736 (3) ŵ = 2.47 mm1
c = 13.4219 (5) ÅT = 292 K
V = 1433.25 (8) Å3Prism, light green
Z = 40.29 × 0.19 × 0.14 mm
Data collection top
Oxford Sapphire 2 CCD
diffractometer
1543 independent reflections
Radiation source: X-ray tube1418 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3438 pixels mm-1θmax = 26.6°, θmin = 3.0°
ω scansh = 1212
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
k = 1313
Tmin = 0.363, Tmax = 0.559l = 1616
15622 measured reflections
Refinement top
Refinement on F24 constraints
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0036I2]
S = 1.31(Δ/σ)max = 0.008
1543 reflectionsΔρmax = 0.26 e Å3
124 parametersΔρmin = 0.33 e Å3
4 restraints
Crystal data top
K2Ni(H2P2O7)2·2H2OV = 1433.25 (8) Å3
Mr = 524.8Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.9117 (3) ŵ = 2.47 mm1
b = 10.7736 (3) ÅT = 292 K
c = 13.4219 (5) Å0.29 × 0.19 × 0.14 mm
Data collection top
Oxford Sapphire 2 CCD
diffractometer
1543 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
1418 reflections with I > 3σ(I)
Tmin = 0.363, Tmax = 0.559Rint = 0.024
15622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0254 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.31Δρmax = 0.26 e Å3
1543 reflectionsΔρmin = 0.33 e Å3
124 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > n*σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.67295 (3)0.750.64212 (3)0.01340 (13)
P10.56325 (5)0.48599 (5)0.72249 (4)0.01539 (17)
P20.75487 (5)0.48642 (5)0.56112 (4)0.01530 (17)
K10.54850 (8)0.750.89709 (5)0.0299 (2)
K20.25355 (7)0.250.62721 (6)0.0292 (2)
O10.69198 (15)0.43415 (13)0.66376 (12)0.0225 (4)
O20.88556 (14)0.40947 (13)0.54994 (10)0.0203 (4)
O30.56252 (15)0.62484 (13)0.71273 (11)0.0211 (4)
O40.78574 (15)0.62203 (14)0.57544 (11)0.0225 (4)
O50.57367 (15)0.43425 (15)0.82510 (11)0.0265 (5)
O60.5224 (2)0.750.51043 (17)0.0254 (6)
O70.43624 (15)0.43175 (14)0.67043 (12)0.0258 (5)
O80.65997 (15)0.45435 (15)0.47880 (12)0.0277 (5)
O90.8010 (2)0.750.7937 (2)0.0343 (8)
H60.4643 (19)0.6960 (17)0.5136 (19)0.0305*
H90.849 (2)0.6896 (17)0.801 (2)0.0411*
H20.944 (2)0.428 (2)0.5900 (15)0.0243*
H70.416 (3)0.473 (2)0.6217 (13)0.0309*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0123 (2)0.0095 (2)0.0184 (2)00.00445 (12)0
P10.0154 (3)0.0142 (3)0.0166 (3)0.00002 (18)0.00132 (18)0.00116 (18)
P20.0135 (3)0.0144 (3)0.0180 (3)0.00067 (18)0.00023 (17)0.00057 (18)
K10.0382 (4)0.0317 (4)0.0198 (3)00.0011 (3)0
K20.0219 (4)0.0200 (4)0.0457 (4)00.0048 (3)0
O10.0244 (7)0.0183 (8)0.0248 (7)0.0051 (6)0.0071 (6)0.0026 (6)
O20.0176 (7)0.0211 (7)0.0221 (7)0.0042 (6)0.0018 (5)0.0058 (6)
O30.0202 (7)0.0146 (7)0.0284 (8)0.0003 (5)0.0066 (5)0.0014 (6)
O40.0211 (7)0.0160 (7)0.0306 (8)0.0008 (6)0.0079 (6)0.0018 (6)
O50.0210 (7)0.0383 (9)0.0201 (7)0.0072 (7)0.0023 (6)0.0082 (6)
O60.0206 (10)0.0238 (11)0.0318 (11)00.0018 (9)0
O70.0247 (8)0.0247 (8)0.0279 (8)0.0091 (6)0.0063 (6)0.0040 (6)
O80.0228 (8)0.0329 (9)0.0276 (8)0.0052 (6)0.0085 (6)0.0027 (7)
O90.0221 (12)0.0322 (14)0.0485 (15)00.0102 (10)0
Geometric parameters (Å, º) top
Ni—O31.9785 (14)K2—O72.7294 (16)
Ni—O3i1.9785 (14)K2—O7ix2.7294 (16)
Ni—O41.9879 (15)O1—O22.467 (2)
Ni—O4i1.9879 (15)O1—O32.510 (2)
Ni—O62.313 (2)O1—O42.523 (2)
Ni—O92.398 (3)O1—O52.463 (2)
P1—P22.8807 (7)O1—O72.536 (2)
P1—O11.6004 (16)O1—O82.512 (2)
P1—O31.5017 (14)O2—O42.518 (2)
P1—O51.4893 (15)O2—O5x2.522 (2)
P1—O71.5539 (16)O2—O82.479 (2)
P1—H2ii2.85 (2)O2—H20.82 (2)
P1—H71.99 (2)O3—O3i2.6968 (19)
P2—O11.6136 (16)O3—O42.880 (2)
P2—O21.5452 (15)O3—O52.550 (2)
P2—O41.5050 (16)O3—O72.493 (2)
P2—O81.4917 (16)O3—O92.931 (3)
P2—H22.02 (2)O3—O9ii2.923 (3)
K1—O2iii2.7545 (15)O4—O4i2.757 (2)
K1—O2iv2.7545 (15)O4—O82.549 (2)
K1—O32.8215 (16)O5—O72.483 (2)
K1—O3i2.8215 (16)O6—O8vi2.852 (2)
K1—O4ii2.9698 (16)O6—O8xi2.852 (2)
K1—O4v2.9698 (16)O6—H60.820 (19)
K1—O92.862 (3)O6—H6i0.820 (19)
K2—O4vi3.0741 (17)O7—O8vi2.535 (2)
K2—O4vii3.0741 (17)O7—H70.82 (2)
K2—O5ii2.7440 (16)O9—H90.82 (2)
K2—O5viii2.7440 (16)O9—H9i0.82 (2)
K2—O6vi2.889 (2)
O3—Ni—O3i85.93 (6)O3i—O3—O490.60 (6)
O3—Ni—O493.10 (6)O3i—O3—O5143.63 (8)
O3—Ni—O4i178.14 (6)O3i—O3—O7146.55 (8)
O3—Ni—O690.52 (6)O3i—O3—O962.61 (5)
O3—Ni—O983.48 (6)O3i—O3—O9ii62.53 (5)
O3i—Ni—O385.93 (6)O4—O3—O5109.68 (7)
O3i—Ni—O4178.14 (6)O4—O3—O7103.37 (7)
O3i—Ni—O4i93.10 (6)O4—O3—O967.81 (7)
O3i—Ni—O690.52 (6)O4—O3—O9ii131.85 (8)
O3i—Ni—O983.48 (6)O5—O3—O758.98 (6)
O4—Ni—O4i87.82 (6)O5—O3—O996.67 (7)
O4—Ni—O691.07 (6)O5—O3—O9ii115.30 (7)
O4—Ni—O994.83 (6)O7—O3—O9150.84 (7)
O4i—Ni—O487.82 (6)O7—O3—O9ii86.16 (6)
O4i—Ni—O691.07 (6)O9—O3—O9ii120.93 (6)
O4i—Ni—O994.83 (6)O9ii—O3—O9120.93 (6)
O6—Ni—O9171.79 (8)Ni—O4—P2128.05 (9)
P2—P1—O386.33 (6)Ni—O4—K1x96.62 (6)
P2—P1—O5130.55 (6)Ni—O4—O197.91 (7)
P2—P1—O7101.34 (6)Ni—O4—O2155.91 (8)
P2—P1—H2ii159.6 (4)Ni—O4—O4i46.09 (4)
P2—P1—H788.4 (7)Ni—O4—O8116.45 (7)
O1—P1—O3107.97 (8)Ni—O4—H2148.9 (5)
O1—P1—O5105.64 (8)P2—O4—K1x130.15 (8)
O1—P1—O7107.05 (8)P2—O4—O386.31 (7)
O1—P1—H2ii133.5 (4)P2—O4—O4i166.11 (9)
O1—P1—H7103.0 (7)P2—O4—H250.0 (5)
O3—P1—O5116.99 (9)K1x—O4—O1129.58 (7)
O3—P1—O7109.36 (9)K1x—O4—O295.43 (6)
O3—P1—H2ii107.1 (5)K1x—O4—O3126.12 (6)
O3—P1—H790.3 (7)K1x—O4—O4i62.34 (4)
O5—P1—O7109.35 (9)K1x—O4—O8145.18 (7)
O5—P1—H7130.7 (7)K1x—O4—H280.5 (5)
O7—P1—H2ii88.9 (4)O1—O4—O258.60 (6)
H2ii—P1—H7106.4 (8)O1—O4—O354.88 (5)
P1—P2—O2128.67 (6)O1—O4—O4i143.34 (8)
P1—P2—O492.27 (6)O1—O4—O859.37 (6)
P1—P2—O898.09 (6)O1—O4—H263.0 (5)
P1—P2—H2118.0 (6)O2—O4—O3113.48 (7)
O1—P2—O2102.68 (8)O2—O4—O4i155.43 (8)
O1—P2—O4107.96 (8)O2—O4—O858.57 (6)
O1—P2—O8107.93 (8)O3—O4—O4i89.40 (6)
O1—P2—H295.0 (6)O3—O4—O887.55 (6)
O2—P2—O4111.27 (8)O3—O4—H2114.9 (5)
O2—P2—O8109.41 (8)O4i—O4—O8135.12 (8)
O4—P2—O8116.59 (9)O4i—O4—H2142.8 (5)
O4—P2—H295.1 (7)O8—O4—H276.5 (5)
O8—P2—H2131.0 (6)P1—O5—K2x122.11 (8)
O2iii—K1—O2iv77.18 (4)P1—O5—O2ii127.11 (9)
O2iii—K1—O3110.08 (4)K2x—O5—O183.99 (6)
O2iii—K1—O3i159.98 (5)K2x—O5—O2ii104.40 (6)
O2iii—K1—O4ii79.98 (4)K2x—O5—O3138.47 (7)
O2iii—K1—O4v113.90 (5)K2x—O5—O7122.93 (7)
O2iii—K1—O998.83 (6)O1—O5—O2ii159.52 (8)
O2iv—K1—O2iii77.18 (4)O1—O5—O360.06 (6)
O2iv—K1—O3159.98 (5)O1—O5—O761.71 (6)
O2iv—K1—O3i110.08 (4)O2ii—O5—O3116.52 (7)
O2iv—K1—O4ii113.90 (5)O2ii—O5—O798.59 (7)
O2iv—K1—O4v79.98 (4)O3—O5—O759.37 (6)
O2iv—K1—O998.83 (6)Ni—O6—K2vi89.59 (7)
O3—K1—O3i57.10 (4)Ni—O6—O8vi111.72 (7)
O3—K1—O4ii86.00 (4)Ni—O6—O8xi111.72 (7)
O3—K1—O4v111.96 (5)Ni—O6—H6114.4 (17)
O3—K1—O962.08 (6)Ni—O6—H6i114.4 (17)
O3i—K1—O357.10 (4)K2vi—O6—O8vi121.31 (6)
O3i—K1—O4ii111.96 (5)K2vi—O6—O8xi121.31 (6)
O3i—K1—O4v86.00 (4)K2vi—O6—H6125.0 (16)
O3i—K1—O962.08 (6)K2vi—O6—H6i125.0 (16)
O4ii—K1—O4v55.32 (4)O8vi—O6—O8xi101.04 (8)
O4ii—K1—O9145.81 (4)O8vi—O6—H6i95.7 (13)
O4v—K1—O4ii55.32 (4)O8xi—O6—O8vi101.04 (8)
O4v—K1—O9145.81 (4)O8xi—O6—H695.7 (13)
O5ii—K2—O5viii92.68 (5)H6—O6—H6i90.4 (18)
O5ii—K2—O6vi130.44 (4)H6i—O6—H690.4 (18)
O5ii—K2—O782.10 (5)P1—O7—K2154.54 (9)
O5ii—K2—O7ix154.22 (6)P1—O7—O8vi118.55 (9)
O5viii—K2—O5ii92.68 (5)P1—O7—H6vi106.1 (4)
O5viii—K2—O6vi130.44 (4)P1—O7—H9ii79.8 (5)
O5viii—K2—O7154.22 (6)P1—O7—H7110.6 (19)
O5viii—K2—O7ix82.10 (5)K2—O7—O1131.51 (7)
O6vi—K2—O768.03 (5)K2—O7—O3168.53 (7)
O6vi—K2—O7ix68.03 (5)K2—O7—O5123.33 (7)
O7—K2—O7ix91.68 (5)K2—O7—O8vi85.97 (6)
O7ix—K2—O791.68 (5)K2—O7—H6vi73.3 (4)
P1—O1—P2127.35 (10)K2—O7—H9ii120.8 (4)
P1—O1—O2164.30 (9)K2—O7—H793.4 (18)
P1—O1—O4104.19 (8)O1—O7—O359.86 (6)
P1—O1—O8110.84 (8)O1—O7—O558.75 (6)
P2—O1—O397.78 (8)O1—O7—O8vi110.07 (7)
P2—O1—O5159.16 (9)O1—O7—H6vi69.3 (4)
P2—O1—O7114.82 (8)O1—O7—H9ii106.7 (4)
O2—O1—O3130.39 (8)O1—O7—H7102 (2)
O2—O1—O460.59 (6)O3—O7—O561.65 (6)
O2—O1—O5156.20 (8)O3—O7—O8vi87.99 (7)
O2—O1—O7142.94 (8)O3—O7—H6vi114.0 (4)
O2—O1—O859.71 (6)O3—O7—H9ii47.7 (4)
O3—O1—O469.80 (6)O3—O7—H781.3 (17)
O3—O1—O561.70 (6)O5—O7—O8vi149.50 (8)
O3—O1—O759.22 (6)O5—O7—H6vi120.9 (4)
O3—O1—O897.08 (7)O5—O7—H9ii92.4 (5)
O4—O1—O5126.03 (8)O5—O7—H7142.9 (18)
O4—O1—O7113.13 (7)O8vi—O7—H6vi72.2 (4)
O4—O1—O860.84 (6)O8vi—O7—H9ii62.2 (5)
O5—O1—O759.54 (6)H6vi—O7—H9ii129.7 (7)
O5—O1—O8143.98 (8)H6vi—O7—H770.8 (17)
O7—O1—O884.81 (7)H9ii—O7—H760.9 (17)
P2—O2—K1xii127.30 (8)P2—O8—O6vi122.75 (10)
P2—O2—O5x119.89 (8)P2—O8—O7vi135.26 (10)
P2—O2—H2113.8 (16)O1—O8—O259.24 (6)
K1xii—O2—O1135.48 (7)O1—O8—O459.79 (6)
K1xii—O2—O4139.62 (7)O1—O8—O6vi87.89 (7)
K1xii—O2—O5x112.70 (6)O1—O8—O7vi150.48 (8)
K1xii—O2—O892.80 (6)O2—O8—O460.08 (6)
K1xii—O2—H2118.1 (15)O2—O8—O6vi113.68 (8)
O1—O2—O460.81 (6)O2—O8—O7vi137.56 (8)
O1—O2—O5x98.73 (7)O4—O8—O6vi146.21 (9)
O1—O2—O861.05 (6)O4—O8—O7vi104.06 (7)
O1—O2—H297.0 (14)O6vi—O8—O7vi100.09 (7)
O4—O2—O5x95.96 (7)Ni—O9—K187.03 (8)
O4—O2—O861.35 (6)Ni—O9—O3x116.38 (9)
O4—O2—H288.3 (17)Ni—O9—O3xiii116.38 (9)
O5x—O2—O8154.46 (8)Ni—O9—H9114.7 (19)
O8—O2—H2148.1 (16)Ni—O9—H9i114.7 (19)
Ni—O3—P1135.89 (9)K1—O9—O358.28 (5)
Ni—O3—K196.99 (5)K1—O9—O3x142.18 (8)
Ni—O3—O198.60 (7)K1—O9—O3xiii142.18 (8)
Ni—O3—O3i47.04 (4)K1—O9—O3i58.28 (5)
Ni—O3—O5143.91 (8)K1—O9—H9117.0 (17)
Ni—O3—O7137.50 (8)K1—O9—H9i117.0 (17)
Ni—O3—O954.40 (6)O3—O9—O3x119.48 (5)
Ni—O3—O9ii99.32 (6)O3—O9—O3xiii156.43 (11)
P1—O3—K1113.56 (8)O3—O9—O3i54.78 (6)
P1—O3—O3i174.99 (10)O3—O9—H998.9 (15)
P1—O3—O492.39 (7)O3—O9—H9i152.7 (16)
P1—O3—O9114.96 (8)O3x—O9—O3119.48 (5)
P1—O3—O9ii117.80 (8)O3x—O9—O3xiii54.95 (6)
K1—O3—O1130.24 (7)O3x—O9—O3i156.43 (11)
K1—O3—O3i61.45 (4)O3x—O9—H9i81.4 (15)
K1—O3—O4127.17 (6)O3xiii—O9—O3156.43 (11)
K1—O3—O582.43 (5)O3xiii—O9—O3x54.95 (6)
K1—O3—O7125.01 (7)O3xiii—O9—O3i119.48 (5)
K1—O3—O959.64 (6)O3xiii—O9—H981.4 (15)
K1—O3—O9ii76.22 (6)O3i—O9—O354.78 (6)
O1—O3—O3i144.94 (8)O3i—O9—O3x156.43 (11)
O1—O3—O455.32 (5)O3i—O9—O3xiii119.48 (5)
O1—O3—O558.24 (6)O3i—O9—H9152.7 (16)
O1—O3—O760.92 (6)O3i—O9—H9i98.9 (15)
O1—O3—O993.51 (6)H9—O9—H9i106 (2)
O1—O3—O9ii145.41 (7)H9i—O9—H9106 (2)
Symmetry codes: (i) x, y+3/2, z; (ii) x1/2, y, z+3/2; (iii) x+3/2, y+1, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1; (viii) x1/2, y+1/2, z+3/2; (ix) x, y+1/2, z; (x) x+1/2, y, z+3/2; (xi) x+1, y+1/2, z+1; (xii) x+3/2, y+1, z1/2; (xiii) x+1/2, y+3/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O8vi0.82 (2)1.73 (2)2.535 (2)168 (3)
O6—H6···O8vi0.820 (19)2.037 (18)2.852 (2)172.5 (18)
O2—H2···O5x0.82 (2)1.72 (2)2.522 (2)168 (3)
O9—H9···O3x0.82 (2)2.23 (2)2.923 (3)143 (2)
Symmetry codes: (vi) x+1, y+1, z+1; (x) x+1/2, y, z+3/2.
(III) Dipotassium zinc(II) bis(dihydrogendiphosphate) dihydrate top
Crystal data top
K2Zn(H2P2O7)2·2H2OF(000) = 1056
Mr = 531.5Dx = 2.453 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 24193 reflections
a = 9.7699 (2) Åθ = 3.7–26.5°
b = 10.9749 (3) ŵ = 2.82 mm1
c = 13.4201 (3) ÅT = 292 K
V = 1438.95 (6) Å3Prism, colourless
Z = 40.17 × 0.12 × 0.06 mm
Data collection top
Oxford Sapphire 2 CCD
diffractometer
1566 independent reflections
Radiation source: X-ray tube1403 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3438 pixels mm-1θmax = 26.5°, θmin = 3.7°
ω scansh = 1212
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
k = 1313
Tmin = 0.513, Tmax = 0.714l = 1616
24193 measured reflections
Refinement top
Refinement on F24 constraints
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.74(Δ/σ)max = 0.005
1566 reflectionsΔρmax = 0.40 e Å3
124 parametersΔρmin = 0.63 e Å3
4 restraints
Crystal data top
K2Zn(H2P2O7)2·2H2OV = 1438.95 (6) Å3
Mr = 531.5Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.7699 (2) ŵ = 2.82 mm1
b = 10.9749 (3) ÅT = 292 K
c = 13.4201 (3) Å0.17 × 0.12 × 0.06 mm
Data collection top
Oxford Sapphire 2 CCD
diffractometer
1566 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
1403 reflections with I > 3σ(I)
Tmin = 0.513, Tmax = 0.714Rint = 0.032
24193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0304 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.74Δρmax = 0.40 e Å3
1566 reflectionsΔρmin = 0.63 e Å3
124 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > n*σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.66768 (5)0.750.63872 (3)0.01439 (15)
P10.55997 (7)0.48341 (6)0.72176 (5)0.0137 (2)
P20.75472 (7)0.48393 (6)0.55834 (5)0.0139 (2)
K10.55555 (12)0.750.89869 (7)0.0341 (3)
K20.25140 (10)0.250.62745 (8)0.0286 (3)
O10.6927 (2)0.43737 (17)0.66305 (15)0.0233 (6)
O20.8866 (2)0.40758 (17)0.54910 (14)0.0226 (6)
O30.55491 (19)0.62024 (17)0.71659 (14)0.0213 (6)
O40.7841 (2)0.61808 (18)0.56757 (14)0.0227 (6)
O50.5712 (2)0.42806 (19)0.82259 (15)0.0277 (6)
O60.5230 (3)0.750.5217 (2)0.0239 (9)
O70.4344 (2)0.42913 (19)0.66691 (15)0.0279 (7)
O80.6582 (2)0.44686 (19)0.47709 (16)0.0276 (6)
O90.8015 (3)0.750.7696 (2)0.0278 (10)
H60.4647 (14)0.6980 (13)0.5155 (12)0.0286*
H90.8562 (15)0.6962 (13)0.7756 (13)0.0334*
H20.9396 (15)0.4203 (15)0.5936 (10)0.0271*
H70.409 (2)0.4704 (15)0.6209 (10)0.0335*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0139 (3)0.0121 (2)0.0172 (3)00.00231 (16)0
P10.0137 (4)0.0131 (3)0.0144 (3)0.0003 (3)0.0013 (2)0.0017 (2)
P20.0125 (4)0.0142 (4)0.0151 (4)0.0012 (3)0.0002 (2)0.0008 (2)
K10.0506 (7)0.0325 (6)0.0192 (5)00.0036 (4)0
K20.0227 (5)0.0197 (5)0.0435 (6)00.0055 (4)0
O10.0254 (12)0.0205 (10)0.0240 (10)0.0062 (8)0.0076 (8)0.0034 (8)
O20.0190 (11)0.0277 (11)0.0211 (10)0.0055 (8)0.0043 (8)0.0065 (8)
O30.0231 (11)0.0161 (9)0.0247 (10)0.0001 (8)0.0056 (8)0.0017 (7)
O40.0227 (10)0.0162 (9)0.0293 (11)0.0007 (8)0.0069 (8)0.0012 (8)
O50.0241 (12)0.0376 (12)0.0216 (10)0.0083 (9)0.0023 (8)0.0091 (9)
O60.0192 (15)0.0196 (15)0.0327 (16)00.0036 (12)0
O70.0288 (12)0.0261 (11)0.0289 (11)0.0085 (9)0.0084 (9)0.0060 (9)
O80.0236 (11)0.0309 (12)0.0283 (11)0.0059 (9)0.0082 (8)0.0018 (9)
O90.0229 (17)0.0201 (15)0.0404 (18)00.0111 (13)0
Geometric parameters (Å, º) top
Zn—O32.0818 (19)O1—O22.456 (3)
Zn—O3i2.0818 (19)O1—O32.521 (3)
Zn—O42.074 (2)O1—O42.524 (3)
Zn—O4i2.074 (2)O1—O52.450 (3)
Zn—O62.113 (3)O1—O72.526 (3)
Zn—O92.189 (3)O1—O82.520 (3)
P1—P22.9036 (9)O2—O42.530 (3)
P1—O11.599 (2)O2—O5x2.504 (3)
P1—O31.504 (2)O2—O82.469 (3)
P1—O51.487 (2)O2—H20.803 (14)
P1—O71.550 (2)O3—O3i2.848 (3)
P2—O11.613 (2)O3—O52.549 (3)
P2—O21.542 (2)O3—O62.994 (3)
P2—O41.505 (2)O3—O72.496 (3)
P2—O81.498 (2)O3—O92.888 (3)
K1—O2ii2.718 (2)O3—O9iv2.862 (3)
K1—O2iii2.718 (2)O4—O4i2.895 (3)
K1—O32.829 (2)O4—O62.997 (3)
K1—O3i2.829 (2)O4—O82.553 (3)
K1—O4iv3.055 (2)O5—O72.480 (3)
K1—O4v3.055 (2)O6—O8vi2.793 (3)
K1—O92.963 (3)O6—O8xi2.793 (3)
K2—O4vi3.011 (2)O6—H60.811 (14)
K2—O4vii3.011 (2)O6—H6i0.811 (14)
K2—O5iv2.714 (2)O7—O8vi2.531 (3)
K2—O5viii2.714 (2)O7—H70.806 (16)
K2—O6vi2.978 (3)O9—H90.800 (15)
K2—O72.709 (2)O9—H9i0.800 (15)
K2—O7ix2.709 (2)
O3—Zn—O3i86.32 (8)O6—O3—O9iv74.33 (9)
O3—Zn—O492.51 (8)O7—O3—O9150.90 (10)
O3—Zn—O4i177.25 (8)O7—O3—O9iv91.57 (8)
O3—Zn—O691.08 (8)O9—O3—O9iv117.41 (8)
O3—Zn—O985.04 (8)O9iv—O3—O9117.41 (8)
O3i—Zn—O386.32 (8)Zn—O4—P2128.03 (12)
O3i—Zn—O4177.25 (8)Zn—O4—O196.93 (9)
O3i—Zn—O4i92.51 (8)Zn—O4—O2154.10 (10)
O3i—Zn—O691.08 (8)Zn—O4—O4i45.73 (6)
O3i—Zn—O985.04 (8)Zn—O4—O8117.94 (10)
O4—Zn—O4i88.54 (8)P2—O4—O4i168.01 (13)
O4—Zn—O691.43 (8)P2—O4—O6107.05 (10)
O4—Zn—O992.39 (8)O1—O4—O258.15 (8)
O4i—Zn—O488.54 (8)O1—O4—O4i141.78 (10)
O4i—Zn—O691.43 (8)O1—O4—O6100.51 (9)
O4i—Zn—O992.39 (8)O1—O4—O859.52 (8)
O6—Zn—O9174.67 (11)O2—O4—O4i155.95 (10)
P2—P1—O389.12 (8)O2—O4—O6139.27 (9)
P2—P1—O5129.76 (9)O2—O4—O858.12 (8)
P2—P1—O799.25 (8)O4i—O4—O661.12 (6)
O1—P1—O3108.62 (11)O4i—O4—O8137.39 (10)
O1—P1—O5105.02 (11)O6—O4—O881.25 (8)
O1—P1—O7106.64 (11)P1—O5—K2x124.53 (11)
O3—P1—O5116.89 (12)P1—O5—O2iv127.51 (13)
O3—P1—O7109.62 (11)K2x—O5—O186.09 (8)
O5—P1—O7109.49 (12)K2x—O5—O2iv103.46 (9)
P1—P2—O2127.39 (8)K2x—O5—O3140.73 (10)
P1—P2—O493.71 (8)K2x—O5—O7124.13 (10)
P1—P2—O897.86 (9)O1—O5—O2iv162.48 (11)
O1—P2—O2102.23 (11)O1—O5—O360.53 (8)
O1—P2—O4108.04 (11)O1—O5—O761.63 (8)
O1—P2—O8108.15 (11)O2iv—O5—O3114.39 (10)
O2—P2—O4112.26 (12)O2iv—O5—O7101.03 (10)
O2—P2—O8108.65 (11)O3—O5—O759.49 (8)
O4—P2—O8116.47 (12)Zn—O6—K2vi90.24 (10)
O2ii—K1—O2iii79.05 (6)Zn—O6—O8vi114.83 (9)
O2ii—K1—O3108.77 (6)Zn—O6—O8xi114.83 (9)
O2ii—K1—O3i164.28 (7)Zn—O6—H6123.1 (11)
O2ii—K1—O4iv76.64 (6)Zn—O6—H6i123.1 (11)
O2ii—K1—O4v111.85 (6)K2vi—O6—O3120.67 (9)
O2ii—K1—O9105.41 (7)K2vi—O6—O3i120.67 (9)
O2iii—K1—O2ii79.05 (6)K2vi—O6—O460.52 (7)
O2iii—K1—O3164.28 (7)K2vi—O6—O4i60.52 (7)
O2iii—K1—O3i108.77 (6)K2vi—O6—O8vi118.22 (8)
O2iii—K1—O4iv111.85 (6)K2vi—O6—O8xi118.22 (8)
O2iii—K1—O4v76.64 (6)K2vi—O6—H6116.8 (11)
O2iii—K1—O9105.41 (7)K2vi—O6—H6i116.8 (11)
O3—K1—O3i60.46 (6)O3—O6—O3i56.81 (7)
O3—K1—O4iv83.54 (6)O3—O6—O460.15 (7)
O3—K1—O4v111.39 (6)O3—O6—O4i87.81 (9)
O3—K1—O959.76 (6)O3—O6—O8vi72.13 (7)
O3i—K1—O360.46 (6)O3—O6—O8xi115.41 (11)
O3i—K1—O4iv111.39 (6)O3—O6—H680.1 (12)
O3i—K1—O4v83.54 (6)O3—O6—H6i119.9 (12)
O3i—K1—O959.76 (6)O3i—O6—O356.81 (7)
O4iv—K1—O4v56.57 (6)O3i—O6—O487.81 (9)
O4iv—K1—O9142.25 (6)O3i—O6—O4i60.15 (7)
O4v—K1—O4iv56.57 (6)O3i—O6—O8vi115.41 (11)
O4v—K1—O9142.25 (6)O3i—O6—O8xi72.13 (7)
O5iv—K2—O5viii92.11 (7)O3i—O6—H6119.9 (12)
O5iv—K2—O6vi130.25 (5)O3i—O6—H6i80.1 (12)
O5iv—K2—O781.79 (6)O4—O6—O4i57.77 (8)
O5iv—K2—O7ix154.43 (7)O4—O6—O8vi99.48 (6)
O5viii—K2—O5iv92.11 (7)O4—O6—O8xi155.78 (10)
O5viii—K2—O6vi130.25 (5)O4—O6—H6106.2 (10)
O5viii—K2—O7154.43 (7)O4—O6—H6i163.6 (10)
O5viii—K2—O7ix81.79 (6)O4i—O6—O457.77 (8)
O6vi—K2—O769.08 (6)O4i—O6—O8vi155.78 (10)
O6vi—K2—O7ix69.08 (6)O4i—O6—O8xi99.48 (6)
O7—K2—O7ix93.04 (7)O4i—O6—H6163.6 (10)
O7ix—K2—O793.04 (7)O4i—O6—H6i106.2 (10)
P1—O1—P2129.32 (13)O8vi—O6—O8xi101.34 (11)
P1—O1—O2166.92 (12)O8vi—O6—H6i95.8 (10)
P1—O1—O4106.78 (10)O8xi—O6—O8vi101.34 (11)
P1—O1—O8111.50 (11)O8xi—O6—H695.8 (10)
P2—O1—O3101.34 (10)H6—O6—H6i89.6 (14)
P2—O1—O5163.00 (12)H6i—O6—H689.6 (14)
P2—O1—O7113.86 (11)P1—O7—K2153.38 (12)
O2—O1—O3134.04 (10)P1—O7—O8vi116.04 (12)
O2—O1—O461.04 (8)P1—O7—H6vi107.9 (3)
O2—O1—O5155.78 (11)P1—O7—H7113.3 (13)
O2—O1—O7141.12 (11)K2—O7—O1132.94 (10)
O2—O1—O859.48 (8)K2—O7—O3166.70 (11)
O3—O1—O473.03 (8)K2—O7—O5121.12 (10)
O3—O1—O561.68 (8)K2—O7—O8vi90.29 (8)
O3—O1—O759.28 (8)K2—O7—H6vi73.7 (3)
O3—O1—O8100.25 (9)K2—O7—H793.0 (13)
O4—O1—O5130.37 (10)O1—O7—O360.26 (8)
O4—O1—O7113.08 (10)O1—O7—O558.59 (8)
O4—O1—O860.81 (8)O1—O7—O8vi108.80 (10)
O5—O1—O759.78 (8)O1—O7—H6vi70.7 (3)
O5—O1—O8143.35 (11)O1—O7—H7106.0 (14)
O7—O1—O883.59 (9)O3—O7—O561.62 (8)
P2—O2—K1xii125.41 (11)O3—O7—O8vi85.45 (9)
P2—O2—O5x119.86 (11)O3—O7—H6vi117.1 (3)
P2—O2—H2112.6 (11)O3—O7—H783.1 (12)
K1xii—O2—O1135.04 (9)O5—O7—O8vi146.97 (11)
K1xii—O2—O4137.41 (9)O5—O7—H6vi120.7 (3)
K1xii—O2—O5x114.71 (9)O5—O7—H7144.7 (12)
K1xii—O2—O890.48 (8)O8vi—O7—H6vi75.1 (3)
K1xii—O2—H2121.9 (11)H6vi—O7—H774.8 (12)
O1—O2—O460.81 (8)P2—O8—O6vi127.22 (13)
O1—O2—O5x96.64 (9)P2—O8—O7vi129.41 (13)
O1—O2—O861.55 (8)O1—O8—O258.97 (8)
O1—O2—H290.7 (10)O1—O8—O459.68 (8)
O4—O2—O5x97.80 (9)O1—O8—O6vi92.70 (10)
O4—O2—O861.41 (8)O1—O8—O7vi145.69 (11)
O4—O2—H291.3 (12)O2—O8—O460.47 (8)
O5x—O2—O8154.75 (11)O2—O8—O6vi115.81 (10)
O8—O2—H2147.5 (11)O2—O8—O7vi135.70 (11)
Zn—O3—P1133.53 (12)O4—O8—O6vi150.69 (11)
Zn—O3—K195.06 (7)O4—O8—O7vi98.02 (10)
Zn—O3—O196.83 (8)O6vi—O8—O7vi101.17 (10)
Zn—O3—O3i46.84 (5)Zn—O9—K189.12 (10)
Zn—O3—O5144.39 (10)Zn—O9—O345.91 (6)
Zn—O3—O7133.66 (10)Zn—O9—O3x124.66 (11)
Zn—O3—O949.05 (7)Zn—O9—O3xiii124.66 (11)
Zn—O3—O9iv98.63 (8)Zn—O9—O3i45.91 (6)
P1—O3—K1117.56 (10)Zn—O9—H9118.7 (12)
P1—O3—O3i176.75 (12)Zn—O9—H9i118.7 (12)
P1—O3—O6121.24 (10)K1—O9—O357.81 (7)
P1—O3—O9116.97 (10)K1—O9—O3x131.57 (10)
P1—O3—O9iv121.48 (11)K1—O9—O3xiii131.57 (10)
K1—O3—O1130.23 (9)K1—O9—O3i57.81 (7)
K1—O3—O3i59.77 (5)K1—O9—H9118.8 (12)
K1—O3—O586.23 (7)K1—O9—H9i118.8 (12)
K1—O3—O6121.02 (7)O3—O9—O3x119.50 (6)
K1—O3—O7130.91 (9)O3—O9—O3xiii169.46 (13)
K1—O3—O962.43 (7)O3—O9—O3i59.10 (8)
K1—O3—O9iv72.26 (8)O3—O9—H9102.6 (11)
O1—O3—O3i142.76 (10)O3—O9—H9i161.0 (11)
O1—O3—O557.79 (8)O3x—O9—O3119.50 (6)
O1—O3—O6100.68 (8)O3x—O9—O3xiii59.68 (8)
O1—O3—O760.45 (8)O3x—O9—O3i169.46 (13)
O1—O3—O990.99 (8)O3x—O9—H9i77.5 (11)
O1—O3—O9iv151.22 (10)O3xiii—O9—O3169.46 (13)
O3i—O3—O5145.84 (10)O3xiii—O9—O3x59.68 (8)
O3i—O3—O661.60 (6)O3xiii—O9—O3i119.50 (6)
O3i—O3—O7147.17 (10)O3xiii—O9—H977.5 (11)
O3i—O3—O960.45 (6)O3i—O9—O359.10 (8)
O3i—O3—O9iv60.16 (6)O3i—O9—O3x169.46 (13)
O5—O3—O6152.56 (9)O3i—O9—O3xiii119.50 (6)
O5—O3—O758.89 (8)O3i—O9—H9161.0 (11)
O5—O3—O9102.62 (9)O3i—O9—H9i102.6 (11)
O5—O3—O9iv115.44 (9)H9—O9—H9i95.1 (16)
O6—O3—O796.73 (8)H9i—O9—H995.1 (16)
O6—O3—O993.86 (9)
Symmetry codes: (i) x, y+3/2, z; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y, z+3/2; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1; (viii) x1/2, y+1/2, z+3/2; (ix) x, y+1/2, z; (x) x+1/2, y, z+3/2; (xi) x+1, y+1/2, z+1; (xii) x+3/2, y+1, z1/2; (xiii) x+1/2, y+3/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O8vi0.806 (16)1.726 (16)2.531 (3)176 (2)
O6—H6···O8vi0.811 (14)1.995 (14)2.793 (3)168.2 (15)
O2—H2···O5x0.803 (14)1.710 (14)2.504 (3)169.4 (16)
O9—H9···O3x0.800 (15)2.116 (15)2.862 (3)155.3 (15)
Symmetry codes: (vi) x+1, y+1, z+1; (x) x+1/2, y, z+3/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaK2Cu(H2P2O7)2·2H2OK2Ni(H2P2O7)2·2H2OK2Zn(H2P2O7)2·2H2O
Mr529.7524.8531.5
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)292292292
a, b, c (Å)9.9128 (4), 10.7830 (3), 13.4209 (5)9.9117 (3), 10.7736 (3), 13.4219 (5)9.7699 (2), 10.9749 (3), 13.4201 (3)
V3)1434.56 (9)1433.25 (8)1438.95 (6)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.632.472.82
Crystal size (mm)0.14 × 0.09 × 0.060.29 × 0.19 × 0.140.17 × 0.12 × 0.06
Data collection
DiffractometerOxford Sapphire 2 CCD
diffractometer
Oxford Sapphire 2 CCD
diffractometer
Oxford Sapphire 2 CCD
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
Analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
Analytical
[CrysAlis RED (Oxford Diffraction, 2004), using a multifaceted crystal model]
Tmin, Tmax0.616, 0.7650.363, 0.5590.513, 0.714
No. of measured, independent and
observed [I > 3σ(I)] reflections
17123, 1572, 1244 15622, 1543, 1418 24193, 1566, 1403
Rint0.0390.0240.032
(sin θ/λ)max1)0.6290.6290.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.071, 1.12 0.025, 0.089, 1.31 0.030, 0.090, 1.74
No. of reflections157215431566
No. of parameters125124124
No. of restraints444
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.680.26, 0.330.40, 0.63

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2004), CrysAlis RED, SIR2002 (Burla et al., 2003), JANA2000 (Petříček et al., 2000), DIAMOND (Brandenburg & Putz, 2005), JANA2000.

Selected bond lengths (Å) for (I) top
Cu—O31.9788 (19)K1—O2ii2.753 (2)
Cu—O3i1.9788 (19)K1—O2iii2.753 (2)
Cu—O41.984 (2)K1—O32.820 (2)
Cu—O4i1.984 (2)K1—O3i2.820 (2)
Cu—O62.324 (3)K1—O4iv2.964 (2)
Cu—O92.405 (4)K1—O4v2.964 (2)
P1—O11.598 (2)K1—O92.859 (3)
P1—O31.505 (2)K2—O4vi3.081 (2)
P1—O51.485 (2)K2—O4vii3.081 (2)
P1—O71.551 (2)K2—O5iv2.749 (2)
P2—O11.615 (2)K2—O5viii2.749 (2)
P2—O21.546 (2)K2—O6vi2.885 (3)
P2—O41.512 (2)K2—O72.732 (2)
P2—O81.487 (2)K2—O7ix2.732 (2)
Symmetry codes: (i) x, y+3/2, z; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y, z+3/2; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1; (viii) x1/2, y+1/2, z+3/2; (ix) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O8vi0.81 (3)1.73 (3)2.536 (3)168 (3)
O6—H6···O8vi0.82 (3)2.05 (3)2.863 (3)174 (3)
O2—H2···O5x0.81 (2)1.72 (2)2.525 (3)172 (3)
O9—H9···O3x0.81 (3)2.24 (3)2.922 (3)142 (3)
Symmetry codes: (vi) x+1, y+1, z+1; (x) x+1/2, y, z+3/2.
Selected bond lengths (Å) for (II) top
Ni—O31.9785 (14)K1—O2ii2.7545 (15)
Ni—O3i1.9785 (14)K1—O2iii2.7545 (15)
Ni—O41.9879 (15)K1—O32.8215 (16)
Ni—O4i1.9879 (15)K1—O3i2.8215 (16)
Ni—O62.313 (2)K1—O4iv2.9698 (16)
Ni—O92.398 (3)K1—O4v2.9698 (16)
P1—O11.6004 (16)K1—O92.862 (3)
P1—O31.5017 (14)K2—O4vi3.0741 (17)
P1—O51.4893 (15)K2—O4vii3.0741 (17)
P1—O71.5539 (16)K2—O5iv2.7440 (16)
P2—O11.6136 (16)K2—O5viii2.7440 (16)
P2—O21.5452 (15)K2—O6vi2.889 (2)
P2—O41.5050 (16)K2—O72.7294 (16)
P2—O81.4917 (16)K2—O7ix2.7294 (16)
Symmetry codes: (i) x, y+3/2, z; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y, z+3/2; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1; (viii) x1/2, y+1/2, z+3/2; (ix) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O8vi0.82 (2)1.73 (2)2.535 (2)168 (3)
O6—H6···O8vi0.820 (19)2.037 (18)2.852 (2)172.5 (18)
O2—H2···O5x0.82 (2)1.72 (2)2.522 (2)168 (3)
O9—H9···O3x0.82 (2)2.23 (2)2.923 (3)143 (2)
Symmetry codes: (vi) x+1, y+1, z+1; (x) x+1/2, y, z+3/2.
Selected bond lengths (Å) for (III) top
Zn—O32.0818 (19)K1—O2ii2.718 (2)
Zn—O3i2.0818 (19)K1—O2iii2.718 (2)
Zn—O42.074 (2)K1—O32.829 (2)
Zn—O4i2.074 (2)K1—O3i2.829 (2)
Zn—O62.113 (3)K1—O4iv3.055 (2)
Zn—O92.189 (3)K1—O4v3.055 (2)
P1—O11.599 (2)K1—O92.963 (3)
P1—O31.504 (2)K2—O4vi3.011 (2)
P1—O51.487 (2)K2—O4vii3.011 (2)
P1—O71.550 (2)K2—O5iv2.714 (2)
P2—O11.613 (2)K2—O5viii2.714 (2)
P2—O21.542 (2)K2—O6vi2.978 (3)
P2—O41.505 (2)K2—O72.709 (2)
P2—O81.498 (2)K2—O7ix2.709 (2)
Symmetry codes: (i) x, y+3/2, z; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y, z+3/2; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1; (viii) x1/2, y+1/2, z+3/2; (ix) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O8vi0.806 (16)1.726 (16)2.531 (3)176 (2)
O6—H6···O8vi0.811 (14)1.995 (14)2.793 (3)168.2 (15)
O2—H2···O5x0.803 (14)1.710 (14)2.504 (3)169.4 (16)
O9—H9···O3x0.800 (15)2.116 (15)2.862 (3)155.3 (15)
Symmetry codes: (vi) x+1, y+1, z+1; (x) x+1/2, y, z+3/2.
Comparison of bond lengths for compounds (I)-(III) (Å) top
Atoms O6 and O9 belong to water molecules.
atom1atom2M=CuM=NiM=Zn
MO31.9788 (19)1.9785 (14)2.0818 (19)
MO41.984 (2)1.9879 (15)2.074 (2)
MO62.324 (3)2.313 (2)2.113 (3)
MO92.405 (4)2.398 (3)2.189 (3)
P1O11.598 (2)1.6004 (16)1.599 (2)
P1O31.505 (2)1.5017 (14)1.504 (2)
P1O51.485 (2)1.4893 (15)1.487 (2)
P1O71.551 (2)1.5539 (16)1.550 (2)
P2O11.615 (2)1.6136 (16)1.613 (2)
P2O21.546 (2)1.5452 (15)1.542 (2)
P2O41.512 (2)1.5050 (16)1.505 (2)
P2O81.487 (2)1.4917 (16)1.498 (2)
K1O2i2.753 (2)2.7545 (15)2.718 (2)
K1O32.820 (2)2.8215 (16)2.829 (2)
K1O4ii2.964 (2)2.9698 (16)3.055 (2)
K1O92.859 (3)2.862 (3)2.963 (3)
K2O4iii3.081 (2)3.0741 (17)3.011 (2)
K2O5ii2.749 (2)2.7440 (16)2.714 (2)
K2O6iii2.885 (3)2.889 (2)2.978 (3)
K2O72.732 (2)2.7294 (16)2.709 (2)
MMii5.7397 (7)5.7399 (5)5.7257 (6)
Symmetry codes: (i) 3/2 − x,1 − y,1/2 + z; (ii) −1/2 + x,y,3/2 − z; (iii) 1 − x,1 − y,1 − z.
Comparison of bond lengths in the MO6 octahedra of the K2M(H2P2O7)·2H2O series. Bond-valence sums (BVS) for the seven-coordinated K atoms and for the octahedrally coordinated M atom are also listed. top
OW denotes the oxygen atoms of water molecules. o and t denote orthorhombic and triclinic structures.
M=Ni, oM=Ni, tM=Zn, oM=Zn, tM=Cu, oM=Co, oM=Mg, t
M-O1.9785 (14)2.055 (3)2.0818 (19)2.081 (4)1.9788 (19)2.0926 (10)2.0530 (13)
M-O1.9785 (14)2.055 (3)2.0818 (19)2.081 (4)1.9788 (19)2.0926 (10)2.0530 (13)
M-O1.9879 (15)2.052 (3)2.074 (2)2.057 (3)1.984 (2)2.0884 (10)2.0592 (17)
M-O1.9879 (15)2.052 (3)2.074 (2)2.057 (3)1.984 (2)2.0884 (10)2.0592 (17)
M-OW2.313 (2)2.067 (3)2.113 (3)2.116 (3)2.324 (3)2.1537 (15)2.0998 (14)
M-OW2.398 (3)2.067 (3)2.189 (3)2.116 (3)2.405 (4)2.1017 (15)2.0998 (14)
BVS(K1)1.030.891.020.911.041.190.85
BVS(K2)1.07-1.12-1.061.02-
BVS(M)2.032.102.062.152.081.942.17
Bond-valence parameters for K—O, Zn—O and Mg—O taken from Brown & Altermatt (1985); for Ni—O and Cu—O taken from Thorp (1993); for Co—O taken from Wood & Palenik (1998).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds