Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101012653/bm1461sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101012653/bm1461Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101012653/bm1461IIsup3.hkl |
CCDC references: 175060; 175061
For the preparation of compound (I), anhydrous CuBr2 (0.22 g, 1.0 mmol) and HpztBu (0.18 g, 1.5 mmol) were stirred into a 4:1 CH2Cl2–acetone mixture (50 ml) at room temperature for 2 h. The solvent was then removed in vacuo and the residue redissolved in a minimum volume of CH2Cl2, yielding a dark-green solution and some insoluble material which was removed by filtration. Slow diffusion of pentane into the filtrate gave a brown microcrystalline product which was removed by filtration. Slow evaporation of the remaining solution yielded green crystals of (I). Analysis, found: C 35.7, H 5.1, N 12.0%; calculated for C14H24Br2CuN4: C 35.6, H 5.1, N 11.9%. For the preparation of compound (I), anhydrous CuBr2 (0.22 g, 1.0 mmol) and HpztBu (0.37 g, 3.0 mmol) were reacted in CH3OH (50 ml) at room temperature for 30 min. The solvent was then removed in vacuo and the residue redissolved in a minimum volume of CH2Cl2, yielding a dark-green solution and some insoluble material which was removed by filtration. Slow diffusion of pentane into the solution gave a mixture of deep-blue well formed crystals of (II), together with a turquoise by-product which was removed manually. Analysis, found: C 46.8, H 6.7, N 15.7%; calculated for C28H48Br2CuN8: C 46.7, H 6.7, N 15.6%.
The Flack parameter (Flack, 1983) for (I) was determined using Friedel 2070 pairs. One tert-butyl group in (I) was found to be disordered during refinement. Three equally occupied disorder orientations were modelled: C16A–C19A, C16B–C19B and C16C–C19C. All C—C bonds within the disordered group were restrained to 1.53 (2) Å, and non-bonded 1,3-C···C contacts within a given disorder orientation to 2.50 (2) Å. All wholly occupied non-H atoms were refined anisotropically. All H atoms were placed in calculated positions and refined using a riding model, with fixed C—H distances of 0.95 Å for Csp2—H bonds and 0.98 Å for methyl C—H bonds and an N—H distance of 0.88 Å. No disorder was detected in (II). All C-bound H atoms were placed in calculated positions and refined using a riding model, with fixed C—H distances of 0.95 Å for Csp2—H bonds and 0.98 Å for methyl C—H bonds. The N-bound H atoms H3 and H12 were located in a difference Fourier map and were allowed to refine freely.
For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.
[CuBr2(C7H12N2)2] | Dx = 1.632 Mg m−3 |
Mr = 471.73 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 37366 reflections |
a = 17.4947 (2) Å | θ = 4.1–27.5° |
b = 9.8730 (1) Å | µ = 5.30 mm−1 |
c = 11.1165 (1) Å | T = 150 K |
V = 1920.10 (3) Å3 | Column, green |
Z = 4 | 0.48 × 0.18 × 0.14 mm |
F(000) = 940 |
Nonius KappaCCD diffractometer | 4373 independent reflections |
Radiation source: fine-focus sealed tube | 4268 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 4.1° |
area–detector scans | h = −22→22 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −12→12 |
Tmin = 0.185, Tmax = 0.524 | l = −14→14 |
37366 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6531P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4373 reflections | Δρmax = 0.25 e Å−3 |
203 parameters | Δρmin = −0.47 e Å−3 |
31 restraints | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.006 (8) |
[CuBr2(C7H12N2)2] | V = 1920.10 (3) Å3 |
Mr = 471.73 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 17.4947 (2) Å | µ = 5.30 mm−1 |
b = 9.8730 (1) Å | T = 150 K |
c = 11.1165 (1) Å | 0.48 × 0.18 × 0.14 mm |
Nonius KappaCCD diffractometer | 4373 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 4268 reflections with I > 2σ(I) |
Tmin = 0.185, Tmax = 0.524 | Rint = 0.056 |
37366 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.060 | Δρmax = 0.25 e Å−3 |
S = 1.06 | Δρmin = −0.47 e Å−3 |
4373 reflections | Absolute structure: Flack (1983) |
203 parameters | Absolute structure parameter: −0.006 (8) |
31 restraints |
Experimental. Detector set at 30 mm from sample with different 2theta offsets 1 degree phi exposures for chi=0 degree settings 1 degree omega exposures for chi=90 degree settings |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. For both compounds, structure solution was achieved by direct methods using SHELXS97 (Sheldrick, 1990), while least squares refinement used SHELXL97 (Sheldrick, 1997). One tert-butyl group is disordered over three equally occupied orientations, C16A—C19A, C16B—C19B and C16C—C19C. All C—C bonds within the disordered moiety were restrained to 1.53 (2) Å, and non-bonded 1,3-C···C contacts within a given disorder orientation to 2.50 (2) Å. All wholly occuped non-H atoms were refined anisotropically. All H atoms were placed in calculated positions and refined using a riding model, at fixed C—H distances of 0.95 Å for the sp2 C—H bonds and 0.98 Å for the methyl C—H bonds, or N—H = 0.88 Å. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.291298 (15) | 0.78148 (3) | 0.69315 (3) | 0.02836 (7) | |
N2 | 0.21062 (12) | 0.6480 (2) | 0.7179 (2) | 0.0318 (5) | |
N3 | 0.21436 (12) | 0.5639 (2) | 0.8136 (2) | 0.0360 (5) | |
H3 | 0.2530 | 0.5625 | 0.8643 | 0.043* | |
C4 | 0.15308 (14) | 0.4826 (2) | 0.8236 (3) | 0.0330 (5) | |
C5 | 0.10668 (14) | 0.5156 (3) | 0.7265 (3) | 0.0374 (6) | |
H5 | 0.0588 | 0.4761 | 0.7067 | 0.045* | |
C6 | 0.14435 (15) | 0.6187 (3) | 0.6638 (3) | 0.0354 (5) | |
H6 | 0.1256 | 0.6616 | 0.5932 | 0.042* | |
C7 | 0.14560 (16) | 0.3788 (3) | 0.9217 (3) | 0.0389 (6) | |
C8 | 0.21347 (18) | 0.3871 (4) | 1.0082 (4) | 0.0515 (8) | |
H8A | 0.2079 | 0.3183 | 1.0711 | 0.062* | |
H8B | 0.2150 | 0.4772 | 1.0452 | 0.062* | |
H8C | 0.2610 | 0.3712 | 0.9638 | 0.062* | |
C9 | 0.07223 (17) | 0.4072 (4) | 0.9930 (3) | 0.0517 (7) | |
H9A | 0.0668 | 0.3399 | 1.0572 | 0.062* | |
H9B | 0.0281 | 0.4017 | 0.9390 | 0.062* | |
H9C | 0.0749 | 0.4980 | 1.0283 | 0.062* | |
C10 | 0.1408 (3) | 0.2378 (3) | 0.8645 (4) | 0.0612 (10) | |
H10A | 0.1363 | 0.1692 | 0.9278 | 0.073* | |
H10B | 0.1871 | 0.2208 | 0.8172 | 0.073* | |
H10C | 0.0960 | 0.2332 | 0.8118 | 0.073* | |
N11 | 0.34337 (11) | 0.9503 (2) | 0.73202 (18) | 0.0292 (4) | |
N12 | 0.39656 (11) | 0.9593 (2) | 0.82064 (19) | 0.0283 (4) | |
H12 | 0.4177 | 0.8884 | 0.8553 | 0.034* | |
C13 | 0.41341 (14) | 1.0869 (2) | 0.8495 (2) | 0.0302 (5) | |
C14 | 0.36924 (18) | 1.1676 (3) | 0.7743 (3) | 0.0407 (6) | |
H14 | 0.3680 | 1.2637 | 0.7716 | 0.049* | |
C15 | 0.32725 (16) | 1.0785 (3) | 0.7038 (3) | 0.0382 (6) | |
H15 | 0.2918 | 1.1053 | 0.6437 | 0.046* | |
C16A | 0.4689 (9) | 1.1279 (16) | 0.9470 (14) | 0.037 (8)* | 0.33333 |
C17A | 0.4928 (7) | 0.9985 (11) | 1.0186 (10) | 0.041 (3)* | 0.33333 |
H17A | 0.4483 | 0.9622 | 1.0612 | 0.061* | 0.33333 |
H17B | 0.5327 | 1.0221 | 1.0768 | 0.061* | 0.33333 |
H17C | 0.5124 | 0.9302 | 0.9626 | 0.061* | 0.33333 |
C18A | 0.5414 (6) | 1.1814 (13) | 0.8817 (12) | 0.052 (3)* | 0.33333 |
H18A | 0.5643 | 1.1080 | 0.8344 | 0.079* | 0.33333 |
H18B | 0.5784 | 1.2137 | 0.9413 | 0.079* | 0.33333 |
H18C | 0.5273 | 1.2561 | 0.8281 | 0.079* | 0.33333 |
C19A | 0.4339 (9) | 1.2289 (14) | 1.0317 (13) | 0.065 (6)* | 0.33333 |
H19A | 0.4183 | 1.3096 | 0.9867 | 0.097* | 0.33333 |
H19B | 0.4714 | 1.2544 | 1.0930 | 0.097* | 0.33333 |
H19C | 0.3891 | 1.1885 | 1.0706 | 0.097* | 0.33333 |
C16B | 0.4765 (7) | 1.1257 (12) | 0.9346 (11) | 0.032 (4)* | 0.33333 |
C17B | 0.4739 (8) | 1.0297 (12) | 1.0426 (10) | 0.044 (3)* | 0.33333 |
H17D | 0.4216 | 1.0252 | 1.0738 | 0.066* | 0.33333 |
H17E | 0.5083 | 1.0632 | 1.1056 | 0.066* | 0.33333 |
H17F | 0.4903 | 0.9390 | 1.0174 | 0.066* | 0.33333 |
C18B | 0.5525 (5) | 1.1297 (11) | 0.8700 (11) | 0.037 (3)* | 0.33333 |
H18D | 0.5629 | 1.0409 | 0.8341 | 0.055* | 0.33333 |
H18E | 0.5931 | 1.1522 | 0.9273 | 0.055* | 0.33333 |
H18F | 0.5508 | 1.1985 | 0.8065 | 0.055* | 0.33333 |
C19B | 0.4580 (6) | 1.2696 (10) | 0.9858 (11) | 0.049 (3)* | 0.33333 |
H19D | 0.4590 | 1.3360 | 0.9203 | 0.074* | 0.33333 |
H19E | 0.4962 | 1.2941 | 1.0465 | 0.074* | 0.33333 |
H19F | 0.4071 | 1.2688 | 1.0227 | 0.074* | 0.33333 |
C16C | 0.4693 (7) | 1.1147 (13) | 0.9533 (11) | 0.030 (5)* | 0.33333 |
C17C | 0.4749 (8) | 0.9973 (12) | 1.0404 (10) | 0.033 (3)* | 0.33333 |
H17G | 0.5106 | 1.0204 | 1.1053 | 0.050* | 0.33333 |
H17H | 0.4935 | 0.9168 | 0.9978 | 0.050* | 0.33333 |
H17I | 0.4244 | 0.9785 | 1.0745 | 0.050* | 0.33333 |
C18C | 0.5494 (6) | 1.1437 (13) | 0.9003 (12) | 0.039 (3)* | 0.33333 |
H18G | 0.5475 | 1.2269 | 0.8522 | 0.059* | 0.33333 |
H18H | 0.5651 | 1.0678 | 0.8492 | 0.059* | 0.33333 |
H18I | 0.5862 | 1.1549 | 0.9659 | 0.059* | 0.33333 |
C19C | 0.4435 (7) | 1.2486 (11) | 1.0142 (11) | 0.028 (2)* | 0.33333 |
H19G | 0.4373 | 1.3191 | 0.9529 | 0.042* | 0.33333 |
H19H | 0.4822 | 1.2771 | 1.0727 | 0.042* | 0.33333 |
H19I | 0.3947 | 1.2341 | 1.0554 | 0.042* | 0.33333 |
Br20 | 0.391135 (14) | 0.63896 (2) | 0.78137 (3) | 0.03398 (7) | |
Br21 | 0.243097 (17) | 0.85958 (3) | 0.50569 (3) | 0.04032 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02511 (13) | 0.03068 (13) | 0.02930 (13) | −0.00248 (10) | −0.00408 (12) | 0.00108 (12) |
N2 | 0.0290 (10) | 0.0337 (10) | 0.0327 (12) | −0.0030 (7) | −0.0058 (9) | 0.0012 (8) |
N3 | 0.0312 (10) | 0.0373 (11) | 0.0395 (12) | −0.0091 (8) | −0.0092 (9) | 0.0045 (9) |
C4 | 0.0285 (11) | 0.0291 (11) | 0.0415 (14) | −0.0050 (9) | −0.0015 (10) | −0.0036 (10) |
C5 | 0.0288 (12) | 0.0382 (13) | 0.0451 (15) | −0.0064 (10) | −0.0080 (10) | −0.0040 (12) |
C6 | 0.0289 (12) | 0.0375 (12) | 0.0399 (14) | −0.0019 (10) | −0.0066 (10) | −0.0032 (11) |
C7 | 0.0354 (13) | 0.0357 (13) | 0.0457 (15) | −0.0095 (10) | −0.0050 (13) | 0.0014 (12) |
C8 | 0.0435 (16) | 0.0523 (17) | 0.059 (2) | −0.0136 (13) | −0.0127 (16) | 0.0166 (17) |
C9 | 0.0412 (15) | 0.073 (2) | 0.0408 (16) | −0.0105 (15) | −0.0026 (13) | 0.0050 (16) |
C10 | 0.086 (3) | 0.0321 (14) | 0.066 (2) | −0.0157 (16) | 0.0002 (19) | 0.0008 (14) |
N11 | 0.0276 (9) | 0.0349 (10) | 0.0252 (9) | −0.0023 (8) | −0.0046 (8) | 0.0027 (8) |
N12 | 0.0259 (9) | 0.0314 (10) | 0.0277 (10) | −0.0027 (7) | −0.0024 (8) | 0.0019 (8) |
C13 | 0.0297 (11) | 0.0326 (11) | 0.0281 (11) | −0.0045 (9) | 0.0011 (10) | −0.0005 (10) |
C14 | 0.0510 (15) | 0.0292 (11) | 0.0420 (15) | −0.0020 (11) | −0.0066 (14) | 0.0040 (12) |
C15 | 0.0452 (14) | 0.0327 (12) | 0.0368 (13) | 0.0000 (10) | −0.0107 (12) | 0.0055 (11) |
Br20 | 0.02716 (12) | 0.03378 (12) | 0.04101 (15) | 0.00362 (8) | −0.00407 (10) | −0.00189 (11) |
Br21 | 0.03937 (14) | 0.04965 (15) | 0.03193 (14) | −0.00396 (10) | −0.01137 (12) | 0.00457 (11) |
Cu1—N2 | 1.951 (2) | C16A—C19A | 1.502 (15) |
Cu1—N11 | 1.948 (2) | C16A—C18A | 1.554 (15) |
Cu1—Br20 | 2.4479 (4) | C16A—C17A | 1.562 (15) |
Cu1—Br21 | 2.3766 (4) | C17A—H17A | 0.9800 |
N2—C6 | 1.338 (3) | C17A—H17B | 0.9800 |
N2—N3 | 1.351 (3) | C17A—H17C | 0.9800 |
N3—C4 | 1.344 (3) | C18A—H18A | 0.9800 |
N3—H3 | 0.8800 | C18A—H18B | 0.9800 |
C4—C5 | 1.389 (4) | C18A—H18C | 0.9800 |
C4—C7 | 1.503 (4) | C19A—H19A | 0.9800 |
C5—C6 | 1.398 (4) | C19A—H19B | 0.9800 |
C5—H5 | 0.9500 | C19A—H19C | 0.9800 |
C6—H6 | 0.9500 | C16B—C18B | 1.512 (13) |
C7—C8 | 1.530 (4) | C16B—C17B | 1.530 (13) |
C7—C10 | 1.533 (4) | C16B—C19B | 1.565 (13) |
C7—C9 | 1.534 (4) | C17B—H17D | 0.9800 |
C8—H8A | 0.9800 | C17B—H17E | 0.9800 |
C8—H8B | 0.9800 | C17B—H17F | 0.9800 |
C8—H8C | 0.9800 | C18B—H18D | 0.9800 |
C9—H9A | 0.9800 | C18B—H18E | 0.9800 |
C9—H9B | 0.9800 | C18B—H18F | 0.9800 |
C9—H9C | 0.9800 | C19B—H19D | 0.9800 |
C10—H10A | 0.9800 | C19B—H19E | 0.9800 |
C10—H10B | 0.9800 | C19B—H19F | 0.9800 |
C10—H10C | 0.9800 | C16C—C17C | 1.514 (14) |
N11—C15 | 1.334 (3) | C16C—C18C | 1.547 (13) |
N11—N12 | 1.358 (3) | C16C—C19C | 1.552 (13) |
N12—C13 | 1.333 (3) | C17C—H17G | 0.9800 |
N12—H12 | 0.8800 | C17C—H17H | 0.9800 |
C13—C14 | 1.390 (4) | C17C—H17I | 0.9800 |
C13—C16B | 1.503 (11) | C18C—H18G | 0.9800 |
C13—C16A | 1.510 (14) | C18C—H18H | 0.9800 |
C13—C16C | 1.537 (12) | C18C—H18I | 0.9800 |
C14—C15 | 1.388 (4) | C19C—H19G | 0.9800 |
C14—H14 | 0.9500 | C19C—H19H | 0.9800 |
C15—H15 | 0.9500 | C19C—H19I | 0.9800 |
N2—Cu1—N11 | 152.26 (9) | C13—C16A—C17A | 108.5 (10) |
N2—Cu1—Br20 | 94.09 (6) | C18A—C16A—C17A | 107.3 (11) |
N2—Cu1—Br21 | 94.96 (7) | C16A—C17A—H17A | 109.5 |
N11—Cu1—Br20 | 93.97 (6) | C16A—C17A—H17B | 109.5 |
N11—Cu1—Br21 | 94.75 (6) | H17A—C17A—H17B | 109.5 |
Br20—Cu1—Br21 | 142.27 (2) | C16A—C17A—H17C | 109.5 |
C6—N2—N3 | 105.3 (2) | H17A—C17A—H17C | 109.5 |
C6—N2—Cu1 | 135.20 (19) | H17B—C17A—H17C | 109.5 |
N3—N2—Cu1 | 119.44 (16) | C16A—C18A—H18A | 109.5 |
C4—N3—N2 | 113.2 (2) | C16A—C18A—H18B | 109.5 |
C4—N3—H3 | 123.4 | H18A—C18A—H18B | 109.5 |
N2—N3—H3 | 123.4 | C16A—C18A—H18C | 109.5 |
N3—C4—C5 | 105.2 (2) | H18A—C18A—H18C | 109.5 |
N3—C4—C7 | 122.5 (2) | H18B—C18A—H18C | 109.5 |
C5—C4—C7 | 132.3 (2) | C16A—C19A—H19A | 109.5 |
C4—C5—C6 | 106.4 (2) | C16A—C19A—H19B | 109.5 |
C4—C5—H5 | 126.8 | H19A—C19A—H19B | 109.5 |
C6—C5—H5 | 126.8 | C16A—C19A—H19C | 109.5 |
N2—C6—C5 | 110.0 (2) | H19A—C19A—H19C | 109.5 |
N2—C6—H6 | 125.0 | H19B—C19A—H19C | 109.5 |
C5—C6—H6 | 125.0 | C13—C16B—C18B | 110.7 (9) |
C4—C7—C8 | 110.6 (2) | C13—C16B—C17B | 108.3 (8) |
C4—C7—C10 | 108.8 (3) | C18B—C16B—C17B | 114.5 (10) |
C8—C7—C10 | 110.6 (3) | C13—C16B—C19B | 107.9 (8) |
C4—C7—C9 | 108.9 (3) | C18B—C16B—C19B | 109.4 (9) |
C8—C7—C9 | 108.4 (3) | C17B—C16B—C19B | 105.7 (9) |
C10—C7—C9 | 109.5 (3) | C16B—C17B—H17D | 109.5 |
C7—C8—H8A | 109.5 | C16B—C17B—H17E | 109.5 |
C7—C8—H8B | 109.5 | H17D—C17B—H17E | 109.5 |
H8A—C8—H8B | 109.5 | C16B—C17B—H17F | 109.5 |
C7—C8—H8C | 109.5 | H17D—C17B—H17F | 109.5 |
H8A—C8—H8C | 109.5 | H17E—C17B—H17F | 109.5 |
H8B—C8—H8C | 109.5 | C16B—C18B—H18D | 109.5 |
C7—C9—H9A | 109.5 | C16B—C18B—H18E | 109.5 |
C7—C9—H9B | 109.5 | H18D—C18B—H18E | 109.5 |
H9A—C9—H9B | 109.5 | C16B—C18B—H18F | 109.5 |
C7—C9—H9C | 109.5 | H18D—C18B—H18F | 109.5 |
H9A—C9—H9C | 109.5 | H18E—C18B—H18F | 109.5 |
H9B—C9—H9C | 109.5 | C16B—C19B—H19D | 109.5 |
C7—C10—H10A | 109.5 | C16B—C19B—H19E | 109.5 |
C7—C10—H10B | 109.5 | H19D—C19B—H19E | 109.5 |
H10A—C10—H10B | 109.5 | C16B—C19B—H19F | 109.5 |
C7—C10—H10C | 109.5 | H19D—C19B—H19F | 109.5 |
H10A—C10—H10C | 109.5 | H19E—C19B—H19F | 109.5 |
H10B—C10—H10C | 109.5 | C17C—C16C—C13 | 112.6 (9) |
C15—N11—N12 | 104.7 (2) | C17C—C16C—C18C | 109.0 (10) |
C15—N11—Cu1 | 131.37 (18) | C13—C16C—C18C | 108.8 (9) |
N12—N11—Cu1 | 122.50 (16) | C17C—C16C—C19C | 113.1 (10) |
C13—N12—N11 | 112.8 (2) | C13—C16C—C19C | 107.1 (8) |
C13—N12—H12 | 123.6 | C18C—C16C—C19C | 105.8 (10) |
N11—N12—H12 | 123.6 | C16C—C17C—H17G | 109.5 |
N12—C13—C14 | 105.9 (2) | C16C—C17C—H17H | 109.5 |
N12—C13—C16B | 123.7 (5) | H17G—C17C—H17H | 109.5 |
C14—C13—C16B | 129.9 (5) | C16C—C17C—H17I | 109.5 |
N12—C13—C16A | 124.6 (6) | H17G—C17C—H17I | 109.5 |
C14—C13—C16A | 129.5 (6) | H17H—C17C—H17I | 109.5 |
N12—C13—C16C | 119.4 (5) | C16C—C18C—H18G | 109.5 |
C14—C13—C16C | 134.7 (6) | C16C—C18C—H18H | 109.5 |
C15—C14—C13 | 105.7 (2) | H18G—C18C—H18H | 109.5 |
C15—C14—H14 | 127.1 | C16C—C18C—H18I | 109.5 |
C13—C14—H14 | 127.1 | H18G—C18C—H18I | 109.5 |
N11—C15—C14 | 110.9 (2) | H18H—C18C—H18I | 109.5 |
N11—C15—H15 | 124.5 | C16C—C19C—H19G | 109.5 |
C14—C15—H15 | 124.5 | C16C—C19C—H19H | 109.5 |
C19A—C16A—C13 | 111.4 (11) | H19G—C19C—H19H | 109.5 |
C19A—C16A—C18A | 113.6 (12) | C16C—C19C—H19I | 109.5 |
C13—C16A—C18A | 106.3 (10) | H19G—C19C—H19I | 109.5 |
C19A—C16A—C17A | 109.4 (11) | H19H—C19C—H19I | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···Br20 | 0.88 | 2.69 | 3.200 (2) | 118 |
N12—H12···Br20 | 0.88 | 2.64 | 3.194 (2) | 122 |
[CuBr2(C7H12N2)4] | F(000) = 1484 |
Mr = 720.10 | Dx = 1.359 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.5985 (3) Å | Cell parameters from 29739 reflections |
b = 11.9918 (2) Å | θ = 3.7–27.5° |
c = 15.9131 (2) Å | µ = 2.92 mm−1 |
β = 109.8260 (6)° | T = 150 K |
V = 3518.24 (9) Å3 | Rectangular prism, deep blue |
Z = 4 | 0.49 × 0.34 × 0.17 mm |
Nonius KappaCCD diffractometer | 4019 independent reflections |
Radiation source: fine-focus sealed tube | 3655 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.7° |
area–detector scans | h = −25→25 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −15→15 |
Tmin = 0.329, Tmax = 0.637 | l = −20→20 |
29739 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: see text |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0327P)2 + 2.2831P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4019 reflections | Δρmax = 0.26 e Å−3 |
187 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0027 (2) |
[CuBr2(C7H12N2)4] | V = 3518.24 (9) Å3 |
Mr = 720.10 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.5985 (3) Å | µ = 2.92 mm−1 |
b = 11.9918 (2) Å | T = 150 K |
c = 15.9131 (2) Å | 0.49 × 0.34 × 0.17 mm |
β = 109.8260 (6)° |
Nonius KappaCCD diffractometer | 4019 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 3655 reflections with I > 2σ(I) |
Tmin = 0.329, Tmax = 0.637 | Rint = 0.077 |
29739 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.26 e Å−3 |
4019 reflections | Δρmin = −0.44 e Å−3 |
187 parameters |
Experimental. Detector set at 30 mm from sample with different 2theta offsets 1 degree phi exposures for chi=0 degree settings 1 degree omega exposures for chi=90 degree settings |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. For both compounds, structure solution was achieved by direct methods using SHELXS97 (Sheldrick, 1990), while least squares refinement used SHELXL97 (Sheldrick, 1997). No disorder was detected during refinement. All C-bound H atoms were placed in calculated positions and refined using a riding model, at fixed C—H distances of 0.95 Å for the sp2 C—H bonds and 0.98 Å for the methyl C—H bonds. All N-bound H atoms were located in the difference map and allowed to refine freely. All non-H atoms were refined anisotropically, and no restraints were applied. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.2500 | 0.2500 | 0.0000 | 0.03027 (10) | |
N2 | 0.35090 (8) | 0.31214 (12) | 0.05144 (9) | 0.0314 (3) | |
N3 | 0.41078 (8) | 0.24737 (13) | 0.06997 (10) | 0.0303 (3) | |
H3 | 0.4028 (11) | 0.1775 (18) | 0.0576 (13) | 0.031 (5)* | |
C4 | 0.47233 (9) | 0.30750 (15) | 0.09398 (12) | 0.0331 (4) | |
C5 | 0.45117 (11) | 0.41710 (17) | 0.09161 (17) | 0.0488 (5) | |
H5 | 0.4812 | 0.4794 | 0.1052 | 0.059* | |
C6 | 0.37558 (11) | 0.41606 (17) | 0.06466 (15) | 0.0457 (5) | |
H6 | 0.3466 | 0.4793 | 0.0570 | 0.055* | |
C7 | 0.54601 (10) | 0.25549 (16) | 0.11226 (13) | 0.0381 (4) | |
C8 | 0.56461 (15) | 0.2589 (3) | 0.02676 (18) | 0.0686 (8) | |
H8A | 0.6115 | 0.2261 | 0.0376 | 0.082* | |
H8B | 0.5652 | 0.3349 | 0.0081 | 0.082* | |
H8C | 0.5289 | 0.2178 | −0.0192 | 0.082* | |
C9 | 0.60229 (13) | 0.3221 (2) | 0.18558 (18) | 0.0640 (7) | |
H9A | 0.6493 | 0.2893 | 0.1976 | 0.077* | |
H9B | 0.5898 | 0.3210 | 0.2389 | 0.077* | |
H9C | 0.6030 | 0.3978 | 0.1662 | 0.077* | |
C10 | 0.54679 (14) | 0.1342 (2) | 0.1417 (2) | 0.0708 (8) | |
H10A | 0.5943 | 0.1034 | 0.1531 | 0.085* | |
H10B | 0.5120 | 0.0922 | 0.0953 | 0.085* | |
H10C | 0.5346 | 0.1308 | 0.1952 | 0.085* | |
N11 | 0.24815 (8) | 0.20208 (12) | 0.11981 (9) | 0.0303 (3) | |
N12 | 0.20697 (8) | 0.25908 (12) | 0.15857 (10) | 0.0284 (3) | |
H12 | 0.1929 (11) | 0.3200 (18) | 0.1395 (13) | 0.031 (5)* | |
C13 | 0.19824 (9) | 0.20293 (14) | 0.22722 (10) | 0.0282 (3) | |
C14 | 0.23621 (11) | 0.10438 (16) | 0.23377 (12) | 0.0370 (4) | |
H14 | 0.2411 | 0.0475 | 0.2751 | 0.044* | |
C15 | 0.26576 (10) | 0.10787 (16) | 0.16548 (12) | 0.0363 (4) | |
H15 | 0.2940 | 0.0517 | 0.1536 | 0.044* | |
C16 | 0.15555 (10) | 0.24795 (15) | 0.28280 (12) | 0.0346 (4) | |
C17 | 0.11354 (12) | 0.35283 (18) | 0.24082 (14) | 0.0451 (5) | |
H17A | 0.0869 | 0.3796 | 0.2774 | 0.054* | |
H17B | 0.0804 | 0.3356 | 0.1823 | 0.054* | |
H17C | 0.1469 | 0.4093 | 0.2364 | 0.054* | |
C18 | 0.10189 (17) | 0.1578 (2) | 0.2878 (2) | 0.0751 (9) | |
H18A | 0.0738 | 0.1845 | 0.3227 | 0.090* | |
H18B | 0.1280 | 0.0921 | 0.3151 | 0.090* | |
H18C | 0.0701 | 0.1402 | 0.2286 | 0.090* | |
C19 | 0.20784 (15) | 0.2747 (2) | 0.37618 (14) | 0.0625 (7) | |
H19A | 0.1812 | 0.3036 | 0.4120 | 0.075* | |
H19B | 0.2424 | 0.3293 | 0.3721 | 0.075* | |
H19C | 0.2329 | 0.2080 | 0.4032 | 0.075* | |
Br20 | 0.181354 (10) | 0.468494 (13) | 0.023977 (11) | 0.03249 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02651 (16) | 0.04470 (19) | 0.02063 (15) | −0.00107 (12) | 0.00933 (11) | 0.00212 (11) |
N2 | 0.0284 (7) | 0.0351 (7) | 0.0308 (7) | 0.0029 (6) | 0.0102 (6) | −0.0009 (6) |
N3 | 0.0290 (7) | 0.0309 (8) | 0.0314 (7) | 0.0022 (6) | 0.0108 (6) | 0.0003 (6) |
C4 | 0.0300 (8) | 0.0380 (9) | 0.0322 (8) | 0.0014 (7) | 0.0115 (7) | −0.0002 (7) |
C5 | 0.0348 (10) | 0.0371 (10) | 0.0706 (14) | −0.0033 (8) | 0.0131 (9) | −0.0069 (10) |
C6 | 0.0356 (10) | 0.0357 (10) | 0.0624 (13) | 0.0052 (8) | 0.0122 (9) | −0.0059 (9) |
C7 | 0.0307 (9) | 0.0458 (10) | 0.0393 (10) | 0.0065 (8) | 0.0136 (8) | 0.0020 (8) |
C8 | 0.0549 (15) | 0.108 (2) | 0.0508 (14) | 0.0288 (15) | 0.0284 (11) | 0.0071 (14) |
C9 | 0.0361 (11) | 0.0804 (17) | 0.0656 (15) | 0.0069 (11) | 0.0042 (10) | −0.0158 (13) |
C10 | 0.0458 (13) | 0.0585 (14) | 0.111 (2) | 0.0187 (11) | 0.0306 (14) | 0.0262 (15) |
N11 | 0.0327 (7) | 0.0366 (7) | 0.0237 (6) | 0.0043 (6) | 0.0125 (6) | 0.0010 (6) |
N12 | 0.0338 (8) | 0.0285 (7) | 0.0265 (7) | 0.0039 (6) | 0.0148 (6) | 0.0029 (6) |
C13 | 0.0307 (8) | 0.0318 (8) | 0.0231 (7) | −0.0028 (6) | 0.0102 (6) | 0.0002 (6) |
C14 | 0.0502 (11) | 0.0332 (9) | 0.0317 (9) | 0.0072 (8) | 0.0191 (8) | 0.0077 (7) |
C15 | 0.0454 (10) | 0.0367 (9) | 0.0299 (8) | 0.0127 (8) | 0.0166 (7) | 0.0041 (7) |
C16 | 0.0393 (10) | 0.0388 (9) | 0.0319 (9) | 0.0029 (7) | 0.0201 (8) | 0.0026 (7) |
C17 | 0.0479 (11) | 0.0497 (11) | 0.0441 (11) | 0.0141 (9) | 0.0237 (9) | 0.0035 (9) |
C18 | 0.092 (2) | 0.0581 (14) | 0.111 (2) | −0.0127 (14) | 0.082 (2) | −0.0027 (15) |
C19 | 0.0680 (16) | 0.0860 (17) | 0.0318 (10) | 0.0301 (13) | 0.0146 (10) | −0.0101 (11) |
Br20 | 0.04245 (13) | 0.02641 (11) | 0.03100 (11) | 0.00415 (6) | 0.01558 (8) | 0.00061 (6) |
Cu1—N2 | 2.0094 (14) | N11—C15 | 1.324 (2) |
Cu1—N11 | 2.0032 (14) | N11—N12 | 1.355 (2) |
Cu1—Br20 | 3.0280 (2) | N12—C13 | 1.343 (2) |
N2—C6 | 1.328 (3) | N12—H12 | 0.80 (2) |
N2—N3 | 1.354 (2) | C13—C14 | 1.382 (3) |
N3—C4 | 1.345 (2) | C13—C16 | 1.509 (2) |
N3—H3 | 0.86 (2) | C14—C15 | 1.395 (3) |
C4—C5 | 1.375 (3) | C14—H14 | 0.9300 |
C4—C7 | 1.508 (2) | C15—H15 | 0.9300 |
C5—C6 | 1.396 (3) | C16—C19 | 1.526 (3) |
C5—H5 | 0.9300 | C16—C17 | 1.527 (3) |
C6—H6 | 0.9300 | C16—C18 | 1.528 (3) |
C7—C8 | 1.524 (3) | C17—H17A | 0.9600 |
C7—C10 | 1.526 (3) | C17—H17B | 0.9600 |
C7—C9 | 1.531 (3) | C17—H17C | 0.9600 |
C8—H8A | 0.9600 | C18—H18A | 0.9600 |
C8—H8B | 0.9600 | C18—H18B | 0.9600 |
C8—H8C | 0.9600 | C18—H18C | 0.9600 |
C9—H9A | 0.9600 | C19—H19A | 0.9600 |
C9—H9B | 0.9600 | C19—H19B | 0.9600 |
C9—H9C | 0.9600 | C19—H19C | 0.9600 |
C10—H10A | 0.9600 | Br20—H3i | 2.45 (2) |
C10—H10B | 0.9600 | Br20—H12 | 2.51 (2) |
C10—H10C | 0.9600 | ||
N2—Cu1—N11 | 92.96 (6) | C7—C10—H10C | 109.5 |
N2—Cu1—Br20 | 92.62 (4) | H10A—C10—H10C | 109.5 |
N11—Cu1—Br20 | 88.63 (4) | H10B—C10—H10C | 109.5 |
N2—Cu1—N11i | 87.04 (6) | C15—N11—N12 | 105.36 (14) |
N11i—Cu1—Br20 | 91.37 (4) | C15—N11—Cu1 | 132.97 (12) |
N2i—Cu1—Br20 | 87.38 (4) | N12—N11—Cu1 | 119.62 (11) |
N2i—Cu1—N2 | 180 | C13—N12—N11 | 112.17 (14) |
N11i—Cu1—N11 | 180 | C13—N12—H12 | 129.9 (15) |
Br20i—Cu1—Br20 | 180 | N11—N12—H12 | 117.9 (15) |
C6—N2—N3 | 105.17 (14) | N12—C13—C14 | 106.03 (15) |
C6—N2—Cu1 | 131.92 (13) | N12—C13—C16 | 123.14 (15) |
N3—N2—Cu1 | 122.46 (11) | C14—C13—C16 | 130.82 (16) |
C4—N3—N2 | 112.47 (15) | C13—C14—C15 | 105.72 (15) |
C4—N3—H3 | 131.5 (13) | C13—C14—H14 | 127.1 |
N2—N3—H3 | 115.5 (13) | C15—C14—H14 | 127.1 |
N3—C4—C5 | 105.76 (16) | N11—C15—C14 | 110.70 (16) |
N3—C4—C7 | 122.76 (16) | N11—C15—H15 | 124.6 |
C5—C4—C7 | 131.36 (18) | C14—C15—H15 | 124.6 |
C4—C5—C6 | 106.18 (18) | C13—C16—C19 | 108.86 (16) |
C4—C5—H5 | 126.9 | C13—C16—C17 | 111.23 (15) |
C6—C5—H5 | 126.9 | C19—C16—C17 | 109.71 (17) |
N2—C6—C5 | 110.42 (17) | C13—C16—C18 | 107.78 (16) |
N2—C6—H6 | 124.8 | C19—C16—C18 | 110.2 (2) |
C5—C6—H6 | 124.8 | C17—C16—C18 | 109.06 (19) |
C4—C7—C8 | 108.67 (16) | C16—C17—H17A | 109.5 |
C4—C7—C10 | 111.25 (17) | C16—C17—H17B | 109.5 |
C8—C7—C10 | 108.6 (2) | H17A—C17—H17B | 109.5 |
C4—C7—C9 | 109.05 (17) | C16—C17—H17C | 109.5 |
C8—C7—C9 | 109.7 (2) | H17A—C17—H17C | 109.5 |
C10—C7—C9 | 109.5 (2) | H17B—C17—H17C | 109.5 |
C7—C8—H8A | 109.5 | C16—C18—H18A | 109.5 |
C7—C8—H8B | 109.5 | C16—C18—H18B | 109.5 |
H8A—C8—H8B | 109.5 | H18A—C18—H18B | 109.5 |
C7—C8—H8C | 109.5 | C16—C18—H18C | 109.5 |
H8A—C8—H8C | 109.5 | H18A—C18—H18C | 109.5 |
H8B—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
C7—C9—H9A | 109.5 | C16—C19—H19A | 109.5 |
C7—C9—H9B | 109.5 | C16—C19—H19B | 109.5 |
H9A—C9—H9B | 109.5 | H19A—C19—H19B | 109.5 |
C7—C9—H9C | 109.5 | C16—C19—H19C | 109.5 |
H9A—C9—H9C | 109.5 | H19A—C19—H19C | 109.5 |
H9B—C9—H9C | 109.5 | H19B—C19—H19C | 109.5 |
C7—C10—H10A | 109.5 | H3i—Br20—H12 | 76.1 (6) |
C7—C10—H10B | 109.5 | H3i—Br20—Cu1 | 64.1 (5) |
H10A—C10—H10B | 109.5 | H12—Br20—Cu1 | 63.0 (5) |
Symmetry code: (i) −x+1/2, −y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···Br20i | 0.86 (2) | 2.45 (2) | 3.2195 (15) | 148 (2) |
N12—H12···Br20 | 0.80 (2) | 2.51 (2) | 3.2275 (15) | 149 (2) |
Symmetry code: (i) −x+1/2, −y+1/2, −z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [CuBr2(C7H12N2)2] | [CuBr2(C7H12N2)4] |
Mr | 471.73 | 720.10 |
Crystal system, space group | Orthorhombic, Pca21 | Monoclinic, C2/c |
Temperature (K) | 150 | 150 |
a, b, c (Å) | 17.4947 (2), 9.8730 (1), 11.1165 (1) | 19.5985 (3), 11.9918 (2), 15.9131 (2) |
α, β, γ (°) | 90, 90, 90 | 90, 109.8260 (6), 90 |
V (Å3) | 1920.10 (3) | 3518.24 (9) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 5.30 | 2.92 |
Crystal size (mm) | 0.48 × 0.18 × 0.14 | 0.49 × 0.34 × 0.17 |
Data collection | ||
Diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.185, 0.524 | 0.329, 0.637 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 37366, 4373, 4268 | 29739, 4019, 3655 |
Rint | 0.056 | 0.077 |
(sin θ/λ)max (Å−1) | 0.649 | 0.649 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.060, 1.06 | 0.026, 0.070, 1.07 |
No. of reflections | 4373 | 4019 |
No. of parameters | 203 | 187 |
No. of restraints | 31 | 0 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.47 | 0.26, −0.44 |
Absolute structure | Flack (1983) | ? |
Absolute structure parameter | −0.006 (8) | ? |
Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), local program.
Cu1—N2 | 1.951 (2) | Cu1—Br20 | 2.4479 (4) |
Cu1—N11 | 1.948 (2) | Cu1—Br21 | 2.3766 (4) |
N2—Cu1—N11 | 152.26 (9) | N11—Cu1—Br20 | 93.97 (6) |
N2—Cu1—Br20 | 94.09 (6) | N11—Cu1—Br21 | 94.75 (6) |
N2—Cu1—Br21 | 94.96 (7) | Br20—Cu1—Br21 | 142.27 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···Br20 | 0.88 | 2.69 | 3.200 (2) | 118 |
N12—H12···Br20 | 0.88 | 2.64 | 3.194 (2) | 122 |
Cu1—N2 | 2.0094 (14) | Cu1—Br20 | 3.0280 (2) |
Cu1—N11 | 2.0032 (14) | ||
N2—Cu1—N11 | 92.96 (6) | N11—Cu1—Br20 | 88.63 (4) |
N2—Cu1—Br20 | 92.62 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···Br20i | 0.86 (2) | 2.45 (2) | 3.2195 (15) | 148 (2) |
N12—H12···Br20 | 0.80 (2) | 2.51 (2) | 3.2275 (15) | 149 (2) |
Symmetry code: (i) −x+1/2, −y+1/2, −z. |
We have recently discovered that complexation of CuCl2 or CuBr2 by HpztBu [HpztBu is 3(5)-tertbutylpyrazole] in basic MeOH leads to a novel heptacopper aggregate structure, which appears to be templated by N—H···X (X- = Cl-, Br-) hydrogen-bonding interactions to non-coordinated anions (Liu et al., 2001). As a result of a more in-depth study of this system, we have isolated two more adducts of CuBr2 and HpztBu, namely trans-dibromobis(5-tert-butylpyrazole-N2)copper(II), [CuBr2(HpztBu)2], (I), and trans-dibromotetrakis(5-tert-butylpyrazole-N2)copper(II), [CuBr2(HpztBu)4], (II). The Trofimenko nomenclature for substituted pyrazoles is employed throughout this discussion (Trofimenko, 1999).
The asymmetric unit of (I) contains one molecule of the complex lying on a general position. The CuII centre in (I) is four-coordinate, with trans-disposed Br- and HpztBu ligands; the latter are coordinated as the less sterically hindered 5-tert-butylpyrazole tautomer. The two Cu—N bond lengths in the molecule are crystallographically identical. However, the Cu1—Br20 bond is 0.0713 (6) Å longer than Cu1—Br21, which presumably reflects the presence of two hydrogen bonds to Br20 (see below). Although clearly derived from a square plane, the coordination sphere at Cu1 has a significant tetrahedral twist, which can be expressed by the dihedral angle of 45.71 (6)° between the Cu1/N2/Br20 and Cu1/N11/Br21 planes. This angle would be 0° for an ideal square-planar geometry and 90° for a tetrahedron. The N—H groups on each pyrazole ligand form an intramolecular hydrogen bond to Br20, leading to a distorted pyramidal geometry for this atom defined by the angles H3···Br20—Cu1 = 70.0, H12···Br20—Cu1 = 73.4 and H3···Br20···H12 = 108.2°.
Several 2:1 adducts of pyrazole derivatives with copper dihalides have been crystallographically characterized by others. Bis-pyrazole complexes of CuF2 and CuCl2 most commonly adopt dimeric structures in the solid state of general formula [{CuX(µ-X)L2}2] (X- = F-, Cl-; L is a pyrazole derivative: ten Hoedt et al., 1981; Reitmeijer et al., 1984; Keij et al., 1991; Malecka et al., 1998; Chandrasekhar et al., 2000). Two coordination polymers with this stoichiometry (Keij et al., 1988; Malecka et al., 1998) and a number of monomeric [CuCl2L2] structures (Francisco et al., 1980; Watson et al., 1989; Hergold-Brundic et al., 1991; Valle, et al., 1995; Malecka et al., 1998) have also been reported. The only CuBr2 bis-pyrazole adduct whose crystal structure has been previously determined is the mononuclear complex [CuBr2(HpzPh2)2] (HpzPh2 is 3,5-diphenylpyrazole; Murray et al., 1988). Interestingly, this compound exhibits cis-disposed Br- and HpzPh2 ligands in the solid, but otherwise adopts an almost identical coordination geometry to (I).
Compound (II) contains discrete six-coordinate CuII centres, with Cu1 lying on a crystallographic inversion centre. As for (I), the HpztBu ligands in (II) are coordinated in the 5-tert-butylpyrazole tautomer. The four pyrazole N-donor atoms are strictly coplanar and form an almost perfect square plane, although the two unique Cu1—N bond lengths differ by 0.006 (2) Å, which is of borderline crystallographic significance. The axial Cu1—Br20 distance of 3.02801 (16) Å is substantially longer than the sum of the covalent radii of Cu (1.38 Å) and Br (1.14 Å) (Gordon & Ford, 1972), so that this `bond' is probably better considered as a weak electrostatic interaction between the Br- anion and the positively charged void perpendicular to the molecular tetragonal plane. This suggestion is supported by the fact that the Cu1—Br20 `bond' fails the Hirschfeld rigid-bond test (Hirshfeld, 1976) by almost 80 s.u.'s, which implies that there is negligible covalent interaction between these two atoms. Each Br- ligand accepts two hydrogen bonds from cis-disposed pyrazole ligands, forming an approximately pyramidal geometry with the angles H3···Br20—Cu1 = 64.1 (5)°, H12···Br20—Cu1 = 63.0 (5)° and H3···Br20···H12 = and 76.1 (7)°. The crystal structures of two other 4:1 pyrazole–CuII dihalide adducts have been reported previously, namely [CuCl2(Hpz)4] (Mighell et al., 1975; Casellato et al., 2000) and catena-[{CuCl2(µ-dpm)2}n] [dpm is bis(pyrazol-4-yl)methane; Broomhead et al., 1998]. Both of these exhibit an essentially identical coordination geometry to (II) and show the same pattern of N—H···Cl intramolecular hydrogen bonding.