Download citation
Download citation
link to html
In the title compound, C20H26N3+·I-, the acridinium moiety shows mirror symmetry about the central C-N vector. The fused tricyclic system is only approximately planar and the geometry is affected by the presence of both di­methyl­amino groups and the propyl substitution at the central N atom. The propyl chain adopts an extended trans conformation and the plane through the chain C atoms is perpendicular to the mean plane through the rings. The I- ion is involved in short-range hydrogen-bonding interactions with two centrosymmetrically related cations via three activated acridinium C atoms. Stacks of acridinium cations propagate through the crystal along the c direction. The ring overlap is partial, but the di­methyl­amino groups also participate in the stacking.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101013774/bm1459sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013774/bm1459Isup2.hkl
Contains datablock I

CCDC reference: 175105

Comment top

Cationic dyes such as acridine derivatives are of biological interest because of their ability to interact with genetic material, causing mutagenic effects. In particular, these planar chromophores bind to DNA by intercalation between subsequent base pairs (Lerman, 1961; Karle et al., 1980; Nandi et al., 1990), thereby interfering with the replication process. The DNA-dye association is also favoured by interactions between the cations and phosphate groups. It is well known that these dyes self-associate, both in aqueous solution and in the solid state, through interaction between the π-electrons of their aromatic systems, showing different stacking modes and overlap extensions (Mattia et al., 1984; Costantino et al., 1984; Sivaraman et al., 1994, 1996). Crystal structure determinations of acridine derivatives can therefore usefully increase our knowledge of the association modes, and also give information about the aggregation and intercalation mechanisms in solution. While the association phenomena in solution can be observed by many spectrophotometric techniques (absorption and fluorescence spectra, NMR etc.) or thermodynamic determinations, these methods permit only a qualitative interpretation of the phenomena without differentiating between the alternative association models. Furthermore, in the biomedical field, their structural similarity with some antibiotics makes these dyes useful models for the study of the binding mechanisms and effectiveness of therapeutic agents. For these reasons, the structural analysis of the title compound, (I), was undertaken. \sch

Fig. 1 shows a view of (I) approximately normal to the ring plane. All molecular geometry parameters lie within the expected ranges (Kuroda & Shinomiya, 1992; Lutz & Spek, 1998). The acridinium system shows mirror symmetry about the C9—N10 line (Jones & Neidle, 1975; Mattia et al., 1984, 1995) and the corresponding bond lengths and angles in the two halves agree to within 2σ for distances and 3σ for angles.

The bonding geometry at N10 is planar and the sum of subtended angles is 360.0 (5)°. The larger value for C11—N10—C14 [122.3 (3)°] compared with N10—C11—C13 [118.4 (4)°] and N10—C14—C12 [118.2 (3)°] is typical of other pyridine systems with substituted nitrogen (Kuroda & Shinomiya, 1992; Lutz & Spek, 1998; Foces-Foces et al., 1999, and references therein). By comparison with related compounds lacking substituents at C3 and C6 (Baker et al., 1999), it is clear that the presence of the 3,6-dimethylamino groups causes variations in the distances within the rings: single-bond character is slightly but significantly increased for C2—C3 and C3—C4, and in the equivalent pair C6—C7 and C5—C6 (Table 1), while there is shortening of C1—C2 and C4—C11, and of the corresponding C7—C8 and C5—C14 lengths, indicative of increased double-bond character.

Overall, the fused tricyclic system is somewhat puckered, but the two outer rings are each individually planar within experimental error and their best planes form a dihedral angle of 4.1 (8)°. The central ring is, by contrast, only approximately planar, with atoms N10 and C14 showing the greatest deviations from the ring plane, by 0.029 (3) and -0.025 (4) Å, respectively. The N10-propyl chain adopts an extended trans conformation and the plane through the chain C atoms is perpendicular to that of the ring system [dihedral angle 92.4 (3)°]. The I- ion is approximately coplanar with the acridinium system (displacement only 0.132 Å) and lies within 3.1 Å of the H atoms bonded to the acridinium C atoms C7, C8i and C9i [symmetry code: (i) -x, -y, -z]. Such distances are within the sum of the accepted van der Waals radii for H (1.2 Å) and I (2.15 Å) (Whuler et al., 1980). Moreover, these H atoms are well positioned to make C—H···I interactions between I- and these activated C atoms. The pertinent geometry, and the symmetry codes of the donors, are given in Table 2.

Acridinium cations related by glide operations partly overlap to form stacks extending along the c direction. Within each stack, the superposition involves different outer rings of subsequent acridinium units, with a perpendicular separation of 3.63 Å. Furthermore, the central rings partially overlap with the dimethylamino groups and thereby also contribute to the stacked structure (Fig. 2). The crystal packing is characterized, along the b direction, by an alternation of stacks of acridinium cations having b = ~1/4, and regions near b = 0 containing both I- anions and propyl chains, the latter facing each other across inversion centres at distances of 4.188 (8) Å. The shortest I···I distance is 5.8189 (4) Å.

As in the structures of many acridine compounds, the stacking interactions in (I) have a prevailing role in stabilizing the crystalline environment, the size and geometry of overlaps being affected by the substituent and counterion in each structure. In this case, the overlap is less extensive than in other structures, where the stacking involves only dimers (Mattia et al., 1984; Kuroda & Shinomiya, 1992). Furthermore, the stacking distance here is appreciably longer, by about 0.15 Å, than the average value in related unsubstituted structures. Both these features can be attributed to the bulkiness of the dimethylamino groups involved in the stacking, the presence of the N10-propyl chain and finally the lack of specific interactions between the iodide and N10.

Related literature top

For related literature, see: Baker et al. (1999); Costantino et al. (1984); Foces-Foces, Llamas-Saiz, Lorente, Golubev & Limbach (1999); Jones & Neidle (1975); Karle et al. (1980); Kuroda & Shinomiya (1992); Lerman (1961); Lutz & Spek (1998); Mattia et al. (1984, 1995); Nandi et al. (1990); Sivaraman et al. (1994, 1996); Vitagliano et al. (1978); Whuler et al. (1980).

Experimental top

Compound (I) was obtained as a secondary product during the synthetic process for obtaining bifunctional dyes (`dimer' molecules) formed by two acridinium orange moieties joined through a propyl chain. The synthesis method was as described by Vitagliano et al. (1978). Single crystals of (I) were obtained by slow evaporation from methanol.

Refinement top

All H atoms were clearly observed in difference Fourier maps and included in the final refinements with expected geometry, with Biso(H) = Beq(parent atom). Aromatic and alkyl H atoms were constrained to lie 1.00 and 1.02 Å, respectively, from their parent atoms. The H atoms of the methyl groups attached to sp2 N atoms were refined as part of rigid groups allowed to rotate about the local N—C bond.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Enraf-Nonius, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SDP; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1983, 1995).

Figures top
[Figure 1] Fig. 1. A perspective view of the asymmetric unit of (I) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Stacking of three subsequent acridinium bases. The shading indicates the extension of overlap.
3,6-Bis(dimethylamino)-10-propylacridinium iodide top
Crystal data top
C20H26N3+·IF(000) = 880.0
Mr = 435.35Dx = 1.509 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.002 (6) Åθ = 20–25°
b = 17.208 (3) ŵ = 13.16 mm1
c = 11.157 (7) ÅT = 293 K
β = 114.86 (2)°Rectangular prism, red
V = 1916.5 (17) Å30.33 × 0.20 × 0.15 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
3493 reflections with I > 2.5σ(I)
Radiation source: monochromatedRint = 0.000
Graphite monochromatorθmax = 74.9°
ω/2θ scans as suggested by peak–shape analysish = 1312
Absorption correction: ψ-scan
(North et al., 1968)
k = 021
Tmin = 0.594, Tmax = 0.999l = 013
3933 measured reflections4 standard reflections every 300 min
3933 independent reflections intensity decay: 3%
Refinement top
Refinement on F221 parameters
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + (0.012Fo)2 + 1.3] (Killean & Lawrence, 1969)
wR(F2) = 0.043(Δ/σ)max = 0.003
S = 0.96Δρmax = 0.79 e Å3
3493 reflectionsΔρmin = 0.83 e Å3
Crystal data top
C20H26N3+·IV = 1916.5 (17) Å3
Mr = 435.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.002 (6) ŵ = 13.16 mm1
b = 17.208 (3) ÅT = 293 K
c = 11.157 (7) Å0.33 × 0.20 × 0.15 mm
β = 114.86 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3493 reflections with I > 2.5σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.594, Tmax = 0.9994 standard reflections every 300 min
3933 measured reflections intensity decay: 3%
3933 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041221 parameters
wR(F2) = 0.043H-atom parameters constrained
S = 0.96Δρmax = 0.79 e Å3
3493 reflectionsΔρmin = 0.83 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.21919 (3)0.05160 (2)0.24322 (3)0.06081 (9)
C10.3873 (4)0.1536 (3)0.6337 (4)0.0561 (16)
C20.4626 (4)0.1907 (3)0.7477 (4)0.0561 (14)
C30.4553 (4)0.2728 (3)0.7562 (4)0.0490 (12)
C40.3699 (4)0.3146 (3)0.6442 (4)0.0469 (13)
C50.0571 (4)0.3215 (2)0.1824 (4)0.0461 (13)
C60.0184 (4)0.2833 (3)0.0629 (4)0.0452 (12)
C70.0160 (4)0.2006 (3)0.0595 (4)0.0498 (14)
C80.0607 (4)0.1603 (3)0.1685 (4)0.0489 (14)
C90.2202 (4)0.1562 (3)0.4024 (4)0.0502 (15)
N100.2058 (3)0.3165 (2)0.4158 (3)0.0424 (10)
C110.2917 (3)0.2762 (2)0.5272 (4)0.0432 (13)
C120.1392 (4)0.1973 (2)0.2910 (4)0.0452 (12)
C130.2983 (4)0.1941 (2)0.5195 (4)0.0467 (13)
C140.1336 (3)0.2800 (2)0.2960 (4)0.0427 (12)
N150.5306 (3)0.3101 (2)0.8708 (3)0.0542 (12)
N160.0918 (4)0.3245 (2)0.0476 (3)0.0558 (13)
C170.6112 (4)0.2672 (3)0.9919 (4)0.0620 (16)
C180.5306 (5)0.3943 (3)0.8792 (5)0.0652 (17)
C190.0888 (6)0.4087 (3)0.0472 (5)0.074 (2)
C200.1690 (4)0.2878 (3)0.1767 (4)0.0574 (14)
C210.1916 (4)0.4026 (3)0.4260 (4)0.0516 (15)
C220.2935 (5)0.4477 (3)0.3930 (5)0.0650 (17)
C230.2887 (7)0.5333 (3)0.4171 (6)0.088 (2)
H10.394580.095820.629500.0561*
H20.523550.160210.826310.0561*
H40.365290.372520.648580.0469*
H50.055860.379560.185830.0461*
H70.071420.172360.024200.0498*
H80.062680.102370.163350.0489*
H90.222730.098210.398690.0502*
H17A0.681930.235180.977490.0620*
H17B0.550680.231131.015040.0620*
H17C0.657090.305501.067350.0620*
H18A0.565650.417340.815560.0652*
H18B0.435320.413470.854550.0652*
H18C0.590710.411200.973250.0652*
H19A0.156380.429060.136170.0735*
H19B0.004860.427270.031000.0735*
H19C0.112840.429100.026000.0735*
H20A0.107730.277920.222890.0575*
H20B0.245360.323620.233520.0575*
H20C0.207450.236250.163250.0575*
H21A0.205800.415870.520070.0516*
H21B0.097420.418760.361720.0516*
H22A0.272990.439050.295970.0650*
H22B0.387210.427470.450680.0650*
H23A0.357820.561300.394060.0883*
H23B0.195460.554090.359370.0883*
H23C0.309680.542510.514080.0883*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.05897 (14)0.04630 (13)0.05540 (14)0.00190 (13)0.00275 (12)0.00087 (13)
C10.053 (2)0.050 (2)0.057 (2)0.0118 (18)0.0152 (16)0.0076 (19)
C20.0474 (19)0.063 (3)0.050 (2)0.0093 (19)0.0132 (16)0.010 (2)
C30.0333 (15)0.064 (2)0.0461 (18)0.0070 (17)0.0127 (13)0.0053 (18)
C40.0342 (16)0.054 (2)0.0441 (18)0.0045 (16)0.0081 (13)0.0009 (17)
C50.0407 (17)0.046 (2)0.0442 (18)0.0032 (16)0.0108 (13)0.0048 (16)
C60.0349 (15)0.054 (2)0.0425 (17)0.0039 (16)0.0116 (12)0.0067 (16)
C70.0381 (16)0.054 (2)0.0513 (19)0.0057 (17)0.0129 (14)0.0130 (18)
C80.0412 (16)0.049 (2)0.0528 (19)0.0028 (16)0.0163 (14)0.0085 (17)
C90.0432 (17)0.046 (2)0.059 (2)0.0012 (16)0.0191 (14)0.0003 (18)
N100.0317 (12)0.0452 (16)0.0422 (14)0.0012 (13)0.0077 (11)0.0031 (13)
C110.0321 (14)0.052 (2)0.0430 (17)0.0048 (15)0.0130 (12)0.0036 (16)
C120.0338 (15)0.047 (2)0.0525 (18)0.0018 (15)0.0156 (13)0.0062 (17)
C130.0362 (16)0.050 (2)0.0495 (18)0.0020 (16)0.0134 (13)0.0005 (17)
C140.0288 (14)0.049 (2)0.0465 (17)0.0007 (14)0.0118 (12)0.0055 (16)
N150.0388 (15)0.067 (2)0.0407 (16)0.0066 (16)0.0009 (13)0.0031 (16)
N160.0575 (18)0.0545 (19)0.0412 (16)0.0065 (17)0.0068 (14)0.0060 (15)
C170.047 (2)0.083 (3)0.042 (2)0.008 (2)0.0036 (17)0.009 (2)
C180.054 (2)0.068 (3)0.053 (2)0.003 (2)0.002 (2)0.006 (2)
C190.087 (3)0.058 (3)0.050 (2)0.001 (3)0.004 (2)0.002 (2)
C200.049 (2)0.069 (3)0.0383 (19)0.006 (2)0.0036 (16)0.006 (2)
C210.0457 (19)0.052 (2)0.0458 (19)0.0018 (18)0.0084 (15)0.0059 (18)
C220.066 (2)0.061 (3)0.062 (2)0.002 (2)0.0211 (18)0.002 (2)
C230.121 (4)0.061 (3)0.079 (3)0.012 (3)0.039 (3)0.001 (3)
Geometric parameters (Å, º) top
C1—C21.351 (6)N15—C171.466 (5)
C1—C131.421 (5)N15—C181.452 (7)
C1—H11.000N16—C191.449 (6)
C2—C31.421 (7)N16—C201.472 (5)
C2—H21.000C17—H17A1.020
C3—C41.406 (5)C17—H17B1.020
C3—N151.358 (5)C17—H17C1.020
C4—C111.391 (5)C18—H18A1.020
C4—H41.000C18—H18B1.020
C5—C61.403 (5)C18—H18C1.020
C5—C141.389 (5)C19—H19A1.020
C5—H51.000C19—H19B1.020
C6—C71.425 (6)C19—H19C1.020
C6—N161.356 (5)C20—H20A1.020
C7—C81.345 (5)C20—H20B1.020
C7—H71.000C20—H20C1.020
C8—C121.423 (5)C21—C221.530 (8)
C8—H81.000C21—H21A1.020
C9—C121.382 (5)C21—H21B1.020
C9—C131.388 (5)C22—C231.501 (8)
C9—H91.000C22—H22A1.020
N10—C111.391 (4)C22—H22B1.020
N10—C141.386 (5)C23—H23A1.020
N10—C211.498 (6)C23—H23B1.020
C11—C131.419 (6)C23—H23C1.020
C12—C141.427 (6)
C1···C32.403 (6)C6···C122.822 (5)
C1···C42.783 (6)C6···C142.430 (5)
C1···C92.460 (5)C6···C192.442 (7)
C1···C112.432 (6)C6···C202.485 (5)
C2···C42.435 (6)C7···C122.425 (5)
C2···C112.803 (5)C7···C142.809 (5)
C2···C132.425 (5)C7···N162.415 (5)
C2···N152.410 (6)C7···C202.881 (6)
C2···C172.844 (6)C8···C92.459 (5)
C3···C112.430 (5)C8···C142.438 (6)
C3···C132.820 (5)C9···N102.771 (5)
C3···C172.464 (5)C9···C112.428 (6)
C3···C182.447 (7)C9···C142.429 (6)
C4···N102.426 (5)N10···C122.415 (5)
C4···C132.436 (6)N10···C132.414 (5)
C4···N152.401 (5)N10···C222.509 (6)
C4···C182.825 (6)C11···C122.809 (5)
C4···C212.838 (5)C11···C142.432 (5)
C5···C72.436 (6)C11···C212.486 (6)
C5···C82.779 (6)C12···C132.412 (5)
C5···N102.426 (5)C13···C142.809 (5)
C5···C122.436 (6)C14···C212.487 (6)
C5···N162.395 (5)C17···C182.492 (7)
C5···C192.816 (6)C19···C202.476 (7)
C5···C212.854 (6)C21···C232.509 (8)
C6···C82.401 (6)
C2—C1—C13122.1 (4)C6—N16—C19121.0 (4)
C2—C1—H1119.0C6—N16—C20122.9 (3)
C13—C1—H1119.0C19—N16—C20115.8 (4)
C1—C2—C3120.2 (4)N15—C17—H17A109.5
C1—C2—H2119.9N15—C17—H17B109.5
C3—C2—H2119.9N15—C17—H17C109.5
C2—C3—C4119.0 (4)H17A—C17—H17B109.5
C2—C3—N15120.3 (4)H17A—C17—H17C109.5
C4—C3—N15120.7 (4)H17B—C17—H17C109.5
C3—C4—C11120.6 (4)N15—C18—H18A109.5
C3—C4—H4119.7N15—C18—H18B109.5
C11—C4—H4119.7N15—C18—H18C109.5
C6—C5—C14121.1 (4)H18A—C18—H18B109.5
C6—C5—H5119.5H18A—C18—H18C109.5
C14—C5—H5119.5H18B—C18—H18C109.5
C5—C6—C7118.9 (4)N16—C19—H19A109.5
C5—C6—N16120.5 (3)N16—C19—H19B109.5
C7—C6—N16120.6 (4)N16—C19—H19C109.5
C6—C7—C8120.1 (4)H19A—C19—H19B109.5
C6—C7—H7119.9H19A—C19—H19C109.5
C8—C7—H7119.9H19B—C19—H19C109.5
C7—C8—C12122.4 (4)N16—C20—H20A109.5
C7—C8—H8118.8N16—C20—H20B109.5
C12—C8—H8118.8N16—C20—H20C109.5
C12—C9—C13121.2 (4)H20A—C20—H20B109.5
C12—C9—H9119.4H20A—C20—H20C109.5
C13—C9—H9119.4H20B—C20—H20C109.5
C11—N10—C14122.3 (3)N10—C21—C22111.9 (4)
C11—N10—C21118.7 (3)N10—C21—H21A108.9
C14—N10—C21119.1 (3)N10—C21—H21B108.9
C4—C11—N10121.4 (3)C22—C21—H21A108.9
C4—C11—C13120.2 (4)C22—C21—H21B108.9
N10—C11—C13118.4 (4)H21A—C21—H21B109.5
C8—C12—C9122.5 (4)C21—C22—C23111.7 (4)
C8—C12—C14117.7 (4)C21—C22—H22A108.9
C9—C12—C14119.8 (4)C21—C22—H22B108.9
C1—C13—C9122.3 (4)C23—C22—H22A108.9
C1—C13—C11117.9 (4)C23—C22—H22B108.9
C9—C13—C11119.8 (4)H22A—C22—H22B109.5
C5—C14—N10121.9 (3)C22—C23—H23A109.5
C5—C14—C12119.8 (4)C22—C23—H23B109.5
N10—C14—C12118.3 (3)C22—C23—H23C109.5
C3—N15—C17121.5 (3)H23A—C23—H23B109.5
C3—N15—C18121.1 (4)H23A—C23—H23C109.5
C17—N15—C18117.4 (4)H23B—C23—H23C109.5
C13—C1—C2—C30.6 (7)C11—N10—C14—C5174.3 (4)
C13—C1—C2—H2179.4C11—N10—C14—C125.7 (6)
H1—C1—C2—C3179.4C21—N10—C14—C55.4 (6)
H1—C1—C2—H20.6C21—N10—C14—C12174.6 (4)
C2—C1—C13—C9179.6 (4)C11—N10—C21—C2289.9 (5)
C2—C1—C13—C111.1 (7)C11—N10—C21—H21A30.5
H1—C1—C13—C90.4C11—N10—C21—H21B149.8
H1—C1—C13—C11178.9C14—N10—C21—C2289.8 (5)
C1—C2—C3—C40.6 (7)C14—N10—C21—H21A149.8
C1—C2—C3—N15179.8 (4)C14—N10—C21—H21B30.6
H2—C2—C3—C4179.4C4—C11—C13—C10.6 (6)
H2—C2—C3—N150.2C4—C11—C13—C9179.8 (4)
C2—C3—C4—C111.1 (6)N10—C11—C13—C1179.4 (4)
C2—C3—C4—H4178.9N10—C11—C13—C90.2 (6)
N15—C3—C4—C11179.2 (4)C8—C12—C14—C52.3 (6)
N15—C3—C4—H40.8C8—C12—C14—N10177.7 (4)
C2—C3—N15—C175.8 (6)C9—C12—C14—C5176.9 (4)
C2—C3—N15—C18176.3 (4)C9—C12—C14—N103.1 (6)
C4—C3—N15—C17174.6 (4)C3—N15—C17—H17A62.2
C4—C3—N15—C183.4 (6)C3—N15—C17—H17B57.8
C3—C4—C11—N10179.4 (4)C3—N15—C17—H17C177.8
C3—C4—C11—C130.5 (6)C18—N15—C17—H17A119.8
H4—C4—C11—N100.6C18—N15—C17—H17B120.2
H4—C4—C11—C13179.5C18—N15—C17—H17C0.2
C14—C5—C6—C70.2 (6)C3—N15—C18—H18A61.6
C14—C5—C6—N16179.5 (4)C3—N15—C18—H18B58.4
H5—C5—C6—C7179.8C3—N15—C18—H18C178.4
H5—C5—C6—N160.5C17—N15—C18—H18A120.4
C6—C5—C14—N10178.1 (4)C17—N15—C18—H18B119.6
C6—C5—C14—C121.9 (6)C17—N15—C18—H18C0.4
H5—C5—C14—N101.9C6—N16—C19—H19A174.9
H5—C5—C14—C12178.1C6—N16—C19—H19B65.1
C5—C6—C7—C81.9 (6)C6—N16—C19—H19C54.9
C5—C6—C7—H7178.1C20—N16—C19—H19A10.3
N16—C6—C7—C8177.8 (4)C20—N16—C19—H19B109.7
N16—C6—C7—H72.2C20—N16—C19—H19C130.3
C5—C6—N16—C193.3 (6)C6—N16—C20—H20A84.5
C5—C6—N16—C20177.7 (4)C6—N16—C20—H20B155.5
C7—C6—N16—C19176.4 (4)C6—N16—C20—H20C35.5
C7—C6—N16—C201.9 (6)C19—N16—C20—H20A90.2
C6—C7—C8—C121.5 (7)C19—N16—C20—H20B29.8
C6—C7—C8—H8178.5C19—N16—C20—H20C149.8
H7—C7—C8—C12178.5N10—C21—C22—C23174.0 (4)
H7—C7—C8—H81.5N10—C21—C22—H22A65.7
C7—C8—C12—C9178.6 (4)N10—C21—C22—H22B53.7
C7—C8—C12—C140.6 (6)H21A—C21—C22—C2353.6
H8—C8—C12—C91.4H21A—C21—C22—H22A174.0
H8—C8—C12—C14179.4H21A—C21—C22—H22B66.7
C13—C9—C12—C8178.3 (4)H21B—C21—C22—C2365.6
C13—C9—C12—C140.9 (6)H21B—C21—C22—H22A54.7
H9—C9—C12—C81.7H21B—C21—C22—H22B174.0
H9—C9—C12—C14179.1C21—C22—C23—H23A180.0
C12—C9—C13—C1176.9 (4)C21—C22—C23—H23B60.0
C12—C9—C13—C112.3 (6)C21—C22—C23—H23C60.0
H9—C9—C13—C13.1H22A—C22—C23—H23A59.7
H9—C9—C13—C11177.7H22A—C22—C23—H23B60.3
C14—N10—C11—C4175.7 (4)H22A—C22—C23—H23C179.7
C14—N10—C11—C134.3 (6)H22B—C22—C23—H23A59.7
C21—N10—C11—C44.0 (6)H22B—C22—C23—H23B179.7
C21—N10—C11—C13176.0 (4)H22B—C22—C23—H23C60.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···I1.003.104.077 (4)167
C8—H8···Ii1.003.083.977 (4)150
C9—H9···Ii1.003.103.991 (4)149
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC20H26N3+·I
Mr435.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.002 (6), 17.208 (3), 11.157 (7)
β (°) 114.86 (2)
V3)1916.5 (17)
Z4
Radiation typeCu Kα
µ (mm1)13.16
Crystal size (mm)0.33 × 0.20 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.594, 0.999
No. of measured, independent and
observed [I > 2.5σ(I)] reflections
3933, 3933, 3493
Rint0.000
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.043, 0.96
No. of reflections3493
No. of parameters221
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.83

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SDP (Enraf-Nonius, 1985), SIR92 (Altomare et al., 1993), SDP, ORTEP-3 (Farrugia, 1997), PARST (Nardelli, 1983, 1995).

Selected geometric parameters (Å, º) top
C1—C21.351 (6)C7—C81.345 (5)
C1—C131.421 (5)C8—C121.423 (5)
C2—C31.421 (7)C9—C121.382 (5)
C3—C41.406 (5)C9—C131.388 (5)
C4—C111.391 (5)N10—C111.391 (4)
C5—C61.403 (5)N10—C141.386 (5)
C5—C141.389 (5)C11—C131.419 (6)
C6—C71.425 (6)C12—C141.427 (6)
C11—N10—C14122.3 (3)C17—N15—C18117.4 (4)
C11—N10—C21118.7 (3)C6—N16—C19121.0 (4)
C14—N10—C21119.1 (3)C6—N16—C20122.9 (3)
N10—C11—C13118.4 (4)C19—N16—C20115.8 (4)
N10—C14—C12118.3 (3)N10—C21—C22111.9 (4)
C3—N15—C17121.5 (3)C21—C22—C23111.7 (4)
C3—N15—C18121.1 (4)
C2—C3—N15—C18176.3 (4)C11—N10—C21—C2289.9 (5)
C5—C6—N16—C20177.7 (4)N10—C21—C22—C23174.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···I1.003.0974.077 (4)167
C8—H8···Ii1.003.0803.977 (4)150
C9—H9···Ii1.003.0983.991 (4)149
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds