Download citation
Download citation
link to html
The succinate dianion in the title 1:2 zinc succinate–1,3-bis­(benzimidazol-2-yl)benzene adduct, [Zn(C4H4O4)(C20H14N4)2], chelates the Zn atom, which is datively bonded to two of the N-heterocycles in a tetra­hedral geometry. The Zn atom and the succinate dianion lie on a twofold rotation axis. The amino –NH group of one heterocycle forms a weak intra­molecular hydrogen bond to the carbonyl O atom; that of the second heterocycle engages in an inter­molecular N—H...N inter­action resulting in a linear chain structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704055X/bg3051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704055X/bg3051Isup2.hkl
Contains datablock I

CCDC reference: 655854

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.035
  • wR factor = 0.103
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for C21 - C22 .. 6.81 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C21
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 1.95 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The reaction between 1,3-bis(benzimidazol-2-ylmethyl)benzene and zinc terephthalate affords the expected 1:1 adduct as a methanol solvate. The compound adopts a layer structure owing to bridging by both the N-heterocycle and the terephthalate dianion (Meng et al., 2007). The succinate dianion is not rigid like the terephthalate dianion. It typically lies on a center-of-inversion in most metal succinates (CSD Version 5.28, May 2007) and functions as a bridging dianion; however, the succinate group chelates to the zinc atom in the zinc succinate adduct of this heterocycle. Both the cation and the dianion lie on a twofold rotation axis in the monomeric compound (Scheme I, Fig. 1).

Chelation by a succinate group has been documented in only three cases: the polymeric hexaaquatricobalt(III) (Forster et al., 2004) and monomeric tetraaquanickel(II) (Gupta & Devi, 1978) derivatives, and the salt, diaquabis(phenanthrolinato)manganese(II) bis(phenanthroline)succinatomanganate(II) succinate heptahydrate (Zheng, Lin & Sun, 2001). The title compound has the metal center connected to two N-heterocycles; expansion of the coordination number is precluded as the second tertiary N-donor site of both ligands is already engaged in hydrogen bonding interactions. This possibly forces the succinate group to bind in the uncommon chelating mode. The amino –NH group of one heterocycle in hydrogen-bonded to the carbonyl oxygen atom [3.158 (2) Å]; that of the second heterocycle engages in an intermolecular N–H···N interaction [2.839 (2) Å] to furnish a linear chain motif.

The zinc-oxygen bond distance is similar to that found in zinc succinate itself; the metal center in this compound shows tetrahedral coordination and the anion behaves as a bridging group to result in the formation of a polymeric network motif (Bowden et al., 2003; Zheng, Peters & von Schnering, 2001). The distance is, however, shorter than those found in other higher-than-four-coordinateamine adducts (Tao et al., 2001; Yin et al., 2002; Ying et al., 2003; Zeng et al., 2007; Zheng, 2004; Zheng et al., 2002; Zhou et al., 2005).

Related literature top

For the structure of the adduct the N-heterocycle with zinc terephthalate, see Meng et al. (2007). For the rare examples of chelation by a succinate group, see Forster et al. (2004); Gupta & Devi (1978); Zheng, Lin & Sun (2001). For the structure of zinc succinate, see Bowden et al. (2003); Zheng, Peters & von Schnering (2001). For higher-than-four-coordinate amine adducts of zinc succinate, see Tao et al. (2001); Yin et al. (2002); Ying et al. (2003); Zeng et al. (2007); Zheng (2004); Zheng et al. (2002); Zhou et al. (2005). For the synthesis of the N-heterocycle, see Chawla & Gill (1997).

Experimental top

The N-heterocycle was prepared according to a reported procedure (Chawla & Gill, 1997). Zinc nitrate hexahydrate (0.074 g, 0.25 mmol), succinic acid (0.0148 g, 0.125 mmol),1, 3-bis(benzimidazol-2-ylmethyl)benzene (0.039 g, 0.125 mmol), ethanol (2 ml) and water (15 ml) were placed in a 23 -ml, Teflon-lined, stainless-steel Parr bomb. (Neither sodium hydroxide nor postassium hydroxide was added.) The bomb was heated at 433 K for 5 days and cooled to room temperature at 5 K h-1. Brown block-shaped crystals picked out by hand (in 10% yield).

Refinement top

The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of 0.85 (1) Å; their temperature factors were freely refined. The carbon-bound H-atoms were generated geometrically (C–H 0.93 to 0.97 Å); they were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Structure description top

The reaction between 1,3-bis(benzimidazol-2-ylmethyl)benzene and zinc terephthalate affords the expected 1:1 adduct as a methanol solvate. The compound adopts a layer structure owing to bridging by both the N-heterocycle and the terephthalate dianion (Meng et al., 2007). The succinate dianion is not rigid like the terephthalate dianion. It typically lies on a center-of-inversion in most metal succinates (CSD Version 5.28, May 2007) and functions as a bridging dianion; however, the succinate group chelates to the zinc atom in the zinc succinate adduct of this heterocycle. Both the cation and the dianion lie on a twofold rotation axis in the monomeric compound (Scheme I, Fig. 1).

Chelation by a succinate group has been documented in only three cases: the polymeric hexaaquatricobalt(III) (Forster et al., 2004) and monomeric tetraaquanickel(II) (Gupta & Devi, 1978) derivatives, and the salt, diaquabis(phenanthrolinato)manganese(II) bis(phenanthroline)succinatomanganate(II) succinate heptahydrate (Zheng, Lin & Sun, 2001). The title compound has the metal center connected to two N-heterocycles; expansion of the coordination number is precluded as the second tertiary N-donor site of both ligands is already engaged in hydrogen bonding interactions. This possibly forces the succinate group to bind in the uncommon chelating mode. The amino –NH group of one heterocycle in hydrogen-bonded to the carbonyl oxygen atom [3.158 (2) Å]; that of the second heterocycle engages in an intermolecular N–H···N interaction [2.839 (2) Å] to furnish a linear chain motif.

The zinc-oxygen bond distance is similar to that found in zinc succinate itself; the metal center in this compound shows tetrahedral coordination and the anion behaves as a bridging group to result in the formation of a polymeric network motif (Bowden et al., 2003; Zheng, Peters & von Schnering, 2001). The distance is, however, shorter than those found in other higher-than-four-coordinateamine adducts (Tao et al., 2001; Yin et al., 2002; Ying et al., 2003; Zeng et al., 2007; Zheng, 2004; Zheng et al., 2002; Zhou et al., 2005).

For the structure of the adduct the N-heterocycle with zinc terephthalate, see Meng et al. (2007). For the rare examples of chelation by a succinate group, see Forster et al. (2004); Gupta & Devi (1978); Zheng, Lin & Sun (2001). For the structure of zinc succinate, see Bowden et al. (2003); Zheng, Peters & von Schnering (2001). For higher-than-four-coordinate amine adducts of zinc succinate, see Tao et al. (2001); Yin et al. (2002); Ying et al. (2003); Zeng et al. (2007); Zheng (2004); Zheng et al. (2002); Zhou et al. (2005). For the synthesis of the N-heterocycle, see Chawla & Gill (1997).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot depicting the coordination geometry of zinc; displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. [Symmery code (i): 1 – x, y, 3/2 – z.]
Bis[1,3-bis(1H-benzimidazol-2-yl)benzene-κN3](succinato-\k2O,O')zinc(II) top
Crystal data top
[Zn(C4H4O4)(C20H14N4)2]F(000) = 1656
Mr = 802.15Dx = 1.458 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4938 reflections
a = 21.453 (2) Åθ = 2.3–25.0°
b = 10.272 (1) ŵ = 0.73 mm1
c = 17.587 (2) ÅT = 291 K
β = 109.411 (1)°Block, brown
V = 3655.2 (6) Å30.46 × 0.34 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4186 independent reflections
Radiation source: fine-focus sealed tube3354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2727
Tmin = 0.687, Tmax = 0.856k = 1313
14308 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 1.7754P]
where P = (Fo2 + 2Fc2)/3
4186 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn(C4H4O4)(C20H14N4)2]V = 3655.2 (6) Å3
Mr = 802.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.453 (2) ŵ = 0.73 mm1
b = 10.272 (1) ÅT = 291 K
c = 17.587 (2) Å0.46 × 0.34 × 0.22 mm
β = 109.411 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4186 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3354 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.856Rint = 0.034
14308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.41 e Å3
4186 reflectionsΔρmin = 0.24 e Å3
266 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.19880 (3)0.75000.04623 (12)
O10.53016 (8)0.09147 (13)0.67838 (9)0.0592 (4)
O20.56800 (11)0.08025 (16)0.63523 (13)0.0907 (6)
N10.42681 (7)0.32303 (14)0.69164 (9)0.0425 (3)
N20.38107 (8)0.50277 (17)0.62655 (10)0.0507 (4)
H2n0.3757 (12)0.5670 (17)0.5949 (12)0.072 (8)*
N30.59125 (9)0.13643 (17)0.53998 (11)0.0522 (4)
H3n0.5727 (11)0.103 (2)0.5708 (13)0.074 (8)*
N40.63664 (8)0.28509 (16)0.48210 (10)0.0512 (4)
C10.36481 (9)0.33981 (19)0.70053 (11)0.0440 (4)
C20.33136 (10)0.2633 (2)0.74022 (13)0.0553 (5)
H20.35010.18820.76800.066*
C30.26909 (12)0.3049 (3)0.73619 (15)0.0675 (6)
H30.24540.25650.76200.081*
C40.24068 (11)0.4171 (3)0.69462 (15)0.0727 (7)
H40.19860.44150.69350.087*
C50.27305 (11)0.4924 (3)0.65541 (15)0.0651 (6)
H50.25390.56700.62740.078*
C60.33596 (10)0.4519 (2)0.65957 (12)0.0494 (4)
C70.43377 (9)0.42315 (17)0.64697 (11)0.0428 (4)
C80.49252 (9)0.44713 (18)0.62339 (11)0.0440 (4)
C90.51755 (9)0.34797 (18)0.58804 (11)0.0440 (4)
H90.49680.26720.57870.053*
C100.57367 (9)0.36922 (19)0.56657 (11)0.0453 (4)
C110.60443 (10)0.4902 (2)0.58136 (13)0.0530 (5)
H110.64230.50460.56800.064*
C120.57930 (11)0.5891 (2)0.61573 (13)0.0578 (5)
H120.60010.66980.62510.069*
C130.52322 (10)0.56822 (19)0.63630 (12)0.0517 (5)
H130.50600.63530.65880.062*
C140.60041 (9)0.2648 (2)0.52894 (11)0.0464 (4)
C150.62476 (10)0.0671 (2)0.49841 (12)0.0523 (5)
C160.63407 (12)0.0656 (2)0.49111 (15)0.0683 (6)
H160.61470.12730.51480.082*
C170.67363 (13)0.1007 (3)0.44680 (16)0.0766 (7)
H170.68120.18860.44050.092*
C180.70266 (12)0.0080 (3)0.41107 (16)0.0782 (8)
H180.72900.03580.38160.094*
C190.69331 (11)0.1232 (3)0.41826 (15)0.0682 (6)
H190.71270.18440.39420.082*
C200.65334 (10)0.1610 (2)0.46324 (12)0.0520 (5)
C210.54524 (11)0.02897 (19)0.68279 (14)0.0541 (5)
C220.53548 (11)0.1074 (2)0.75113 (15)0.0629 (6)
H22A0.56320.07150.80220.075*
H22B0.54950.19650.74790.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0571 (2)0.03012 (16)0.0570 (2)0.0000.02633 (15)0.000
O10.0847 (10)0.0345 (7)0.0713 (10)0.0041 (7)0.0431 (8)0.0002 (6)
O20.1373 (17)0.0521 (9)0.1215 (16)0.0084 (10)0.0953 (15)0.0045 (10)
N10.0465 (8)0.0398 (8)0.0440 (8)0.0014 (6)0.0189 (7)0.0029 (6)
N20.0524 (9)0.0507 (10)0.0522 (10)0.0089 (8)0.0216 (8)0.0085 (8)
N30.0616 (10)0.0489 (10)0.0520 (10)0.0035 (8)0.0267 (8)0.0015 (8)
N40.0473 (9)0.0584 (10)0.0526 (10)0.0051 (7)0.0229 (7)0.0056 (8)
C10.0455 (10)0.0478 (10)0.0410 (10)0.0036 (8)0.0176 (8)0.0075 (8)
C20.0577 (12)0.0611 (12)0.0519 (12)0.0071 (10)0.0247 (10)0.0024 (10)
C30.0583 (13)0.0902 (18)0.0639 (14)0.0106 (12)0.0335 (11)0.0048 (12)
C40.0502 (12)0.101 (2)0.0736 (16)0.0080 (13)0.0293 (11)0.0012 (14)
C50.0545 (12)0.0783 (16)0.0647 (14)0.0146 (11)0.0227 (11)0.0048 (12)
C60.0501 (10)0.0562 (11)0.0440 (11)0.0029 (9)0.0183 (8)0.0036 (9)
C70.0469 (10)0.0404 (9)0.0427 (10)0.0007 (7)0.0171 (8)0.0021 (7)
C80.0476 (10)0.0435 (9)0.0422 (10)0.0011 (8)0.0165 (8)0.0040 (8)
C90.0480 (10)0.0406 (9)0.0457 (10)0.0011 (8)0.0187 (8)0.0020 (8)
C100.0460 (10)0.0477 (10)0.0435 (10)0.0017 (8)0.0168 (8)0.0050 (8)
C110.0501 (11)0.0536 (11)0.0595 (13)0.0060 (9)0.0240 (9)0.0037 (9)
C120.0638 (13)0.0445 (11)0.0680 (14)0.0121 (9)0.0257 (11)0.0024 (10)
C130.0600 (12)0.0428 (10)0.0554 (12)0.0005 (9)0.0234 (9)0.0026 (9)
C140.0460 (10)0.0497 (10)0.0445 (10)0.0013 (8)0.0165 (8)0.0042 (8)
C150.0547 (11)0.0551 (12)0.0445 (11)0.0024 (9)0.0132 (9)0.0076 (9)
C160.0784 (15)0.0582 (13)0.0654 (15)0.0043 (11)0.0200 (12)0.0161 (11)
C170.0726 (16)0.0720 (16)0.0787 (17)0.0062 (13)0.0165 (13)0.0310 (14)
C180.0580 (14)0.101 (2)0.0755 (17)0.0090 (13)0.0218 (12)0.0330 (15)
C190.0555 (13)0.0870 (17)0.0666 (15)0.0038 (12)0.0261 (11)0.0113 (13)
C200.0434 (10)0.0651 (12)0.0458 (11)0.0061 (9)0.0128 (8)0.0026 (9)
C210.0615 (12)0.0404 (10)0.0692 (14)0.0018 (9)0.0334 (11)0.0061 (9)
C220.0720 (14)0.0428 (11)0.0751 (15)0.0132 (10)0.0261 (12)0.0016 (10)
Geometric parameters (Å, º) top
Zn1—O1i1.940 (1)C7—C81.473 (2)
Zn1—O11.940 (1)C8—C91.391 (3)
Zn1—N1i2.019 (2)C8—C131.390 (3)
Zn1—N12.019 (2)C9—C101.394 (3)
O1—C211.275 (2)C9—H90.9300
O2—C211.219 (2)C10—C111.390 (3)
N1—C71.332 (2)C10—C141.473 (3)
N1—C11.401 (2)C11—C121.380 (3)
N2—C71.344 (2)C11—H110.9300
N2—C61.386 (3)C12—C131.383 (3)
N2—H2N0.846 (10)C12—H120.9300
N3—C141.357 (3)C13—H130.9300
N3—C151.381 (3)C15—C161.390 (3)
N3—H3N0.846 (10)C15—C201.393 (3)
N4—C141.324 (2)C16—C171.377 (3)
N4—C201.394 (3)C16—H160.9300
C1—C61.390 (3)C17—C181.396 (4)
C1—C21.397 (3)C17—H170.9300
C2—C31.382 (3)C18—C191.375 (4)
C2—H20.9300C18—H180.9300
C3—C41.392 (4)C19—C201.401 (3)
C3—H30.9300C19—H190.9300
C4—C51.369 (3)C21—C221.518 (3)
C4—H40.9300C22—C22i1.509 (4)
C5—C61.391 (3)C22—H22A0.9700
C5—H50.9300C22—H22B0.9700
O1i—Zn1—O1110.7 (1)C10—C9—H9119.9
O1—Zn1—N1113.6 (1)C11—C10—C9119.24 (18)
O1—Zn1—N1i108.6 (1)C11—C10—C14120.22 (17)
O1i—Zn1—N1108.6 (1)C9—C10—C14120.54 (17)
O1i—Zn1—N1i113.6 (1)C12—C11—C10120.65 (18)
N1i—Zn1—N1101.6 (1)C12—C11—H11119.7
C21—O1—Zn1130.16 (14)C10—C11—H11119.7
C7—N1—C1105.51 (15)C13—C12—C11120.04 (19)
C7—N1—Zn1124.55 (12)C13—C12—H12120.0
C1—N1—Zn1128.90 (12)C11—C12—H12120.0
C7—N2—C6107.51 (16)C12—C13—C8120.13 (18)
C7—N2—H2n124.7 (17)C12—C13—H13119.9
C6—N2—H2n127.5 (17)C8—C13—H13119.9
C14—N3—C15107.46 (17)N4—C14—N3112.65 (18)
C14—N3—H3n127.5 (18)N4—C14—C10124.18 (18)
C15—N3—H3n124.7 (18)N3—C14—C10123.16 (17)
C14—N4—C20104.75 (17)N3—C15—C16132.1 (2)
C6—C1—N1108.65 (16)N3—C15—C20105.13 (17)
C6—C1—C2120.71 (18)C16—C15—C20122.7 (2)
N1—C1—C2130.62 (18)C15—C16—C17116.3 (2)
C3—C2—C1116.7 (2)C15—C16—H16121.8
C3—C2—H2121.7C17—C16—H16121.8
C1—C2—H2121.7C16—C17—C18121.8 (2)
C2—C3—C4122.0 (2)C16—C17—H17119.1
C2—C3—H3119.0C18—C17—H17119.1
C4—C3—H3119.0C19—C18—C17121.8 (2)
C5—C4—C3121.7 (2)C19—C18—H18119.1
C5—C4—H4119.1C17—C18—H18119.1
C3—C4—H4119.1C18—C19—C20117.3 (3)
C4—C5—C6116.8 (2)C18—C19—H19121.3
C4—C5—H5121.6C20—C19—H19121.3
C6—C5—H5121.6N4—C20—C19129.9 (2)
N2—C6—C1106.09 (16)N4—C20—C15109.99 (17)
N2—C6—C5131.7 (2)C19—C20—C15120.1 (2)
C1—C6—C5122.2 (2)O2—C21—O1121.9 (2)
N1—C7—N2112.23 (16)O2—C21—C22120.37 (19)
N1—C7—C8124.70 (16)O1—C21—C22117.68 (17)
N2—C7—C8123.06 (17)C21—C22—C22i112.5 (2)
C9—C8—C13119.72 (17)C21—C22—H22A109.1
C9—C8—C7119.80 (16)C22i—C22—H22A109.1
C13—C8—C7120.47 (17)C21—C22—H22B109.1
C8—C9—C10120.20 (17)C22i—C22—H22B109.1
C8—C9—H9119.9H22A—C22—H22B107.8
O1i—Zn1—O1—C2116.11 (17)C7—C8—C9—C10179.10 (17)
N1i—Zn1—O1—C21109.22 (19)C8—C9—C10—C110.4 (3)
N1—Zn1—O1—C21138.57 (19)C8—C9—C10—C14179.86 (17)
O1i—Zn1—N1—C7169.60 (14)C9—C10—C11—C121.0 (3)
O1—Zn1—N1—C766.76 (15)C14—C10—C11—C12179.24 (19)
N1i—Zn1—N1—C749.62 (13)C10—C11—C12—C130.4 (3)
O1i—Zn1—N1—C12.97 (17)C11—C12—C13—C80.8 (3)
O1—Zn1—N1—C1126.61 (15)C9—C8—C13—C121.5 (3)
N1i—Zn1—N1—C1117.01 (16)C7—C8—C13—C12178.48 (19)
C7—N1—C1—C60.3 (2)C20—N4—C14—N31.5 (2)
Zn1—N1—C1—C6168.86 (13)C20—N4—C14—C10177.43 (17)
C7—N1—C1—C2178.8 (2)C15—N3—C14—N41.0 (2)
Zn1—N1—C1—C212.6 (3)C15—N3—C14—C10177.96 (17)
C6—C1—C2—C30.1 (3)C11—C10—C14—N425.1 (3)
N1—C1—C2—C3178.3 (2)C9—C10—C14—N4155.19 (19)
C1—C2—C3—C40.1 (3)C11—C10—C14—N3153.8 (2)
C2—C3—C4—C50.0 (4)C9—C10—C14—N326.0 (3)
C3—C4—C5—C60.4 (4)C14—N3—C15—C16177.5 (2)
C7—N2—C6—C10.4 (2)C14—N3—C15—C200.0 (2)
C7—N2—C6—C5177.9 (2)N3—C15—C16—C17177.0 (2)
N1—C1—C6—N20.4 (2)C20—C15—C16—C170.1 (3)
C2—C1—C6—N2179.12 (18)C15—C16—C17—C180.1 (4)
N1—C1—C6—C5178.12 (19)C16—C17—C18—C190.0 (4)
C2—C1—C6—C50.6 (3)C17—C18—C19—C200.1 (4)
C4—C5—C6—N2178.8 (2)C14—N4—C20—C19177.1 (2)
C4—C5—C6—C10.7 (3)C14—N4—C20—C151.5 (2)
C1—N1—C7—N20.0 (2)C18—C19—C20—N4178.3 (2)
Zn1—N1—C7—N2169.24 (13)C18—C19—C20—C150.1 (3)
C1—N1—C7—C8178.83 (17)N3—C15—C20—N40.9 (2)
Zn1—N1—C7—C89.6 (3)C16—C15—C20—N4178.69 (19)
C6—N2—C7—N10.3 (2)N3—C15—C20—C19177.84 (19)
C6—N2—C7—C8179.10 (17)C16—C15—C20—C190.0 (3)
N1—C7—C8—C951.0 (3)Zn1—O1—C21—O2174.73 (18)
N2—C7—C8—C9130.3 (2)Zn1—O1—C21—C223.8 (3)
N1—C7—C8—C13129.0 (2)O2—C21—C22—C22i121.7 (2)
N2—C7—C8—C1349.7 (3)O1—C21—C22—C22i59.7 (3)
C13—C8—C9—C100.8 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N4ii0.85 (1)1.99 (1)2.839 (2)178 (2)
N3—H3n···O10.85 (1)2.36 (1)3.158 (2)158 (2)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C4H4O4)(C20H14N4)2]
Mr802.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)21.453 (2), 10.272 (1), 17.587 (2)
β (°) 109.411 (1)
V3)3655.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.46 × 0.34 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.687, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
14308, 4186, 3354
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.02
No. of reflections4186
No. of parameters266
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
Zn1—O11.940 (1)Zn1—N12.019 (2)
O1i—Zn1—O1110.7 (1)O1i—Zn1—N1108.6 (1)
O1—Zn1—N1113.6 (1)O1i—Zn1—N1i113.6 (1)
O1—Zn1—N1i108.6 (1)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N4ii0.85 (1)1.99 (1)2.839 (2)178 (2)
N3—H3n···O10.85 (1)2.36 (1)3.158 (2)158 (2)
Symmetry code: (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds