Download citation
Download citation
link to html
The isomorphous complexes bis­[hydro­tris(pyrazol­yl)­borato]­mag­nesium(II) chloro­form disolvate, [Mg(C9H10BN6)2]·2CHCl3, and bis­[hydro­tris(pyrazol­yl)borato]calcium(II) chloro­form disolvate, [Ca(C9H10BN6)2]·2CHCl3, crystallize in the cubic space group Pa\overline{3} with Z = 4. The metal atoms occupy sites of \overline{3} symmetry, and their coordination is very similar to that found for the unsolvated Mg[HB(Pz)3]2 and Ca[HB(Pz)3]2 complexes (Pz is pyrazole). The inclusion of chloro­form mol­ecules on threefold rotation axes not only leads to high-symmetry crystal structures but also plays an important role in stabilizing the three-dimensional supramolecular architecture through facial Pz...Cl...Pz inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106002575/bm1623sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106002575/bm1623Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106002575/bm1623IIsup3.hkl
Contains datablock II

CCDC references: 605705; 605706

Comment top

The coordination chemistry of the tris(pyrazolyl)borate ligand (Tp) has been extensively studied since its introduction in 1966 (Trofimenko, 1966). Tp forms a great variety of complexes with most metals and metalloids in a tridentate fashion. Trofimenko (1999) has termed this ligand and its derivatives `scorpionates', since the two equatorial pyrazole (Pz) rings look like the claws and the pseudoaxial pyrazole ring looks like the stinger of a scorpion. In this paper, we report the structures of the Mg2+, (I), and Ca2+, (II), bis[hydrotris(pyrazolyl)borate] chloroform disolvates.

The molecular structures of (I) and (II) are shown in Figs. 1(a) and 2(a), and selected bond lengths and angles are listed in Tables 1 and 2, respectively. In each complex the metal occupies a site of 3 symmetry and both Tp ligands are symmetrically tridentate; the geometry about the metal is trigonally distorted octahedral, with M—N bond lengths of 2.173 (3) Å in (I) and 2.4241 (18) Å in (II). The corresponding intraligand N—M—N bond angles are 84.94 (10) and 79.45 (6)°. The N···N distances, which correlate with the bite angles of the ligand, are 2.934 (2) and 3.098 (2) Å, respectively, and are governed by the relative ionic radii of the Mg2+ (0.65 Å) and Ca2+ (0.99 Å) ions (Huheey et al., 1993).

The coordination geometry in (I) and (II) is very similar to that seen in the corresponding unsolvated [HB(Pz)3]2Mg and [HB(Pz)3]2Ca complexes (Sohrin et al., 1994). The former crystallizes in the triclinic space group P1, with two crystallographically independent molecules lying across different inversion centres, whereas the latter crystallizes in the monoclinic space group C2/c, with two crystallographically independent molecules on twofold rotation axes. In contrast, the chloroform solvates (I) and (II) exhibit high symmetry and crystallize in the cubic space group Pa3, with the metals on sites of 3 symmetry and the chloroform molecules on threefold rotation axes. The influence of CHCl3 on the regulation of crystal structure has been documented by comparing the structures of the chloroform solvate (monoclinic, space group P21/c; Nielson et al., 2003) and the toluene solvate (triclinic, space group P1; Davidson et al., 2003) of the zwitterion bis[tris(3,5-dimethyl-2-oxidobenzyl-κO)ammonium]zirconium(IV), and those of trans-bis(2,2-diphenylethylamine-κN)bis(5,5-diphenylhydantoinato-κN3)copper(II) and its chloroform solvate (triclinic, space group P1, and orthorhombic, space group Pbca, respectively; Akitsu & Binaga, 2005). In both cases, chloroform influences crystallization to give structures that are more symmetric than those observed for unsolvated complexes or those solvated by other solvents.

##AUTHOR: The following has been re-written so please check carefully: Chloroform molecules play an important role in the development of the supramolecular architecture of (I) and (II), its inclusion is governed by electrophile–nuclephile C—Cl···π interactions (Csöregh et al., 1996) to form a three-dimensional network. Each Cl atom of the chloroform solvent interacts with two pyrazole rings in the same neighbouring molecule. In (I) (Fig. 3), the relevant parameters are C6—Cl1···Pzvi = 3.5018 (16) Å, C6—Cl1···Pzvi = 91.14 (14)°, C6—Cl1···Pzvii = 3.4906 (16) Å, C6—Cl1···Pzvii = 165.05 (15)°, Cl···Pz···Cl = 158.4 (2)° and Pz···Cl···Pz = 75.7 (2)° [Pz is the centroid of the pyrazole ring; symmetry codes: (vi) z, −x + 1/2, y − 1/2; (vii) y, −z + 1/2, x − 1/2.] The corresponding values for (II) are 3.5148 (12) Å, 94.06 (8)°, 3.5443 (12) Å, 170.79 (9)°, 163.0 (2)° and 76.8 (2)°. Each chloroform molecule is therefore linked to three molecules of the metal complex, generating the three-dimensional network structure.

Interaction lengths and angles are in the mean range for this electrophile–nucleophile π···X···π motif (Csöregh et al., 1996), as well as for C—Cl···π database studies carried out on organic crystal structures (Prasanna & Row, 2000) and in proteins (Saraogi et al., 2003). The experimental data typical of Cl···π-facial interactions (Galan-Mascaros et al., 1996), which have been found in both chloride (Demeshko et al., 2004) and C—Cl (Aravindan et al., 2003) interactions with π-deficient heterocycles.

In summary, chloroform inclusion in Mg[(HB(Pz)3)2] and Ca[(HB(Pz)3)2] complexes not only leads to highly symmetric structures, in contrast to the unsolvated complexes, but also plays an important role in stabilizing the supramolecular architecture through Pz···Cl···Pz interactions.

Experimental top

For (I), an ethanol solution (15 ml) of K[HB(Pz)3] (0.100 g, 0.396 mmol) was added to an ethanol solution (15 ml) of anhydrous MgCl2 (0.019 g, 0.198 mmol). The resulting solution was stirred for 30 min. The solution was filtered, and the filtrate was evaporated to dryness under N2 atmosphere to give a white powder (0.091 g, 87% yield). Recrystallization from dry chloroform afforded colourless blocks suitable for X-ray analysis. 1H NMR (CDCl3, p.p.m.): δ 6.06 (t, 6H, 3J = 2.0 Hz, H-4), 7.15, 7.70 (d, d, 6H each, 3J = 1.8 Hz, H-3,5). Complex (II) was prepared and recrystallized as for (I), using K[HB(Pz)3] (0.100 g, 0.396 mmol) and anhydrous CaCl2 (0.022 g, 0.198 mmol), to give a white powder (0.099 g, 92% yield). 1H NMR (CDCl3, p.p.m.): δ 6.15 (t, 6H, 3J = 1.9 Hz, H-4), 7.51, 7.75 (d, d, 6H each, 3J = 1.8 and 2.2 Hz, H-3,5).

Refinement top

All H atoms were refined as riding on their parent atoms, with B—H and C—H distances using in the range 0.98 Å to 0.93 Å, and with Uiso(H) = 1.5Ueq(B) for B—H and 1.2Ueq(C) for C—H.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury 1.4 (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 and WinGX2003 (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (a) The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level [symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) −z + 1, −x + 1, −y + 1; (iv) −y + 1, −z + 1, −x + 1; (v) −x + 1, −y + 1, −z + 1]; (b) top view.
[Figure 2] Fig. 2. (a) The molecular structure of (II), showing displacement ellipsoids drawn at the 30% probability level [symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) −z + 1, −x + 1, −y + 1; (iv) −y + 1, −z + 1, −x + 1; (v) −x + 1, −y + 1, −z + 1]; (b) top view.
[Figure 3] Fig. 3. The three-dimensional network structure of (I) is built up through π···Cl···π interactions. [Symmetry codes: (vi) z, −x + 1/2, y − 1/2; (vii) y, −z + 1/2, x − 1/2.] Compounds (I) and (II) are isostructural.
(I) bis[hydrotris(pyrazolyl)borato]magnesium(II) chloroform disolvate top
Crystal data top
[Mg(C9H10BN6)2]·2CHCl3Dx = 1.550 Mg m3
Mr = 689.13Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 600 reflections
Hall symbol: -P 2ac 2ab 3θ = 20–25°
a = 14.3475 (12) ŵ = 0.64 mm1
V = 2953.4 (4) Å3T = 100 K
Z = 4Block, colorless
F(000) = 14000.20 × 0.12 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1714
Tmin = 0.883, Tmax = 0.945k = 1717
15868 measured reflectionsl = 1117
969 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0339P)2 + 10.6109P]
where P = (Fo2 + 2Fc2)/3
969 reflections(Δ/σ)max < 0.001
63 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mg(C9H10BN6)2]·2CHCl3Z = 4
Mr = 689.13Mo Kα radiation
Cubic, Pa3µ = 0.64 mm1
a = 14.3475 (12) ÅT = 100 K
V = 2953.4 (4) Å30.20 × 0.12 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
969 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
944 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.945Rint = 0.055
15868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0339P)2 + 10.6109P]
where P = (Fo2 + 2Fc2)/3
969 reflectionsΔρmax = 0.39 e Å3
63 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.500000.500000.500000.0091 (3)
N10.49046 (18)0.49637 (19)0.34889 (19)0.0120 (8)
N20.43289 (18)0.43260 (18)0.30933 (18)0.0091 (7)
C30.4397 (2)0.4362 (2)0.2163 (2)0.0137 (9)
C40.5035 (2)0.5043 (3)0.1935 (2)0.0163 (10)
C50.5332 (2)0.5398 (2)0.2789 (2)0.0151 (9)
B10.3696 (2)0.3696 (2)0.3696 (2)0.0113 (7)
Cl10.28234 (6)0.22160 (6)0.11889 (6)0.0224 (3)
C60.1855 (3)0.1855 (3)0.1855 (3)0.0170 (7)
H10.330180.330180.330180.0135*
H30.406930.399210.174370.0164*
H40.522490.522430.134230.0195*
H50.576810.587260.285950.0181*
H60.146040.146040.146040.0204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0091 (5)0.0091 (5)0.0091 (5)0.0005 (6)0.0005 (6)0.0005 (6)
N10.0093 (13)0.0129 (13)0.0138 (13)0.0009 (10)0.0010 (11)0.0009 (11)
N20.0099 (13)0.0085 (12)0.0090 (13)0.0003 (10)0.0018 (10)0.0020 (10)
C30.0162 (16)0.0154 (16)0.0094 (15)0.0020 (13)0.0007 (13)0.0020 (12)
C40.0187 (17)0.0183 (17)0.0118 (16)0.0010 (14)0.0026 (13)0.0031 (13)
C50.0118 (16)0.0136 (16)0.0198 (17)0.0022 (13)0.0013 (13)0.0017 (13)
B10.0113 (12)0.0113 (12)0.0113 (12)0.0039 (13)0.0039 (13)0.0039 (13)
Cl10.0248 (5)0.0210 (5)0.0213 (5)0.0009 (3)0.0087 (3)0.0009 (3)
C60.0170 (12)0.0170 (12)0.0170 (12)0.0001 (14)0.0001 (14)0.0001 (14)
Geometric parameters (Å, º) top
Mg—N12.173 (3)C3—H30.9300
N1—C51.331 (4)C4—H40.9300
N1—N21.357 (4)C5—H50.9300
N2—C31.339 (4)C6—H60.9800
N2—B11.546 (4)B1—H10.9800
C3—C41.378 (5)Cl1—C61.764 (4)
C4—C51.394 (4)
Cl1···N2i3.459 (3)N2···Cl1x3.494 (3)
Cl1···N2ii3.494 (3)C3···Cl1x3.623 (3)
Cl1···C3ii3.623 (3)C3···Cl1ix3.504 (3)
Cl1···C3i3.504 (3)C3···H4iii3.0400
Cl1···H5iii3.0900C4···H6xi3.0300
Cl1···H5iv3.1100C4···H6xii3.0300
N1···N1v3.206 (4)C4···H6x3.0300
N1···N1vi2.934 (4)H3···H4iii2.5200
N1···N2vi3.004 (4)H4···C3xiii3.0400
N1···N1vii2.934 (4)H4···H3xiii2.5200
N1···N2vii3.057 (4)H5···Cl1xiii3.0900
N1···N1viii3.206 (4)H5···Cl1xiv3.1100
N2···N1vii3.004 (4)H6···C4xv3.0300
N2···Cl1ix3.459 (3)H6···C4ii3.0300
N2···N1vi3.057 (4)H6···C4xvi3.0300
N1—Mg—N1vi84.94 (10)N2—C3—H3126.00
Mg—N1—N2118.15 (19)C4—C3—H3126.00
Mg—N1—C5135.4 (2)C3—C4—H4128.00
N2—N1—C5106.3 (2)C5—C4—H4128.00
N1—N2—C3110.3 (2)C4—C5—H5125.00
N1—N2—B1121.2 (2)N1—C5—H5125.00
C3—N2—B1128.5 (2)N2—B1—N2vii108.2 (2)
N2—C3—C4108.2 (3)N2—B1—H1111.00
C3—C4—C5104.7 (3)Cl1—C6—Cl1vi110.8 (2)
N1—C5—C4110.6 (3)Cl1—C6—H6108.00
N1vi—Mg—N1—N245.3 (2)C5—N1—N2—B1178.7 (2)
N1vii—Mg—N1—N240.1 (2)Mg—N1—C5—C4175.4 (2)
N1viii—Mg—N1—N2134.7 (2)N2—N1—C5—C40.0 (4)
N1v—Mg—N1—N2139.9 (2)N1—N2—C3—C40.1 (3)
N1vi—Mg—N1—C5139.8 (3)N1—N2—B1—N2vi55.4 (3)
N1vii—Mg—N1—C5134.9 (3)B1—N2—C3—C4178.6 (3)
N1viii—Mg—N1—C540.2 (3)C3—N2—B1—N2vii119.9 (3)
N1v—Mg—N1—C545.1 (3)C3—N2—B1—N2vi123.2 (3)
Mg—N1—N2—C3176.28 (19)N1—N2—B1—N2vii61.6 (3)
Mg—N1—N2—B15.0 (3)N2—C3—C4—C50.0 (4)
C5—N1—N2—C30.0 (3)C3—C4—C5—N10.0 (4)
Symmetry codes: (i) y, z+1/2, x1/2; (ii) z, x+1/2, y1/2; (iii) z+1/2, x+1, y1/2; (iv) x+1, y1/2, z+1/2; (v) y+1, z+1, x+1; (vi) z, x, y; (vii) y, z, x; (viii) z+1, x+1, y+1; (ix) z+1/2, x, y+1/2; (x) y+1/2, z+1/2, x; (xi) x+1/2, y+1/2, z; (xii) z+1/2, x+1/2, y; (xiii) y+1, z+1/2, x+1/2; (xiv) x+1, y+1/2, z+1/2; (xv) x+1/2, y1/2, z; (xvi) y1/2, z, x+1/2.
(II) bis[hydrotris(pyrazolyl)borato]calcium(II) chloroform disolvate top
Crystal data top
[Ca(C9H10BN6)2]·2CHCl3Dx = 1.483 Mg m3
Mr = 704.90Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 600 reflections
Hall symbol: -P 2ac 2ab 3θ = 20–25°
a = 14.6697 (9) ŵ = 0.74 mm1
V = 3156.9 (3) Å3T = 100 K
Z = 4Block, colorless
F(000) = 14320.3 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.808, Tmax = 0.866k = 1812
17681 measured reflectionsl = 1918
1293 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + (0.0316P)2 + 4.1829P]
where P = (Fo2 + 2Fc2)/3
1293 reflections(Δ/σ)max < 0.001
63 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ca(C9H10BN6)2]·2CHCl3Z = 4
Mr = 704.90Mo Kα radiation
Cubic, Pa3µ = 0.74 mm1
a = 14.6697 (9) ÅT = 100 K
V = 3156.9 (3) Å30.3 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1293 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1272 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.866Rint = 0.033
17681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.31Δρmax = 0.44 e Å3
1293 reflectionsΔρmin = 0.40 e Å3
63 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca0.500000.500000.500000.0141 (1)
N10.48740 (12)0.48337 (13)0.33608 (12)0.0192 (5)
N20.42579 (11)0.42280 (11)0.30197 (11)0.0148 (5)
C30.42747 (16)0.42495 (15)0.21011 (14)0.0207 (6)
C40.49139 (16)0.48835 (16)0.18296 (15)0.0245 (7)
C50.52681 (15)0.52263 (16)0.26431 (15)0.0225 (6)
B10.36350 (15)0.36350 (15)0.36350 (15)0.0146 (4)
Cl10.28142 (5)0.21172 (5)0.12085 (5)0.0376 (2)
C60.18308 (16)0.18308 (16)0.18308 (16)0.0237 (5)
H10.324930.324930.324930.0175*
H30.391590.389660.171560.0248*
H40.507300.504580.123780.0294*
H50.571950.567000.267940.0270*
H60.144510.144510.144510.0284*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0141 (2)0.0141 (2)0.0141 (2)0.0023 (2)0.0023 (2)0.0023 (2)
N10.0184 (9)0.0214 (9)0.0177 (9)0.0059 (7)0.0014 (7)0.0005 (7)
N20.0151 (8)0.0167 (8)0.0125 (8)0.0001 (6)0.0001 (6)0.0002 (6)
C30.0241 (11)0.0239 (10)0.0141 (9)0.0014 (9)0.0011 (8)0.0022 (8)
C40.0287 (12)0.0282 (12)0.0167 (10)0.0036 (9)0.0038 (9)0.0027 (9)
C50.0215 (10)0.0255 (11)0.0205 (10)0.0057 (9)0.0022 (8)0.0030 (8)
B10.0146 (7)0.0146 (7)0.0146 (7)0.0013 (8)0.0013 (8)0.0013 (8)
Cl10.0416 (4)0.0370 (4)0.0341 (3)0.0098 (3)0.0157 (3)0.0097 (3)
C60.0237 (8)0.0237 (8)0.0237 (8)0.0017 (9)0.0017 (9)0.0017 (9)
Geometric parameters (Å, º) top
Ca—N12.4241 (18)C3—H30.9300
N1—C51.332 (3)C4—H40.9300
N1—N21.363 (2)C5—H50.9300
N2—C31.348 (3)C6—H60.9800
N2—B11.551 (3)B1—H10.9800
C3—C41.380 (3)Cl1—C61.758 (2)
C4—C51.395 (3)
N1···N1i3.098 (3)C4···H6v3.0900
N1···N2i3.120 (2)C4···H4vi3.0600
N1···N1ii3.098 (3)H4···C4vii3.0600
N1···N2ii3.116 (2)H4···H4vii2.5400
N2···N1i3.116 (2)H4···H4vi2.5400
N2···N1ii3.120 (2)H6···C4viii3.0900
C4···H6iii3.0900H6···C4ix3.0900
C4···H6iv3.0900H6···C4x3.0900
N1—Ca—N1i79.45 (6)N2—C3—H3126.00
Ca—N1—N2118.72 (12)C4—C3—H3126.00
Ca—N1—C5135.03 (15)C3—C4—H4128.00
N2—N1—C5106.23 (17)C5—C4—H4128.00
N1—N2—C3109.86 (17)C4—C5—H5124.00
N1—N2—B1122.87 (16)N1—C5—H5124.00
C3—N2—B1127.26 (17)N2—B1—N2ii109.80 (16)
N2—C3—C4108.47 (19)N2—B1—H1109.00
C3—C4—C5104.43 (19)Cl1—C6—Cl1i110.74 (13)
N1—C5—C4111.0 (2)Cl1—C6—H6108.00
N1i—Ca—N1—N240.39 (14)C5—N1—N2—B1178.87 (18)
N1ii—Ca—N1—N240.70 (14)Ca—N1—C5—C4178.12 (16)
N1xi—Ca—N1—N2139.61 (14)N2—N1—C5—C40.1 (2)
N1xii—Ca—N1—N2139.30 (14)N1—N2—C3—C40.1 (2)
N1i—Ca—N1—C5137.7 (2)N1—N2—B1—N2i60.6 (2)
N1ii—Ca—N1—C5141.3 (2)B1—N2—C3—C4178.71 (19)
N1xi—Ca—N1—C542.4 (2)C3—N2—B1—N2ii121.1 (2)
N1xii—Ca—N1—C538.8 (2)C3—N2—B1—N2i118.1 (2)
Ca—N1—N2—C3178.57 (14)N1—N2—B1—N2ii60.2 (2)
Ca—N1—N2—B10.3 (2)N2—C3—C4—C50.2 (3)
C5—N1—N2—C30.0 (2)C3—C4—C5—N10.2 (3)
Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) x+1/2, y+1/2, z; (iv) z+1/2, x+1/2, y; (v) y+1/2, z+1/2, x; (vi) y, z+1/2, x1/2; (vii) z+1/2, x, y+1/2; (viii) x+1/2, y1/2, z; (ix) z, x+1/2, y1/2; (x) y1/2, z, x+1/2; (xi) z+1, x+1, y+1; (xii) y+1, z+1, x+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Mg(C9H10BN6)2]·2CHCl3[Ca(C9H10BN6)2]·2CHCl3
Mr689.13704.90
Crystal system, space groupCubic, Pa3Cubic, Pa3
Temperature (K)100100
a (Å)14.3475 (12) 14.6697 (9)
V3)2953.4 (4)3156.9 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.640.74
Crystal size (mm)0.20 × 0.12 × 0.090.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.883, 0.9450.808, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
15868, 969, 944 17681, 1293, 1272
Rint0.0550.033
(sin θ/λ)max1)0.6170.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.124, 1.22 0.051, 0.109, 1.31
No. of reflections9691293
No. of parameters6363
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0339P)2 + 10.6109P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0316P)2 + 4.1829P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.39, 0.360.44, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Mercury 1.4 (Bruno et al., 2002), SHELXL97 and WinGX2003 (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Mg—N12.173 (3)
N1—Mg—N1i84.94 (10)Mg—N1—C5135.4 (2)
Mg—N1—N2118.15 (19)
Symmetry code: (i) z, x, y.
Selected geometric parameters (Å, º) for (II) top
Ca—N12.4241 (18)
N1—Ca—N1i79.45 (6)Ca—N1—C5135.03 (15)
Ca—N1—N2118.72 (12)
Symmetry code: (i) z, x, y.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds