Download citation
Download citation
link to html
The title compound, [Mn(CF3COO)2(H2O)4], crystallizes in the monoclinic space group C2/c. At about 215 K, it undergoes a reversible phase transition, which leads to crystal twinning. The crystal structure of the high-temperature phase was determined at 220 K. The Mn2+ ion lies on a twofold axis and is octahedrally coordinated by two monodentate tri­fluoro­acetate ligands in apical positions and by four equatorial aqua ligands, two of which lie on the twofold axis. Hydro­gen-bonding interactions connect the complex mol­ecules, generating a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100011215/bk1539sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011215/bk1539Isup2.hkl
Contains datablock I

CCDC reference: 153873

Computing details top

Data collection: KM4CCD Software (Kuma Diffraction, 1995–1999); cell refinement: KM4CCD Software (Kuma Diffraction, 1995–1999); data reduction: KM4CCD Software (Kuma Diffraction, 1995–1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1990).

trans-tetraaquabis(trifluoroacetato)manganese(II) top
Crystal data top
[Mn(C2F3O2)2(H2O)4]F(000) = 700
Mr = 353.04Dx = 1.888 Mg m3
Dm = 1.875 Mg m3
Dm measured by flotation in dibromoethane/cyclohexane
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.383 (5) ÅCell parameters from 1518 reflections
b = 13.038 (4) Åθ = 4–27°
c = 8.372 (3) ŵ = 1.17 mm1
β = 121.76 (4)°T = 220 K
V = 1242.1 (7) Å3Sphere, pale-pink
Z = 40.1 mm (radius)
Data collection top
Kuma KM4CCD κ-geometry
diffractometer
1331 independent reflections
Radiation source: fine-focus sealed tube1144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27°, θmin = 4°
Absorption correction: for a sphere
International Tables for Crystallography, 1992, Vol. C
h = 1616
Tmin = 0.840, Tmax = 0.841k = 1616
3808 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 1.11Calculated w = 1/[σ2(Fo2) + (0.0497P)2 + 1.7678P]
where P = (Fo2 + 2Fc2)/3
1331 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Experimental. The data collection strategy nominally covered a full Ewald sphere by a combination of four set of exposures. Each set had a different φ angle for the crystal and each exposure of 40 s covered 0.75 ° in ω. The crystal–to–detector distance was 65 mm and the detector swing angle was 30 °. There were 612 frames. Crystal decay was monitored by repeating the initial frames at the end of data collection and analyzing the duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.50000.39739 (4)0.25000.0374 (2)
O10.35033 (16)0.40385 (14)0.2888 (3)0.0424 (5)
O20.28522 (19)0.24231 (16)0.2210 (3)0.0553 (6)
O30.61625 (17)0.40168 (16)0.5573 (3)0.0406 (5)
O40.50000.5628 (2)0.25000.0452 (7)
O50.50000.2336 (3)0.25000.0741 (13)
C10.2799 (2)0.3321 (2)0.2585 (4)0.0414 (6)
C20.1738 (3)0.3653 (3)0.2714 (6)0.0605 (9)
F10.1033 (4)0.4225 (5)0.1326 (8)0.150 (2)0.876 (6)
F20.2068 (3)0.4170 (4)0.4259 (6)0.1206 (19)0.876 (6)
F30.1138 (3)0.2873 (3)0.2753 (7)0.1189 (19)0.876 (6)
F40.1614 (16)0.4643 (13)0.277 (3)0.058 (5)*0.124 (6)
F50.176 (2)0.339 (2)0.411 (4)0.096 (8)*0.124 (6)
F60.0758 (16)0.3412 (17)0.130 (3)0.062 (6)*0.124 (6)
H30.647 (3)0.460 (3)0.608 (5)0.054 (10)*
H310.667 (4)0.357 (3)0.618 (6)0.077 (13)*
H40.468 (3)0.595 (2)0.295 (5)0.055 (10)*
H50.445 (4)0.212 (4)0.236 (7)0.103 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0349 (3)0.0312 (3)0.0554 (4)0.0000.0301 (3)0.000
O10.0365 (10)0.0403 (10)0.0609 (12)0.0058 (7)0.0329 (9)0.0050 (8)
O20.0459 (12)0.0477 (13)0.0830 (15)0.0131 (9)0.0413 (12)0.0144 (11)
O30.0364 (10)0.0356 (11)0.0522 (11)0.0060 (8)0.0250 (9)0.0027 (9)
O40.0568 (18)0.0308 (14)0.0683 (19)0.0000.0468 (16)0.000
O50.070 (3)0.0344 (17)0.152 (4)0.0000.082 (3)0.000
C10.0344 (13)0.0479 (16)0.0459 (15)0.0051 (11)0.0238 (12)0.0035 (12)
C20.0439 (17)0.068 (2)0.081 (2)0.0141 (16)0.0410 (17)0.0196 (19)
F10.092 (3)0.197 (5)0.182 (5)0.089 (3)0.087 (3)0.085 (4)
F20.093 (2)0.161 (4)0.160 (4)0.051 (2)0.102 (3)0.097 (3)
F30.103 (2)0.088 (2)0.241 (5)0.047 (2)0.142 (3)0.057 (3)
Geometric parameters (Å, º) top
Mn—O52.136 (4)O4—H40.82 (3)
Mn—O42.157 (3)O5—H50.74 (5)
Mn—O1i2.193 (2)C1—C21.541 (4)
Mn—O12.193 (2)C2—F51.21 (2)
Mn—O32.198 (2)C2—F61.261 (18)
Mn—O3i2.198 (2)C2—F11.281 (6)
O1—C11.255 (3)C2—F41.306 (18)
O2—C11.224 (3)C2—F31.308 (4)
O3—H30.86 (4)C2—F21.312 (5)
O3—H310.83 (4)
O5—Mn—O4180.0F1—C2—F3107.8 (4)
O5—Mn—O1i92.20 (5)F4—C2—F3132.5 (8)
O4—Mn—O1i87.80 (5)F5—C2—F250.6 (14)
O5—Mn—O192.20 (5)F6—C2—F2134.4 (9)
O4—Mn—O187.80 (5)F1—C2—F2107.5 (5)
O1i—Mn—O1175.60 (10)F4—C2—F255.9 (8)
O5—Mn—O391.46 (6)F3—C2—F2105.4 (4)
O4—Mn—O388.54 (6)F5—C2—C1115.8 (12)
O1i—Mn—O391.92 (9)F6—C2—C1113.9 (9)
O1—Mn—O387.97 (9)F1—C2—C1111.5 (3)
O5—Mn—O3i91.46 (6)F4—C2—C1114.9 (8)
O4—Mn—O3i88.54 (6)F3—C2—C1112.6 (3)
O1i—Mn—O3i87.97 (9)F2—C2—C1111.7 (3)
O1—Mn—O3i91.92 (9)F6—F1—F4119.8 (14)
O3—Mn—O3i177.08 (12)F6—F1—C263.0 (10)
C1—O1—Mn126.04 (18)F4—F1—C264.1 (9)
Mn—O3—H3118 (2)F5—F2—F4113.8 (16)
Mn—O3—H31123 (3)F5—F2—C259.7 (13)
H3—O3—H31107 (4)F4—F2—C261.8 (9)
Mn—O4—H4121 (2)F5—F3—F6109.3 (16)
Mn—O5—H5112 (4)F5—F3—C257.3 (13)
O2—C1—O1128.8 (3)F6—F3—C258.8 (9)
O2—C1—C2117.8 (3)F1—F4—F2121.2 (15)
O1—C1—C2113.4 (3)F1—F4—C262.0 (9)
F5—C2—F6108.9 (17)F2—F4—C262.3 (9)
F5—C2—F1132.5 (12)F2—F5—F3132 (2)
F6—C2—F152.1 (10)F2—F5—C269.7 (16)
F5—C2—F4100.7 (15)F3—F5—C265.8 (14)
F6—C2—F4101.0 (12)F1—F6—F3123.1 (15)
F1—C2—F453.9 (8)F1—F6—C264.9 (10)
F5—C2—F356.9 (14)F3—F6—C262.5 (9)
F6—C2—F358.7 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.86 (4)1.97 (4)2.772 (3)155 (3)
O3—H31···O2iii0.83 (4)1.87 (4)2.693 (3)170 (4)
O4—H4···O3ii0.82 (3)2.07 (3)2.807 (2)150 (3)
O5—H5···O20.74 (5)2.11 (5)2.757 (2)146 (5)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds