The title compound, 2,2′-(2,4,8,10-tetrathiaspiro[5.5]undecane-3,9-diylidene)bis(propanedinitrile), C
13H
8N
4S
4, has been designed and synthesized for use as a potential new organic molecular electronic material. The spiro-annulated structure has twofold symmetry and is formed by two equal push–pull ethylene units, with the cycloalkylthio groups as electron donors and the cyano groups as electron acceptors. The intermolecular S

N non-bonded separation within a layer in the lattice is 3.296 (6) Å, indicating a strong intermolecular interaction between the cyano groups and the S atoms, while the S atoms in two neighbouring molecules have a shortest S

S contact of 3.449 (3) Å. In addition, attractive C—H

N and C—H

S interactions bridge adjacent molecules either within a layer or between layers. In short, these four types of intermolecular interactions combine to form an extended three-dimensional network in the lattice, resulting in a highly ordered array of molecular packing.
Supporting information
CCDC reference: 163936
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN ((Molecular Structure Corporation, 1985); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97.
2,2'-(2,4,8,10-tetrathiaspiro[5.5]undecane-3,9-diylidene)bis(propanedinitrile)
top
Crystal data top
C13H8N4S4 | F(000) = 712 |
Mr = 348.47 | Dx = 1.564 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.596 (8) Å | Cell parameters from 20 reflections |
b = 7.157 (2) Å | θ = 6.9–12.3° |
c = 16.498 (3) Å | µ = 0.64 mm−1 |
β = 95.53 (3)° | T = 293 K |
V = 1480.4 (11) Å3 | Prism, yellow |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Data collection top
Rigaku AFC-7R diffractometer | 872 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed X-ray tube | Rint = 0.039 |
Graphite monochromator | θmax = 25.0°, θmin = 2.5° |
ω/2θ scans | h = 0→14 |
Absorption correction: empirical (using intensity measurements) (North et al., 1968) | k = 0→8 |
Tmin = 0.832, Tmax = 0.883 | l = −19→19 |
1370 measured reflections | 3 standard reflections every 200 reflections |
1307 independent reflections | intensity decay: −1.2% |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.057 | w = 1/[σ2(Fo2) + (0.0659P)2 + 6.8039P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.177 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.67 e Å−3 |
1307 reflections | Δρmin = −0.35 e Å−3 |
96 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.77888 (11) | 0.0962 (2) | 0.70949 (8) | 0.0531 (5) | |
S2 | 0.93102 (13) | 0.0539 (3) | 0.58230 (10) | 0.0673 (6) | |
N1 | 0.5300 (5) | 0.0508 (9) | 0.5951 (3) | 0.0743 (16) | |
N2 | 0.7516 (5) | −0.0650 (8) | 0.4057 (3) | 0.0799 (17) | |
C1 | 0.9029 (4) | 0.2102 (8) | 0.7465 (4) | 0.0536 (14) | |
C2 | 1.0000 | 0.0837 (11) | 0.7500 | 0.0514 (19) | |
C3 | 0.9953 (5) | −0.0451 (8) | 0.6751 (4) | 0.0632 (17) | |
C4 | 0.8015 (5) | 0.0586 (7) | 0.6087 (3) | 0.0504 (14) | |
C5 | 0.7178 (5) | 0.0312 (7) | 0.5510 (3) | 0.0512 (13) | |
C6 | 0.6118 (5) | 0.0449 (9) | 0.5729 (3) | 0.0560 (15) | |
C7 | 0.7357 (5) | −0.0215 (8) | 0.4689 (4) | 0.0574 (15) | |
H1A | 0.9143 | 0.3156 | 0.7115 | 0.080* | |
H1B | 0.8961 | 0.2586 | 0.8007 | 0.080* | |
H3A | 0.9578 | −0.1585 | 0.6873 | 0.095* | |
H3B | 1.0675 | −0.0799 | 0.6658 | 0.095* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0508 (8) | 0.0691 (10) | 0.0409 (7) | −0.0038 (7) | 0.0118 (6) | −0.0072 (7) |
S2 | 0.0681 (10) | 0.0816 (12) | 0.0565 (10) | −0.0064 (9) | 0.0279 (8) | −0.0128 (8) |
N1 | 0.069 (4) | 0.090 (4) | 0.063 (3) | −0.001 (3) | 0.002 (3) | −0.018 (3) |
N2 | 0.106 (5) | 0.084 (4) | 0.052 (3) | −0.001 (3) | 0.021 (3) | −0.005 (3) |
C1 | 0.056 (3) | 0.052 (3) | 0.053 (3) | −0.002 (3) | 0.006 (3) | −0.005 (3) |
C2 | 0.050 (4) | 0.049 (5) | 0.056 (5) | 0.000 | 0.014 (4) | 0.000 |
C3 | 0.064 (4) | 0.052 (4) | 0.075 (4) | 0.003 (3) | 0.018 (3) | −0.019 (3) |
C4 | 0.063 (3) | 0.046 (3) | 0.044 (3) | −0.002 (3) | 0.019 (3) | −0.002 (2) |
C5 | 0.067 (4) | 0.045 (3) | 0.042 (3) | 0.001 (3) | 0.006 (3) | 0.003 (3) |
C6 | 0.068 (4) | 0.060 (4) | 0.038 (3) | 0.004 (3) | −0.005 (3) | −0.008 (3) |
C7 | 0.080 (4) | 0.051 (3) | 0.042 (3) | −0.004 (3) | 0.011 (3) | −0.001 (3) |
Geometric parameters (Å, º) top
S1—C4 | 1.734 (5) | C2—C1i | 1.518 (7) |
S1—C1 | 1.815 (6) | C2—C3 | 1.538 (7) |
S2—C4 | 1.729 (6) | C2—C3i | 1.538 (7) |
S2—C3 | 1.807 (7) | C3—H3A | 0.9700 |
N1—C6 | 1.127 (7) | C3—H3B | 0.9700 |
N2—C7 | 1.124 (7) | C4—C5 | 1.365 (8) |
C1—C2 | 1.518 (7) | C5—C6 | 1.419 (8) |
C1—H1A | 0.9700 | C5—C7 | 1.445 (8) |
C1—H1B | 0.9700 | | |
| | | |
C4—S1—C1 | 100.2 (3) | C2—C3—S2 | 115.2 (4) |
C4—S2—C3 | 98.6 (3) | C2—C3—H3A | 108.5 |
C2—C1—S1 | 114.1 (4) | S2—C3—H3A | 108.5 |
C2—C1—H1A | 108.7 | C2—C3—H3B | 108.5 |
S1—C1—H1A | 108.7 | S2—C3—H3B | 108.5 |
C2—C1—H1B | 108.7 | H3A—C3—H3B | 107.5 |
S1—C1—H1B | 108.7 | C5—C4—S2 | 120.4 (4) |
H1A—C1—H1B | 107.6 | C5—C4—S1 | 120.2 (4) |
C1i—C2—C1 | 106.8 (7) | S2—C4—S1 | 119.4 (3) |
C1i—C2—C3 | 110.9 (3) | C4—C5—C6 | 119.7 (5) |
C1—C2—C3 | 111.0 (3) | C4—C5—C7 | 120.7 (5) |
C1i—C2—C3i | 111.0 (3) | C6—C5—C7 | 119.5 (5) |
C1—C2—C3i | 110.9 (3) | N1—C6—C5 | 175.4 (6) |
C3—C2—C3i | 106.3 (7) | N2—C7—C5 | 178.4 (7) |
| | | |
C4—S1—C1—C2 | −68.1 (4) | C1—S1—C4—C5 | −158.7 (5) |
S1—C1—C2—C1i | 161.1 (5) | C1—S1—C4—S2 | 21.9 (4) |
S1—C1—C2—C3 | 40.1 (6) | S2—C4—C5—C6 | −176.8 (4) |
S1—C1—C2—C3i | −77.9 (5) | S1—C4—C5—C6 | 3.8 (7) |
C1i—C2—C3—S2 | −85.9 (5) | S2—C4—C5—C7 | 6.6 (8) |
C1—C2—C3—S2 | 32.6 (6) | S1—C4—C5—C7 | −172.8 (4) |
C3i—C2—C3—S2 | 153.3 (5) | C4—C5—C6—N1 | −35 (9) |
C4—S2—C3—C2 | −69.5 (4) | C7—C5—C6—N1 | 141 (8) |
C3—S2—C4—C5 | −146.6 (5) | C4—C5—C7—N2 | 38 (25) |
C3—S2—C4—S1 | 32.8 (4) | C6—C5—C7—N2 | −139 (25) |
Symmetry code: (i) −x+2, y, −z+3/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···N2ii | 0.97 | 2.86 | 3.659 (9) | 140 |
C1—H1B···N2iii | 0.97 | 2.97 | 3.546 (8) | 119 |
C1—H1B···N1iv | 0.97 | 2.81 | 3.613 (8) | 141 |
C3—H3A···N1v | 0.97 | 2.78 | 3.227 (8) | 109 |
C3—H3B···N1v | 0.97 | 2.91 | 3.227 (8) | 100 |
C1—H1B···S1iv | 0.97 | 3.26 | 3.704 (6) | 110 |
C1—H1A···S1iv | 0.97 | 3.50 | 3.704 (6) | 94 |
Symmetry codes: (ii) −x+2, −y, −z+1; (iii) x, −y, z+1/2; (iv) −x+3/2, y+1/2, −z+3/2; (v) x+1/2, y−1/2, z. |