Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Pt(C25H22P2)(C27H26P2)]Br2 or [Pt(dppm)(dppp)]Br2, where dppm is bis­(di­phenyl­phosphino)­methane and dppp is 1,3-bis­(di­phenyl­phosphino)­propane, consists of a discrete [Pt(dppm)(dppp)]2+ cation and two Br- anions at van der Waals distances. This is the first reported platinum(II) complex containing both dppm and dppp ligands. Noticeable features are that the coordination of platinum by the differing dppm and dppp ligands produces a distorted coordination geometry with differing ligand bite angles (and to a lesser extent bond distances), and that the strain induced by the formation of the four-membered dppm chelate ring has a marked effect upon the bond angles at the P atoms of this ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101014159/bm1466sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014159/bm1466Isup2.hkl
Contains datablock I

CCDC reference: 175072

Comment top

Owing to their application as catalysts, transition metal complexes with diphosphine ligands have been the subject of several investigations, as these ligands give rise to a variety of interesting species, the structures of which are a function of the ligand and of the method of preparation (Ahter et al., 2000). There is also considerable current interest in exploiting the coordinative capabilities of phosphorus-donor ligands in order to facilitate the synthesis of platinum(II) complexes (Ferguson et al., 2001; Lobana et al., 2000). However, the best-defined systems involve only a limited number of diphosphine ligands, i.e. dppm [bis(diphenylphosphino)methane], dppe [bis(diphenylphosphino)ethane] and dppp [bis(diphenylphosphino)propane] (Lobana et al., 1998; Azam et al., 1999). The interest in such compounds is greatly enhanced by the variety of possible coordination modes of the diphosphine ligands (monodentate, bidentate by chelation or acting as a bridge). A limited number of platinum(II) complexes containing mixed diphosphine ligands (Irisli et al., 1997) are known and we now report the first example of a crystal structure analysis of a platinum(II) complex containing dppm and dppp ligands simultaneously.

The asymmetric unit of the title compound, (I) consists of a discrete [Pt(dppm)(dppp)]2+ cation and two Br- anions (Fig. 1 and Table 1). The shortest Pt···Br distances are Pt···Br1 and Pt···Br2 at 4.991 (2) and 3.990 (3) Å, respectively, the shorter of which would make the Pt atom five-coordinate. Other short contacts involving Br are given in Table 2.

The most striking feature of the cationic platinum(II) complex of (I) is the simultaneous presence of the six- and four-membered chelate rings formed by the dppp and dppm ligands, respectively. Neither chelate ring is planar. The six-membered dppp chelate ring has a chair conformation, with Pt—P1—C1—C2 and Pt—P2—C3—C2 torsion angles of 59.0 (16) and -59.5 (13)°, respectively, and with the Pt and C2 atoms located 0.98 (1) Å above and -0.72 (2) Å below the plane defined by by P1, P2, C1 and C3. The Pt, P3, C4 and P4 atoms of the four-membered dppm chelate ring are situated at the apices of a flattened tetrahedron, with displacements from the least-squares plane so defined of -0.180 (5), 0.236 (6), -0.295 (6) and 0.240 (6) Å, respectively.

In (I), the Pt atom is coordinated by the four P atoms of the two diphosphine ligands in a distorted square-planar arrangement, with trans P1—Pt—P3 and P2—Pt—P4 angles of 169.48 (14) and 167.79 (14)°, respectively, and diphosphine ligand bite angles, P1—Pt—P2 for dppp and P3—Pt—P4 for dppm, of 89.88 (14) and 69.84 (14)°, respectively. The distortion of the coordination plane defined by atoms P1, P2, P3 and P4 is also shown by their displacements [-0.018 (2), 0.018 (2), -0.022 (2) and 0.022 (2) Å, respectively] from the mean plane. The Pt atom lies within -0.107 (2) Å of this plane.

The Pt—P bond distances [2.322 (4)–2.337 (4) Å, with an average of 2.330 Å] are in good agreement with the mean Pt—P distances (2.340 Å) observed in the [(dppe)Pt(PPh3)(CHNMe2)]2+ complex (Ferguson et al., 2001), but longer than the average value (2.263 Å) found in cis-[1,2-bis(diphenylphosphino)ethane]bis(pyridine-2-thiolato)platinum(II) (Lobana et al., 2000). However, in (I), the shortness of the mean Pt—P distance for dppp (2.323 Å) compared with that for dppm (2.337 Å) may be noted along with with the difference in ligand bite angles noted above.

In comparing the ligands themselves as they occur in (I), the bond distances other than the Pt—P bond lengths commented upon above are in no way unusual. Thus, for example, the P—C distances in the present complex lie in the range 1.794 (14)–1.859 (16) Å, with a mean of 1.821 Å, and are in good agreement with the values reported for P—C distances in dppm and dppp ligands in other complexes (Lobana et al., 1998; Azam et al., 1999). Likewise, the dimensions of the phenyl rings are as expected and do not show any significant features of special interest. Significant differences between the dppp and dppm ligands are observed, however, in the bond angles atthe P and methylene C atoms. For dppp, the situation is comparatively normal, with intra-ring angles at the P and C atoms in the range 114.2 (11)–115.4 (12)° (excluding the ligand bite angle), and Pt—P—C and C—P—C angles in the ranges 111.2 (5)–115.2 (5) and 102.2 (7)–107.2 (8)°, respectively. In contrast, for dppm, while the C—P—C angles lie in a comparable range of 104.2 (7)–108.9 (7)°, the intra-ring and other Pt—P—C angles are very different. Here, the intra-ring angles, again excluding the ligand bite angle, are much smaller [range 91.2 (5)–93.6 (7)°], and while one Pt—P—Cphenyl angle is as large as 124.5 (5) or 125.8 (5)°, the other is only 115.9 (6) or 117.8 (5)°. Clearly the four-membered chelate ring of dppm represents a highly strained situation which may extend as far as to promote differences between the angles between pairs of phenyl groups bonded to the same P atom, 77.4 (7) and 74.0 (7)° for P1 and P2 of dppp, and 72.3 (7) and 70.4 (7)° for P3 and P4 of dppm.

Related literature top

For related literature, see: Ahter et al. (2000); Azam et al. (1999); Ferguson et al. (2001); Irisli et al. (1997); Lobana et al. (1998, 2000); Spek (1990).

Experimental top

The title complex was prepared according to the method of Irisli et al. (1997). Recrystallization from methanol yielded colourless crystals suitable for X-ray analysis.

Refinement top

H atoms were placed in calculated positions, with C—H distances of 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and were refined as riding, with Uiso(H) = 1.2Ueq(C). PLATON (Spek, 1990) indicated the presence of solvent-accessible voids. However, no additional electron density was found in the difference map. The largest difference peak was 0.71 Å from Pt and attributable to the ripple caused by series termination.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Only selected phenyl C atoms, corresponding to the usage Ci1–Ci6, where i = 1–8 and identifies a particular phenyl ring, are labelled.
(Bis(diphenylphosphino)methane)-(1,3-bis(diphenylphosphino)propane) -platinum(II) dibromide top
Crystal data top
[Pt(C25H22P2)(C27H26P2)]Br2Z = 2
Mr = 1151.69F(000) = 1136
Triclinic, P1Dx = 1.549 Mg m3
a = 12.534 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.044 (2) ÅCell parameters from 25 reflections
c = 17.633 (2) Åθ = 9.9–18.0°
α = 104.059 (9)°µ = 4.62 mm1
β = 96.781 (9)°T = 293 K
γ = 114.31 (1)°Rectangular prism, colourless
V = 2469.8 (6) Å30.12 × 0.08 × 0.04 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
7119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.3°, θmin = 2.3°
ω/2θ scansh = 015
Absorption correction: ψ scan
(MolEN; Fair, 1990)
k = 1614
Tmin = 0.80, Tmax = 0.99l = 2121
10023 measured reflections3 standard reflections every 120 min
10023 independent reflections intensity decay: random variation +0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.08P)2 + 0.929P]
where P = (Fo2 + 2Fc2)/3
10023 reflections(Δ/σ)max = 0.007
532 parametersΔρmax = 2.14 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Pt(C25H22P2)(C27H26P2)]Br2γ = 114.31 (1)°
Mr = 1151.69V = 2469.8 (6) Å3
Triclinic, P1Z = 2
a = 12.534 (2) ÅMo Kα radiation
b = 13.044 (2) ŵ = 4.62 mm1
c = 17.633 (2) ÅT = 293 K
α = 104.059 (9)°0.12 × 0.08 × 0.04 mm
β = 96.781 (9)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
7119 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.000
Tmin = 0.80, Tmax = 0.993 standard reflections every 120 min
10023 measured reflections intensity decay: random variation +0.8%
10023 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.28Δρmax = 2.14 e Å3
10023 reflectionsΔρmin = 0.61 e Å3
532 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-square plane data from SHELXL97 refinement run:

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 5.6522 (0.0150) x - 4.9192 (0.0148) y + 15.1046 (0.0113) z = 1.8567 (0.0173)

* -0.0858 (0.0016) Pt * 0.0049 (0.0018) P1 * 0.0413 (0.0018) P2 * -0.0028 (0.0021) P3 * 0.0423 (0.0021) P4 - 0.9492 (0.0190) C1 - 0.5490 (0.0199) C2 - 0.9382 (0.0160) C3 0.8415 (0.0170) C4

Rms deviation of fitted atoms = 0.0467

5.6555 (0.0463) x + 6.7510 (0.0434) y - 12.7209 (0.0520) z = 1.1187 (0.0582)

Angle to previous plane (with approximate e.s.d.) = 14.34 (0.45)

* 0.2367 (0.0046) Pt * -0.2674 (0.0077) P1 * -0.2825 (0.0069) P2 * 0.2858 (0.0125) C1 * -0.2686 (0.0138) C2 * 0.2960 (0.0109) C3 0.6363 (0.0142) P3 0.5804 (0.0132) P4 0.0475 (0.0236) C4

Rms deviation of fitted atoms = 0.2735

- 5.6522 (0.0150) x - 4.9192 (0.0148) y + 15.1046 (0.0113) z = 1.8567 (0.0173)

Angle to previous plane (with approximate e.s.d.) = 14.34 (0.45)

* -0.0858 (0.0016) Pt * 0.0049 (0.0018) P1 * 0.0413 (0.0018) P2 * -0.0028 (0.0021) P3 * 0.0423 (0.0021) P4 - 0.9492 (0.0190) C1 - 0.5490 (0.0199) C2 - 0.9382 (0.0160) C3 0.8415 (0.0170) C4

Rms deviation of fitted atoms = 0.0467

5.3811 (0.0298) x + 7.1108 (0.0408) y - 12.5538 (0.0598) z = 1.6708 (0.0699)

Angle to previous plane (with approximate e.s.d.) = 15.77 (0.42)

* -0.1797 (0.0047) Pt * 0.2355 (0.0055) P3 * -0.2954 (0.0065) C4 * 0.2397 (0.0057) P4 - 0.6857 (0.0139) P1 - 0.7735 (0.0138) P2 - 0.1831 (0.0290) C1 - 0.7792 (0.0308) C2 - 0.2289 (0.0268) C3

Rms deviation of fitted atoms = 0.2411

5.6555 (0.0463) x + 6.7510 (0.0434) y - 12.7209 (0.0520) z = 1.1187 (0.0582)

Angle to previous plane (with approximate e.s.d.) = 1.90 (0.68)

* 0.2367 (0.0046) Pt * -0.2674 (0.0077) P1 * -0.2825 (0.0069) P2 * 0.2858 (0.0125) C1 * -0.2686 (0.0138) C2 * 0.2960 (0.0109) C3 0.6363 (0.0142) P3 0.5804 (0.0132) P4 0.0475 (0.0236) C4

Rms deviation of fitted atoms = 0.2735

- 5.6509 (0.0150) x - 4.9122 (0.0147) y + 15.1120 (0.0112) z = 1.8901 (0.0173)

Angle to previous plane (with approximate e.s.d.) = 14.39 (0.45)

* -0.0183 (0.0017) P1 * 0.0184 (0.0017) P2 * -0.0225 (0.0021) P3 * 0.0224 (0.0021) P4 - 0.1073 (0.0020) Pt

Rms deviation of fitted atoms = 0.0205

5.3811 (0.0298) x + 7.1108 (0.0408) y - 12.5538 (0.0598) z = 1.6708 (0.0699)

Angle to previous plane (with approximate e.s.d.) = 15.82 (0.42)

* -0.1797 (0.0047) Pt * 0.2355 (0.0055) P3 * -0.2954 (0.0065) C4 * 0.2397 (0.0057) P4 - 0.6857 (0.0139) P1 - 0.7735 (0.0138) P2 - 0.1831 (0.0290) C1 - 0.7792 (0.0308) C2 - 0.2289 (0.0268) C3

Rms deviation of fitted atoms = 0.2411

5.6555 (0.0463) x + 6.7510 (0.0434) y - 12.7209 (0.0520) z = 1.1187 (0.0582)

Angle to previous plane (with approximate e.s.d.) = 1.90 (0.68)

* 0.2367 (0.0046) Pt * -0.2674 (0.0077) P1 * -0.2825 (0.0069) P2 * 0.2858 (0.0125) C1 * -0.2686 (0.0138) C2 * 0.2960 (0.0109) C3 0.6363 (0.0142) P3 0.5804 (0.0132) P4 0.0475 (0.0236) C4

Rms deviation of fitted atoms = 0.2735

5.0532 (0.0459) x + 8.5505 (0.0437) y - 8.5412 (0.1147) z = 4.1976 (0.0839)

Angle to previous plane (with approximate e.s.d.) = 18.50 (0.67)

* 0.0063 (0.0064) P1 * -0.0063 (0.0066) P2 * -0.0081 (0.0081) C1 * 0.0081 (0.0083) C3 0.9810 (0.0111) Pt -0.7191 (0.0238) C2

Rms deviation of fitted atoms = 0.0072

-0.3685 (0.1036) x + 5.5272 (0.0938) y + 12.2944 (0.1017) z = 11.1834 (0.0307)

Angle to previous plane (with approximate e.s.d.) = 75.26 (0.60)

* 0.0172 (0.0125) C11 * -0.0185 (0.0140) C12 * 0.0123 (0.0146) C13 * -0.0051 (0.0151) C14 * 0.0037 (0.0145) C15 * -0.0096 (0.0130) C16 - 0.0926 (0.0257) P1

Rms deviation of fitted atoms = 0.0124

10.1281 (0.0601) x - 11.2820 (0.0555) y + 2.8888 (0.1525) z = 1.9942 (0.1155)

Angle to previous plane (with approximate e.s.d.) = 77.36 (0.69)

* 0.0106 (0.0129) C21 * -0.0110 (0.0131) C22 * 0.0060 (0.0141) C23 * -0.0010 (0.0164) C24 * 0.0011 (0.0184) C25 * -0.0057 (0.0165) C26 0.0660 (0.0257) P1

Rms deviation of fitted atoms = 0.0071

10.2718 (0.0625) x - 3.9837 (0.1067) y + 7.5773 (0.1377) z = 12.8317 (0.0572)

Angle to previous plane (with approximate e.s.d.) = 46.70 (0.69)

* -0.0042 (0.0129) C31 * 0.0042 (0.0133) C32 * -0.0062 (0.0153) C33 * 0.0083 (0.0167) C34 * -0.0082 (0.0161) C35 * 0.0061 (0.0147) C36 0.0426 (0.0271) P2

Rms deviation of fitted atoms = 0.0064

- 2.7491 (0.1000) x + 8.4739 (0.0825) y + 9.5660 (0.1214) z = 9.0130 (0.1139)

Angle to previous plane (with approximate e.s.d.) = 74.00 (0.68)

* -0.0171 (0.0122) C41 * 0.0250 (0.0129) C42 * -0.0101 (0.0154) C43 * -0.0130 (0.0159) C44 * 0.0211 (0.0148) C45 * -0.0060 (0.0137) C46 - 0.0731 (0.0259) P2

Rms deviation of fitted atoms = 0.0167

- 2.0569 (0.1119) x + 8.4856 (0.0861) y + 9.1804 (0.1339) z = 12.9621 (0.1161)

Angle to previous plane (with approximate e.s.d.) = 3.52 (1.49)

* 0.0140 (0.0126) C51 * -0.0234 (0.0145) C52 * 0.0201 (0.0170) C53 * -0.0077 (0.0174) C54 * -0.0010 (0.0167) C55 * -0.0020 (0.0148) C56 - 0.1073 (0.0265) P3

Rms deviation of fitted atoms = 0.0142

10.2540 (0.0603) x - 10.6817 (0.0634) y + 5.0192 (0.1560) z = 6.1519 (0.1524)

Angle to previous plane (with approximate e.s.d.) = 72.34 (0.69)

* -0.0095 (0.0128) C61 * 0.0091 (0.0144) C62 * -0.0082 (0.0178) C63 * 0.0075 (0.0188) C64 * -0.0080 (0.0178) C65 * 0.0091 (0.0145) C66 - 0.0020 (0.0262) P3

Rms deviation of fitted atoms = 0.0086

11.4599 (0.0434) x - 5.2374 (0.0917) y + 4.9501 (0.1417) z = 9.8334 (0.1086)

Angle to previous plane (with approximate e.s.d.) = 31.38 (0.73)

* -0.0214 (0.0120) C71 * 0.0317 (0.0133) C72 * -0.0163 (0.0152) C73 * -0.0095 (0.0154) C74 * 0.0192 (0.0149) C75 * -0.0037 (0.0140) C76 - 0.0883 (0.0244) P4

Rms deviation of fitted atoms = 0.0192

1.8381 (0.1005) x + 8.9466 (0.0800) y + 4.2747 (0.1540) z = 13.4016 (0.0648)

Angle to previous plane (with approximate e.s.d.) = 70.38 (0.69)

* 0.0061 (0.0120) C81 * -0.0009 (0.0126) C82 * -0.0035 (0.0136) C83 * 0.0031 (0.0164) C84 * 0.0020 (0.0181) C85 * -0.0067 (0.0153) C86 0.1060 (0.0255) P4

Rms deviation of fitted atoms = 0.0042

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.94915 (5)0.76574 (5)0.72180 (3)0.0503 (2)
P10.7654 (4)0.6648 (3)0.6262 (2)0.0557 (9)
P20.9787 (4)0.5975 (3)0.6865 (2)0.0539 (9)
P31.1181 (4)0.8877 (3)0.8302 (2)0.0549 (8)
P40.9417 (3)0.9414 (3)0.7847 (2)0.0529 (8)
Br10.19117 (19)0.27414 (18)0.02867 (12)0.0837 (6)
Br20.9315 (2)0.2065 (2)0.47593 (15)0.0961 (7)
C10.7661 (18)0.5686 (16)0.5319 (9)0.068 (4)
H1A0.68630.53140.49570.081*
H1B0.82240.61770.50690.081*
C20.7990 (16)0.4740 (14)0.5399 (10)0.068 (4)
H2A0.77820.41730.48670.081*
H2B0.75070.43210.57190.081*
C30.9334 (16)0.5186 (14)0.5790 (9)0.061 (4)
H3A0.98220.57080.55230.073*
H3B0.95030.45100.57000.073*
C41.0359 (14)0.9628 (14)0.8798 (9)0.058 (3)
H4A0.98990.92210.91320.069*
H4B1.08781.04590.91040.069*
C110.7095 (15)0.7607 (14)0.5903 (9)0.060 (4)
C120.782 (2)0.8373 (17)0.5551 (12)0.079 (5)
H120.85700.84110.55200.095*
C130.746 (2)0.9081 (19)0.5247 (13)0.084 (5)
H130.79620.96340.50390.101*
C140.627 (3)0.893 (2)0.5264 (12)0.095 (7)
H140.59900.93790.50410.114*
C150.556 (2)0.818 (2)0.5588 (12)0.088 (6)
H150.47970.81170.56060.106*
C160.5975 (17)0.7481 (16)0.5905 (11)0.075 (5)
H160.54720.69290.61150.090*
C210.6465 (14)0.5730 (13)0.6650 (9)0.056 (3)
C220.6513 (15)0.5997 (16)0.7452 (11)0.066 (4)
H220.71580.66910.78040.080*
C230.5663 (18)0.530 (2)0.7767 (12)0.083 (5)
H230.57530.55080.83220.099*
C240.4654 (17)0.4269 (18)0.7256 (17)0.093 (7)
H240.40620.37970.74650.112*
C250.455 (2)0.397 (2)0.6447 (15)0.101 (7)
H250.38970.32860.60960.121*
C260.5471 (19)0.4721 (17)0.6139 (12)0.086 (6)
H260.53950.45250.55850.103*
C310.8979 (15)0.4849 (13)0.7306 (9)0.058 (3)
C320.8594 (16)0.5139 (15)0.7991 (10)0.066 (4)
H320.87370.59190.82240.079*
C330.7988 (19)0.4275 (18)0.8345 (12)0.080 (5)
H330.77120.44680.87990.096*
C340.782 (2)0.3178 (18)0.8009 (15)0.091 (6)
H340.74490.26030.82450.110*
C350.8192 (19)0.2864 (17)0.7325 (15)0.086 (6)
H350.80360.20800.70960.103*
C360.8785 (18)0.3694 (15)0.6976 (12)0.075 (5)
H360.90540.34820.65220.091*
C411.1343 (15)0.6245 (14)0.7131 (10)0.061 (4)
C421.1754 (19)0.5801 (17)0.7687 (12)0.081 (5)
H421.12390.53820.79630.097*
C431.2949 (18)0.6002 (18)0.7816 (15)0.087 (6)
H431.32180.56740.81610.105*
C441.3724 (16)0.6653 (19)0.7459 (17)0.096 (7)
H441.45180.67700.75580.115*
C451.334 (2)0.716 (2)0.6932 (14)0.089 (6)
H451.38870.76470.67030.107*
C461.2175 (17)0.6940 (18)0.6766 (12)0.079 (5)
H461.19130.72510.64040.095*
C511.1821 (14)0.8395 (13)0.9023 (9)0.055 (3)
C521.1116 (16)0.7731 (17)0.9439 (11)0.072 (4)
H521.03060.75580.93560.086*
C531.158 (2)0.732 (2)0.9970 (13)0.095 (6)
H531.10960.69311.02740.114*
C541.275 (2)0.747 (2)1.0059 (15)0.099 (7)
H541.30490.71551.03960.119*
C551.3480 (19)0.813 (2)0.9626 (14)0.089 (6)
H551.42780.82620.96860.106*
C561.3008 (17)0.8565 (19)0.9115 (12)0.079 (5)
H561.34910.89830.88240.095*
C611.2447 (14)0.9999 (13)0.8089 (11)0.064 (4)
C621.2651 (16)0.982 (2)0.7337 (12)0.078 (5)
H621.21530.91260.69150.093*
C631.363 (3)1.073 (3)0.723 (2)0.126 (11)
H631.37561.06290.67100.151*
C641.443 (2)1.177 (3)0.783 (2)0.116 (10)
H641.50971.23390.77290.139*
C651.420 (2)1.190 (2)0.855 (2)0.108 (8)
H651.47061.26010.89690.129*
C661.3238 (15)1.1031 (16)0.8705 (15)0.084 (6)
H661.31231.11420.92250.101*
C711.0196 (13)1.0691 (13)0.7529 (10)0.055 (3)
C721.0511 (16)1.0589 (16)0.6799 (11)0.070 (4)
H721.03750.98510.64690.083*
C731.1027 (19)1.158 (2)0.6556 (13)0.084 (5)
H731.11811.15060.60480.101*
C741.1300 (18)1.2644 (19)0.7064 (14)0.082 (5)
H741.16601.33070.69000.099*
C751.1081 (18)1.2807 (15)0.7801 (15)0.088 (6)
H751.13091.35660.81450.106*
C761.0508 (17)1.1818 (13)0.8035 (12)0.075 (5)
H761.03311.19120.85370.090*
C810.8034 (13)0.9498 (12)0.8033 (9)0.055 (3)
C820.7456 (15)0.9852 (15)0.7523 (11)0.066 (4)
H820.77451.00010.70790.079*
C830.6463 (17)0.9991 (16)0.7652 (12)0.077 (5)
H830.60721.02320.73040.092*
C840.6044 (19)0.975 (2)0.8347 (16)0.099 (7)
H840.53740.98440.84570.118*
C850.662 (2)0.940 (3)0.8833 (15)0.106 (8)
H850.63450.92500.92810.127*
C860.7597 (17)0.9263 (18)0.8681 (12)0.075 (5)
H860.79770.90060.90230.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.0532 (3)0.0437 (3)0.0521 (3)0.0216 (2)0.0135 (2)0.0129 (2)
P10.060 (2)0.0495 (19)0.0492 (19)0.0207 (17)0.0078 (16)0.0118 (15)
P20.057 (2)0.0457 (19)0.061 (2)0.0242 (17)0.0219 (17)0.0169 (16)
P30.055 (2)0.0483 (19)0.058 (2)0.0217 (17)0.0139 (17)0.0159 (16)
P40.053 (2)0.0468 (19)0.056 (2)0.0224 (16)0.0102 (16)0.0146 (16)
Br10.0856 (13)0.0758 (12)0.0702 (11)0.0266 (10)0.0194 (9)0.0093 (9)
Br20.1171 (17)0.0744 (12)0.0960 (15)0.0393 (12)0.0245 (13)0.0353 (11)
C10.089 (12)0.071 (10)0.042 (7)0.044 (9)0.009 (7)0.006 (7)
C20.076 (11)0.051 (8)0.065 (9)0.029 (8)0.005 (8)0.005 (7)
C30.083 (11)0.056 (8)0.055 (8)0.039 (8)0.032 (8)0.015 (7)
C40.057 (8)0.055 (8)0.058 (8)0.029 (7)0.011 (7)0.010 (7)
C110.061 (9)0.058 (9)0.058 (8)0.027 (7)0.006 (7)0.018 (7)
C120.086 (13)0.072 (11)0.079 (12)0.034 (10)0.020 (10)0.029 (9)
C130.094 (14)0.084 (13)0.086 (13)0.047 (12)0.024 (11)0.033 (11)
C140.15 (2)0.100 (15)0.069 (12)0.085 (16)0.018 (13)0.036 (11)
C150.093 (14)0.101 (15)0.068 (11)0.049 (12)0.007 (10)0.024 (11)
C160.074 (11)0.066 (10)0.067 (10)0.022 (9)0.005 (8)0.017 (8)
C210.056 (8)0.045 (7)0.060 (8)0.020 (6)0.009 (7)0.012 (6)
C220.052 (8)0.064 (9)0.074 (10)0.018 (7)0.008 (7)0.025 (8)
C230.082 (13)0.113 (16)0.074 (11)0.056 (13)0.027 (10)0.041 (11)
C240.055 (10)0.066 (11)0.14 (2)0.013 (9)0.001 (11)0.043 (13)
C250.079 (13)0.077 (13)0.093 (16)0.007 (11)0.006 (11)0.023 (12)
C260.084 (13)0.069 (11)0.065 (10)0.010 (10)0.008 (9)0.008 (9)
C310.069 (9)0.044 (7)0.062 (9)0.025 (7)0.021 (7)0.018 (6)
C320.070 (10)0.055 (9)0.071 (10)0.030 (8)0.016 (8)0.015 (7)
C330.092 (13)0.075 (12)0.082 (12)0.034 (10)0.042 (11)0.037 (10)
C340.104 (16)0.068 (12)0.109 (16)0.030 (11)0.035 (13)0.055 (12)
C350.093 (14)0.054 (10)0.118 (17)0.032 (10)0.036 (13)0.040 (11)
C360.091 (13)0.054 (9)0.082 (12)0.036 (9)0.034 (10)0.012 (8)
C410.062 (9)0.053 (8)0.070 (9)0.031 (7)0.014 (7)0.013 (7)
C420.091 (13)0.066 (11)0.087 (13)0.045 (10)0.027 (11)0.010 (9)
C430.064 (11)0.072 (12)0.122 (17)0.035 (10)0.004 (11)0.026 (11)
C440.043 (9)0.078 (13)0.15 (2)0.022 (9)0.009 (11)0.015 (13)
C450.082 (13)0.090 (14)0.096 (14)0.042 (12)0.038 (11)0.017 (11)
C460.074 (12)0.081 (12)0.084 (12)0.033 (10)0.036 (10)0.026 (10)
C510.063 (9)0.051 (8)0.050 (7)0.025 (7)0.013 (6)0.013 (6)
C520.059 (9)0.079 (11)0.077 (11)0.030 (9)0.007 (8)0.030 (9)
C530.090 (15)0.126 (19)0.084 (13)0.057 (14)0.028 (11)0.044 (13)
C540.123 (19)0.105 (17)0.100 (16)0.069 (15)0.033 (14)0.051 (14)
C550.069 (11)0.103 (15)0.112 (16)0.055 (11)0.014 (11)0.042 (13)
C560.068 (11)0.088 (13)0.081 (12)0.035 (10)0.017 (9)0.031 (10)
C610.051 (8)0.045 (8)0.090 (12)0.016 (7)0.007 (8)0.027 (8)
C620.062 (10)0.104 (14)0.087 (12)0.043 (10)0.042 (9)0.043 (11)
C630.13 (2)0.16 (3)0.17 (3)0.10 (2)0.09 (2)0.10 (3)
C640.056 (12)0.089 (17)0.20 (3)0.020 (12)0.024 (17)0.07 (2)
C650.061 (12)0.075 (14)0.16 (3)0.016 (10)0.012 (14)0.028 (15)
C660.049 (9)0.063 (10)0.117 (16)0.017 (8)0.002 (9)0.014 (10)
C710.052 (8)0.046 (7)0.071 (9)0.022 (6)0.018 (7)0.024 (7)
C720.064 (10)0.068 (10)0.068 (10)0.022 (8)0.019 (8)0.020 (8)
C730.090 (14)0.086 (14)0.086 (13)0.035 (11)0.038 (11)0.046 (11)
C740.078 (12)0.081 (13)0.098 (14)0.029 (10)0.027 (11)0.056 (12)
C750.079 (12)0.040 (8)0.127 (18)0.010 (8)0.012 (12)0.034 (10)
C760.086 (12)0.037 (7)0.089 (12)0.021 (8)0.021 (10)0.015 (8)
C810.055 (8)0.041 (7)0.069 (9)0.024 (6)0.021 (7)0.011 (6)
C820.060 (9)0.060 (9)0.086 (11)0.030 (8)0.028 (8)0.032 (8)
C830.077 (12)0.062 (10)0.086 (12)0.032 (9)0.022 (10)0.012 (9)
C840.062 (11)0.097 (16)0.118 (18)0.033 (11)0.026 (12)0.007 (13)
C850.087 (15)0.14 (2)0.097 (16)0.041 (15)0.047 (13)0.053 (15)
C860.069 (11)0.095 (13)0.077 (11)0.044 (10)0.028 (9)0.037 (10)
Geometric parameters (Å, º) top
Pt—P12.322 (4)C35—H350.9300
Pt—P22.323 (4)C36—H360.9300
Pt—P32.337 (4)C41—C421.40 (3)
Pt—P42.336 (4)C41—C461.41 (2)
P1—C11.827 (15)C42—C431.39 (3)
P1—C111.859 (16)C42—H420.9300
P1—C211.815 (16)C43—C441.34 (3)
P2—C31.814 (15)C43—H430.9300
P2—C311.818 (15)C44—C451.41 (3)
P2—C411.813 (16)C44—H440.9300
P3—C41.847 (15)C45—C461.35 (3)
P3—C511.794 (15)C45—H450.9300
P3—C611.816 (16)C46—H460.9300
P4—C41.822 (16)C51—C521.38 (2)
P4—C711.812 (14)C51—C561.39 (2)
P4—C811.843 (15)C52—C531.37 (3)
C1—C21.48 (2)C52—H520.9300
C2—C31.54 (2)C53—C541.38 (3)
C1—H1A0.9700C53—H530.9300
C1—H1B0.9700C54—C551.41 (3)
C2—H2A0.9700C54—H540.9300
C2—H2B0.9700C55—C561.37 (3)
C3—H3A0.9700C55—H550.9300
C3—H3B0.9700C56—H560.9300
C4—H4A0.9700C61—C621.36 (3)
C4—H4B0.9700C61—C661.38 (3)
C11—C161.35 (2)C62—C631.38 (4)
C11—C121.38 (3)C62—H620.9300
C12—C131.37 (3)C63—C641.37 (4)
C12—H120.9300C63—H630.9300
C13—C141.42 (3)C64—C651.33 (4)
C13—H130.9300C64—H640.9300
C14—C151.33 (3)C65—C661.38 (3)
C14—H140.9300C65—H650.9300
C15—C161.41 (3)C66—H660.9300
C15—H150.9300C71—C721.38 (2)
C16—H160.9300C71—C761.38 (2)
C21—C221.36 (2)C72—C731.39 (3)
C21—C261.38 (2)C72—H720.9300
C22—C231.36 (3)C73—C741.33 (3)
C22—H220.9300C73—H730.9300
C23—C241.40 (3)C74—C751.34 (3)
C23—H230.9300C74—H740.9300
C24—C251.36 (3)C75—C761.38 (3)
C24—H240.9300C75—H750.9300
C25—C261.43 (3)C76—H760.9300
C25—H250.9300C81—C821.37 (2)
C26—H260.9300C81—C861.37 (2)
C31—C321.38 (2)C82—C831.37 (2)
C31—C361.38 (2)C82—H820.9300
C32—C331.41 (2)C83—C841.44 (3)
C32—H320.9300C83—H830.9300
C33—C341.33 (3)C84—C851.33 (3)
C33—H330.9300C84—H840.9300
C34—C351.37 (3)C85—C861.36 (3)
C34—H340.9300C85—H850.9300
C35—C361.37 (3)C86—H860.9300
P1—Pt—P289.88 (14)C33—C34—C35122.2 (18)
P1—Pt—P4100.33 (14)C33—C34—H34118.9
P2—Pt—P4167.79 (14)C35—C34—H34118.9
P1—Pt—P3169.48 (14)C36—C35—C34120.7 (18)
P2—Pt—P399.48 (14)C36—C35—H35119.7
P4—Pt—P369.84 (14)C34—C35—H35119.7
C21—P1—C1107.2 (8)C35—C36—C31119.3 (17)
C21—P1—C11105.7 (7)C35—C36—H36120.4
C1—P1—C11102.2 (7)C31—C36—H36120.4
C21—P1—Pt111.2 (5)C42—C41—C46118.8 (17)
C1—P1—Pt114.4 (6)C42—C41—P2122.9 (14)
C11—P1—Pt115.2 (5)C46—C41—P2118.3 (14)
C41—P2—C3102.3 (8)C43—C42—C41118 (2)
C41—P2—C31104.5 (8)C43—C42—H42120.8
C3—P2—C31104.3 (7)C41—C42—H42120.8
C41—P2—Pt115.2 (5)C44—C43—C42122 (2)
C3—P2—Pt114.5 (5)C44—C43—H43119.0
C31—P2—Pt114.6 (5)C42—C43—H43119.0
C51—P3—C61106.2 (7)C43—C44—C45120.2 (18)
C51—P3—C4107.9 (7)C43—C44—H44119.9
C61—P3—C4107.0 (8)C45—C44—H44119.9
C51—P3—Pt125.8 (5)C46—C45—C44119 (2)
C61—P3—Pt115.9 (6)C46—C45—H45120.4
C4—P3—Pt91.2 (5)C44—C45—H45120.4
C71—P4—C4107.6 (8)C45—C46—C41121 (2)
C71—P4—C81104.2 (7)C45—C46—H46119.4
C4—P4—C81108.9 (7)C41—C46—H46119.4
C71—P4—Pt117.8 (5)C52—C51—C56117.7 (15)
C4—P4—Pt91.9 (5)C52—C51—P3120.8 (12)
C81—P4—Pt124.4 (5)C56—C51—P3121.0 (13)
C2—C1—P1115.4 (12)C53—C52—C51121.8 (18)
C2—C1—H1A108.4C53—C52—H52119.1
P1—C1—H1A108.4C51—C52—H52119.1
C2—C1—H1B108.4C52—C53—C54121 (2)
P1—C1—H1B108.4C52—C53—H53119.7
H1A—C1—H1B107.5C54—C53—H53119.7
C1—C2—C3114.7 (14)C53—C54—C55118 (2)
C1—C2—H2A108.6C53—C54—H54120.8
C3—C2—H2A108.6C55—C54—H54120.8
C1—C2—H2B108.6C56—C55—C54119.7 (19)
C3—C2—H2B108.6C56—C55—H55120.1
H2A—C2—H2B107.6C54—C55—H55120.1
C2—C3—P2114.2 (11)C55—C56—C51121.4 (19)
C2—C3—H3A108.7C55—C56—H56119.3
P2—C3—H3A108.7C51—C56—H56119.3
C2—C3—H3B108.7C62—C61—C66119.4 (18)
P2—C3—H3B108.7C62—C61—P3121.1 (14)
H3A—C3—H3B107.6C66—C61—P3119.5 (16)
P4—C4—P393.6 (7)C61—C62—C63117 (2)
P4—C4—H4A113.0C61—C62—H62121.4
P3—C4—H4A113.0C63—C62—H62121.4
P4—C4—H4B113.0C64—C63—C62125 (3)
P3—C4—H4B113.0C64—C63—H63117.6
H4A—C4—H4B110.4C62—C63—H63117.6
C16—C11—C12120.2 (17)C65—C64—C63116 (2)
C16—C11—P1121.9 (14)C65—C64—H64121.9
C12—C11—P1117.6 (14)C63—C64—H64121.9
C13—C12—C11121 (2)C64—C65—C66122 (3)
C13—C12—H12119.4C64—C65—H65118.9
C11—C12—H12119.4C66—C65—H65118.9
C12—C13—C14117 (2)C61—C66—C65120 (2)
C12—C13—H13121.4C61—C66—H66119.9
C14—C13—H13121.4C65—C66—H66119.9
C15—C14—C13122.0 (19)C72—C71—C76118.0 (15)
C15—C14—H14119.0C72—C71—P4122.5 (12)
C13—C14—H14119.0C76—C71—P4119.5 (13)
C14—C15—C16119 (2)C71—C72—C73120.4 (18)
C14—C15—H15120.5C71—C72—H72119.8
C16—C15—H15120.5C73—C72—H72119.8
C11—C16—C15120.3 (19)C74—C73—C72118.9 (19)
C11—C16—H16119.9C74—C73—H73120.6
C15—C16—H16119.9C72—C73—H73120.6
C22—C21—C26117.1 (16)C73—C74—C75123.3 (18)
C22—C21—P1121.9 (12)C73—C74—H74118.4
C26—C21—P1121.0 (13)C75—C74—H74118.4
C21—C22—C23123.4 (17)C74—C75—C76118 (2)
C21—C22—H22118.3C74—C75—H75120.8
C23—C22—H22118.3C76—C75—H75120.8
C22—C23—C24120 (2)C75—C76—C71121 (2)
C22—C23—H23119.9C75—C76—H76119.7
C24—C23—H23119.9C71—C76—H76119.7
C25—C24—C23119 (2)C82—C81—C86119.2 (15)
C25—C24—H24120.6C82—C81—P4118.5 (12)
C23—C24—H24120.6C86—C81—P4122.2 (13)
C24—C25—C26119.5 (19)C83—C82—C81121.3 (17)
C24—C25—H25120.2C83—C82—H82119.3
C26—C25—H25120.2C81—C82—H82119.3
C21—C26—C25121.1 (19)C82—C83—C84118 (2)
C21—C26—H26119.4C82—C83—H83121.2
C25—C26—H26119.4C84—C83—H83121.2
C32—C31—C36118.8 (15)C85—C84—C83120 (2)
C32—C31—P2120.9 (12)C85—C84—H84120.1
C36—C31—P2120.2 (13)C83—C84—H84120.1
C31—C32—C33121.2 (16)C84—C85—C86121 (2)
C31—C32—H32119.4C84—C85—H85119.6
C33—C32—H32119.4C86—C85—H85119.6
C34—C33—C32117.8 (18)C85—C86—C81121.1 (19)
C34—C33—H33121.1C85—C86—H86119.5
C32—C33—H33121.1C81—C86—H86119.5
P2—Pt—P1—C2182.3 (5)P1—C21—C26—C25177.6 (18)
P4—Pt—P1—C2191.0 (5)C24—C25—C26—C211 (4)
P3—Pt—P1—C2170.7 (10)C41—P2—C31—C32105.4 (15)
P2—Pt—P1—C139.4 (7)C3—P2—C31—C32147.5 (14)
P4—Pt—P1—C1147.3 (7)Pt—P2—C31—C3221.5 (16)
P3—Pt—P1—C1167.6 (9)C41—P2—C31—C3672.0 (16)
P2—Pt—P1—C11157.5 (6)C3—P2—C31—C3635.1 (17)
P4—Pt—P1—C1129.3 (6)Pt—P2—C31—C36161.1 (14)
P3—Pt—P1—C1149.6 (10)C36—C31—C32—C331 (3)
P1—Pt—P2—C41158.8 (6)P2—C31—C32—C33178.8 (15)
P4—Pt—P2—C4154.3 (9)C31—C32—C33—C342 (3)
P3—Pt—P2—C4126.0 (6)C32—C33—C34—C352 (4)
P1—Pt—P2—C340.5 (6)C33—C34—C35—C362 (4)
P4—Pt—P2—C3172.6 (8)C34—C35—C36—C312 (3)
P3—Pt—P2—C3144.3 (6)C32—C31—C36—C352 (3)
P1—Pt—P2—C3180.0 (6)P2—C31—C36—C35179.0 (16)
P4—Pt—P2—C3166.9 (9)C3—P2—C41—C42119.1 (14)
P3—Pt—P2—C3195.2 (6)C31—P2—C41—C4210.6 (16)
P1—Pt—P3—C51116.5 (9)Pt—P2—C41—C42116.0 (13)
P2—Pt—P3—C5136.1 (7)C3—P2—C41—C4661.3 (15)
P4—Pt—P3—C51137.8 (7)C31—P2—C41—C46169.9 (13)
P1—Pt—P3—C61106.3 (9)Pt—P2—C41—C4663.6 (15)
P2—Pt—P3—C61101.1 (6)C46—C41—C42—C434 (3)
P4—Pt—P3—C6185.0 (6)P2—C41—C42—C43176.4 (14)
P1—Pt—P3—C43.3 (10)C41—C42—C43—C443 (3)
P2—Pt—P3—C4149.3 (5)C42—C43—C44—C450 (4)
P4—Pt—P3—C424.6 (5)C43—C44—C45—C463 (3)
P1—Pt—P3—P421.3 (8)C44—C45—C46—C412 (3)
P2—Pt—P3—P4173.88 (14)C42—C41—C46—C451 (3)
P1—Pt—P4—C7197.7 (6)P2—C41—C46—C45179.3 (15)
P2—Pt—P4—C71116.0 (8)C61—P3—C51—C52166.4 (14)
P3—Pt—P4—C7186.1 (6)C4—P3—C51—C5252.0 (16)
P1—Pt—P4—C4151.2 (6)Pt—P3—C51—C5253.1 (16)
P2—Pt—P4—C44.9 (9)P4—P3—C51—C5225.7 (19)
P3—Pt—P4—C424.9 (5)C61—P3—C51—C5620.8 (16)
P1—Pt—P4—C8136.6 (7)C4—P3—C51—C56135.3 (14)
P2—Pt—P4—C81109.7 (9)Pt—P3—C51—C56119.6 (14)
P3—Pt—P4—C81139.5 (7)P4—P3—C51—C56161.6 (11)
P1—Pt—P4—P3176.13 (14)C56—C51—C52—C535 (3)
P2—Pt—P4—P329.8 (7)P3—C51—C52—C53177.7 (17)
C51—P3—P4—C71140.7 (10)C51—C52—C53—C545 (4)
C61—P3—P4—C711.1 (8)C52—C53—C54—C554 (4)
C4—P3—P4—C71102.4 (10)C53—C54—C55—C562 (4)
Pt—P3—P4—C71115.3 (5)C54—C55—C56—C511 (3)
C51—P3—P4—C438.3 (12)C52—C51—C56—C553 (3)
C61—P3—P4—C4103.5 (10)P3—C51—C56—C55175.5 (17)
Pt—P3—P4—C4142.3 (8)C51—P3—C61—C62116.2 (15)
C51—P3—P4—C812.9 (13)C4—P3—C61—C62128.7 (15)
C61—P3—P4—C81144.7 (11)Pt—P3—C61—C6228.8 (16)
C4—P3—P4—C8141.2 (12)P4—P3—C61—C6285.0 (14)
Pt—P3—P4—C81101.1 (9)C51—P3—C61—C6661.7 (15)
C51—P3—P4—Pt104.0 (9)C4—P3—C61—C6653.3 (16)
C61—P3—P4—Pt114.2 (6)Pt—P3—C61—C66153.3 (12)
C4—P3—P4—Pt142.3 (8)P4—P3—C61—C6697.1 (14)
C21—P1—C1—C264.9 (16)C66—C61—C62—C633 (3)
C11—P1—C1—C2175.8 (14)P3—C61—C62—C63179.5 (16)
Pt—P1—C1—C259.0 (16)C61—C62—C63—C643 (4)
P1—C1—C2—C371.8 (19)C62—C63—C64—C652 (4)
C1—C2—C3—P272.1 (17)C63—C64—C65—C662 (4)
C41—P2—C3—C2175.2 (12)C62—C61—C66—C653 (3)
C31—P2—C3—C266.6 (13)P3—C61—C66—C65179.4 (16)
Pt—P2—C3—C259.5 (13)C64—C65—C66—C613 (4)
C71—P4—C4—P389.9 (8)C4—P4—C71—C72121.5 (14)
C81—P4—C4—P3157.7 (6)C81—P4—C71—C72122.9 (14)
Pt—P4—C4—P330.1 (6)Pt—P4—C71—C7219.6 (16)
C51—P3—C4—P4158.5 (7)P3—P4—C71—C7276.6 (14)
C61—P3—C4—P487.5 (8)C4—P4—C71—C7657.6 (15)
Pt—P3—C4—P430.1 (6)C81—P4—C71—C7658.0 (15)
C21—P1—C11—C164.9 (16)Pt—P4—C71—C76159.5 (12)
C1—P1—C11—C16107.2 (15)P3—P4—C71—C76102.5 (14)
Pt—P1—C11—C16128.1 (13)C76—C71—C72—C736 (3)
C21—P1—C11—C12178.0 (14)P4—C71—C72—C73175.3 (15)
C1—P1—C11—C1265.9 (16)C71—C72—C73—C745 (3)
Pt—P1—C11—C1258.8 (15)C72—C73—C74—C751 (3)
C16—C11—C12—C135 (3)C73—C74—C75—C762 (3)
P1—C11—C12—C13177.8 (16)C74—C75—C76—C712 (3)
C11—C12—C13—C144 (3)C72—C71—C76—C752 (3)
C12—C13—C14—C153 (3)P4—C71—C76—C75178.7 (15)
C13—C14—C15—C162 (3)C71—P4—C81—C8238.6 (14)
C12—C11—C16—C154 (3)C4—P4—C81—C82153.2 (13)
P1—C11—C16—C15176.6 (14)Pt—P4—C81—C82100.7 (13)
C14—C15—C16—C112 (3)P3—P4—C81—C82178.1 (9)
C1—P1—C21—C22152.5 (14)C71—P4—C81—C86138.7 (15)
C11—P1—C21—C2299.0 (15)C4—P4—C81—C8624.1 (16)
Pt—P1—C21—C2226.7 (15)Pt—P4—C81—C8682.0 (15)
C1—P1—C21—C2627.2 (18)P3—P4—C81—C865 (2)
C11—P1—C21—C2681.3 (16)C86—C81—C82—C831 (3)
Pt—P1—C21—C26153.0 (15)P4—C81—C82—C83176.6 (14)
C26—C21—C22—C233 (3)C81—C82—C83—C840 (3)
P1—C21—C22—C23177.1 (15)C82—C83—C84—C850 (3)
C21—C22—C23—C242 (3)C83—C84—C85—C860 (4)
C22—C23—C24—C251 (3)C84—C85—C86—C811 (4)
C23—C24—C25—C261 (4)C82—C81—C86—C851 (3)
C22—C21—C26—C252 (3)P4—C81—C86—C85175.9 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Br2i0.972.913.76 (2)147
C3—H3A···Br2i0.972.853.71 (2)148
C46—H46···Br2i0.932.943.86 (2)170
C62—H62···Br2i0.932.943.77 (2)149
C4—H4B···Br1ii0.972.843.78 (2)163
C52—H52···Br1iii0.932.813.70 (2)159
C86—H86···Br1iii0.932.883.73 (2)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pt(C25H22P2)(C27H26P2)]Br2
Mr1151.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.534 (2), 13.044 (2), 17.633 (2)
α, β, γ (°)104.059 (9), 96.781 (9), 114.31 (1)
V3)2469.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)4.62
Crystal size (mm)0.12 × 0.08 × 0.04
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.80, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
10023, 10023, 7119
Rint0.000
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.154, 1.28
No. of reflections10023
No. of parameters532
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.14, 0.61

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), CAD-4 EXPRESS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Pt—P12.322 (4)P2—C411.813 (16)
Pt—P22.323 (4)P3—C41.847 (15)
Pt—P32.337 (4)P3—C511.794 (15)
Pt—P42.336 (4)P3—C611.816 (16)
P1—C11.827 (15)P4—C41.822 (16)
P1—C111.859 (16)P4—C711.812 (14)
P1—C211.815 (16)P4—C811.843 (15)
P2—C31.814 (15)C1—C21.48 (2)
P2—C311.818 (15)C2—C31.54 (2)
P1—Pt—P289.88 (14)C31—P2—Pt114.6 (5)
P1—Pt—P4100.33 (14)C51—P3—C61106.2 (7)
P2—Pt—P4167.79 (14)C51—P3—C4107.9 (7)
P1—Pt—P3169.48 (14)C61—P3—C4107.0 (8)
P2—Pt—P399.48 (14)C51—P3—Pt125.8 (5)
P4—Pt—P369.84 (14)C61—P3—Pt115.9 (6)
C21—P1—C1107.2 (8)C4—P3—Pt91.2 (5)
C21—P1—C11105.7 (7)C71—P4—C4107.6 (8)
C1—P1—C11102.2 (7)C71—P4—C81104.2 (7)
C21—P1—Pt111.2 (5)C4—P4—C81108.9 (7)
C1—P1—Pt114.4 (6)C71—P4—Pt117.8 (5)
C11—P1—Pt115.2 (5)C4—P4—Pt91.9 (5)
C41—P2—C3102.3 (8)C81—P4—Pt124.4 (5)
C41—P2—C31104.5 (8)C2—C1—P1115.4 (12)
C3—P2—C31104.3 (7)C1—C2—C3114.7 (14)
C41—P2—Pt115.2 (5)C2—C3—P2114.2 (11)
C3—P2—Pt114.5 (5)P4—C4—P393.6 (7)
Pt—P1—C1—C259.0 (16)Pt—P3—C4—P430.1 (6)
Pt—P2—C3—C259.5 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Br2i0.972.913.76 (2)147
C3—H3A···Br2i0.972.853.71 (2)148
C46—H46···Br2i0.932.943.86 (2)170
C62—H62···Br2i0.932.943.77 (2)149
C4—H4B···Br1ii0.972.843.78 (2)163
C52—H52···Br1iii0.932.813.70 (2)159
C86—H86···Br1iii0.932.883.73 (2)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds