Download citation
Download citation
link to html
A combinatorial chemistry approach has been used to synthesize an array of Schiff bases, five of which, namely N-[(E,2E)-3-(4-methoxy­phenyl)-2-propenyl­idene]-3-nitro­aniline, C16H14N2O3, (1a), N-[(E,2E)-3-(4-methoxy­phenyl)-2-propenyl­idene]-4-nitro­aniline, C16H14N2O3, (2a), N-{(E,2E)-3-[4-(di­methyl­amino)­phenyl]-2-propenyl­idene}-3-nitro­aniline, C17H17N3O2, (1b), N-{(E,2E)-3-[4-(di­methyl­amino)­phenyl]-2-propenyl­idene}-4-nitro­aniline, C17H17N3O2, (2b), and N-{(E,2E)-3-[4-(di­methyl­amino)­phenyl]-2-propenyl­idene}-2-methyl-4-nitro­aniline, C18H19N3O2, (3b), have been structurally characterized. A stack structure is observed for (1a) and (1b) in the crystal phase. Experimental and calculated molecular structures are discussed for these compounds which belong to a chemical class having potential applications as non-linear optical materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100002845/bm1393sup1.cif
Contains datablocks 1a, 2a, 1b, 2b, 3b, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002845/bm13931asup2.hkl
Contains datablock 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002845/bm13932asup3.hkl
Contains datablock 2a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002845/bm13931bsup4.hkl
Contains datablock 1b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002845/bm13932bsup5.hkl
Contains datablock 2b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002845/bm13933bsup6.hkl
Contains datablock 3b

CCDC references: 150328; 150329; 150330; 150331; 150332

Comment top

Combinatorial chemistry is a new field of synthetic chemistry which leads to fast synthesis of a wide variety (libraries) of products for particular applications. The recent success of combinatorial methods in the field of drug discovery (Tarby et al., 1996) has triggered exploration in the field of materials such as inorganic luminescent materials and catalysts (Danielson et al., 1997; Shimizu et al., 1997).

There are two approaches in combinatorial synthesis which lead to either diverse or focused combinatorial libraries. Recently we started an investigation of the combinatorial synthesis procedure for the rapid formation of large libraries of polar compounds (a focused library) which can be used for preparation of nonlinear optical (NLO) materials (Zyss et al., 1994). We performed quantum chemical evaluations of the first order molecular hyperpolarizabilities β of the compounds in question before undertaking the synthesis of a small combinatorial library. Since the crystal structure is a very important characteristic of such materials, we performed X-ray analyses of the products in all cases where we were able to obtain suitable single crystals. To our knowledge, this study represents the first systematic application of chemical crystallography to the investigation of an array of combinatorial products. For the targetted library, we used amines (1–4) and aldehydes (a, b) as the building blocks and we assumed that we would be able to synthesize eight polar Schiff bases by condensation reactions (Scheme 1). \sch

Because of the structural characteristics of the Schiff-base products (i.e. electron donor and acceptor groups connected to a π-conjugated chain) they will have potential as NLO or electrooptical materials. Quantum chemical calculations of average molecular hyperpolarizabilities (β) support this conclusion. One can see from Table 1 that the β values increase in the series (1) (4) and (a) (b), in agreement with the activity of donor and acceptor groups in these compounds.

In each case the colour of the product in comparison to that of the starting material indicated that the expected chemical reaction had taken place. In all cases we also observed precipitation of crystalline products. We were able to obtain suitable single crystals for all products except for (3a), where the crystals were too small. The results of structure investigations indicated that the conditions we used for the condensation reactions were not favorable for obtaining the Schiff base for adducts (4a) and (4 b). In these two cases a complex consisting of starting materials (a) and (4) and one of the starting materials (b) were found in the precipitates of the reactions in question. The structures of these two compounds are described in the following paper (Nesterov et al., 2000).

Bond-length alternation is observed in the central π-conjugated chain of all five molecules (1a), (2a), (1 b), (2 b) and (3 b) (see Figs. 1–5, respectively, and Table 2). Similar alternations were previously found in Schiff bases with different substitients (Cl, Br or Me) on one of the phenyl rings (Karaev & Furmanova, 1984; Childs et al., 1989; Ercan et al., 1996). The C1—N1, N1C7 and C8—C9 bond lengths in the chains are similar both in the five molecules studied here (Table 2) and in four analogous molecules (Karaev & Furmanova, 1984; Childs et al., 1989; Ercan et al., 1996). In contrast the C7—C8 and C9—C10 distances in (1 b) and (3 b) are considerably shorter than those observed in all other compounds. It should be noted that phenyl rings with a dimethylamino substituent, as seen in (1 b) and (3 b), exhibit noticeable quinoid character demonstrated by the shortening of the C11—C12 and C14—C15 bond lengths (Table 2) compared to the standard CC distance of 1.398 Å (Allen et al., 1987). The shortening of these bonds is less pronounced in (1a), (2a) and (2 b). Other phenyl-ring bond lengths lie close to that of the standard CC bond. Quinoid character of the phenyl ring is actually rather typical for rings bearing electron-donor and acceptor substituents in para-positions (Domenicano, 1992), and this feature is considered important in potential NLO compounds (Zyss & Chemla, 1987).

Molecules of (2a), (2 b) and (3 b) (Figs. 2, 4 and 5, respectively) are non-planar due to rotation of both phenyl rings with respect to the central planar molecular fragment, but the rotation of the nitrophenyl ring is consistently greater than that of the other aromatic ring: AM1 calculations (Dewar et al., 1985) reproduce the features of the non-planarity in these molecules very well (Table 2). A parallel observation was made for related compounds where rotations of the aniline rings were about 40° (Karaev & Furmanova, 1984; Childs et al., 1989; Ercan et al., 1996).

In contrast, molecules of (1 b) (Fig. 3) are almost planar in the solid state (Table 2). Since AM1 calculations predict non-planarity of this molecule (Table 2) the influence of crystal-packing forces might be invoked to explain the discrepancy between experimental and theoretical results. Indeed, molecules are stacked along [100] with a separation of only 3.31 (1) Å between the least squares mean planes of neighboring molecules. In addition similar packing but in the direction [010] is observed in the crystal (1a). In consequence the molecule (1a) is more close to planarity than (2a), (2 b) and (3 b) (Table 2). Significantly, such stacking is absent in the structures (2a), (2 b) and (3 b).

Our results show the potential use of combinatorial synthesis for obtaining targetted libraries in materials chemistry. Although in this case six Schiff base compounds from a small array of eight possible products were synthesized, all five which were the subject of successful structure determination were found to crystallize in centrosymmetric space groups. Since in centrosymmetric crystals the superposition of inverted tensors of the third rank which describe molecular hyperpolarizability (β) is equal to zero, such crystals do not generate second harmonics (Zyss & Chemla, 1987). This precludes the application of bulk crystals or crystalline films of the compounds studied as NLO materials. On the other hand, the centrosymmetric patterns might be easily destroyed by introducing these compounds into polymer matrices doped by an active NLO choromophore (Agullo-Lopez et al., 1994). Thus the title compounds might be utilized as active dopants in polymer-based second harmonic generating, electrooptic or photorefractive materials.

Experimental top

All Schiff bases were obtained by the reaction of 4-methoxyaminocinnamaldehyde (a) or 4-dimethylaminocinnamaldehyde (b) (0.005 mol) with amines (1)–(4) (0.005 mol) in the presence of a catalytic amount of acetic acid in ethanol (20 ml) under reflux for 1–3 min. The precipitates were isolated and recrystallized from ethanol (30 ml) in the presence of a small amount of acetic acid. Yields: (1a) 78%, (1 b) 74%, (2a) 85%, (2 b) 82%, (3a) 78%, (3 b) 70%. Crystals were obtained by isothermal evaporation from CH3CN solutions. UV/vis(λmax/nm, acetone solution): 381 (1a), 413 (1 b), 365 (2a), 444 (2 b), 355 (3a), 431 (3 b).

Refinement top

Molecular structures of (1a)–(4 b) were calculated by the AM1 semi-empirical quantum-chemical method (Dewar et al., 1985) with full geometry optimization using the GAMESS program (Schmidt et al., 1993). Calculations of average molecular hyperpolarizabilities (β in 10−51 C m3 V−2) were carried out with the finite field approach using modified MOPAC (AM1) and HYPER programs (Cardelino et al., 1991, 1997).

In (1a), (2a) and (2 b) hydrogen atoms were located from ΔF syntheses and thereafter refined freely. For the remaining structures (1 b) and (3 b) methyl H atoms were located in a ΔF synthesis and thereafter refined as part of a rigid rotating group, while others were placed in geometrically calculated positions and refined using a riding model.

For the five compounds (1a), (1 b), (2a), (2 b) and (3 b), the respective total number of reflections suppressed with I<2σ(I) was 13, 55, 47, 52 and 79; the corresponding number suppressed due to systematic errors was 11, 30, 32 28 and 62.

Computing details top

Data collection: SMART (Siemens, 1994) for (1a); CAD-4 Software (Enraf-Nonius, 1989) for (2a), (1b), (2b), (3b). Cell refinement: SMART for (1a); CAD-4 Software for (2a), (1b), (2b), (3b). Data reduction: SHELXTL-Plus (Sheldrick, 1994) for (1a); PROFIT (Streltsov & Zavodnik, 1989) for (2a), (1b), (2b), (3b). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (1a); SHELXTL-Plus (Sheldrick, 1994) for (2a), (1b), (2b), (3b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (1a); SHELXTL for (2a), (1b), (2b), (3b). Molecular graphics: SHELXTL-Plus for (1a); SHELXTL for (2a), (1b), (2b), (3b). Software used to prepare material for publication: SHELXTL-Plus for (1a); SHELXTL for (2a), (1b), (2b), (3b).

Figures top
[Figure 1]
Fig. 1. View of (1a) with the non-H atoms shown with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary small radius for clarity.

Fig. 2. View of (2a) with the non-H atoms shown with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary small radius for clarity.

Fig. 3. View of (1 b) with the non-H atoms shown with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary small radius for clarity.

Fig. 4. View of (2 b) with the non-H atoms shown with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary small radius for clarity.

Fig. 5. View of (3 b) with the non-H atoms shown with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary small radius for clarity.
(1a) N-[(E,2E)-3-(4-methoxyphenyl)-2-propenylidene]-3-nitroaniline top
Crystal data top
C16H14N2O3Dx = 1.391 Mg m3
Mr = 282.29Melting point: 141(1) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.7883 (8) ÅCell parameters from 5200 reflections
b = 3.9239 (2) Åθ = 2–24°
c = 22.6063 (11) ŵ = 0.10 mm1
β = 105.767 (1)°T = 100 K
V = 1347.80 (12) Å3Square prism, yellow
Z = 40.3 × 0.1 × 0.1 mm
F(000) = 592
Data collection top
Siemens SMART CCD area detector
diffractometer
2603 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 30.0°, θmin = 1.4°
ϕ and ω scansh = 2220
14296 measured reflectionsk = 55
3938 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054All H-atom parameters refined
wR(F2) = 0.126Calculated w = 1/[σ2(Fo2) + (0.0889P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
3925 reflectionsΔρmax = 0.50 e Å3
246 parametersΔρmin = 0.22 e Å3
0 restraints
Crystal data top
C16H14N2O3V = 1347.80 (12) Å3
Mr = 282.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.7883 (8) ŵ = 0.10 mm1
b = 3.9239 (2) ÅT = 100 K
c = 22.6063 (11) Å0.3 × 0.1 × 0.1 mm
β = 105.767 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
2603 reflections with I > 2σ(I)
14296 measured reflectionsRint = 0.063
3938 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.126All H-atom parameters refined
S = 0.89Δρmax = 0.50 e Å3
3925 reflectionsΔρmin = 0.22 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 13 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71571 (7)0.8307 (3)0.47857 (5)0.0230 (2)
N20.58671 (8)1.3183 (3)0.63606 (6)0.0301 (3)
O10.52247 (7)1.4097 (3)0.59496 (5)0.0394 (3)
O20.59540 (8)1.3733 (3)0.69088 (5)0.0437 (3)
O30.54119 (6)0.8769 (2)0.06917 (4)0.0257 (2)
C10.71743 (8)0.9150 (3)0.53949 (6)0.0210 (3)
C20.64822 (9)1.0745 (3)0.55690 (6)0.0226 (3)
H20.5942 (11)1.138 (4)0.5271 (7)0.028 (4)*
C30.65833 (9)1.1368 (3)0.61860 (6)0.0236 (3)
C40.73237 (9)1.0458 (3)0.66461 (6)0.0260 (3)
H40.7366 (11)1.097 (4)0.7085 (7)0.038 (4)*
C50.80030 (9)0.8853 (3)0.64703 (6)0.0255 (3)
H50.8529 (12)0.815 (4)0.6774 (7)0.038 (4)*
C60.79286 (9)0.8229 (3)0.58547 (6)0.0234 (3)
H60.8377 (11)0.714 (4)0.5731 (7)0.032 (4)*
C70.66406 (8)0.9937 (3)0.43370 (6)0.0230 (3)
H70.6275 (10)1.180 (4)0.4396 (6)0.020 (3)*
C80.65983 (9)0.9134 (3)0.37074 (6)0.0229 (3)
H80.6997 (11)0.733 (4)0.3628 (7)0.034 (4)*
C90.60137 (8)1.0693 (3)0.32388 (6)0.0219 (3)
H90.5599 (10)1.227 (4)0.3332 (6)0.024 (4)*
C100.58973 (8)1.0143 (3)0.25832 (5)0.0203 (3)
C110.51440 (8)1.1443 (3)0.21595 (6)0.0216 (3)
H110.4748 (11)1.273 (4)0.2310 (7)0.032 (4)*
C120.50053 (8)1.0972 (3)0.15374 (6)0.0227 (3)
H120.4502 (11)1.190 (4)0.1240 (7)0.032 (4)*
C130.56219 (8)0.9180 (3)0.13143 (6)0.0211 (3)
C140.63867 (8)0.7953 (3)0.17250 (6)0.0218 (3)
H140.6816 (10)0.670 (4)0.1561 (6)0.024 (4)*
C150.65141 (8)0.8408 (3)0.23524 (6)0.0213 (3)
H150.7062 (10)0.747 (4)0.2635 (6)0.023 (4)*
C160.60435 (10)0.7113 (4)0.04374 (7)0.0268 (3)
H16C0.6175 (10)0.487 (4)0.0605 (6)0.027 (4)*
H16B0.6583 (11)0.851 (4)0.0515 (7)0.032 (4)*
H16A0.5766 (10)0.699 (4)0.0017 (7)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0232 (5)0.0245 (5)0.0222 (5)0.0005 (4)0.0075 (4)0.0016 (4)
N20.0297 (6)0.0289 (6)0.0371 (7)0.0004 (5)0.0183 (5)0.0004 (5)
O10.0295 (6)0.0480 (7)0.0441 (6)0.0102 (5)0.0158 (5)0.0049 (5)
O20.0468 (7)0.0547 (7)0.0364 (6)0.0049 (6)0.0229 (5)0.0075 (5)
O30.0250 (5)0.0301 (5)0.0214 (4)0.0018 (4)0.0055 (4)0.0009 (4)
C10.0209 (6)0.0192 (6)0.0239 (6)0.0020 (5)0.0080 (5)0.0000 (5)
C20.0197 (6)0.0230 (6)0.0252 (6)0.0010 (5)0.0062 (5)0.0019 (5)
C30.0230 (6)0.0210 (6)0.0301 (7)0.0018 (5)0.0129 (5)0.0007 (5)
C40.0305 (7)0.0230 (6)0.0251 (6)0.0041 (5)0.0089 (5)0.0014 (5)
C50.0237 (6)0.0254 (7)0.0250 (6)0.0020 (5)0.0022 (5)0.0016 (5)
C60.0206 (6)0.0223 (6)0.0282 (7)0.0011 (5)0.0079 (5)0.0010 (5)
C70.0214 (6)0.0215 (6)0.0261 (6)0.0009 (5)0.0067 (5)0.0008 (5)
C80.0227 (6)0.0213 (6)0.0249 (6)0.0018 (5)0.0069 (5)0.0014 (5)
C90.0199 (6)0.0213 (6)0.0250 (6)0.0005 (5)0.0068 (5)0.0012 (5)
C100.0197 (6)0.0182 (6)0.0232 (6)0.0022 (5)0.0060 (5)0.0004 (5)
C110.0189 (6)0.0211 (6)0.0262 (6)0.0001 (5)0.0086 (5)0.0009 (5)
C120.0174 (6)0.0237 (6)0.0256 (6)0.0003 (5)0.0035 (5)0.0021 (5)
C130.0220 (6)0.0200 (6)0.0215 (6)0.0030 (5)0.0062 (5)0.0000 (5)
C140.0190 (6)0.0210 (6)0.0266 (6)0.0000 (5)0.0082 (5)0.0000 (5)
C150.0179 (6)0.0209 (6)0.0242 (6)0.0012 (5)0.0041 (5)0.0011 (5)
C160.0294 (7)0.0262 (7)0.0265 (7)0.0020 (6)0.0103 (6)0.0010 (5)
Geometric parameters (Å, º) top
N1—C71.286 (2)C7—H70.964 (15)
N1—C11.409 (2)C8—C91.348 (2)
N2—O21.2284 (15)C8—H81.00 (2)
N2—O11.228 (2)C9—C101.459 (2)
N2—C31.478 (2)C9—H90.97 (2)
O3—C131.3651 (14)C10—C151.400 (2)
O3—C161.435 (2)C10—C111.405 (2)
C1—C61.399 (2)C11—C121.376 (2)
C1—C21.405 (2)C11—H110.94 (2)
C2—C31.382 (2)C12—C131.401 (2)
C2—H20.96 (2)C12—H120.96 (2)
C3—C41.384 (2)C13—C141.394 (2)
C4—C51.392 (2)C14—C151.389 (2)
C4—H41.00 (2)C14—H140.99 (2)
C5—C61.386 (2)C15—H151.00 (2)
C5—H50.96 (2)C16—H16C0.96 (2)
C6—H60.93 (2)C16—H16B0.99 (2)
C7—C81.441 (2)C16—H16A1.002 (15)
C7—N1—C1119.59 (11)C5—C6—C1121.54 (12)
O2—N2—O1123.70 (12)N1—C7—C8121.30 (12)
O2—N2—C3118.05 (12)C9—C8—C7121.00 (12)
O1—N2—C3118.24 (11)C8—C9—C10126.98 (12)
C13—O3—C16117.78 (10)C15—C10—C11117.92 (11)
C6—C1—C2118.49 (12)C15—C10—C9122.83 (11)
C6—C1—N1116.86 (11)C11—C10—C9119.24 (11)
C2—C1—N1124.62 (11)C12—C11—C10121.23 (12)
C3—C2—C1118.43 (12)C11—C12—C13120.14 (12)
C2—C3—C4123.72 (12)O3—C13—C14124.74 (11)
C2—C3—N2117.90 (12)O3—C13—C12115.63 (11)
C4—C3—N2118.36 (12)C14—C13—C12119.63 (11)
C3—C4—C5117.48 (12)C15—C14—C13119.66 (12)
C6—C5—C4120.33 (12)C14—C15—C10121.38 (11)
C7—N1—C1—C6158.33 (12)N1—C7—C8—C9175.50 (12)
C7—N1—C1—C223.5 (2)C7—C8—C9—C10179.95 (11)
C6—C1—C2—C30.8 (2)C8—C9—C10—C1514.2 (2)
N1—C1—C2—C3178.88 (12)C8—C9—C10—C11166.91 (13)
C1—C2—C3—C41.1 (2)C15—C10—C11—C121.3 (2)
C1—C2—C3—N2177.37 (11)C9—C10—C11—C12179.71 (11)
O2—N2—C3—C2179.83 (12)C10—C11—C12—C130.3 (2)
O1—N2—C3—C21.2 (2)C16—O3—C13—C143.4 (2)
O2—N2—C3—C41.6 (2)C16—O3—C13—C12176.68 (11)
O1—N2—C3—C4177.43 (12)C11—C12—C13—O3178.24 (11)
C2—C3—C4—C50.6 (2)C11—C12—C13—C141.6 (2)
N2—C3—C4—C5177.89 (11)O3—C13—C14—C15177.44 (11)
C3—C4—C5—C60.3 (2)C12—C13—C14—C152.4 (2)
C4—C5—C6—C10.6 (2)C13—C14—C15—C101.4 (2)
C2—C1—C6—C50.1 (2)C11—C10—C15—C140.5 (2)
N1—C1—C6—C5178.19 (11)C9—C10—C15—C14179.44 (11)
C1—N1—C7—C8179.49 (11)
(2a) N-[(E,2E)-3-(4-methoxyphenyl)-2-propenylidene]-4-nitroaniline top
Crystal data top
C16H14N2O3Dx = 1.316 Mg m3
Mr = 282.29Melting point: 147(1) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 10.413 (2) ÅCell parameters from 24 reflections
b = 7.5990 (15) Åθ = 10–11°
c = 36.010 (7) ŵ = 0.09 mm1
V = 2849.4 (10) Å3T = 298 K
Z = 8Plate, yellow
F(000) = 11840.60 × 0.40 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 1.1°
Graphite monochromatorh = 130
θ/2θ scansk = 100
3579 measured reflectionsl = 047
3400 independent reflections2 standard reflections every 98 reflections
1593 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.050Calculated w = 1/[σ2(Fo2) + (0.0427P)2 + 1.1439P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.13 e Å3
3346 reflectionsΔρmin = 0.15 e Å3
247 parametersExtinction correction: SHELXTL-Plus (Sheldrick, 1994), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0137 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H14N2O3V = 2849.4 (10) Å3
Mr = 282.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.413 (2) ŵ = 0.09 mm1
b = 7.5990 (15) ÅT = 298 K
c = 36.010 (7) Å0.60 × 0.40 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.044
3579 measured reflections2 standard reflections every 98 reflections
3400 independent reflections intensity decay: 5%
1593 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.02Δρmax = 0.13 e Å3
3346 reflectionsΔρmin = 0.15 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 54 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2563 (2)0.3754 (3)0.87216 (5)0.0527 (5)
N20.2493 (3)0.6600 (3)1.01598 (5)0.0618 (6)
O10.3496 (2)0.6913 (3)1.03176 (5)0.0967 (8)
O20.1457 (2)0.6880 (4)1.03010 (6)0.1014 (9)
O30.3823 (2)0.2294 (2)0.63136 (4)0.0623 (5)
C10.2604 (3)0.4497 (3)0.90804 (6)0.0462 (6)
C20.3727 (3)0.4871 (4)0.92671 (7)0.0557 (7)
H20.453 (2)0.465 (3)0.9170 (6)0.053 (7)*
C30.3691 (3)0.5566 (4)0.96207 (7)0.0555 (7)
H30.443 (3)0.581 (3)0.9752 (7)0.069 (8)*
C40.2523 (3)0.5870 (3)0.97854 (6)0.0467 (6)
C50.1393 (3)0.5495 (4)0.96057 (7)0.0568 (7)
H50.060 (3)0.573 (3)0.9732 (7)0.065 (8)*
C60.1440 (3)0.4782 (4)0.92553 (7)0.0556 (7)
H60.070 (2)0.444 (3)0.9135 (6)0.047 (7)*
C70.3359 (3)0.4263 (3)0.84786 (6)0.0480 (6)
H70.398 (2)0.516 (3)0.8527 (6)0.057 (7)*
C80.3315 (3)0.3565 (3)0.81039 (6)0.0479 (6)
H80.268 (2)0.268 (4)0.8065 (6)0.059 (7)*
C90.4046 (3)0.4120 (3)0.78252 (6)0.0459 (6)
H90.469 (3)0.498 (4)0.7890 (7)0.069 (8)*
C100.3957 (2)0.3588 (3)0.74357 (6)0.0414 (6)
C110.4865 (3)0.4167 (3)0.71798 (7)0.0483 (6)
H110.553 (3)0.488 (3)0.7260 (6)0.060 (8)*
C120.4795 (3)0.3713 (4)0.68120 (7)0.0511 (6)
H120.542 (3)0.413 (3)0.6649 (7)0.070 (8)*
C130.3810 (2)0.2661 (3)0.66847 (6)0.0465 (6)
C140.2888 (3)0.2071 (3)0.69320 (7)0.0492 (6)
H140.223 (2)0.131 (3)0.6858 (6)0.050 (7)*
C150.2969 (2)0.2547 (3)0.73006 (6)0.0471 (6)
H150.232 (2)0.214 (3)0.7470 (6)0.049 (6)*
C160.2855 (4)0.1184 (5)0.61684 (9)0.0782 (11)
H16A0.305 (3)0.105 (4)0.5907 (9)0.095 (10)*
H16B0.202 (3)0.166 (4)0.6209 (7)0.070 (10)*
H16C0.289 (3)0.004 (5)0.6292 (9)0.104 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0619 (12)0.0555 (12)0.0407 (10)0.0088 (11)0.0015 (11)0.0024 (10)
N20.0685 (15)0.070 (2)0.0466 (11)0.0012 (14)0.0010 (14)0.0081 (11)
O10.080 (2)0.148 (2)0.0626 (13)0.0073 (15)0.0123 (11)0.0410 (14)
O20.079 (2)0.156 (2)0.0691 (14)0.004 (2)0.0151 (11)0.0449 (15)
O30.0813 (13)0.0673 (12)0.0385 (9)0.0055 (11)0.0018 (8)0.0035 (9)
C10.0559 (15)0.0454 (13)0.0374 (11)0.0062 (12)0.0018 (12)0.0012 (10)
C20.047 (2)0.075 (2)0.0452 (15)0.0028 (14)0.0023 (12)0.0063 (13)
C30.048 (2)0.070 (2)0.0484 (15)0.0024 (14)0.0092 (12)0.0035 (13)
C40.0560 (14)0.0477 (14)0.0364 (11)0.0009 (12)0.0018 (13)0.0007 (10)
C50.049 (2)0.071 (2)0.050 (2)0.0024 (14)0.0049 (13)0.0016 (14)
C60.051 (2)0.072 (2)0.0442 (15)0.0130 (14)0.0049 (12)0.0028 (13)
C70.056 (2)0.0451 (14)0.0432 (13)0.0008 (13)0.0023 (12)0.0008 (11)
C80.056 (2)0.0435 (13)0.0438 (13)0.0044 (13)0.0006 (12)0.0034 (11)
C90.053 (2)0.0392 (14)0.0454 (13)0.0014 (12)0.0029 (11)0.0049 (11)
C100.0500 (14)0.0344 (11)0.0397 (12)0.0030 (11)0.0025 (10)0.0028 (10)
C110.048 (2)0.046 (2)0.051 (2)0.0047 (12)0.0013 (12)0.0005 (11)
C120.0522 (15)0.057 (2)0.0439 (14)0.0019 (13)0.0096 (12)0.0037 (12)
C130.0579 (15)0.0422 (13)0.0393 (12)0.0060 (12)0.0001 (11)0.0032 (11)
C140.060 (2)0.0431 (14)0.0446 (13)0.0087 (13)0.0001 (11)0.0033 (11)
C150.0565 (15)0.0427 (13)0.0421 (13)0.0070 (13)0.0070 (11)0.0015 (11)
C160.110 (3)0.076 (2)0.049 (2)0.019 (2)0.003 (2)0.010 (2)
Geometric parameters (Å, º) top
N1—C71.266 (3)C7—H70.96 (3)
N1—C11.411 (3)C8—C91.328 (3)
N2—O11.212 (3)C8—H80.96 (3)
N2—O21.212 (3)C9—C101.462 (3)
N2—C41.458 (3)C9—H90.96 (3)
O3—C131.365 (3)C10—C151.386 (3)
O3—C161.415 (4)C10—C111.391 (3)
C1—C21.379 (4)C11—C121.370 (3)
C1—C61.383 (3)C11—H110.92 (3)
C2—C31.379 (3)C12—C131.379 (3)
C2—H20.93 (2)C12—H120.93 (3)
C3—C41.373 (3)C13—C141.384 (3)
C3—H30.92 (3)C14—C151.378 (3)
C4—C51.372 (3)C14—H140.93 (2)
C5—C61.374 (4)C15—H150.96 (2)
C5—H50.96 (3)C16—H16A0.97 (3)
C6—H60.92 (2)C16—H16B0.96 (3)
C7—C81.450 (3)C16—H16C1.03 (4)
C7—N1—C1119.4 (2)C5—C6—C1120.7 (2)
O1—N2—O2122.4 (2)N1—C7—C8120.7 (3)
O1—N2—C4119.4 (3)C9—C8—C7124.7 (3)
O2—N2—C4118.2 (3)C8—C9—C10126.9 (2)
C13—O3—C16118.5 (2)C15—C10—C11116.9 (2)
C2—C1—C6119.3 (2)C15—C10—C9122.8 (2)
C2—C1—N1123.7 (2)C11—C10—C9120.4 (2)
C6—C1—N1117.0 (2)C12—C11—C10121.7 (2)
C3—C2—C1120.4 (3)C11—C12—C13120.4 (2)
C4—C3—C2119.2 (2)O3—C13—C12115.9 (2)
C5—C4—C3121.4 (2)O3—C13—C14124.8 (2)
C5—C4—N2119.8 (2)C12—C13—C14119.4 (2)
C3—C4—N2118.8 (2)C15—C14—C13119.5 (2)
C4—C5—C6119.0 (3)C14—C15—C10122.2 (2)
C7—N1—C1—C240.2 (4)N1—C7—C8—C9174.6 (3)
C7—N1—C1—C6142.7 (3)C7—C8—C9—C10173.6 (2)
C6—C1—C2—C31.7 (4)C8—C9—C10—C157.7 (4)
N1—C1—C2—C3178.7 (3)C8—C9—C10—C11174.3 (3)
C1—C2—C3—C40.4 (4)C15—C10—C11—C120.7 (4)
C2—C3—C4—C50.1 (4)C9—C10—C11—C12178.9 (2)
C2—C3—C4—N2179.8 (2)C10—C11—C12—C130.1 (4)
O1—N2—C4—C5179.4 (3)C16—O3—C13—C12178.4 (3)
O2—N2—C4—C51.0 (4)C16—O3—C13—C142.2 (4)
O1—N2—C4—C30.3 (4)C11—C12—C13—O3179.6 (2)
O2—N2—C4—C3179.3 (3)C11—C12—C13—C140.2 (4)
C3—C4—C5—C60.7 (4)O3—C13—C14—C15179.2 (2)
N2—C4—C5—C6179.0 (2)C12—C13—C14—C150.1 (4)
C4—C5—C6—C12.1 (4)C13—C14—C15—C100.8 (4)
C2—C1—C6—C52.5 (4)C11—C10—C15—C141.1 (4)
N1—C1—C6—C5179.8 (3)C9—C10—C15—C14179.2 (2)
C1—N1—C7—C8178.1 (2)
(1b) N-{(E,2E)-3-[4-(dimethylamino)phenyl]-2-propenylidene}-3-nitroaniline top
Crystal data top
C17H17N3O2F(000) = 312
Mr = 295.34Dx = 1.299 Mg m3
Triclinic, P1Melting point: 138(1) K
a = 6.7910 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.204 (2) ÅCell parameters from 24 reflections
c = 12.185 (2) Åθ = 10–11°
α = 113.20 (3)°µ = 0.09 mm1
β = 98.97 (3)°T = 295 K
γ = 95.53 (3)°Plate, yellow
V = 754.9 (3) Å30.60 × 0.30 × 0.30 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.047
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 08
θ/2θ scansk = 1212
2899 measured reflectionsl = 1414
2650 independent reflections2 standard reflections every 98 reflections
1255 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.094Calculated w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2595 reflectionsΔρmax = 0.11 e Å3
201 parametersΔρmin = 0.14 e Å3
Crystal data top
C17H17N3O2γ = 95.53 (3)°
Mr = 295.34V = 754.9 (3) Å3
Triclinic, P1Z = 2
a = 6.7910 (14) ÅMo Kα radiation
b = 10.204 (2) ŵ = 0.09 mm1
c = 12.185 (2) ÅT = 295 K
α = 113.20 (3)°0.60 × 0.30 × 0.30 mm
β = 98.97 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.047
2899 measured reflections2 standard reflections every 98 reflections
2650 independent reflections intensity decay: 5%
1255 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.99Δρmax = 0.11 e Å3
2595 reflectionsΔρmin = 0.14 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 55 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4301 (3)0.7782 (2)0.3477 (2)0.0575 (5)
N20.2314 (3)0.7066 (3)0.0780 (2)0.0681 (6)
N31.3680 (3)0.2012 (2)0.2510 (2)0.0660 (6)
O10.3821 (3)0.7578 (2)0.0578 (2)0.0948 (7)
O20.2091 (3)0.5847 (2)0.01351 (15)0.0870 (6)
C10.2475 (3)0.8211 (2)0.3127 (2)0.0497 (6)
C20.0966 (3)0.7386 (2)0.2089 (2)0.0544 (6)
H20.1103 (3)0.6466 (2)0.1559 (2)0.065*
C30.0722 (3)0.7953 (2)0.1863 (2)0.0518 (6)
C40.1004 (4)0.9294 (3)0.2608 (2)0.0689 (7)
H40.2163 (4)0.9651 (3)0.2426 (2)0.083*
C50.0470 (4)1.0101 (3)0.3633 (2)0.0771 (8)
H50.0312 (4)1.1017 (3)0.4158 (2)0.092*
C60.2173 (3)0.9565 (2)0.3888 (2)0.0609 (7)
H60.3152 (3)1.0126 (2)0.4590 (2)0.073*
C70.4750 (3)0.6606 (2)0.2792 (2)0.0526 (6)
H70.3836 (3)0.6038 (2)0.2062 (2)0.063*
C80.6554 (3)0.6085 (2)0.3056 (2)0.0561 (6)
H80.7467 (3)0.6623 (2)0.3793 (2)0.067*
C90.6980 (3)0.4848 (2)0.2279 (2)0.0576 (6)
H90.5998 (3)0.4350 (2)0.1565 (2)0.069*
C100.8706 (3)0.4170 (2)0.2373 (2)0.0515 (6)
C110.8874 (4)0.2902 (3)0.1405 (2)0.0643 (7)
H110.7850 (4)0.2522 (3)0.0704 (2)0.077*
C121.0472 (3)0.2192 (3)0.1439 (2)0.0610 (7)
H121.0505 (3)0.1350 (3)0.0766 (2)0.073*
C131.2059 (3)0.2706 (2)0.2464 (2)0.0516 (6)
C141.1904 (3)0.3975 (2)0.3449 (2)0.0586 (6)
H141.2912 (3)0.4346 (2)0.4157 (2)0.070*
C151.0301 (3)0.4675 (2)0.3389 (2)0.0581 (6)
H151.0274 (3)0.5525 (2)0.4055 (2)0.070*
C161.5241 (4)0.2490 (3)0.3610 (2)0.0756 (8)
H16A1.6207 (15)0.1845 (11)0.3478 (6)0.113*
H16B1.4638 (5)0.2490 (17)0.4272 (4)0.113*
H16C1.5912 (17)0.3451 (8)0.3808 (9)0.113*
C171.3793 (4)0.0704 (3)0.1491 (2)0.0802 (8)
H17A1.5054 (12)0.0395 (11)0.1659 (7)0.120*
H17B1.371 (3)0.0884 (5)0.0770 (4)0.120*
H17C1.2691 (15)0.0039 (6)0.1364 (10)0.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0494 (12)0.0569 (12)0.0524 (11)0.0178 (10)0.0003 (9)0.0104 (10)
N20.0646 (14)0.076 (2)0.0536 (13)0.0164 (12)0.0013 (11)0.0207 (12)
N30.0636 (13)0.0642 (13)0.0596 (12)0.0268 (11)0.0034 (10)0.0148 (10)
O10.0683 (12)0.108 (2)0.0886 (14)0.0350 (12)0.0166 (10)0.0280 (12)
O20.0840 (13)0.0793 (14)0.0627 (11)0.0188 (11)0.0116 (9)0.0024 (10)
C10.0488 (14)0.0484 (14)0.0466 (13)0.0108 (11)0.0044 (11)0.0158 (11)
C20.0559 (14)0.0485 (13)0.0521 (14)0.0140 (12)0.0070 (12)0.0145 (11)
C30.0459 (14)0.0571 (15)0.0490 (13)0.0107 (12)0.0017 (11)0.0211 (12)
C40.061 (2)0.062 (2)0.075 (2)0.0244 (14)0.0018 (14)0.0211 (14)
C50.072 (2)0.056 (2)0.082 (2)0.0239 (15)0.0028 (15)0.0091 (14)
C60.058 (2)0.0534 (14)0.0568 (14)0.0146 (12)0.0014 (12)0.0109 (12)
C70.0444 (13)0.0554 (15)0.0482 (13)0.0059 (12)0.0009 (11)0.0153 (12)
C80.0490 (14)0.057 (2)0.0549 (14)0.0098 (12)0.0027 (11)0.0182 (12)
C90.0502 (14)0.061 (2)0.0531 (14)0.0116 (12)0.0013 (11)0.0181 (12)
C100.0464 (13)0.0503 (14)0.0532 (14)0.0119 (11)0.0069 (11)0.0175 (11)
C110.062 (2)0.061 (2)0.0516 (14)0.0163 (13)0.0009 (12)0.0089 (12)
C120.061 (2)0.0567 (15)0.0508 (14)0.0188 (13)0.0040 (12)0.0083 (12)
C130.0519 (14)0.0513 (14)0.0512 (13)0.0132 (12)0.0106 (11)0.0199 (11)
C140.0523 (15)0.0578 (15)0.0526 (14)0.0142 (12)0.0031 (11)0.0136 (12)
C150.060 (2)0.0505 (14)0.0532 (14)0.0168 (12)0.0068 (12)0.0113 (11)
C160.070 (2)0.080 (2)0.073 (2)0.0236 (15)0.0039 (14)0.0288 (15)
C170.087 (2)0.076 (2)0.074 (2)0.042 (2)0.0175 (15)0.0205 (15)
Geometric parameters (Å, º) top
N1—C71.261 (2)C4—C51.372 (3)
N1—C11.413 (2)C5—C61.370 (3)
N2—O21.220 (2)C7—C81.423 (3)
N2—O11.227 (2)C8—C91.337 (3)
N2—C31.468 (3)C9—C101.429 (3)
N3—C131.371 (3)C10—C151.394 (3)
N3—C171.440 (3)C10—C111.396 (3)
N3—C161.449 (3)C11—C121.366 (3)
C1—C61.384 (3)C12—C131.397 (3)
C1—C21.397 (3)C13—C141.404 (3)
C2—C31.371 (3)C14—C151.366 (3)
C3—C41.363 (3)
C7—N1—C1120.4 (2)C6—C5—C4120.4 (2)
O2—N2—O1123.2 (2)C5—C6—C1121.7 (2)
O2—N2—C3118.5 (2)N1—C7—C8124.7 (2)
O1—N2—C3118.3 (2)C9—C8—C7122.2 (2)
C13—N3—C17120.5 (2)C8—C9—C10130.2 (2)
C13—N3—C16121.7 (2)C15—C10—C11115.2 (2)
C17—N3—C16117.6 (2)C15—C10—C9124.8 (2)
C6—C1—C2117.8 (2)C11—C10—C9120.0 (2)
C6—C1—N1116.6 (2)C12—C11—C10123.0 (2)
C2—C1—N1125.6 (2)C11—C12—C13121.3 (2)
C3—C2—C1119.0 (2)N3—C13—C12122.1 (2)
C4—C3—C2123.0 (2)N3—C13—C14121.6 (2)
C4—C3—N2118.5 (2)C12—C13—C14116.3 (2)
C2—C3—N2118.5 (2)C15—C14—C13121.3 (2)
C3—C4—C5118.1 (2)C14—C15—C10122.8 (2)
C7—N1—C1—C6175.3 (2)C7—C8—C9—C10178.9 (2)
C7—N1—C1—C24.9 (3)C8—C9—C10—C154.0 (4)
C6—C1—C2—C30.7 (3)C8—C9—C10—C11176.4 (3)
N1—C1—C2—C3179.5 (2)C15—C10—C11—C120.3 (3)
C1—C2—C3—C40.1 (3)C9—C10—C11—C12179.4 (2)
C1—C2—C3—N2179.0 (2)C10—C11—C12—C130.0 (4)
O2—N2—C3—C4177.6 (2)C17—N3—C13—C120.5 (3)
O1—N2—C3—C41.2 (3)C16—N3—C13—C12175.2 (2)
O2—N2—C3—C21.3 (3)C17—N3—C13—C14179.4 (2)
O1—N2—C3—C2179.8 (2)C16—N3—C13—C144.7 (3)
C2—C3—C4—C50.4 (4)C11—C12—C13—N3179.6 (2)
N2—C3—C4—C5178.5 (2)C11—C12—C13—C140.5 (3)
C3—C4—C5—C60.3 (4)N3—C13—C14—C15178.8 (2)
C4—C5—C6—C10.4 (4)C12—C13—C14—C151.2 (3)
C2—C1—C6—C50.9 (3)C13—C14—C15—C101.6 (4)
N1—C1—C6—C5179.3 (2)C11—C10—C15—C141.0 (3)
C1—N1—C7—C8179.4 (2)C9—C10—C15—C14178.6 (2)
N1—C7—C8—C9178.0 (2)
(2b) N-{(E,2E)-3-[4-(dimethylamino)phenyl]-2-propenylidene}-4-nitroaniline top
Crystal data top
C17H17N3O2F(000) = 312
Mr = 295.34Dx = 1.296 Mg m3
Triclinic, P1Melting point: 195(1) K
a = 6.1650 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2730 (15) ÅCell parameters from 24 reflections
c = 17.158 (3) Åθ = 10–11°
α = 90.70 (3)°µ = 0.09 mm1
β = 100.10 (3)°T = 298 K
γ = 91.37 (3)°Square prism, dark yellow
V = 757.1 (3) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.031
Radiation source: fine-focus sealed tubeθmax = 29.0°, θmin = 1.2°
Graphite monochromatorh = 08
θ/2θ scansk = 99
4620 measured reflectionsl = 2323
4007 independent reflections2 standard reflections every 98 reflections
1534 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062All H-atom parameters refined
wR(F2) = 0.107Calculated w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3955 reflectionsΔρmax = 0.16 e Å3
267 parametersΔρmin = 0.17 e Å3
0 restraints
Crystal data top
C17H17N3O2γ = 91.37 (3)°
Mr = 295.34V = 757.1 (3) Å3
Triclinic, P1Z = 2
a = 6.1650 (12) ÅMo Kα radiation
b = 7.2730 (15) ŵ = 0.09 mm1
c = 17.158 (3) ÅT = 298 K
α = 90.70 (3)°0.40 × 0.20 × 0.20 mm
β = 100.10 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.031
4620 measured reflections2 standard reflections every 98 reflections
4007 independent reflections intensity decay: 5%
1534 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 0.99Δρmax = 0.16 e Å3
3955 reflectionsΔρmin = 0.17 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 52 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4643 (4)0.7254 (3)0.06229 (12)0.0461 (6)
N20.6366 (5)0.7422 (3)0.37293 (14)0.0606 (7)
N30.1100 (4)0.7689 (3)0.37508 (12)0.0522 (6)
O10.5158 (4)0.6588 (4)0.42520 (13)0.0946 (8)
O20.8034 (5)0.8222 (4)0.38343 (13)0.1092 (10)
C10.4906 (4)0.7336 (3)0.14213 (14)0.0396 (6)
C20.3502 (5)0.6457 (4)0.2042 (2)0.0459 (7)
H20.230 (4)0.577 (3)0.1945 (13)0.053 (8)*
C30.3962 (5)0.6488 (4)0.2798 (2)0.0479 (7)
H30.296 (4)0.584 (3)0.3235 (14)0.054 (7)*
C40.5828 (4)0.7427 (3)0.29287 (14)0.0429 (6)
C50.7240 (5)0.8345 (4)0.2330 (2)0.0463 (7)
H50.850 (4)0.898 (3)0.2441 (14)0.066 (9)*
C60.6765 (4)0.8284 (3)0.1582 (2)0.0435 (7)
H60.769 (3)0.894 (3)0.1145 (13)0.034 (6)*
C70.2721 (5)0.7256 (4)0.0446 (2)0.0444 (6)
H70.132 (4)0.734 (3)0.0862 (14)0.056 (8)*
C80.2390 (5)0.7133 (4)0.0362 (2)0.0467 (7)
H80.368 (4)0.691 (3)0.0730 (15)0.062 (9)*
C90.0466 (5)0.7398 (4)0.0594 (2)0.0457 (7)
H90.072 (5)0.773 (4)0.0230 (15)0.066 (9)*
C100.0072 (4)0.7428 (3)0.14075 (13)0.0373 (6)
C110.1818 (4)0.8220 (3)0.1591 (2)0.0423 (7)
H110.282 (4)0.866 (3)0.1153 (13)0.043 (7)*
C120.2200 (5)0.8351 (4)0.23552 (15)0.0423 (6)
H120.349 (4)0.893 (3)0.2450 (12)0.038 (6)*
C130.0720 (4)0.7641 (3)0.29870 (15)0.0407 (6)
C140.1183 (5)0.6836 (4)0.2800 (2)0.0428 (6)
H140.229 (4)0.633 (3)0.3219 (14)0.049 (7)*
C150.1558 (4)0.6747 (4)0.2037 (2)0.0438 (7)
H150.288 (4)0.622 (3)0.1942 (13)0.045 (7)*
C160.0616 (7)0.7185 (7)0.4404 (2)0.0754 (11)
H16A0.012 (5)0.731 (4)0.490 (2)0.105 (12)*
H16B0.198 (7)0.791 (6)0.440 (2)0.16 (2)*
H16C0.102 (5)0.590 (5)0.4342 (18)0.098 (12)*
C170.2927 (7)0.8689 (7)0.3950 (2)0.0786 (11)
H17A0.316 (6)0.848 (5)0.446 (2)0.122 (14)*
H17B0.433 (7)0.837 (5)0.359 (2)0.144 (18)*
H17C0.259 (7)1.005 (6)0.392 (3)0.17 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0461 (14)0.0521 (14)0.0426 (13)0.0002 (11)0.0149 (11)0.0024 (10)
N20.079 (2)0.066 (2)0.0423 (15)0.0064 (15)0.0242 (14)0.0021 (13)
N30.061 (2)0.060 (2)0.0397 (13)0.0056 (12)0.0199 (12)0.0030 (11)
O10.107 (2)0.130 (2)0.0473 (13)0.012 (2)0.0175 (13)0.0180 (13)
O20.128 (2)0.141 (2)0.073 (2)0.046 (2)0.063 (2)0.0086 (14)
C10.039 (2)0.041 (2)0.0409 (15)0.0038 (12)0.0117 (12)0.0024 (12)
C20.046 (2)0.043 (2)0.050 (2)0.0074 (13)0.0124 (14)0.0010 (12)
C30.051 (2)0.050 (2)0.042 (2)0.0041 (14)0.0075 (14)0.0047 (13)
C40.055 (2)0.042 (2)0.0351 (15)0.0067 (13)0.0157 (13)0.0042 (12)
C50.047 (2)0.048 (2)0.047 (2)0.0030 (14)0.0164 (14)0.0039 (13)
C60.041 (2)0.047 (2)0.042 (2)0.0023 (13)0.0062 (13)0.0050 (12)
C70.042 (2)0.050 (2)0.041 (2)0.0002 (13)0.0094 (13)0.0010 (12)
C80.048 (2)0.056 (2)0.037 (2)0.0062 (14)0.0094 (14)0.0009 (12)
C90.050 (2)0.049 (2)0.039 (2)0.0003 (14)0.0100 (14)0.0022 (12)
C100.036 (2)0.0402 (15)0.0365 (14)0.0058 (12)0.0091 (12)0.0002 (11)
C110.036 (2)0.048 (2)0.042 (2)0.0027 (13)0.0044 (13)0.0053 (12)
C120.038 (2)0.047 (2)0.044 (2)0.0065 (13)0.0115 (13)0.0040 (12)
C130.044 (2)0.0368 (15)0.043 (2)0.0057 (12)0.0125 (13)0.0003 (11)
C140.045 (2)0.045 (2)0.039 (2)0.0027 (13)0.0070 (13)0.0065 (12)
C150.036 (2)0.050 (2)0.047 (2)0.0062 (13)0.0132 (13)0.0039 (12)
C160.094 (3)0.096 (3)0.039 (2)0.026 (3)0.015 (2)0.010 (2)
C170.082 (3)0.114 (4)0.049 (2)0.027 (2)0.033 (2)0.002 (2)
Geometric parameters (Å, º) top
N1—C71.274 (3)C8—C91.333 (4)
N1—C11.409 (3)C8—H80.95 (3)
N2—O11.208 (3)C9—C101.459 (3)
N2—O21.211 (3)C9—H90.91 (3)
N2—C41.469 (3)C10—C151.392 (3)
N3—C131.372 (3)C10—C111.394 (3)
N3—C171.443 (4)C11—C121.375 (3)
N3—C161.457 (4)C11—H110.95 (2)
C1—C21.387 (3)C12—C131.401 (3)
C1—C61.394 (3)C12—H120.95 (2)
C2—C31.377 (4)C13—C141.408 (3)
C2—H20.93 (2)C14—C151.370 (4)
C3—C41.377 (3)C14—H140.98 (2)
C3—H30.99 (2)C15—H150.95 (2)
C4—C51.378 (3)C16—H16A0.96 (3)
C5—C61.366 (3)C16—H16B0.98 (4)
C5—H50.95 (2)C16—H16C0.98 (4)
C6—H60.97 (2)C17—H17A0.92 (4)
C7—C81.439 (4)C17—H17B0.99 (4)
C7—H71.02 (2)C17—H17C1.01 (4)
C7—N1—C1120.1 (2)C6—C5—C4118.1 (3)
O1—N2—O2122.6 (3)C5—C6—C1121.6 (3)
O1—N2—C4118.8 (3)N1—C7—C8121.6 (3)
O2—N2—C4118.6 (3)C9—C8—C7124.1 (3)
C13—N3—C17120.5 (3)C8—C9—C10126.4 (3)
C13—N3—C16120.4 (3)C15—C10—C11116.8 (2)
C17—N3—C16117.0 (3)C15—C10—C9122.8 (3)
C2—C1—C6118.7 (2)C11—C10—C9120.3 (3)
C2—C1—N1124.1 (2)C12—C11—C10122.1 (3)
C6—C1—N1117.1 (2)C11—C12—C13121.1 (3)
C3—C2—C1120.6 (3)N3—C13—C12122.3 (2)
C4—C3—C2118.7 (3)N3—C13—C14121.0 (2)
C3—C4—C5122.3 (2)C12—C13—C14116.7 (2)
C3—C4—N2119.1 (3)C15—C14—C13121.5 (3)
C5—C4—N2118.6 (3)C14—C15—C10121.8 (3)
C7—N1—C1—C237.3 (4)C7—C8—C9—C10175.0 (2)
C7—N1—C1—C6146.2 (2)C8—C9—C10—C1516.0 (4)
C6—C1—C2—C31.4 (4)C8—C9—C10—C11161.7 (3)
N1—C1—C2—C3175.1 (3)C15—C10—C11—C120.8 (4)
C1—C2—C3—C40.8 (4)C9—C10—C11—C12177.0 (2)
C2—C3—C4—C50.4 (4)C10—C11—C12—C131.8 (4)
C2—C3—C4—N2178.2 (2)C17—N3—C13—C127.8 (4)
O1—N2—C4—C30.2 (4)C16—N3—C13—C12171.0 (3)
O2—N2—C4—C3178.6 (3)C17—N3—C13—C14173.3 (3)
O1—N2—C4—C5178.5 (3)C16—N3—C13—C1410.2 (4)
O2—N2—C4—C50.2 (4)C11—C12—C13—N3177.4 (2)
C3—C4—C5—C61.0 (4)C11—C12—C13—C141.5 (3)
N2—C4—C5—C6177.6 (2)N3—C13—C14—C15178.7 (2)
C4—C5—C6—C10.4 (4)C12—C13—C14—C150.3 (4)
C2—C1—C6—C50.8 (4)C13—C14—C15—C100.7 (4)
N1—C1—C6—C5175.9 (2)C11—C10—C15—C140.4 (4)
C1—N1—C7—C8178.6 (2)C9—C10—C15—C14178.2 (3)
N1—C7—C8—C9169.7 (3)
(3b) N-{(E,2E)-3-[4-(dimethylamino)phenyl]-2-propenylidene}-2-methyl- −4-nitroaniline top
Crystal data top
C18H19N3O2F(000) = 328
Mr = 309.36Dx = 1.260 Mg m3
Triclinic, P1Melting point: 175(1) K
a = 8.438 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.609 (2) ÅCell parameters from 24 reflections
c = 10.546 (2) Åθ = 10–11°
α = 72.95 (3)°µ = 0.08 mm1
β = 86.13 (3)°T = 295 K
γ = 89.81 (3)°Plate, yellow
V = 815.5 (3) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.086
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 010
θ/2θ scansk = 1111
3073 measured reflectionsl = 1212
2858 independent reflections2 standard reflections every 98 reflections
1393 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.201Calculated w = 1/[σ2(Fo2) + (0.1556P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2779 reflectionsΔρmax = 0.24 e Å3
211 parametersΔρmin = 0.21 e Å3
0 restraints
Crystal data top
C18H19N3O2γ = 89.81 (3)°
Mr = 309.36V = 815.5 (3) Å3
Triclinic, P1Z = 2
a = 8.438 (2) ÅMo Kα radiation
b = 9.609 (2) ŵ = 0.08 mm1
c = 10.546 (2) ÅT = 295 K
α = 72.95 (3)°0.40 × 0.20 × 0.20 mm
β = 86.13 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.086
3073 measured reflections2 standard reflections every 98 reflections
2858 independent reflections intensity decay: 5%
1393 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2779 reflectionsΔρmin = 0.21 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 79 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6735 (4)0.1821 (3)0.0962 (3)0.0633 (9)
N21.2668 (4)0.3062 (4)0.3050 (5)0.0792 (12)
N30.2696 (4)0.2255 (3)0.3330 (4)0.0743 (10)
O11.3629 (4)0.3717 (4)0.2290 (4)0.1051 (12)
O21.2919 (4)0.2646 (4)0.4252 (4)0.121 (2)
C10.8196 (4)0.2226 (3)0.1455 (4)0.0540 (10)
C20.9322 (4)0.2949 (4)0.0634 (4)0.0610 (10)
H20.9096 (4)0.3246 (4)0.0282 (4)0.073*
C31.0777 (5)0.3233 (4)0.1159 (5)0.0648 (11)
H31.1533 (5)0.3736 (4)0.0605 (5)0.078*
C41.1102 (4)0.2772 (3)0.2498 (4)0.0581 (10)
C50.9985 (5)0.2072 (4)0.3343 (4)0.0620 (11)
H51.0216 (5)0.1804 (4)0.4258 (4)0.074*
C60.8523 (4)0.1768 (3)0.2828 (4)0.0576 (10)
C70.5892 (4)0.2733 (4)0.0033 (4)0.0613 (10)
H70.6245 (4)0.3681 (4)0.0292 (4)0.074*
C80.4441 (4)0.2343 (4)0.0515 (4)0.0626 (11)
H80.4132 (4)0.1379 (4)0.0207 (4)0.075*
C90.3485 (4)0.3265 (4)0.1444 (4)0.0614 (10)
H90.3851 (4)0.4207 (4)0.1778 (4)0.074*
C100.1954 (4)0.2970 (3)0.1988 (4)0.0530 (9)
C110.1011 (4)0.4073 (3)0.2855 (4)0.0597 (10)
H110.1430 (4)0.5000 (3)0.3142 (4)0.072*
C120.0487 (4)0.3866 (4)0.3304 (4)0.0617 (11)
H120.1071 (4)0.4651 (4)0.3867 (4)0.074*
C130.1180 (4)0.2466 (4)0.2928 (4)0.0578 (10)
C140.0221 (5)0.1347 (3)0.2080 (4)0.0641 (11)
H140.0625 (5)0.0413 (3)0.1804 (4)0.077*
C150.1275 (5)0.1578 (4)0.1650 (4)0.0648 (11)
H150.1877 (5)0.0791 (4)0.1112 (4)0.078*
C160.3465 (5)0.0888 (5)0.2782 (5)0.0867 (14)
H16A0.4537 (13)0.0943 (13)0.316 (3)0.130*
H16B0.347 (4)0.0687 (18)0.1835 (7)0.130*
H16C0.290 (2)0.0123 (7)0.298 (3)0.130*
C170.3698 (5)0.3452 (5)0.4134 (5)0.0846 (14)
H17A0.4717 (13)0.3089 (7)0.434 (3)0.127*
H17B0.3212 (18)0.391 (2)0.4946 (13)0.127*
H17C0.383 (3)0.4147 (17)0.3654 (12)0.127*
C180.7321 (5)0.0946 (5)0.3736 (5)0.0869 (14)
H18A0.692 (3)0.016 (2)0.342 (2)0.130*
H18B0.646 (2)0.1591 (10)0.375 (3)0.130*
H18C0.7812 (12)0.056 (3)0.4619 (9)0.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.056 (2)0.044 (2)0.084 (2)0.0060 (14)0.018 (2)0.015 (2)
N20.069 (2)0.038 (2)0.124 (4)0.003 (2)0.028 (2)0.021 (2)
N30.063 (2)0.045 (2)0.109 (3)0.001 (2)0.025 (2)0.020 (2)
O10.070 (2)0.095 (2)0.150 (3)0.024 (2)0.001 (2)0.038 (2)
O20.109 (3)0.097 (3)0.127 (3)0.027 (2)0.061 (2)0.001 (2)
C10.055 (2)0.031 (2)0.074 (3)0.009 (2)0.012 (2)0.016 (2)
C20.060 (2)0.046 (2)0.074 (3)0.007 (2)0.007 (2)0.017 (2)
C30.057 (2)0.043 (2)0.094 (3)0.001 (2)0.000 (2)0.020 (2)
C40.056 (2)0.028 (2)0.088 (3)0.006 (2)0.017 (2)0.018 (2)
C50.074 (3)0.030 (2)0.077 (3)0.007 (2)0.016 (2)0.013 (2)
C60.057 (2)0.031 (2)0.080 (3)0.006 (2)0.011 (2)0.012 (2)
C70.059 (2)0.041 (2)0.080 (3)0.005 (2)0.006 (2)0.014 (2)
C80.056 (2)0.044 (2)0.081 (3)0.003 (2)0.012 (2)0.010 (2)
C90.059 (2)0.044 (2)0.077 (3)0.005 (2)0.004 (2)0.015 (2)
C100.058 (2)0.034 (2)0.066 (2)0.0082 (15)0.008 (2)0.016 (2)
C110.063 (2)0.033 (2)0.071 (2)0.000 (2)0.010 (2)0.000 (2)
C120.065 (2)0.031 (2)0.078 (3)0.011 (2)0.017 (2)0.003 (2)
C130.063 (2)0.037 (2)0.073 (3)0.005 (2)0.012 (2)0.019 (2)
C140.077 (3)0.025 (2)0.085 (3)0.003 (2)0.016 (2)0.012 (2)
C150.074 (3)0.027 (2)0.088 (3)0.011 (2)0.021 (2)0.015 (2)
C160.075 (3)0.061 (3)0.129 (4)0.017 (2)0.000 (3)0.036 (3)
C170.066 (3)0.071 (3)0.107 (3)0.008 (2)0.027 (2)0.019 (2)
C180.078 (3)0.075 (3)0.097 (3)0.006 (2)0.006 (3)0.011 (2)
Geometric parameters (Å, º) top
N1—C71.281 (4)C4—C51.375 (5)
N1—C11.404 (4)C5—C61.379 (5)
N2—O21.215 (5)C6—C181.501 (6)
N2—O11.219 (5)C7—C81.415 (5)
N2—C41.468 (5)C8—C91.336 (5)
N3—C131.354 (4)C9—C101.439 (5)
N3—C161.443 (5)C10—C111.390 (5)
N3—C171.447 (5)C10—C151.409 (5)
C1—C21.374 (5)C11—C121.354 (5)
C1—C61.392 (5)C12—C131.422 (5)
C2—C31.373 (5)C13—C141.398 (5)
C3—C41.359 (6)C14—C151.352 (5)
C7—N1—C1120.8 (3)C5—C6—C1118.7 (4)
O2—N2—O1123.9 (4)C5—C6—C18120.3 (4)
O2—N2—C4117.4 (4)C1—C6—C18121.0 (3)
O1—N2—C4118.7 (4)N1—C7—C8122.0 (3)
C13—N3—C16121.0 (3)C9—C8—C7124.5 (3)
C13—N3—C17121.5 (3)C8—C9—C10127.6 (3)
C16—N3—C17116.6 (3)C11—C10—C15115.2 (3)
C2—C1—C6120.4 (3)C11—C10—C9121.4 (3)
C2—C1—N1122.3 (4)C15—C10—C9123.3 (3)
C6—C1—N1117.1 (3)C12—C11—C10123.4 (3)
C3—C2—C1120.3 (4)C11—C12—C13121.0 (3)
C4—C3—C2119.3 (4)N3—C13—C14122.6 (3)
C3—C4—C5121.5 (4)N3—C13—C12121.6 (3)
C3—C4—N2119.0 (4)C14—C13—C12115.8 (3)
C5—C4—N2119.5 (4)C15—C14—C13122.1 (3)
C4—C5—C6119.7 (4)C14—C15—C10122.4 (3)
C7—N1—C1—C247.6 (5)C1—N1—C7—C8177.8 (3)
C7—N1—C1—C6137.2 (4)N1—C7—C8—C9177.0 (4)
C6—C1—C2—C30.3 (5)C7—C8—C9—C10176.0 (4)
N1—C1—C2—C3175.5 (3)C8—C9—C10—C11173.3 (4)
C1—C2—C3—C41.1 (5)C8—C9—C10—C154.1 (6)
C2—C3—C4—C52.4 (5)C15—C10—C11—C123.2 (6)
C2—C3—C4—N2179.2 (3)C9—C10—C11—C12174.4 (4)
O2—N2—C4—C3179.5 (4)C10—C11—C12—C131.5 (6)
O1—N2—C4—C30.4 (5)C16—N3—C13—C147.0 (6)
O2—N2—C4—C50.9 (5)C17—N3—C13—C14175.8 (4)
O1—N2—C4—C5178.1 (3)C16—N3—C13—C12170.4 (4)
C3—C4—C5—C62.9 (5)C17—N3—C13—C121.6 (6)
N2—C4—C5—C6178.6 (3)C11—C12—C13—N3177.5 (4)
C4—C5—C6—C12.1 (5)C11—C12—C13—C140.0 (6)
C4—C5—C6—C18177.3 (3)N3—C13—C14—C15177.8 (4)
C2—C1—C6—C50.9 (5)C12—C13—C14—C150.3 (6)
N1—C1—C6—C5176.2 (3)C13—C14—C15—C102.2 (6)
C2—C1—C6—C18178.5 (3)C11—C10—C15—C143.5 (6)
N1—C1—C6—C183.2 (5)C9—C10—C15—C14174.1 (4)

Experimental details

(1a)(2a)(1b)(2b)
Crystal data
Chemical formulaC16H14N2O3C16H14N2O3C17H17N3O2C17H17N3O2
Mr282.29282.29295.34295.34
Crystal system, space groupMonoclinic, P21/nOrthorhombic, PbcaTriclinic, P1Triclinic, P1
Temperature (K)100298295298
a, b, c (Å)15.7883 (8), 3.9239 (2), 22.6063 (11)10.413 (2), 7.5990 (15), 36.010 (7)6.7910 (14), 10.204 (2), 12.185 (2)6.1650 (12), 7.2730 (15), 17.158 (3)
α, β, γ (°)90, 105.767 (1), 9090, 90, 90113.20 (3), 98.97 (3), 95.53 (3)90.70 (3), 100.10 (3), 91.37 (3)
V3)1347.80 (12)2849.4 (10)754.9 (3)757.1 (3)
Z4822
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.090.090.09
Crystal size (mm)0.3 × 0.1 × 0.10.60 × 0.40 × 0.300.60 × 0.30 × 0.300.40 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Enraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14296, 3938, 2603 3579, 3400, 1593 2899, 2650, 1255 4620, 4007, 1534
Rint0.0630.0440.0470.031
(sin θ/λ)max1)0.7040.6600.5940.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.126, 0.89 0.050, 0.106, 1.02 0.040, 0.094, 0.99 0.062, 0.107, 0.99
No. of reflections3925334625953955
No. of parameters246247201267
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedH-atom parameters constrainedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.220.13, 0.150.11, 0.140.16, 0.17


(3b)
Crystal data
Chemical formulaC18H19N3O2
Mr309.36
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.438 (2), 9.609 (2), 10.546 (2)
α, β, γ (°)72.95 (3), 86.13 (3), 89.81 (3)
V3)815.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3073, 2858, 1393
Rint0.086
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.201, 1.01
No. of reflections2779
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: SMART (Siemens, 1994), CAD-4 Software (Enraf-Nonius, 1989), SMART, CAD-4 Software, SHELXTL-Plus (Sheldrick, 1994), PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL, SHELXTL-Plus.

Comparison of molecular geometry parameters and characteristics of planarity (Å,°) for molecules (1a), (2a), (1 b), (2 b) and (3 b) top
Parameter(1a)(2a)(1 b)(2 b)(3 b)
N1—C71.286 (2)1.266 (3)1.261 (2)1.274 (3)1.281 (4)
N1—C11.409 (2)1.411 (3)1.413 (2)1.409 (3)1.404 (4)
C7—C81.441 (2)1.450 (3)1.423 (3)1.439 (4)1.415 (5)
C8—C91.348 (2)1.328 (3)1.337 (3)1.333 (4)1.336 (5)
C9—C101.459 (2)1.462 (3)1.429 (3)1.459 (3)1.439 (5)
C10—C111.405 (2)1.391 (3)1.396 (3)1.394 (3)1.390 (5)
C11—C121.376 (2)1.370 (3)1.366 (3)1.375 (3)1.354 (5)
C12—C131.401 (2)1.379 (3)1.397 (3)1.401 (3)1.422 (5)
C13—C141.394 (2)1.384 (3)1.404 (3)1.408 (3)1.398 (5)
C14—C151.389 (2)1.378 (3)1.366 (3)1.370 (4)1.352 (5)
C10—C151.400 (2)1.386 (3)1.394 (3)1.392 (3)1.409 (5)
C7—N1—C1—C2a23.5 (2)-40.2 (4)4.9 (3)-37.3 (4)-47.6 (5)
C7—N1—C1—C2b29.1-38.630.6-36.3-41.5
C8—C9—C10—C15a-14.2 (2)7.7 (4)4.0 (4)-16.0 (4)-4.1 (6)
C8—C9—C10—C15b-19.510.0-14.1-15.30.7
RMSc0.10000.2850.0760.4370.382
Maximum_deviationsd0.214 (1)-0.548 (3)0.135 (2)0.700 (2)-0.647 (3)
a according to X-ray data b according to AM1 calculations c for non-H atoms excluding substituents (–NO2, –CH3, –NMe2) d a maximum deviation from the molecular plane is observed for the N1 atom for (1a) and for the C5 atom for the other compounds.
Calculated values of β (10−51 C m3 V−2) for compounds (1a)–(4 b) top
Parameter(1a)(2a)(3a)(4a)(1 b)(2 b)(3 b)(4 b)
/b77 (1)107 (6)101 (6)143 (6)134 (4)173 (11)172 (11)217 (19)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds