Download citation
Download citation
link to html
The structure of 2-amino-6-chloro­purine, C5H4ClN5, (I), comprises a flat mol­ecule, with all possible strong hydrogen-bond donors and acceptors involved in the hydrogen-bonding network. The structures of 2-amino-6-(4-chloro­phenylsulfanyl)­purine hemihydrate, C11H8ClN5S·0.5H2O, (II), and 2-amino-6-(4-methylphenylsulfanyl)purine 0.33-hydrate, C12H11N5S·0.33H2O, (III), have two and three unique mol­ecules, respectively, and one water mol­ecule in their asymmetric units. Both (II) and (III) exhibit elaborate hydrogen-bonding networks that involve the S (for both) and Cl [for (II)] atoms in addition to the expected strong hydrogen-bonding sites. Both structures also have offset-stacking formations of the phenyl and purine rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102021960/bm1512sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021960/bm1512Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021960/bm1512IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021960/bm1512IIIsup4.hkl
Contains datablock III

CCDC references: 204056; 204057; 204058

Comment top

Purine bases play an important role in the chemistry of life. Two purine bases, adenine and guanine, are found as major components of DNA and RNA. In these systems, attachment to the deoxyribose or ribose groups occurs via N9. Similarly, of the 549 reported structures (Cambridge Structural Database, April 2002 release; Allen, 2002) containing a purine group, the vast majority also contain N9 substituents other than an H atom, with only 92 purine structures exhibiting an N9—H group. There are 34 2-aminopurine structures, of which only two have N9—H; these are N-(2-amino-6-purinyl)pyridinium chloride dihydrate (Jaskolski et al., 1987) and potassium 2-amino-6-sulfinatopurine monohydrate (Horn & Tiekink, 1995). The hydrogen-bonding patterns in both are dominated by the counter-ions. We report here the crystal structures of three 2-aminopurine derivatives containing N9—H, namely 2-amino-6-chloropurine, (I), 2-amino-6-(4-chlorophenylthio)purine hemihydrate, (II), and 2-amino-6-(4-methylphenylthio)purine 0.33-hydrate, (III). Compounds (II) and (III) were both derived by the nucleophilic addition of a thiophenol derivative to (I).

Compound (I) is a flat molecule [r.m.s. deviation 0.010 (2) Å] with three strong hydrogen-bond donor atoms and three strong hydrogen-bond acceptor atoms (neglecting the N atom in NH2), plus the Cl atom that can be considered as a weak acceptor (Fig. 1). This equality in numbers of strong hydrogen-bonding agents is reflected in the hydrogen-bonding network with all possible strong hydrogen-bonding sites occupied (Table 1). N9—H associates with N7 and creates a flat hydrogen-bond chain with molecules of alternating directions inclined to the (001) plane (Fig. 2). The associations between atoms N2, N31 and N4 form a convoluted hydrogen-bonded ribbon network similar to 2-aminopyrimidine and subsequent derivatives (Lynch et al., 2002). Thus, each molecule associates with two molecules via pairwise interactions and with two others through single interactions. The Cl atom resides in a position that is approximated by H8(1 + y, x, −z) [3.121 (3) Å], but the distance is too far to be listed as a formal C—H···Cl close contact.

The asymmetric unit of (II) consists of two unique 2-amino-6-(4-chlorophenylthio)purine molecules with one water molecule (Fig. 3). This combination gives eight strong hydrogen-bond donors and seven strong acceptors per asymmetric unit (neglecting the N atoms of the NH2 groups), plus two S atoms and two Cl atoms, both considered to act as weak hydrogen-bonding acceptors. All of these sites are involved in the hydrogen-bonding array, except for two acceptors, N1B and Cl6A (Table 2), although the Cl atom is approached by H8B(−1 + x,1 + y, z) [2.733 (3) Å]. Molecules A and B and the water molecule form a hydrogen-bonded ring [graph-set notation R33(10); Bernstein et al., 1995] through N9A—H···N3B, N9B—H···O1W and O1W—H···N3A hydrogen bonds. The 2-amino group of molecule A associates with N7A through one H atom and with both N1A and S6A through the H atom. The 2-amino group of molecule B is involved in a similar arrangement, with one H associating with N7B and the other associating with both Cl6B and S6B. The remaining water H atom also associates with S6B. The resulting network is very complex and difficult to represent in a single-view packing diagram (Fig. 4). The phenyl rings are significantly inclined to the purine rings with respective dihedral angles for molecules A and B of 72.21 (6) and 79.57 (8)°. Such angles allow the phenyl rings of molecule A to form alternating slipped-stacks with the purine rings of like molecules [interlayer distances ca 3.40 (4) Å and angle 2.26 (2)°]. For molecule B, the slipped-stacks are only formed by symmetry-related phenyl rings of alternating directions [interlayer distance 3.483 (3) Å], which are coplanar by symmetry.

The asymmetric unit of (III) consists of three unique 2-amino-6-(4-methylphenylthio)purine molecules and one water molecule (Fig. 5). This combination gives eight strong hydrogen-bond donors, seven strong acceptors (neglecting the N atoms of the NH2 groups) and three S atoms. Molecules A and B associate via a single hydrogen bond (N9A—H···N7B) and also via a N21A—H···N3A dimer to form a linked tetramer that is `capped' at both ends by an association from N9B—H to the water molecule. This water molecule, O1W, through one H atom, then associates to N7C. Molecule C, through N9C—H and N3C, forms a dimer with N3B and N21B—H. The full list of hydrogen bonds in (III) is given in Table 3 although additional noteworthy interactions are the two three-centre associations, one from N21C to N1A and N21A (note the use in this structure of a NH2 group as an hydrogen-bond acceptor) and the other from the water molecule to atoms N7A and S6A. There are no close contacts with one H atom of N21C. Again, the hydrogen-bonding network is very extensive and difficult to represent in a single-view packing diagram (Fig. 6). The dihedral angles between the phenyl ring and the purine for molecules A, B and C are 73.08 (7), 63.21 (8) and 80.80 (8)°, respectively, and again allow for slipped-stacks. A triplet of phenyl-A, purine-C and purine-B has the respective interlayer distances and angles of 3.2 (2) Å and 12.34 (4)°, and 3.4 (1) Å and 15.92 (4)°, whereas a tetramer of purine-A, phenyl-C, phenyl-C and purine-A has similar values of 3.62 (4) Å and 15.46 (4)°, and 3.679 (3) Å and 0.02 (4)°. The only ring system not to partake in stacking arrangements is phenyl-B.

Experimental top

All compounds were obtained from Key Organics Ltd and crystals were grown from ethanol solution.

Refinement top

All H atoms were included in the refinement, at calculated positions, as riding models, with C—H set to 0.95 (Ar—H) and 0.98 Å (CH3), and N—H set to 0.88 Å, except for the water H atoms, which were located in difference syntheses and for which both positional and displacement parameters were refined. For (I), the number of Friedel pairs is 548. A high Rint value of 0.111 for (III) results from the weak high-angle data.

Computing details top

For all compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I), showing ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), viewed down the a axis, showing both single and pair-wise hydrogen-bonding associations (dotted lines) to and from each molecule.
[Figure 3] Fig. 3. The molecular configuration and atom-numbering scheme for (II), showing ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. Packing diagram for (II), viewed down the b axis, showing the stacking arrangements and a portion of the complex hydrogen-bonding network.
[Figure 5] Fig. 5. The molecular configuration and atom-numbering scheme for (III), showing ellipsoids at the 50% probability level.
[Figure 6] Fig. 6. Packing diagram of (III), showing the stacking arrangements and the major hydrogen-bonding associations.
(I) 2-amino-6-chloropurine top
Crystal data top
C5H4ClN5Dx = 1.663 Mg m3
Mr = 169.58Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 8615 reflections
a = 7.0855 (10) Åθ = 2.9–27.5°
c = 26.990 (5) ŵ = 0.49 mm1
V = 1355.0 (4) Å3T = 150 K
Z = 8Rectangular prism, colourless
F(000) = 6880.15 × 0.08 × 0.07 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
1535 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 59
Tmin = 0.910, Tmax = 0.964l = 2434
4943 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0335P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1535 reflectionsΔρmax = 0.26 e Å3
100 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 548 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (10)
Crystal data top
C5H4ClN5Z = 8
Mr = 169.58Mo Kα radiation
Tetragonal, P41212µ = 0.49 mm1
a = 7.0855 (10) ÅT = 150 K
c = 26.990 (5) Å0.15 × 0.08 × 0.07 mm
V = 1355.0 (4) Å3
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
1535 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1151 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.964Rint = 0.065
4943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.31 e Å3
1535 reflectionsAbsolute structure: Flack (1983), 548 Friedel pairs
100 parametersAbsolute structure parameter: 0.00 (10)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4911 (3)0.6115 (3)0.09891 (7)0.0187 (5)
C20.3717 (3)0.4593 (4)0.09459 (8)0.0181 (6)
N210.2115 (3)0.4681 (3)0.12083 (7)0.0261 (6)
H210.12970.37480.11940.033*
H220.18810.56720.13950.033*
N30.4012 (3)0.3036 (3)0.06637 (7)0.0180 (5)
C40.5651 (3)0.3104 (4)0.04214 (8)0.0159 (6)
C50.6988 (4)0.4549 (3)0.04394 (8)0.0155 (6)
C60.6494 (3)0.6054 (4)0.07369 (8)0.0157 (6)
Cl60.79634 (9)0.79992 (9)0.07836 (2)0.02353 (18)
N70.8518 (3)0.4129 (3)0.01381 (7)0.0195 (5)
C80.8073 (3)0.2481 (3)0.00486 (9)0.0216 (6)
H80.88690.18170.02720.027*
N90.6365 (3)0.1797 (3)0.01049 (6)0.0182 (5)
H90.58350.07250.00160.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0191 (12)0.0158 (12)0.0211 (11)0.0017 (10)0.0005 (9)0.0008 (10)
C20.0174 (14)0.0160 (14)0.0209 (13)0.0018 (12)0.0041 (12)0.0038 (12)
N210.0235 (12)0.0151 (11)0.0398 (13)0.0027 (11)0.0119 (13)0.0061 (11)
N30.0186 (12)0.0149 (11)0.0205 (10)0.0010 (10)0.0022 (9)0.0026 (10)
C40.0180 (14)0.0135 (14)0.0161 (12)0.0005 (13)0.0027 (11)0.0022 (12)
C50.0165 (13)0.0163 (13)0.0139 (12)0.0017 (13)0.0013 (13)0.0016 (11)
C60.0162 (14)0.0147 (14)0.0162 (12)0.0011 (11)0.0027 (11)0.0034 (11)
Cl60.0237 (4)0.0184 (4)0.0285 (3)0.0060 (3)0.0020 (3)0.0042 (3)
N70.0194 (12)0.0205 (12)0.0187 (12)0.0003 (9)0.0018 (10)0.0003 (10)
C80.0217 (14)0.0234 (15)0.0197 (13)0.0019 (12)0.0039 (13)0.0011 (11)
N90.0206 (12)0.0141 (11)0.0200 (12)0.0031 (10)0.0042 (10)0.0044 (10)
Geometric parameters (Å, º) top
N1—C61.313 (3)C4—C51.396 (3)
N1—C21.375 (3)C5—C61.380 (3)
C2—N211.339 (3)C5—N71.388 (3)
C2—N31.357 (3)C6—Cl61.732 (3)
N21—H210.88N7—C81.310 (3)
N21—H220.88C8—N91.368 (3)
N3—C41.334 (3)C8—H80.95
C4—N91.358 (3)N9—H90.88
C6—N1—C2117.1 (2)C6—C5—C4114.5 (2)
N21—C2—N3117.7 (2)N7—C5—C4110.6 (2)
N21—C2—N1116.1 (2)N1—C6—C5122.9 (2)
N3—C2—N1126.2 (2)N1—C6—Cl6116.75 (18)
C2—N21—H21120.0C5—C6—Cl6120.31 (19)
C2—N21—H22120.0C8—N7—C5103.2 (2)
H21—N21—H22120.0N7—C8—N9114.3 (2)
C4—N3—C2112.3 (2)N7—C8—H8122.8
N3—C4—N9127.4 (2)N9—C8—H8122.8
N3—C4—C5126.9 (2)C4—N9—C8106.17 (19)
N9—C4—C5105.7 (2)C4—N9—H9126.9
C6—C5—N7134.8 (2)C8—N9—H9126.9
C6—N1—C2—N21179.7 (2)C2—N1—C6—Cl6178.67 (16)
C6—N1—C2—N30.5 (4)N7—C5—C6—N1179.5 (2)
N21—C2—N3—C4179.8 (2)C4—C5—C6—N11.0 (3)
N1—C2—N3—C40.4 (3)N7—C5—C6—Cl60.6 (4)
C2—N3—C4—N9179.1 (2)C4—C5—C6—Cl6177.89 (18)
C2—N3—C4—C50.5 (3)C6—C5—N7—C8178.5 (3)
N3—C4—C5—C61.2 (4)C4—C5—N7—C80.0 (3)
N9—C4—C5—C6178.52 (19)C5—N7—C8—N90.4 (3)
N3—C4—C5—N7180.0 (2)N3—C4—N9—C8179.8 (2)
N9—C4—C5—N70.3 (3)C5—C4—N9—C80.5 (3)
C2—N1—C6—C50.3 (3)N7—C8—N9—C40.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N1i0.882.223.019 (3)150
N21—H22···N3ii0.882.153.027 (3)174
N9—H9···N7iii0.882.022.888 (3)168
Symmetry codes: (i) x+1/2, y1/2, z+1/4; (ii) x+1/2, y+1/2, z+1/4; (iii) y, x1, z.
(II) 2-amino-6-(4-chlorophenylthio)purine hemihydrate top
Crystal data top
C11H8ClN5S·0.5H2OF(000) = 2352
Mr = 286.74Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.353 (3) ÅCell parameters from 11629 reflections
b = 7.743 (2) Åθ = 2.9–27.5°
c = 47.60 (1) ŵ = 0.48 mm1
β = 95.85 (3)°T = 120 K
V = 4896 (2) Å3Plate, colourless
Z = 160.20 × 0.16 × 0.05 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3842 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.1°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 99
Tmin = 0.737, Tmax = 0.982l = 5656
10871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
3842 reflections(Δ/σ)max < 0.001
342 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C11H8ClN5S·0.5H2OV = 4896 (2) Å3
Mr = 286.74Z = 16
Monoclinic, C2/cMo Kα radiation
a = 13.353 (3) ŵ = 0.48 mm1
b = 7.743 (2) ÅT = 120 K
c = 47.60 (1) Å0.20 × 0.16 × 0.05 mm
β = 95.85 (3)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3842 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3045 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.982Rint = 0.060
10871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.47 e Å3
3842 reflectionsΔρmin = 0.57 e Å3
342 parameters
Special details top

Geometry. Mean plane data ex SHELXL97 for molecule (II) #############################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 7.2128 (0.0109) x + 6.3182 (0.0051) y + 12.3729 (0.0406) z = 4.8904 (0.0125)

* −0.0080 (0.0014) N1A * 0.0158 (0.0015) C2A * −0.0057 (0.0014) N3A * −0.0107 (0.0015) C4A * 0.0169 (0.0016) C5A * −0.0082 (0.0015) C6A

Rms deviation of fitted atoms = 0.0117

7.3492 (0.0116) x + 6.1911 (0.0057) y − 14.0546 (0.0466) z = 1.6649 (0.0105)

Angle to previous plane (with approximate e.s.d.) = 72.21 (0.06)

* 0.0028 (0.0017) C61A * 0.0027 (0.0018) C62A * −0.0058 (0.0018) C63A * 0.0034 (0.0017) C64A * 0.0022 (0.0017) C65A * −0.0053 (0.0017) C66A

Rms deviation of fitted atoms = 0.0040

6.5943 (0.0111) x + 0.3491 (0.0077) y − 43.5118 (0.0287) z = 0.5136 (0.0079)

Angle to previous plane (with approximate e.s.d.) = 58.89 (0.09)

* 0.0105 (0.0015) N1B * −0.0237 (0.0016) C2B * 0.0089 (0.0015) N3B * 0.0170 (0.0016) C4B * −0.0273 (0.0017) C5B * 0.0147 (0.0016) C6B

Rms deviation of fitted atoms = 0.0183

5.9714 (0.0120) x + 6.8892 (0.0049) y + 2.1861 (0.0471) z = 1.5122 (0.0037)

Angle to previous plane (with approximate e.s.d.) = 79.57 (0.08)

* 0.0026 (0.0016) C61B * 0.0017 (0.0017) C62B * −0.0034 (0.0017) C63B * 0.0008 (0.0017) C64B * 0.0036 (0.0017) C65B * −0.0053 (0.0017) C66B

Rms deviation of fitted atoms = 0.0032

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.11719 (14)0.3707 (2)0.27365 (4)0.0144 (5)
C2A0.07470 (18)0.2850 (3)0.29454 (5)0.0146 (5)
N21A0.01316 (14)0.2067 (2)0.28637 (4)0.0193 (5)
H21A0.04450.14840.29870.024*
H22A0.03940.21380.26870.024*
N3A0.11255 (14)0.2713 (2)0.32189 (4)0.0143 (5)
C4A0.19913 (17)0.3582 (3)0.32754 (5)0.0138 (5)
C5A0.24720 (18)0.4550 (3)0.30837 (5)0.0137 (5)
C6A0.20279 (18)0.4547 (3)0.28061 (5)0.0147 (5)
N7A0.33602 (14)0.5279 (2)0.32141 (4)0.0177 (5)
C8A0.33918 (18)0.4728 (3)0.34752 (5)0.0175 (6)
H8A0.39240.50020.36160.022*
N9A0.25868 (14)0.3718 (2)0.35263 (4)0.0157 (5)
H9A0.24750.32490.36890.020*
S6A0.26779 (5)0.56315 (9)0.255617 (13)0.0240 (2)
C61A0.18479 (19)0.5587 (3)0.22408 (5)0.0191 (6)
C62A0.0977 (2)0.6560 (4)0.22137 (6)0.0258 (7)
H62A0.07770.71660.23720.032*
C63A0.0391 (2)0.6656 (4)0.19560 (6)0.0269 (7)
H63A0.02140.73110.19360.034*
C64A0.0710 (2)0.5776 (3)0.17283 (5)0.0222 (6)
Cl6A0.00034 (5)0.59529 (9)0.139897 (15)0.0340 (2)
C65A0.1571 (2)0.4801 (3)0.17500 (5)0.0246 (6)
H65A0.17720.42060.15900.031*
C66A0.2140 (2)0.4701 (3)0.20089 (5)0.0225 (6)
H66A0.27350.40210.20280.028*
N1B0.52614 (15)0.1031 (2)0.06852 (4)0.0155 (5)
C2B0.59473 (19)0.2186 (3)0.08063 (5)0.0159 (6)
N21B0.56467 (16)0.3853 (2)0.07955 (4)0.0220 (5)
H21B0.60490.46650.08710.027*
H22B0.50490.41270.07130.027*
N3B0.68703 (15)0.1850 (2)0.09360 (4)0.0160 (5)
C4B0.70584 (18)0.0145 (3)0.09489 (5)0.0165 (6)
C5B0.64082 (19)0.1162 (3)0.08501 (5)0.0170 (6)
C6B0.54950 (18)0.0639 (3)0.07062 (5)0.0155 (6)
N7B0.68496 (16)0.2783 (2)0.09055 (5)0.0224 (5)
C8B0.7737 (2)0.2395 (3)0.10299 (6)0.0285 (7)
H8B0.82220.32470.10920.036*
N9B0.79129 (16)0.0658 (2)0.10637 (5)0.0230 (5)
H9B0.84640.01640.11430.029*
S6B0.46857 (5)0.22657 (8)0.055773 (15)0.02315 (19)
C61B0.37448 (18)0.1154 (3)0.03378 (5)0.0183 (6)
C62B0.38038 (19)0.1115 (3)0.00479 (6)0.0225 (6)
H62B0.43760.15820.00280.028*
C63B0.3026 (2)0.0392 (3)0.01301 (6)0.0234 (6)
H63B0.30590.03660.03290.029*
C64B0.22071 (18)0.0288 (3)0.00147 (5)0.0205 (6)
Cl6B0.12372 (5)0.12240 (8)0.023529 (15)0.0320 (2)
C65B0.21377 (19)0.0261 (3)0.02730 (5)0.0214 (6)
H65B0.15680.07420.03490.027*
C66B0.29051 (19)0.0473 (3)0.04489 (5)0.0205 (6)
H66B0.28610.05140.06470.026*
O1W0.44835 (14)0.6389 (3)0.12886 (5)0.0242 (5)
H1W0.461 (2)0.725 (4)0.1192 (7)0.051 (11)*
H2W0.433 (3)0.685 (4)0.1441 (8)0.063 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0128 (11)0.0174 (11)0.0126 (11)0.0008 (9)0.0002 (9)0.0013 (9)
C2A0.0135 (13)0.0176 (13)0.0126 (13)0.0017 (11)0.0005 (11)0.0018 (10)
N21A0.0184 (12)0.0303 (12)0.0085 (11)0.0108 (10)0.0019 (9)0.0007 (9)
N3A0.0152 (11)0.0182 (11)0.0090 (11)0.0006 (9)0.0013 (9)0.0030 (8)
C4A0.0132 (13)0.0163 (13)0.0111 (13)0.0023 (11)0.0022 (11)0.0014 (10)
C5A0.0143 (13)0.0154 (13)0.0108 (13)0.0017 (10)0.0021 (11)0.0011 (10)
C6A0.0164 (14)0.0161 (13)0.0113 (13)0.0001 (11)0.0006 (11)0.0012 (10)
N7A0.0170 (12)0.0237 (12)0.0113 (11)0.0057 (10)0.0043 (9)0.0004 (9)
C8A0.0163 (14)0.0207 (14)0.0144 (14)0.0005 (11)0.0039 (11)0.0012 (10)
N9A0.0189 (12)0.0191 (11)0.0079 (11)0.0042 (9)0.0041 (9)0.0036 (8)
S6A0.0218 (4)0.0387 (4)0.0101 (3)0.0132 (3)0.0048 (3)0.0070 (3)
C61A0.0194 (15)0.0258 (14)0.0107 (14)0.0115 (12)0.0047 (11)0.0051 (10)
C62A0.0243 (16)0.0357 (16)0.0167 (15)0.0072 (13)0.0014 (12)0.0010 (12)
C63A0.0183 (15)0.0351 (16)0.0263 (17)0.0014 (13)0.0022 (13)0.0075 (13)
C64A0.0241 (16)0.0285 (15)0.0123 (14)0.0105 (13)0.0068 (12)0.0075 (11)
Cl6A0.0325 (4)0.0505 (5)0.0162 (4)0.0095 (3)0.0114 (3)0.0109 (3)
C65A0.0298 (16)0.0299 (15)0.0134 (14)0.0035 (13)0.0018 (12)0.0008 (11)
C66A0.0236 (15)0.0274 (15)0.0155 (14)0.0040 (12)0.0039 (12)0.0055 (11)
N1B0.0181 (12)0.0135 (11)0.0139 (12)0.0035 (9)0.0036 (9)0.0011 (8)
C2B0.0229 (15)0.0161 (13)0.0081 (13)0.0017 (11)0.0016 (11)0.0017 (10)
N21B0.0249 (13)0.0151 (11)0.0233 (13)0.0017 (10)0.0108 (10)0.0025 (9)
N3B0.0198 (12)0.0152 (11)0.0119 (11)0.0031 (9)0.0041 (9)0.0002 (8)
C4B0.0201 (15)0.0199 (14)0.0084 (13)0.0017 (12)0.0037 (11)0.0015 (10)
C5B0.0226 (15)0.0169 (13)0.0107 (13)0.0023 (12)0.0024 (11)0.0022 (10)
C6B0.0179 (14)0.0197 (14)0.0086 (13)0.0008 (11)0.0006 (11)0.0017 (10)
N7B0.0252 (13)0.0167 (11)0.0228 (13)0.0058 (10)0.0089 (10)0.0011 (9)
C8B0.0289 (17)0.0214 (15)0.0313 (17)0.0068 (13)0.0159 (14)0.0044 (12)
N9B0.0211 (12)0.0207 (12)0.0244 (13)0.0021 (10)0.0109 (10)0.0051 (9)
S6B0.0237 (4)0.0150 (3)0.0280 (4)0.0002 (3)0.0110 (3)0.0002 (3)
C61B0.0195 (14)0.0144 (13)0.0192 (14)0.0030 (11)0.0060 (12)0.0006 (10)
C62B0.0215 (15)0.0221 (14)0.0240 (16)0.0009 (12)0.0024 (13)0.0051 (11)
C63B0.0323 (17)0.0242 (15)0.0126 (14)0.0052 (13)0.0029 (12)0.0009 (11)
C64B0.0210 (15)0.0152 (14)0.0231 (15)0.0018 (12)0.0085 (12)0.0010 (11)
Cl6B0.0354 (4)0.0274 (4)0.0283 (4)0.0020 (3)0.0201 (3)0.0012 (3)
C65B0.0196 (15)0.0237 (14)0.0203 (15)0.0037 (12)0.0006 (12)0.0018 (11)
C66B0.0271 (16)0.0187 (14)0.0149 (14)0.0004 (12)0.0010 (12)0.0002 (10)
O1W0.0244 (11)0.0330 (12)0.0147 (11)0.0008 (9)0.0011 (9)0.0041 (10)
Geometric parameters (Å, º) top
N1A—C6A1.328 (3)N1B—C2B1.365 (3)
N1A—C2A1.366 (3)C2B—N3B1.346 (3)
C2A—N21A1.342 (3)C2B—N21B1.351 (3)
C2A—N3A1.352 (3)N21B—H21B0.88
N21A—H21A0.88N21B—H22B0.88
N21A—H22A0.88N3B—C4B1.345 (3)
N3A—C4A1.341 (3)C4B—N9B1.364 (3)
C4A—N9A1.370 (3)C4B—C5B1.384 (3)
C4A—C5A1.388 (3)C5B—C6B1.396 (3)
C5A—C6A1.392 (3)C5B—N7B1.400 (3)
C5A—N7A1.400 (3)C6B—S6B1.760 (2)
C6A—S6A1.756 (2)N7B—C8B1.304 (3)
N7A—C8A1.311 (3)C8B—N9B1.372 (3)
C8A—N9A1.371 (3)C8B—H8B0.95
C8A—H8A0.95N9B—H9B0.88
N9A—H9A0.88S6B—C61B1.774 (3)
S6A—C61A1.773 (3)C61B—C62B1.390 (4)
C61A—C62A1.381 (4)C61B—C66B1.391 (3)
C61A—C66A1.389 (4)C62B—C63B1.390 (3)
C62A—C63A1.388 (4)C62B—H62B0.95
C62A—H62A0.95C63B—C64B1.377 (3)
C63A—C64A1.384 (4)C63B—H63B0.95
C63A—H63A0.95C64B—C65B1.382 (3)
C64A—C65A1.370 (4)C64B—Cl6B1.740 (3)
C64A—Cl6A1.751 (3)C65B—C66B1.378 (3)
C65A—C66A1.383 (3)C65B—H65B0.95
C65A—H65A0.95C66B—H66B0.95
C66A—H66A0.95O1W—H1W0.84 (4)
N1B—C6B1.332 (3)O1W—H2W0.85 (4)
C6A—N1A—C2A117.8 (2)N3B—C2B—N21B117.2 (2)
N21A—C2A—N3A118.3 (2)N3B—C2B—N1B127.6 (2)
N21A—C2A—N1A115.1 (2)N21B—C2B—N1B115.2 (2)
N3A—C2A—N1A126.7 (2)C2B—N21B—H21B120.0
C2A—N21A—H21A120.0C2B—N21B—H22B120.0
C2A—N21A—H22A120.0H21B—N21B—H22B120.0
H21A—N21A—H22A120.0C4B—N3B—C2B111.64 (19)
C4A—N3A—C2A112.6 (2)N3B—C4B—N9B127.7 (2)
N3A—C4A—N9A128.7 (2)N3B—C4B—C5B126.5 (2)
N3A—C4A—C5A125.9 (2)N9B—C4B—C5B105.9 (2)
N9A—C4A—C5A105.4 (2)C4B—C5B—C6B116.2 (2)
C4A—C5A—C6A116.3 (2)C4B—C5B—N7B110.7 (2)
C4A—C5A—N7A110.7 (2)C6B—C5B—N7B133.0 (2)
C6A—C5A—N7A132.9 (2)N1B—C6B—C5B120.3 (2)
N1A—C6A—C5A120.7 (2)N1B—C6B—S6B122.37 (18)
N1A—C6A—S6A122.53 (18)C5B—C6B—S6B117.32 (18)
C5A—C6A—S6A116.75 (18)C8B—N7B—C5B103.0 (2)
C8A—N7A—C5A103.48 (19)N7B—C8B—N9B114.6 (2)
N7A—C8A—N9A113.8 (2)N7B—C8B—H8B122.7
N7A—C8A—H8A123.1N9B—C8B—H8B122.7
N9A—C8A—H8A123.1C4B—N9B—C8B105.9 (2)
C4A—N9A—C8A106.56 (19)C4B—N9B—H9B127.1
C4A—N9A—H9A126.7C8B—N9B—H9B127.1
C8A—N9A—H9A126.7C6B—S6B—C61B104.99 (11)
C6A—S6A—C61A104.76 (11)C62B—C61B—C66B119.9 (2)
C62A—C61A—C66A119.8 (2)C62B—C61B—S6B119.21 (19)
C62A—C61A—S6A121.1 (2)C66B—C61B—S6B120.6 (2)
C66A—C61A—S6A118.7 (2)C63B—C62B—C61B120.0 (2)
C61A—C62A—C63A120.4 (3)C63B—C62B—H62B120.0
C61A—C62A—H62A119.8C61B—C62B—H62B120.0
C63A—C62A—H62A119.8C64B—C63B—C62B119.0 (2)
C64A—C63A—C62A118.4 (3)C64B—C63B—H63B120.5
C64A—C63A—H63A120.8C62B—C63B—H63B120.5
C62A—C63A—H63A120.8C63B—C64B—C65B121.7 (2)
C65A—C64A—C63A122.4 (2)C63B—C64B—Cl6B119.4 (2)
C65A—C64A—Cl6A118.8 (2)C65B—C64B—Cl6B118.9 (2)
C63A—C64A—Cl6A118.8 (2)C66B—C65B—C64B119.2 (2)
C64A—C65A—C66A118.6 (3)C66B—C65B—H65B120.4
C64A—C65A—H65A120.7C64B—C65B—H65B120.4
C66A—C65A—H65A120.7C65B—C66B—C61B120.3 (2)
C65A—C66A—C61A120.5 (3)C65B—C66B—H66B119.9
C65A—C66A—H66A119.7C61B—C66B—H66B119.9
C61A—C66A—H66A119.7H1W—O1W—H2W102 (3)
C6B—N1B—C2B117.6 (2)
C6A—N1A—C2A—N21A178.16 (19)C6B—N1B—C2B—N3B3.4 (4)
C6A—N1A—C2A—N3A2.4 (3)C6B—N1B—C2B—N21B175.8 (2)
N21A—C2A—N3A—C4A178.5 (2)N21B—C2B—N3B—C4B176.1 (2)
N1A—C2A—N3A—C4A2.1 (3)N1B—C2B—N3B—C4B3.1 (3)
C2A—N3A—C4A—N9A179.3 (2)C2B—N3B—C4B—N9B179.7 (2)
C2A—N3A—C4A—C5A0.7 (3)C2B—N3B—C4B—C5B1.2 (3)
N3A—C4A—C5A—C6A2.8 (3)N3B—C4B—C5B—C6B4.6 (4)
N9A—C4A—C5A—C6A177.2 (2)N9B—C4B—C5B—C6B176.1 (2)
N3A—C4A—C5A—N7A179.8 (2)N3B—C4B—C5B—N7B178.6 (2)
N9A—C4A—C5A—N7A0.1 (3)N9B—C4B—C5B—N7B0.7 (3)
C2A—N1A—C6A—C5A0.1 (3)C2B—N1B—C6B—C5B0.6 (3)
C2A—N1A—C6A—S6A177.53 (17)C2B—N1B—C6B—S6B179.50 (17)
C4A—C5A—C6A—N1A2.4 (3)C4B—C5B—C6B—N1B4.1 (3)
N7A—C5A—C6A—N1A178.6 (2)N7B—C5B—C6B—N1B180.0 (2)
C4A—C5A—C6A—S6A175.34 (17)C4B—C5B—C6B—S6B175.96 (18)
N7A—C5A—C6A—S6A0.9 (4)N7B—C5B—C6B—S6B0.1 (4)
C4A—C5A—N7A—C8A0.5 (3)C4B—C5B—N7B—C8B0.8 (3)
C6A—C5A—N7A—C8A175.9 (3)C6B—C5B—N7B—C8B175.2 (3)
C5A—N7A—C8A—N9A0.9 (3)C5B—N7B—C8B—N9B0.6 (3)
N3A—C4A—N9A—C8A179.3 (2)N3B—C4B—N9B—C8B179.0 (2)
C5A—C4A—N9A—C8A0.7 (2)C5B—C4B—N9B—C8B0.3 (3)
N7A—C8A—N9A—C4A1.0 (3)N7B—C8B—N9B—C4B0.3 (3)
N1A—C6A—S6A—C61A8.8 (2)N1B—C6B—S6B—C61B11.2 (2)
C5A—C6A—S6A—C61A173.52 (19)C5B—C6B—S6B—C61B168.85 (19)
C6A—S6A—C61A—C62A70.4 (2)C6B—S6B—C61B—C62B101.1 (2)
C6A—S6A—C61A—C66A116.5 (2)C6B—S6B—C61B—C66B85.2 (2)
C66A—C61A—C62A—C63A0.0 (4)C66B—C61B—C62B—C63B0.2 (4)
S6A—C61A—C62A—C63A173.1 (2)S6B—C61B—C62B—C63B173.98 (18)
C61A—C62A—C63A—C64A0.8 (4)C61B—C62B—C63B—C64B0.4 (4)
C62A—C63A—C64A—C65A0.9 (4)C62B—C63B—C64B—C65B0.3 (4)
C62A—C63A—C64A—Cl6A177.61 (19)C62B—C63B—C64B—Cl6B179.09 (18)
C63A—C64A—C65A—C66A0.2 (4)C63B—C64B—C65B—C66B0.3 (4)
Cl6A—C64A—C65A—C66A178.36 (19)Cl6B—C64B—C65B—C66B179.76 (18)
C64A—C65A—C66A—C61A0.7 (4)C64B—C65B—C66B—C61B0.9 (4)
C62A—C61A—C66A—C65A0.8 (4)C62B—C61B—C66B—C65B0.8 (4)
S6A—C61A—C66A—C65A172.45 (19)S6B—C61B—C66B—C65B174.56 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···N7Ai0.882.223.072 (3)163
N21A—H22A···N1Aii0.882.493.300 (3)154
N21A—H22A···S6Ai0.882.843.326 (2)117
N9A—H9A···N3Biii0.882.192.965 (3)146
N21B—H21B···N7Biv0.882.253.077 (3)158
N21B—H22B···Cl6Bv0.882.723.475 (2)145
N21B—H22B···S6Biv0.882.923.415 (2)118
N9B—H9B···O1Wvi0.881.892.757 (3)166
O1W—H1W···S6Biv0.84 (4)3.05 (4)3.668 (2)132 (3)
O1W—H2W···N3Avii0.85 (4)1.91 (4)2.756 (3)174 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x+1, y, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z+1/2.
(III) 2-amino-6-(4-methylphenylthio)purine 1/3hydrate top
Crystal data top
C12H11N5S·0.333H2OZ = 6
Mr = 263.32F(000) = 824
Triclinic, P1Dx = 1.389 Mg m3
a = 10.8074 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6355 (3) ÅCell parameters from 40289 reflections
c = 15.3922 (3) Åθ = 2.9–27.5°
α = 85.468 (2)°µ = 0.25 mm1
β = 83.265 (1)°T = 150 K
γ = 79.7992 (9)°Plate, colourless
V = 1888.46 (7) Å30.12 × 0.12 × 0.01 mm
Data collection top
Bruker–Nonius KappaCCD area detector
diffractometer
8568 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode4357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1515
Tmin = 0.931, Tmax = 0.998l = 1919
36016 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0537P)2]
where P = (Fo2 + 2Fc2)/3
8568 reflections(Δ/σ)max < 0.001
507 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H11N5S·0.333H2Oγ = 79.7992 (9)°
Mr = 263.32V = 1888.46 (7) Å3
Triclinic, P1Z = 6
a = 10.8074 (2) ÅMo Kα radiation
b = 11.6355 (3) ŵ = 0.25 mm1
c = 15.3922 (3) ÅT = 150 K
α = 85.468 (2)°0.12 × 0.12 × 0.01 mm
β = 83.265 (1)°
Data collection top
Bruker–Nonius KappaCCD area detector
diffractometer
8568 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4357 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.998Rint = 0.111
36016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.28 e Å3
8568 reflectionsΔρmin = 0.30 e Å3
507 parameters
Special details top

Geometry. Mean plane data ex SHELXL97 for molecule (III) ##############################################

10.4927 (0.0026) x + 4.6335 (0.0105) y + 2.9885 (0.0160) z = 6.7844 (0.0093)

* 0.0052 (0.0017) N1A * −0.0075 (0.0018) C2A * 0.0048 (0.0017) N3A * −0.0014 (0.0018) C4A * −0.0004 (0.0018) C5A * −0.0007 (0.0018) C6A

Rms deviation of fitted atoms = 0.0043

− 5.4722 (0.0101) x + 7.4941 (0.0096) y + 6.3778 (0.0145) z = 6.0185 (0.0099)

Angle to previous plane (with approximate e.s.d.) = 73.08 (0.07)

* 0.0062 (0.0018) C61A * −0.0105 (0.0018) C62A * 0.0045 (0.0019) C63A * 0.0061 (0.0020) C64A * −0.0107 (0.0019) C65A * 0.0044 (0.0019) C66A

Rms deviation of fitted atoms = 0.0075

6.0317 (0.0082) x − 6.9901 (0.0085) y − 6.1715 (0.0143) z = 0.8298 (0.0063)

Angle to previous plane (with approximate e.s.d.) = 3.58 (0.17)

* −0.0083 (0.0016) N1B * 0.0115 (0.0017) C2B * 0.0013 (0.0016) N3B * −0.0164 (0.0017) C4B * 0.0180 (0.0017) C5B * −0.0061 (0.0017) C6B

Rms deviation of fitted atoms = 0.0118

7.2341 (0.0091) x + 4.8210 (0.0120) y − 8.8851 (0.0140) z = 1.7212 (0.0017)

Angle to previous plane (with approximate e.s.d.) = 63.21 (0.08)

* 0.0129 (0.0019) C61B * 0.0009 (0.0019) C62B * −0.0136 (0.0020) C63B * 0.0124 (0.0020) C64B * 0.0014 (0.0021) C65B * −0.0140 (0.0020) C66B

Rms deviation of fitted atoms = 0.0109

− 3.3624 (0.0097) x + 8.8480 (0.0067) y + 7.2945 (0.0131) z = 4.4083 (0.0057)

Angle to previous plane (with approximate e.s.d.) = 74.01 (0.08)

* −0.0312 (0.0016) N1C * 0.0498 (0.0016) C2C * −0.0161 (0.0016) N3C * −0.0317 (0.0016) C4C * 0.0449 (0.0017) C5C * −0.0157 (0.0017) C6C

Rms deviation of fitted atoms = 0.0341

9.4416 (0.0076) x + 7.3141 (0.0126) y + 3.0886 (0.0192) z = 3.3833 (0.0088)

Angle to previous plane (with approximate e.s.d.) = 80.80 (0.08)

* −0.0007 (0.0021) C61C * −0.0085 (0.0024) C62C * 0.0135 (0.0025) C63C * −0.0092 (0.0022) C64C * 0.0001 (0.0023) C65C * 0.0048 (0.0023) C66C

Rms deviation of fitted atoms = 0.0078

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.3642 (2)0.30213 (19)0.52465 (12)0.0301 (5)
C2A0.4158 (3)0.1868 (2)0.51806 (16)0.0309 (7)
N21A0.4572 (2)0.1529 (2)0.43641 (13)0.0461 (7)
H21A0.49420.08020.42850.058*
H22A0.44720.20340.39110.058*
N3A0.4344 (2)0.10474 (18)0.58421 (12)0.0297 (5)
C4A0.3377 (2)0.2620 (2)0.67783 (15)0.0270 (6)
C5A0.3924 (2)0.1484 (2)0.66205 (15)0.0268 (6)
C6A0.3248 (2)0.3389 (2)0.60420 (15)0.0278 (6)
N7A0.3079 (2)0.2750 (2)0.76790 (13)0.0341 (6)
C8A0.3435 (3)0.1697 (2)0.80220 (16)0.0351 (7)
H8A0.33430.15070.86350.044*
N9A0.3949 (2)0.08953 (19)0.74260 (12)0.0317 (6)
H9A0.42390.01490.75360.040*
S6A0.25434 (8)0.48439 (7)0.62075 (4)0.0422 (2)
C61A0.2540 (3)0.5521 (2)0.51377 (16)0.0309 (7)
C62A0.1672 (3)0.5339 (2)0.45815 (18)0.0372 (7)
H62A0.11350.47780.47460.046*
C63A0.1601 (3)0.5983 (3)0.37874 (18)0.0429 (8)
H63A0.09960.58710.34150.054*
C64A0.2397 (3)0.6788 (3)0.35270 (18)0.0437 (8)
C65A0.3269 (3)0.6929 (3)0.40822 (18)0.0435 (8)
H65A0.38360.74620.39080.054*
C66A0.3332 (3)0.6317 (2)0.48803 (17)0.0381 (7)
H66A0.39260.64430.52560.048*
C67A0.2325 (4)0.7479 (3)0.26553 (19)0.0715 (12)
H67A0.31540.73470.23110.089*
H68A0.20760.83140.27540.089*
H69A0.16980.72260.23360.089*
N1B0.4174 (2)0.23536 (19)0.00824 (13)0.0304 (5)
C2B0.4887 (2)0.3190 (2)0.02002 (16)0.0283 (6)
N21B0.4712 (2)0.3682 (2)0.10040 (13)0.0369 (6)
H21B0.51480.42250.12290.046*
H22B0.41610.34620.13060.046*
N3B0.57405 (19)0.35560 (19)0.02360 (12)0.0284 (5)
C4B0.5849 (2)0.2979 (2)0.10239 (15)0.0285 (6)
C5B0.5216 (3)0.2087 (2)0.13611 (15)0.0294 (6)
C6B0.4335 (2)0.1803 (2)0.08603 (16)0.0297 (6)
N7B0.5603 (2)0.16558 (19)0.21780 (13)0.0332 (6)
C8B0.6418 (3)0.2321 (2)0.23028 (16)0.0355 (7)
H8B0.68380.22450.28180.044*
N9B0.6616 (2)0.31325 (19)0.16328 (12)0.0305 (5)
H9B0.71310.36460.16010.038*
S6B0.34445 (8)0.07289 (7)0.12837 (4)0.0439 (2)
C61B0.2487 (3)0.0670 (3)0.04367 (17)0.0353 (7)
C62B0.2625 (3)0.0346 (2)0.00110 (17)0.0373 (7)
H62B0.32440.09960.01610.047*
C63B0.1858 (3)0.0423 (3)0.06389 (18)0.0410 (8)
H63B0.19460.11350.09220.051*
C64B0.0972 (3)0.0517 (3)0.08792 (18)0.0429 (8)
C65B0.0832 (3)0.1529 (3)0.0431 (2)0.0471 (8)
H65B0.02170.21820.05820.059*
C66B0.1569 (3)0.1607 (3)0.02277 (18)0.0446 (8)
H66B0.14460.23000.05370.056*
C67B0.0196 (3)0.0451 (3)0.1620 (2)0.0620 (10)
H67B0.05250.08850.21420.077*
H68B0.06860.07950.14510.077*
H69B0.02460.03680.17470.077*
N1C0.2602 (2)0.34012 (19)0.30746 (12)0.0284 (5)
C2C0.3496 (2)0.4063 (2)0.27944 (15)0.0264 (6)
N21C0.43612 (19)0.40878 (18)0.33629 (12)0.0297 (5)
H21C0.49760.44940.32180.037*
H22C0.43060.36980.38760.037*
N3C0.36326 (19)0.46780 (18)0.20215 (12)0.0262 (5)
C5C0.1614 (2)0.4151 (2)0.18142 (15)0.0274 (6)
C4C0.2662 (2)0.4675 (2)0.15567 (15)0.0263 (6)
C6C0.1647 (2)0.3452 (2)0.25935 (16)0.0287 (6)
N7C0.0755 (2)0.4395 (2)0.11866 (13)0.0332 (6)
C8C0.1322 (3)0.5028 (2)0.05819 (16)0.0334 (7)
H8C0.09610.53280.00590.042*
N9C0.2469 (2)0.52242 (19)0.07558 (12)0.0311 (5)
H9C0.29810.56240.04210.039*
S6C0.04176 (7)0.26601 (7)0.29177 (5)0.0411 (2)
C61C0.0948 (2)0.1781 (2)0.38371 (16)0.0308 (7)
C62C0.1771 (3)0.0754 (3)0.37279 (19)0.0527 (9)
H62C0.21070.05330.31550.066*
C63C0.2113 (3)0.0040 (3)0.4445 (2)0.0592 (10)
H63C0.27120.06550.43610.074*
C64C0.1609 (3)0.0305 (3)0.52823 (17)0.0373 (7)
C65C0.0791 (3)0.1331 (3)0.53829 (18)0.0503 (9)
H65C0.04440.15430.59560.063*
C66C0.0454 (3)0.2074 (3)0.46688 (17)0.0488 (9)
H66C0.01180.27860.47550.061*
C67C0.1958 (3)0.0524 (3)0.60574 (19)0.0558 (9)
H67C0.28440.09000.59520.070*
H68C0.14140.11230.61350.070*
H69C0.18420.00860.65880.070*
O1W0.8062 (2)0.4882 (2)0.15590 (13)0.0392 (5)
H1W0.781 (3)0.553 (3)0.180 (2)0.071 (13)*
H2W0.887 (4)0.474 (3)0.149 (2)0.079 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0435 (14)0.0225 (14)0.0236 (11)0.0053 (11)0.0034 (10)0.0011 (10)
C2A0.0438 (18)0.0223 (17)0.0262 (14)0.0073 (13)0.0020 (12)0.0029 (12)
N21A0.086 (2)0.0225 (14)0.0237 (12)0.0000 (13)0.0018 (12)0.0019 (10)
N3A0.0431 (14)0.0227 (13)0.0226 (11)0.0076 (11)0.0000 (10)0.0017 (10)
C4A0.0353 (16)0.0219 (16)0.0239 (14)0.0084 (13)0.0006 (11)0.0003 (12)
C5A0.0346 (16)0.0245 (16)0.0218 (13)0.0085 (13)0.0038 (11)0.0041 (12)
C6A0.0353 (16)0.0230 (16)0.0257 (14)0.0076 (13)0.0025 (11)0.0009 (12)
N7A0.0473 (15)0.0296 (15)0.0247 (12)0.0088 (12)0.0003 (10)0.0008 (11)
C8A0.0481 (19)0.0345 (19)0.0225 (14)0.0101 (15)0.0011 (12)0.0003 (13)
N9A0.0510 (15)0.0213 (13)0.0225 (11)0.0068 (11)0.0043 (10)0.0027 (10)
S6A0.0659 (6)0.0264 (4)0.0287 (4)0.0017 (4)0.0025 (3)0.0001 (3)
C61A0.0371 (17)0.0199 (16)0.0327 (15)0.0023 (13)0.0031 (13)0.0008 (12)
C62A0.0351 (17)0.0298 (18)0.0446 (17)0.0005 (14)0.0008 (13)0.0080 (14)
C63A0.0455 (19)0.040 (2)0.0401 (17)0.0119 (16)0.0132 (14)0.0122 (15)
C64A0.065 (2)0.0263 (18)0.0324 (16)0.0109 (17)0.0040 (15)0.0017 (14)
C65A0.054 (2)0.0304 (19)0.0443 (18)0.0075 (15)0.0010 (15)0.0063 (15)
C66A0.0437 (19)0.0303 (18)0.0394 (16)0.0030 (15)0.0099 (14)0.0033 (14)
C67A0.107 (3)0.049 (2)0.0431 (19)0.021 (2)0.0062 (19)0.0089 (17)
N1B0.0396 (14)0.0244 (14)0.0274 (12)0.0097 (11)0.0010 (10)0.0026 (10)
C2B0.0323 (16)0.0240 (16)0.0269 (14)0.0027 (13)0.0020 (12)0.0030 (12)
N21B0.0465 (15)0.0390 (15)0.0298 (12)0.0201 (12)0.0111 (11)0.0088 (11)
N3B0.0341 (13)0.0271 (13)0.0233 (11)0.0061 (11)0.0025 (10)0.0038 (10)
C4B0.0364 (16)0.0230 (16)0.0238 (14)0.0007 (13)0.0017 (12)0.0026 (12)
C5B0.0416 (17)0.0219 (16)0.0216 (13)0.0020 (13)0.0029 (12)0.0011 (12)
C6B0.0385 (17)0.0228 (16)0.0257 (14)0.0044 (13)0.0032 (12)0.0002 (12)
N7B0.0503 (16)0.0256 (14)0.0221 (12)0.0045 (12)0.0032 (10)0.0036 (10)
C8B0.0499 (19)0.0283 (18)0.0242 (14)0.0016 (15)0.0038 (13)0.0053 (13)
N9B0.0386 (14)0.0271 (14)0.0251 (11)0.0062 (11)0.0030 (10)0.0033 (10)
S6B0.0622 (6)0.0410 (5)0.0315 (4)0.0236 (4)0.0011 (3)0.0074 (3)
C61B0.0367 (17)0.0308 (18)0.0377 (16)0.0122 (14)0.0062 (13)0.0019 (14)
C62B0.0404 (18)0.0295 (18)0.0387 (16)0.0038 (14)0.0051 (13)0.0007 (14)
C63B0.0453 (19)0.038 (2)0.0396 (17)0.0125 (16)0.0064 (14)0.0080 (14)
C64B0.0399 (19)0.048 (2)0.0394 (17)0.0126 (16)0.0054 (14)0.0049 (15)
C65B0.0410 (19)0.038 (2)0.056 (2)0.0024 (16)0.0024 (15)0.0023 (16)
C66B0.053 (2)0.0325 (19)0.0460 (18)0.0101 (16)0.0108 (15)0.0060 (15)
C67B0.056 (2)0.078 (3)0.051 (2)0.016 (2)0.0030 (17)0.0049 (19)
N1C0.0351 (14)0.0254 (13)0.0247 (11)0.0066 (11)0.0028 (10)0.0022 (10)
C2C0.0309 (16)0.0192 (15)0.0270 (14)0.0003 (13)0.0022 (12)0.0008 (12)
N21C0.0326 (13)0.0303 (14)0.0265 (11)0.0077 (11)0.0075 (10)0.0079 (10)
N3C0.0312 (13)0.0232 (13)0.0228 (11)0.0020 (10)0.0036 (10)0.0029 (10)
C5C0.0342 (16)0.0275 (16)0.0197 (13)0.0030 (13)0.0033 (11)0.0012 (12)
C4C0.0327 (16)0.0232 (16)0.0209 (13)0.0017 (13)0.0001 (12)0.0001 (11)
C6C0.0375 (17)0.0226 (16)0.0258 (14)0.0076 (13)0.0011 (12)0.0019 (12)
N7C0.0390 (14)0.0375 (15)0.0241 (11)0.0112 (12)0.0053 (10)0.0057 (11)
C8C0.0387 (18)0.0364 (18)0.0261 (14)0.0074 (14)0.0090 (13)0.0018 (13)
N9C0.0356 (14)0.0353 (15)0.0222 (11)0.0093 (11)0.0037 (10)0.0070 (10)
S6C0.0444 (5)0.0433 (5)0.0381 (4)0.0179 (4)0.0102 (3)0.0137 (4)
C61C0.0340 (16)0.0266 (17)0.0329 (15)0.0116 (13)0.0028 (12)0.0055 (12)
C62C0.072 (2)0.043 (2)0.0335 (17)0.0039 (18)0.0099 (16)0.0017 (15)
C63C0.074 (3)0.039 (2)0.051 (2)0.0117 (18)0.0066 (18)0.0092 (17)
C64C0.0374 (17)0.0355 (19)0.0402 (17)0.0116 (15)0.0080 (13)0.0096 (14)
C65C0.063 (2)0.057 (2)0.0252 (15)0.0006 (19)0.0022 (14)0.0005 (15)
C66C0.060 (2)0.041 (2)0.0366 (17)0.0110 (17)0.0014 (15)0.0030 (15)
C67C0.063 (2)0.055 (2)0.0517 (19)0.0209 (18)0.0159 (17)0.0226 (17)
O1W0.0384 (14)0.0433 (15)0.0370 (12)0.0081 (11)0.0034 (10)0.0074 (11)
Geometric parameters (Å, º) top
N1A—C6A1.326 (3)C61B—C62B1.374 (4)
N1A—C2A1.366 (3)C61B—C66B1.383 (4)
C2A—N3A1.347 (3)C62B—C63B1.389 (4)
C2A—N21A1.349 (3)C62B—H62B0.95
N21A—H21A0.88C63B—C64B1.378 (4)
N21A—H22A0.88C63B—H63B0.95
N3A—C5A1.337 (3)C64B—C65B1.388 (4)
C4A—C5A1.377 (3)C64B—C67B1.506 (4)
C4A—C6A1.392 (3)C65B—C66B1.378 (4)
C4A—N7A1.400 (3)C65B—H65B0.95
C5A—N9A1.369 (3)C66B—H66B0.95
C6A—S6A1.754 (3)C67B—H67B0.98
N7A—C8A1.306 (3)C67B—H68B0.98
C8A—N9A1.361 (3)C67B—H69B0.98
C8A—H8A0.95N1C—C6C1.330 (3)
N9A—H9A0.88N1C—C2C1.351 (3)
S6A—C61A1.769 (3)C2C—N3C1.345 (3)
C61A—C66A1.375 (4)C2C—N21C1.359 (3)
C61A—C62A1.394 (4)N21C—H21C0.88
C62A—C63A1.385 (4)N21C—H22C0.88
C62A—H62A0.95N3C—C4C1.338 (3)
C63A—C64A1.387 (4)C5C—C4C1.383 (4)
C63A—H63A0.95C5C—C6C1.395 (3)
C64A—C65A1.382 (4)C5C—N7C1.396 (3)
C64A—C67A1.512 (4)C4C—N9C1.364 (3)
C65A—C66A1.373 (4)C6C—S6C1.752 (3)
C65A—H65A0.95N7C—C8C1.304 (3)
C66A—H66A0.95C8C—N9C1.359 (3)
C67A—H67A0.98C8C—H8C0.95
C67A—H68A0.98N9C—H9C0.88
C67A—H69A0.98S6C—C61C1.770 (3)
N1B—C6B1.328 (3)C61C—C62C1.366 (4)
N1B—C2B1.360 (3)C61C—C66C1.373 (3)
C2B—N21B1.341 (3)C62C—C63C1.374 (4)
C2B—N3B1.346 (3)C62C—H62C0.95
N21B—H21B0.88C63C—C64C1.375 (4)
N21B—H22B0.88C63C—H63C0.95
N3B—C4B1.346 (3)C64C—C65C1.362 (4)
C4B—N9B1.363 (3)C64C—C67C1.513 (4)
C4B—C5B1.378 (4)C65C—C66C1.386 (4)
C5B—C6B1.391 (4)C65C—H65C0.95
C5B—N7B1.399 (3)C66C—H66C0.95
C6B—S6B1.750 (3)C67C—H67C0.98
N7B—C8B1.310 (3)C67C—H68C0.98
C8B—N9B1.366 (3)C67C—H69C0.98
C8B—H8B0.95O1W—H1W0.85 (4)
N9B—H9B0.88O1W—H2W0.86 (4)
S6B—C61B1.770 (3)
C6A—N1A—C2A117.6 (2)C62B—C61B—C66B119.8 (3)
N3A—C2A—N21A116.7 (2)C62B—C61B—S6B119.0 (2)
N3A—C2A—N1A127.2 (2)C66B—C61B—S6B121.1 (2)
N21A—C2A—N1A116.1 (2)C61B—C62B—C63B120.0 (3)
C2A—N21A—H21A120.0C61B—C62B—H62B120.0
C2A—N21A—H22A120.0C63B—C62B—H62B120.0
H21A—N21A—H22A120.0C64B—C63B—C62B120.9 (3)
C5A—N3A—C2A111.6 (2)C64B—C63B—H63B119.5
C5A—C4A—C6A115.9 (2)C62B—C63B—H63B119.5
C5A—C4A—N7A110.6 (2)C63B—C64B—C65B118.2 (3)
C6A—C4A—N7A133.5 (2)C63B—C64B—C67B120.7 (3)
N3A—C5A—N9A127.1 (2)C65B—C64B—C67B121.1 (3)
N3A—C5A—C4A127.1 (2)C66B—C65B—C64B121.3 (3)
N9A—C5A—C4A105.7 (2)C66B—C65B—H65B119.3
N1A—C6A—C4A120.6 (2)C64B—C65B—H65B119.3
N1A—C6A—S6A121.77 (19)C65B—C66B—C61B119.7 (3)
C4A—C6A—S6A117.64 (19)C65B—C66B—H66B120.2
C8A—N7A—C4A103.2 (2)C61B—C66B—H66B120.2
N7A—C8A—N9A114.3 (2)C64B—C67B—H67B109.5
N7A—C8A—H8A122.9C64B—C67B—H68B109.5
N9A—C8A—H8A122.9H67B—C67B—H68B109.5
C8A—N9A—C5A106.2 (2)C64B—C67B—H69B109.5
C8A—N9A—H9A126.9H67B—C67B—H69B109.5
C5A—N9A—H9A126.9H68B—C67B—H69B109.5
C6A—S6A—C61A104.04 (12)C6C—N1C—C2C117.9 (2)
C66A—C61A—C62A119.5 (3)N3C—C2C—N1C127.6 (2)
C66A—C61A—S6A119.2 (2)N3C—C2C—N21C117.1 (2)
C62A—C61A—S6A121.0 (2)N1C—C2C—N21C115.3 (2)
C63A—C62A—C61A119.5 (3)C2C—N21C—H21C120.0
C63A—C62A—H62A120.3C2C—N21C—H22C120.0
C61A—C62A—H62A120.3H21C—N21C—H22C120.0
C62A—C63A—C64A121.1 (3)C4C—N3C—C2C111.3 (2)
C62A—C63A—H63A119.4C4C—C5C—C6C116.1 (2)
C64A—C63A—H63A119.4C4C—C5C—N7C110.6 (2)
C65A—C64A—C63A118.1 (3)C6C—C5C—N7C133.2 (3)
C65A—C64A—C67A121.0 (3)N3C—C4C—N9C127.6 (2)
C63A—C64A—C67A120.9 (3)N3C—C4C—C5C126.5 (2)
C66A—C65A—C64A121.5 (3)N9C—C4C—C5C105.8 (2)
C66A—C65A—H65A119.3N1C—C6C—C5C119.7 (2)
C64A—C65A—H65A119.3N1C—C6C—S6C121.4 (2)
C65A—C66A—C61A120.3 (3)C5C—C6C—S6C118.9 (2)
C65A—C66A—H66A119.9C8C—N7C—C5C102.8 (2)
C61A—C66A—H66A119.9N7C—C8C—N9C114.9 (2)
C64A—C67A—H67A109.5N7C—C8C—H8C122.5
C64A—C67A—H68A109.5N9C—C8C—H8C122.5
H67A—C67A—H68A109.5C8C—N9C—C4C105.8 (2)
C64A—C67A—H69A109.5C8C—N9C—H9C127.1
H67A—C67A—H69A109.5C4C—N9C—H9C127.1
H68A—C67A—H69A109.5C6C—S6C—C61C103.13 (12)
C6B—N1B—C2B118.2 (2)C62C—C61C—C66C119.1 (3)
N21B—C2B—N3B117.8 (2)C62C—C61C—S6C120.5 (2)
N21B—C2B—N1B115.2 (2)C66C—C61C—S6C120.1 (2)
N3B—C2B—N1B126.9 (2)C61C—C62C—C63C120.1 (3)
C2B—N21B—H21B120.0C61C—C62C—H62C120.0
C2B—N21B—H22B120.0C63C—C62C—H62C120.0
H21B—N21B—H22B120.0C62C—C63C—C64C121.7 (3)
C4B—N3B—C2B112.1 (2)C62C—C63C—H63C119.1
N3B—C4B—N9B127.5 (3)C64C—C63C—H63C119.1
N3B—C4B—C5B125.9 (2)C65C—C64C—C63C117.6 (3)
N9B—C4B—C5B106.5 (2)C65C—C64C—C67C121.8 (3)
C4B—C5B—C6B116.8 (2)C63C—C64C—C67C120.6 (3)
C4B—C5B—N7B110.4 (2)C64C—C65C—C66C121.5 (3)
C6B—C5B—N7B132.8 (3)C64C—C65C—H65C119.3
N1B—C6B—C5B119.9 (2)C66C—C65C—H65C119.3
N1B—C6B—S6B121.4 (2)C61C—C66C—C65C119.9 (3)
C5B—C6B—S6B118.67 (19)C61C—C66C—H66C120.0
C8B—N7B—C5B102.9 (2)C65C—C66C—H66C120.0
N7B—C8B—N9B114.7 (2)C64C—C67C—H67C109.5
N7B—C8B—H8B122.7C64C—C67C—H68C109.5
N9B—C8B—H8B122.7H67C—C67C—H68C109.5
C4B—N9B—C8B105.5 (2)C64C—C67C—H69C109.5
C4B—N9B—H9B127.3H67C—C67C—H69C109.5
C8B—N9B—H9B127.3H68C—C67C—H69C109.5
C6B—S6B—C61B102.41 (13)H1W—O1W—H2W110 (3)
C6A—N1A—C2A—N3A1.6 (4)C5B—N7B—C8B—N9B1.2 (3)
C6A—N1A—C2A—N21A178.8 (2)N3B—C4B—N9B—C8B178.0 (2)
N21A—C2A—N3A—C5A178.6 (2)C5B—C4B—N9B—C8B0.5 (3)
N1A—C2A—N3A—C5A1.5 (4)N7B—C8B—N9B—C4B0.5 (3)
C2A—N3A—C5A—N9A179.2 (3)N1B—C6B—S6B—C61B1.0 (2)
C2A—N3A—C5A—C4A0.8 (4)C5B—C6B—S6B—C61B179.8 (2)
C6A—C4A—C5A—N3A0.2 (4)C6B—S6B—C61B—C62B116.4 (2)
N7A—C4A—C5A—N3A179.0 (2)C6B—S6B—C61B—C66B66.6 (2)
C6A—C4A—C5A—N9A179.8 (2)C66B—C61B—C62B—C63B1.2 (4)
N7A—C4A—C5A—N9A1.0 (3)S6B—C61B—C62B—C63B178.2 (2)
C2A—N1A—C6A—C4A0.9 (4)C61B—C62B—C63B—C64B1.4 (4)
C2A—N1A—C6A—S6A178.8 (2)C62B—C63B—C64B—C65B2.4 (4)
C5A—C4A—C6A—N1A0.2 (4)C62B—C63B—C64B—C67B176.4 (3)
N7A—C4A—C6A—N1A178.8 (3)C63B—C64B—C65B—C66B1.0 (4)
C5A—C4A—C6A—S6A179.48 (19)C67B—C64B—C65B—C66B177.9 (3)
N7A—C4A—C6A—S6A1.5 (4)C64B—C65B—C66B—C61B1.5 (5)
C5A—C4A—N7A—C8A1.0 (3)C62B—C61B—C66B—C65B2.6 (4)
C6A—C4A—N7A—C8A180.0 (3)S6B—C61B—C66B—C65B179.5 (2)
C4A—N7A—C8A—N9A0.6 (3)C6C—N1C—C2C—N3C8.8 (4)
N7A—C8A—N9A—C5A0.0 (3)C6C—N1C—C2C—N21C172.2 (2)
N3A—C5A—N9A—C8A179.4 (2)N1C—C2C—N3C—C4C6.9 (3)
C4A—C5A—N9A—C8A0.6 (3)N21C—C2C—N3C—C4C174.2 (2)
N1A—C6A—S6A—C61A0.2 (2)C2C—N3C—C4C—N9C178.5 (2)
C4A—C6A—S6A—C61A179.5 (2)C2C—N3C—C4C—C5C1.7 (4)
C6A—S6A—C61A—C66A109.7 (2)C6C—C5C—C4C—N3C7.5 (4)
C6A—S6A—C61A—C62A76.0 (2)N7C—C5C—C4C—N3C175.9 (2)
C66A—C61A—C62A—C63A1.6 (4)C6C—C5C—C4C—N9C175.1 (2)
S6A—C61A—C62A—C63A172.8 (2)N7C—C5C—C4C—N9C1.4 (3)
C61A—C62A—C63A—C64A1.4 (4)C2C—N1C—C6C—C5C1.8 (3)
C62A—C63A—C64A—C65A0.1 (4)C2C—N1C—C6C—S6C178.12 (17)
C62A—C63A—C64A—C67A179.4 (2)C4C—C5C—C6C—N1C5.4 (4)
C63A—C64A—C65A—C66A1.6 (4)N7C—C5C—C6C—N1C179.0 (2)
C67A—C64A—C65A—C66A179.2 (3)C4C—C5C—C6C—S6C174.70 (18)
C64A—C65A—C66A—C61A1.5 (4)N7C—C5C—C6C—S6C0.9 (4)
C62A—C61A—C66A—C65A0.1 (4)C4C—C5C—N7C—C8C1.1 (3)
S6A—C61A—C66A—C65A174.3 (2)C6C—C5C—N7C—C8C174.7 (3)
C6B—N1B—C2B—N21B177.7 (2)C5C—N7C—C8C—N9C0.3 (3)
C6B—N1B—C2B—N3B1.7 (4)N7C—C8C—N9C—C4C0.6 (3)
N21B—C2B—N3B—C4B178.6 (2)N3C—C4C—N9C—C8C176.1 (2)
N1B—C2B—N3B—C4B0.7 (4)C5C—C4C—N9C—C8C1.2 (3)
C2B—N3B—C4B—N9B179.7 (2)N1C—C6C—S6C—C61C7.4 (2)
C2B—N3B—C4B—C5B2.2 (4)C5C—C6C—S6C—C61C172.8 (2)
N3B—C4B—C5B—C6B3.8 (4)C6C—S6C—C61C—C62C82.5 (3)
N9B—C4B—C5B—C6B177.7 (2)C6C—S6C—C61C—C66C103.0 (3)
N3B—C4B—C5B—N7B177.2 (2)C66C—C61C—C62C—C63C1.2 (5)
N9B—C4B—C5B—N7B1.2 (3)S6C—C61C—C62C—C63C175.7 (3)
C2B—N1B—C6B—C5B0.1 (4)C61C—C62C—C63C—C64C2.6 (5)
C2B—N1B—C6B—S6B179.11 (18)C62C—C63C—C64C—C65C2.6 (5)
C4B—C5B—C6B—N1B2.6 (4)C62C—C63C—C64C—C67C177.2 (3)
N7B—C5B—C6B—N1B178.8 (2)C63C—C64C—C65C—C66C1.3 (5)
C4B—C5B—C6B—S6B176.65 (19)C67C—C64C—C65C—C66C178.6 (3)
N7B—C5B—C6B—S6B2.0 (4)C62C—C61C—C66C—C65C0.1 (5)
C4B—C5B—N7B—C8B1.5 (3)S6C—C61C—C66C—C65C174.5 (2)
C6B—C5B—N7B—C8B177.2 (3)C64C—C65C—C66C—C61C0.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···N3Ai0.882.173.046 (3)173
N21A—H22A···N21C0.882.463.226 (3)146
N9A—H9A···N7Bi0.882.092.948 (3)164
N21B—H21B···N3Cii0.882.203.062 (3)168
N21B—H22B···N7Aiii0.882.343.204 (3)168
N9B—H9B···O1W0.881.892.765 (3)173
N21C—H22C···N1A0.882.273.130 (3)164
N21C—H22C···N21A0.882.553.226 (3)134
N9C—H9C···N3Bii0.881.962.833 (3)174
O1W—H1W···N7Aiv0.85 (4)2.23 (4)3.075 (3)171 (3)
O1W—H1W···S6Aiv0.85 (4)3.05 (3)3.452 (2)112 (3)
O1W—H2W···N7Cv0.86 (4)2.01 (4)2.863 (3)174 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC5H4ClN5C11H8ClN5S·0.5H2OC12H11N5S·0.333H2O
Mr169.58286.74263.32
Crystal system, space groupTetragonal, P41212Monoclinic, C2/cTriclinic, P1
Temperature (K)150120150
a, b, c (Å)7.0855 (10), 7.0855 (10), 26.990 (5)13.353 (3), 7.743 (2), 47.60 (1)10.8074 (2), 11.6355 (3), 15.3922 (3)
α, β, γ (°)90, 90, 9090, 95.85 (3), 9085.468 (2), 83.265 (1), 79.7992 (9)
V3)1355.0 (4)4896 (2)1888.46 (7)
Z8166
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.490.480.25
Crystal size (mm)0.15 × 0.08 × 0.070.20 × 0.16 × 0.050.12 × 0.12 × 0.01
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.910, 0.9640.737, 0.9820.931, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
4943, 1535, 1151 10871, 3842, 3045 36016, 8568, 4357
Rint0.0650.0600.111
(sin θ/λ)max1)0.6490.5950.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.083, 1.04 0.040, 0.105, 1.11 0.055, 0.128, 0.94
No. of reflections153538428568
No. of parameters100342507
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.310.47, 0.570.28, 0.30
Absolute structureFlack (1983), 548 Friedel pairs??
Absolute structure parameter0.00 (10)??

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N1i0.882.223.019 (3)150
N21—H22···N3ii0.882.153.027 (3)174
N9—H9···N7iii0.882.022.888 (3)168
Symmetry codes: (i) x+1/2, y1/2, z+1/4; (ii) x+1/2, y+1/2, z+1/4; (iii) y, x1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···N7Ai0.882.223.072 (3)163
N21A—H22A···N1Aii0.882.493.300 (3)154
N21A—H22A···S6Ai0.882.843.326 (2)117
N9A—H9A···N3Biii0.882.192.965 (3)146
N21B—H21B···N7Biv0.882.253.077 (3)158
N21B—H22B···Cl6Bv0.882.723.475 (2)145
N21B—H22B···S6Biv0.882.923.415 (2)118
N9B—H9B···O1Wvi0.881.892.757 (3)166
O1W—H1W···S6Biv0.84 (4)3.05 (4)3.668 (2)132 (3)
O1W—H2W···N3Avii0.85 (4)1.91 (4)2.756 (3)174 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x+1, y, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···N3Ai0.882.173.046 (3)173
N21A—H22A···N21C0.882.463.226 (3)146
N9A—H9A···N7Bi0.882.092.948 (3)164
N21B—H21B···N3Cii0.882.203.062 (3)168
N21B—H22B···N7Aiii0.882.343.204 (3)168
N9B—H9B···O1W0.881.892.765 (3)173
N21C—H22C···N1A0.882.273.130 (3)164
N21C—H22C···N21A0.882.553.226 (3)134
N9C—H9C···N3Bii0.881.962.833 (3)174
O1W—H1W···N7Aiv0.85 (4)2.23 (4)3.075 (3)171 (3)
O1W—H1W···S6Aiv0.85 (4)3.05 (3)3.452 (2)112 (3)
O1W—H2W···N7Cv0.86 (4)2.01 (4)2.863 (3)174 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds