The crystal structures of four cycloalkanespiro-4′-imidazolidine-2′,5′-dithiones, namely cyclopentanespiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-diazaspiro[4.4]nonane-2,4-dithione}, C
7H
10N
2S
2, cyclohexanespiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-diazaspiro[4.5]decane-2,4-dithione}, C
8H
12N
2S
2, cycloheptanespiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-diazaspiro[4.6]undecane-2,4-dithione}, C
9H
14N
2S
2, and cyclooctanespiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-diazaspiro[4.7]dodecane-2,4-dithione}, C
10H
16N
2S
2, have been determined. The three-dimensional packing in all of the structures is based on closely similar chains, in which hydantoin moieties are linked through N—H
S hydrogen bonding. The size of the cycloalkane moiety influences the degree of its deformation. In the cyclooctane compound, the cyclooctane ring assumes both boat–chair and boat–boat conformations.
Supporting information
CCDC references: 605691; 605692; 605693; 605694
Compounds (I)–(IV) were prepared according to the method described by Marinov et al. (2005). Crystals suitable for X-ray diffraction were obtained by slow evaporation from a methanol solution at 277 K.
H atoms were placed in idealized positions (C—H = 0.97 and N—H = 0.86 Å), and were constrained to ride on their parent atoms, with Uiso(H) values of 1.2Ueq(C,N). Disorder of atom C10 in the cyclooctane ring in (IV) was modelled by competitive refinement of two alternative sites. The major [0.622 (8)] and minor [0.378 (2)] occupancies correspond to the boat–chair and boat–boat conformations, respectively.
For all compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury 1.4 (Bruno et al., 2002) for (I), (II), (III); ORTEP-3 for Windows (Farrugia, 1997) and Mercury 1.4 (Bruno et al., 2002)' for (IV). For all compounds, software used to prepare material for publication: WinGX (Farrugia, 1999).
(I) 1,3-diazaspiro[4.4]nonane-2,4-dithione
top
Crystal data top
C7H10N2S2 | Dx = 1.363 Mg m−3 |
Mr = 186.29 | Melting point: 495 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 22 reflections |
a = 7.898 (5) Å | θ = 20.3–20.7° |
b = 8.4607 (19) Å | µ = 0.52 mm−1 |
c = 13.587 (2) Å | T = 290 K |
V = 907.9 (6) Å3 | Square prism, orange |
Z = 4 | 0.24 × 0.20 × 0.20 mm |
F(000) = 392 | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.056 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.8° |
Graphite monochromator | h = 0→10 |
non–profiled ω/2θ scans | k = 0→11 |
2483 measured reflections | l = −17→17 |
2198 independent reflections | 3 standard reflections every 120 min |
1629 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.3808P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2198 reflections | Δρmax = 0.26 e Å−3 |
100 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 911 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (16) |
Crystal data top
C7H10N2S2 | V = 907.9 (6) Å3 |
Mr = 186.29 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.898 (5) Å | µ = 0.52 mm−1 |
b = 8.4607 (19) Å | T = 290 K |
c = 13.587 (2) Å | 0.24 × 0.20 × 0.20 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.056 |
2483 measured reflections | 3 standard reflections every 120 min |
2198 independent reflections | intensity decay: 2% |
1629 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.126 | Δρmax = 0.26 e Å−3 |
S = 1.05 | Δρmin = −0.29 e Å−3 |
2198 reflections | Absolute structure: Flack (1983), 911 Friedel pairs |
100 parameters | Absolute structure parameter: 0.06 (16) |
0 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | −0.08105 (12) | 0.14147 (10) | 0.73014 (7) | 0.0490 (3) | |
S2 | 0.42294 (17) | 0.36691 (13) | 0.95075 (10) | 0.0758 (4) | |
N1 | 0.1853 (4) | 0.0174 (3) | 0.8266 (2) | 0.0445 (8) | |
H1 | 0.1597 | −0.0787 | 0.8125 | 0.053* | |
N3 | 0.1704 (4) | 0.2716 (3) | 0.8361 (2) | 0.0364 (6) | |
H3 | 0.1335 | 0.3658 | 0.8258 | 0.044* | |
C2 | 0.0955 (4) | 0.1392 (4) | 0.7984 (2) | 0.0338 (6) | |
C4 | 0.3087 (4) | 0.2393 (4) | 0.8914 (3) | 0.0411 (8) | |
C5 | 0.3338 (4) | 0.0617 (4) | 0.8848 (3) | 0.0366 (7) | |
C6 | 0.4999 (5) | 0.0135 (5) | 0.8350 (3) | 0.0583 (11) | |
H6A | 0.4864 | 0.0103 | 0.7640 | 0.070* | |
H6B | 0.5893 | 0.0878 | 0.8510 | 0.070* | |
C7 | 0.5410 (7) | −0.1478 (6) | 0.8742 (4) | 0.0899 (17) | |
H7A | 0.5127 | −0.2278 | 0.8258 | 0.108* | |
H7B | 0.6610 | −0.1554 | 0.8887 | 0.108* | |
C8 | 0.4421 (7) | −0.1716 (6) | 0.9636 (3) | 0.0804 (15) | |
H8A | 0.5170 | −0.1934 | 1.0185 | 0.096* | |
H8B | 0.3670 | −0.2614 | 0.9553 | 0.096* | |
C9 | 0.3411 (5) | −0.0266 (4) | 0.9840 (3) | 0.0465 (9) | |
H9A | 0.3957 | 0.0378 | 1.0338 | 0.056* | |
H9B | 0.2282 | −0.0538 | 1.0064 | 0.056* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0486 (5) | 0.0299 (4) | 0.0686 (6) | 0.0001 (5) | −0.0247 (4) | −0.0010 (4) |
S2 | 0.0832 (8) | 0.0430 (5) | 0.1014 (9) | −0.0149 (7) | −0.0503 (7) | −0.0013 (6) |
N1 | 0.0463 (19) | 0.0266 (14) | 0.061 (2) | 0.0025 (13) | −0.0171 (16) | −0.0035 (13) |
N3 | 0.0395 (16) | 0.0238 (12) | 0.0460 (15) | −0.0011 (11) | −0.0064 (13) | −0.0004 (12) |
C2 | 0.0351 (15) | 0.0288 (14) | 0.0376 (16) | −0.0035 (17) | −0.0030 (13) | 0.0001 (14) |
C4 | 0.0425 (19) | 0.0331 (16) | 0.0476 (19) | −0.0061 (14) | −0.0060 (19) | 0.0056 (18) |
C5 | 0.0330 (16) | 0.0325 (15) | 0.0442 (19) | 0.0004 (13) | −0.0074 (18) | 0.0022 (16) |
C6 | 0.047 (2) | 0.064 (3) | 0.065 (2) | 0.012 (2) | 0.010 (2) | 0.008 (2) |
C7 | 0.090 (4) | 0.075 (3) | 0.105 (4) | 0.046 (3) | 0.026 (3) | 0.015 (3) |
C8 | 0.105 (4) | 0.063 (3) | 0.073 (3) | 0.044 (3) | 0.015 (3) | 0.016 (2) |
C9 | 0.054 (2) | 0.0419 (19) | 0.044 (2) | 0.0103 (18) | −0.0008 (18) | 0.0049 (16) |
Geometric parameters (Å, º) top
C2—N1 | 1.309 (4) | C6—H6B | 0.9700 |
C2—N3 | 1.366 (4) | C7—C8 | 1.458 (6) |
C2—S1 | 1.674 (3) | C7—H7A | 0.9700 |
C4—N3 | 1.353 (4) | C7—H7B | 0.9700 |
C4—C5 | 1.519 (4) | C8—C9 | 1.490 (5) |
C4—S2 | 1.622 (4) | C8—H8A | 0.9700 |
C5—N1 | 1.463 (4) | C8—H8B | 0.9700 |
C5—C6 | 1.532 (5) | C9—H9A | 0.9700 |
C5—C9 | 1.543 (5) | C9—H9B | 0.9700 |
C6—C7 | 1.500 (6) | N1—H1 | 0.8600 |
C6—H6A | 0.9700 | N3—H3 | 0.8600 |
| | | |
N1—C2—N3 | 107.5 (3) | C8—C7—H7B | 110.1 |
N1—C2—S1 | 128.5 (3) | C6—C7—H7B | 110.1 |
N3—C2—S1 | 124.0 (2) | H7A—C7—H7B | 108.5 |
N3—C4—C5 | 105.8 (3) | C7—C8—C9 | 109.2 (4) |
N3—C4—S2 | 126.2 (3) | C7—C8—H8A | 109.8 |
C5—C4—S2 | 128.0 (3) | C9—C8—H8A | 109.8 |
N1—C5—C4 | 100.4 (3) | C7—C8—H8B | 109.8 |
N1—C5—C6 | 112.3 (3) | C9—C8—H8B | 109.8 |
C4—C5—C6 | 113.7 (3) | H8A—C8—H8B | 108.3 |
N1—C5—C9 | 112.2 (3) | C8—C9—C5 | 104.8 (3) |
C4—C5—C9 | 115.6 (3) | C8—C9—H9A | 110.8 |
C6—C5—C9 | 103.0 (3) | C5—C9—H9A | 110.8 |
C7—C6—C5 | 105.7 (4) | C8—C9—H9B | 110.8 |
C7—C6—H6A | 110.6 | C5—C9—H9B | 110.8 |
C5—C6—H6A | 110.6 | H9A—C9—H9B | 108.9 |
C7—C6—H6B | 110.6 | C2—N1—C5 | 113.0 (3) |
C5—C6—H6B | 110.6 | C2—N1—H1 | 123.5 |
H6A—C6—H6B | 108.7 | C5—N1—H1 | 123.5 |
C8—C7—C6 | 107.8 (4) | C4—N3—C2 | 113.1 (3) |
C8—C7—H7A | 110.1 | C4—N3—H3 | 123.4 |
C6—C7—H7A | 110.1 | C2—N3—H3 | 123.4 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.51 | 3.375 (3) | 179 |
N3—H3···S1ii | 0.86 | 2.49 | 3.332 (3) | 167 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, y+1/2, −z+3/2. |
(II) 1,3-diazaspiro[4.5]decane-2,4-dithione
top
Crystal data top
C8H12N2S2 | F(000) = 424 |
Mr = 200.32 | Dx = 1.356 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 22 reflections |
a = 8.6896 (10) Å | θ = 20.5–21.5° |
b = 12.2674 (15) Å | µ = 0.49 mm−1 |
c = 9.7864 (10) Å | T = 290 K |
β = 109.86 (9)° | Cube, yellow |
V = 981.2 (6) Å3 | 0.45 × 0.45 × 0.45 mm |
Z = 4 | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.023 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.7° |
Graphite monochromator | h = 0→11 |
non–profiled ω/2θ scans | k = −16→16 |
4892 measured reflections | l = −12→12 |
2356 independent reflections | 3 standard reflections every 120 min |
2036 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.2697P] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
2356 reflections | Δρmax = 0.41 e Å−3 |
110 parameters | Δρmin = −0.45 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.097 (6) |
Crystal data top
C8H12N2S2 | V = 981.2 (6) Å3 |
Mr = 200.32 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6896 (10) Å | µ = 0.49 mm−1 |
b = 12.2674 (15) Å | T = 290 K |
c = 9.7864 (10) Å | 0.45 × 0.45 × 0.45 mm |
β = 109.86 (9)° | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.023 |
4892 measured reflections | 3 standard reflections every 120 min |
2356 independent reflections | intensity decay: 1% |
2036 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.41 e Å−3 |
2356 reflections | Δρmin = −0.45 e Å−3 |
110 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.21807 (5) | 0.51835 (4) | −0.08084 (4) | 0.04149 (16) | |
S2 | 0.61596 (6) | 0.28711 (5) | 0.36038 (5) | 0.0625 (2) | |
N1 | 0.19152 (15) | 0.41895 (10) | 0.15650 (13) | 0.0347 (3) | |
H1 | 0.0904 | 0.4361 | 0.1377 | 0.042* | |
N3 | 0.43244 (16) | 0.40577 (11) | 0.13720 (14) | 0.0395 (3) | |
H3 | 0.5100 | 0.4151 | 0.1024 | 0.047* | |
C2 | 0.27670 (17) | 0.44725 (12) | 0.07349 (15) | 0.0328 (3) | |
C4 | 0.45042 (19) | 0.34889 (13) | 0.26005 (16) | 0.0380 (3) | |
C5 | 0.28705 (17) | 0.35503 (12) | 0.28466 (15) | 0.0332 (3) | |
C6 | 0.2121 (2) | 0.24228 (14) | 0.28581 (19) | 0.0449 (4) | |
H6A | 0.1900 | 0.2082 | 0.1916 | 0.054* | |
H6B | 0.2902 | 0.1969 | 0.3578 | 0.054* | |
C7 | 0.0540 (2) | 0.24876 (17) | 0.3202 (2) | 0.0547 (5) | |
H7A | −0.0287 | 0.2859 | 0.2416 | 0.066* | |
H7B | 0.0150 | 0.1756 | 0.3272 | 0.066* | |
C8 | 0.0784 (2) | 0.3090 (2) | 0.4615 (2) | 0.0584 (5) | |
H8A | −0.0256 | 0.3151 | 0.4772 | 0.070* | |
H8B | 0.1525 | 0.2679 | 0.5417 | 0.070* | |
C9 | 0.1480 (2) | 0.42187 (18) | 0.4581 (2) | 0.0523 (5) | |
H9A | 0.1678 | 0.4571 | 0.5513 | 0.063* | |
H9B | 0.0688 | 0.4653 | 0.3844 | 0.063* | |
C10 | 0.30657 (19) | 0.41673 (15) | 0.42555 (17) | 0.0409 (4) | |
H10A | 0.3895 | 0.3810 | 0.5055 | 0.049* | |
H10B | 0.3438 | 0.4903 | 0.4179 | 0.049* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0345 (2) | 0.0507 (3) | 0.0390 (2) | 0.00483 (16) | 0.01217 (16) | 0.01622 (16) |
S2 | 0.0474 (3) | 0.0923 (4) | 0.0497 (3) | 0.0355 (3) | 0.0190 (2) | 0.0276 (2) |
N3 | 0.0326 (6) | 0.0501 (8) | 0.0390 (7) | 0.0109 (5) | 0.0165 (5) | 0.0119 (6) |
N1 | 0.0282 (6) | 0.0420 (7) | 0.0336 (6) | 0.0046 (5) | 0.0102 (5) | 0.0088 (5) |
C4 | 0.0362 (7) | 0.0443 (8) | 0.0348 (7) | 0.0108 (6) | 0.0136 (6) | 0.0051 (6) |
C2 | 0.0310 (7) | 0.0330 (7) | 0.0336 (7) | 0.0021 (5) | 0.0100 (6) | 0.0021 (5) |
C5 | 0.0306 (7) | 0.0387 (7) | 0.0296 (7) | 0.0052 (6) | 0.0091 (5) | 0.0057 (6) |
C6 | 0.0555 (10) | 0.0377 (8) | 0.0387 (8) | −0.0021 (7) | 0.0126 (7) | 0.0059 (7) |
C7 | 0.0456 (9) | 0.0591 (11) | 0.0522 (10) | −0.0124 (9) | 0.0072 (8) | 0.0173 (9) |
C8 | 0.0408 (9) | 0.0881 (15) | 0.0512 (10) | 0.0036 (9) | 0.0221 (8) | 0.0191 (10) |
C9 | 0.0422 (9) | 0.0746 (13) | 0.0439 (9) | 0.0107 (9) | 0.0196 (7) | −0.0023 (9) |
C10 | 0.0347 (7) | 0.0525 (9) | 0.0348 (7) | 0.0024 (7) | 0.0110 (6) | −0.0041 (7) |
Geometric parameters (Å, º) top
S1—C2 | 1.6669 (16) | C6—H6B | 0.9700 |
S2—C4 | 1.627 (2) | C7—C8 | 1.518 (3) |
N3—C4 | 1.3524 (19) | C7—H7A | 0.9700 |
N3—C2 | 1.380 (2) | C7—H7B | 0.9700 |
N3—H3 | 0.8600 | C8—C9 | 1.515 (3) |
N1—C2 | 1.318 (2) | C8—H8A | 0.9700 |
N1—C5 | 1.473 (2) | C8—H8B | 0.9700 |
N1—H1 | 0.8600 | C9—C10 | 1.518 (2) |
C4—C5 | 1.520 (2) | C9—H9A | 0.9700 |
C5—C6 | 1.530 (2) | C9—H9B | 0.9700 |
C5—C10 | 1.531 (2) | C10—H10A | 0.9700 |
C6—C7 | 1.524 (3) | C10—H10B | 0.9700 |
C6—H6A | 0.9700 | | |
| | | |
C4—N3—C2 | 113.03 (14) | C8—C7—C6 | 111.67 (17) |
C4—N3—H3 | 123.5 | C8—C7—H7A | 109.3 |
C2—N3—H3 | 123.5 | C6—C7—H7A | 109.3 |
C2—N1—C5 | 113.14 (12) | C8—C7—H7B | 109.3 |
C2—N1—H1 | 123.4 | C6—C7—H7B | 109.3 |
C5—N1—H1 | 123.4 | H7A—C7—H7B | 107.9 |
N3—C4—C5 | 106.45 (14) | C9—C8—C7 | 110.98 (15) |
N3—C4—S2 | 126.03 (13) | C9—C8—H8A | 109.4 |
C5—C4—S2 | 127.52 (12) | C7—C8—H8A | 109.4 |
N1—C2—N3 | 107.11 (13) | C9—C8—H8B | 109.4 |
N1—C2—S1 | 129.31 (12) | C7—C8—H8B | 109.4 |
N3—C2—S1 | 123.58 (13) | H8A—C8—H8B | 108.0 |
N1—C5—C4 | 100.25 (12) | C8—C9—C10 | 111.35 (16) |
N1—C5—C6 | 111.68 (13) | C8—C9—H9A | 109.4 |
C4—C5—C6 | 112.26 (13) | C10—C9—H9A | 109.4 |
N1—C5—C10 | 111.20 (13) | C8—C9—H9B | 109.4 |
C4—C5—C10 | 110.09 (14) | C10—C9—H9B | 109.4 |
C6—C5—C10 | 110.95 (13) | H9A—C9—H9B | 108.0 |
C7—C6—C5 | 111.85 (15) | C9—C10—C5 | 112.27 (15) |
C7—C6—H6A | 109.2 | C9—C10—H10A | 109.2 |
C5—C6—H6A | 109.2 | C5—C10—H10A | 109.2 |
C7—C6—H6B | 109.2 | C9—C10—H10B | 109.2 |
C5—C6—H6B | 109.2 | C5—C10—H10B | 109.2 |
H6A—C6—H6B | 107.9 | H10A—C10—H10B | 107.9 |
| | | |
C5—C6—C7—C8 | −54.66 (19) | C7—C8—C9—C10 | −56.0 (2) |
C6—C7—C8—C9 | 56.0 (2) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.61 | 3.4665 (17) | 178 |
N3—H3···S1ii | 0.86 | 2.58 | 3.3959 (16) | 160 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z. |
(III) 1,3-diazaspiro[4.6]undecane-2,4-dithione
top
Crystal data top
C9H14N2S2 | F(000) = 456 |
Mr = 214.34 | Dx = 1.325 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 22 reflections |
a = 7.4041 (14) Å | θ = 18.4–19.8° |
b = 17.859 (4) Å | µ = 0.45 mm−1 |
c = 8.4491 (14) Å | T = 290 K |
β = 105.848 (19)° | Cube, yellow |
V = 1074.7 (4) Å3 | 0.33 × 0.33 × 0.33 mm |
Z = 4 | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.023 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.3° |
Graphite monochromator | h = 0→9 |
non–profiled ω/2θ scans | k = −23→23 |
5464 measured reflections | l = −11→10 |
2591 independent reflections | 3 standard reflections every 500 reflections |
2042 reflections with I > 2σ(I) | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0458P)2 + 0.254P] where P = (Fo2 + 2Fc2)/3 |
2591 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Crystal data top
C9H14N2S2 | V = 1074.7 (4) Å3 |
Mr = 214.34 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.4041 (14) Å | µ = 0.45 mm−1 |
b = 17.859 (4) Å | T = 290 K |
c = 8.4491 (14) Å | 0.33 × 0.33 × 0.33 mm |
β = 105.848 (19)° | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.023 |
5464 measured reflections | 3 standard reflections every 500 reflections |
2591 independent reflections | intensity decay: none |
2042 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.20 e Å−3 |
2591 reflections | Δρmin = −0.26 e Å−3 |
118 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.54858 (6) | 0.45898 (3) | 0.26027 (5) | 0.04001 (13) | |
S2 | −0.00067 (7) | 0.63319 (3) | −0.09273 (5) | 0.05107 (16) | |
N1 | 0.29715 (19) | 0.55459 (8) | 0.32787 (15) | 0.0346 (3) | |
H1 | 0.3315 | 0.5462 | 0.4321 | 0.042* | |
N3 | 0.2837 (2) | 0.54828 (8) | 0.06919 (15) | 0.0351 (3) | |
H3 | 0.3135 | 0.5355 | −0.0186 | 0.042* | |
C2 | 0.3755 (2) | 0.52184 (8) | 0.22362 (18) | 0.0305 (3) | |
C4 | 0.1426 (2) | 0.59606 (9) | 0.06924 (18) | 0.0319 (3) | |
C5 | 0.1453 (2) | 0.60684 (8) | 0.24953 (17) | 0.0295 (3) | |
C6 | 0.2080 (2) | 0.68680 (9) | 0.3080 (2) | 0.0400 (4) | |
H6A | 0.2752 | 0.6845 | 0.4239 | 0.048* | |
H6B | 0.2962 | 0.7038 | 0.2493 | 0.048* | |
C7 | 0.0543 (3) | 0.74498 (10) | 0.2863 (3) | 0.0530 (5) | |
H7A | −0.0421 | 0.7345 | 0.1852 | 0.064* | |
H7B | 0.1065 | 0.7939 | 0.2750 | 0.064* | |
C8 | −0.0363 (3) | 0.74755 (12) | 0.4289 (3) | 0.0626 (6) | |
H8A | 0.0627 | 0.7506 | 0.5312 | 0.075* | |
H8B | −0.1099 | 0.7931 | 0.4192 | 0.075* | |
C9 | −0.1618 (3) | 0.68186 (12) | 0.4400 (3) | 0.0576 (5) | |
H9A | −0.2727 | 0.6841 | 0.3470 | 0.069* | |
H9B | −0.2026 | 0.6874 | 0.5391 | 0.069* | |
C10 | −0.0725 (3) | 0.60469 (11) | 0.4424 (2) | 0.0464 (4) | |
H10A | −0.1526 | 0.5677 | 0.4735 | 0.056* | |
H10B | 0.0473 | 0.6043 | 0.5256 | 0.056* | |
C11 | −0.0414 (2) | 0.58219 (9) | 0.2773 (2) | 0.0361 (4) | |
H11A | −0.1425 | 0.6031 | 0.1901 | 0.043* | |
H11B | −0.0500 | 0.5281 | 0.2677 | 0.043* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0452 (3) | 0.0481 (3) | 0.0278 (2) | 0.01627 (19) | 0.01183 (17) | 0.00268 (16) |
S2 | 0.0536 (3) | 0.0663 (3) | 0.0295 (2) | 0.0192 (2) | 0.00480 (19) | 0.0103 (2) |
N1 | 0.0402 (8) | 0.0432 (7) | 0.0204 (6) | 0.0115 (6) | 0.0083 (5) | 0.0017 (5) |
N3 | 0.0403 (7) | 0.0456 (8) | 0.0209 (6) | 0.0089 (6) | 0.0108 (5) | 0.0020 (5) |
C2 | 0.0347 (8) | 0.0334 (7) | 0.0241 (7) | 0.0000 (6) | 0.0092 (6) | −0.0005 (5) |
C4 | 0.0351 (8) | 0.0343 (8) | 0.0267 (7) | 0.0002 (6) | 0.0092 (6) | 0.0017 (6) |
C5 | 0.0333 (8) | 0.0319 (7) | 0.0231 (6) | 0.0027 (6) | 0.0074 (6) | 0.0003 (6) |
C6 | 0.0386 (9) | 0.0365 (8) | 0.0457 (9) | −0.0045 (7) | 0.0129 (7) | −0.0076 (7) |
C7 | 0.0595 (12) | 0.0335 (9) | 0.0691 (13) | 0.0026 (8) | 0.0230 (10) | −0.0004 (9) |
C8 | 0.0683 (14) | 0.0515 (12) | 0.0734 (15) | 0.0134 (10) | 0.0289 (12) | −0.0165 (10) |
C9 | 0.0592 (13) | 0.0692 (13) | 0.0531 (11) | 0.0139 (11) | 0.0301 (10) | −0.0058 (10) |
C10 | 0.0535 (11) | 0.0538 (11) | 0.0387 (9) | 0.0004 (9) | 0.0242 (8) | 0.0021 (8) |
C11 | 0.0389 (9) | 0.0367 (9) | 0.0350 (8) | −0.0018 (7) | 0.0140 (7) | −0.0009 (6) |
Geometric parameters (Å, º) top
S1—C2 | 1.6676 (16) | C7—C8 | 1.532 (3) |
S2—C4 | 1.6263 (16) | C7—H7A | 0.9700 |
N1—C2 | 1.3169 (19) | C7—H7B | 0.9700 |
N1—C5 | 1.4717 (19) | C8—C9 | 1.515 (3) |
N1—H1 | 0.8600 | C8—H8A | 0.9700 |
N3—C4 | 1.349 (2) | C8—H8B | 0.9700 |
N3—C2 | 1.3795 (19) | C9—C10 | 1.526 (3) |
N3—H3 | 0.8600 | C9—H9A | 0.9700 |
C4—C5 | 1.530 (2) | C9—H9B | 0.9700 |
C5—C11 | 1.529 (2) | C10—C11 | 1.528 (2) |
C5—C6 | 1.541 (2) | C10—H10A | 0.9700 |
C6—C7 | 1.515 (2) | C10—H10B | 0.9700 |
C6—H6A | 0.9700 | C11—H11A | 0.9700 |
C6—H6B | 0.9700 | C11—H11B | 0.9700 |
| | | |
C2—N1—C5 | 113.75 (12) | C6—C7—H7B | 108.8 |
C2—N1—H1 | 123.1 | C8—C7—H7B | 108.8 |
C5—N1—H1 | 123.1 | H7A—C7—H7B | 107.7 |
C4—N3—C2 | 113.45 (13) | C9—C8—C7 | 115.66 (17) |
C4—N3—H3 | 123.3 | C9—C8—H8A | 108.4 |
C2—N3—H3 | 123.3 | C7—C8—H8A | 108.4 |
N3—C4—C5 | 106.27 (12) | C9—C8—H8B | 108.4 |
N3—C4—S2 | 125.79 (12) | C7—C8—H8B | 108.4 |
C5—C4—S2 | 127.93 (12) | H8A—C8—H8B | 107.4 |
N1—C2—N3 | 106.69 (13) | C8—C9—C10 | 115.44 (17) |
N1—C2—S1 | 129.15 (12) | C8—C9—H9A | 108.4 |
N3—C2—S1 | 124.15 (11) | C10—C9—H9A | 108.4 |
N1—C5—C11 | 111.11 (13) | C8—C9—H9B | 108.4 |
N1—C5—C4 | 99.72 (12) | C10—C9—H9B | 108.4 |
C11—C5—C4 | 110.48 (13) | H9A—C9—H9B | 107.5 |
N1—C5—C6 | 108.49 (13) | C9—C10—C11 | 113.44 (15) |
C11—C5—C6 | 115.05 (13) | C9—C10—H10A | 108.9 |
C4—C5—C6 | 110.91 (13) | C11—C10—H10A | 108.9 |
C7—C6—C5 | 116.51 (14) | C9—C10—H10B | 108.9 |
C7—C6—H6A | 108.2 | C11—C10—H10B | 108.9 |
C5—C6—H6A | 108.2 | H10A—C10—H10B | 107.7 |
C7—C6—H6B | 108.2 | C10—C11—C5 | 115.62 (14) |
C5—C6—H6B | 108.2 | C10—C11—H11A | 108.4 |
H6A—C6—H6B | 107.3 | C5—C11—H11A | 108.4 |
C6—C7—C8 | 113.66 (17) | C10—C11—H11B | 108.4 |
C6—C7—H7A | 108.8 | C5—C11—H11B | 108.4 |
C8—C7—H7A | 108.8 | H11A—C11—H11B | 107.4 |
| | | |
C5—C6—C7—C8 | 86.0 (2) | C7—C8—C9—C10 | 53.5 (3) |
C6—C7—C8—C9 | −71.7 (3) | C8—C9—C10—C11 | −70.9 (2) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.51 | 3.3618 (14) | 172 |
N3—H3···S1ii | 0.86 | 2.52 | 3.3460 (15) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
(IV) 1,3-diazaspiro[4.7]dodecane-2,4-dithione
top
Crystal data top
C10H16N2S2 | F(000) = 976 |
Mr = 228.37 | Dx = 1.296 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 22 reflections |
a = 8.484 (2) Å | θ = 17.9–19.1° |
b = 11.5018 (18) Å | µ = 0.42 mm−1 |
c = 23.992 (10) Å | T = 290 K |
V = 2341.2 (12) Å3 | Square prism, yellow |
Z = 8 | 0.40 × 0.38 × 0.36 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.061 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 1.7° |
Graphite monochromator | h = 0→11 |
non–profiled ω/2θ scans | k = −15→15 |
10820 measured reflections | l = −31→31 |
2812 independent reflections | 3 standard reflections every 120 min |
1730 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.174 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0826P)2 + 1.361P] where P = (Fo2 + 2Fc2)/3 |
2812 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Crystal data top
C10H16N2S2 | V = 2341.2 (12) Å3 |
Mr = 228.37 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.484 (2) Å | µ = 0.42 mm−1 |
b = 11.5018 (18) Å | T = 290 K |
c = 23.992 (10) Å | 0.40 × 0.38 × 0.36 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.061 |
10820 measured reflections | 3 standard reflections every 120 min |
2812 independent reflections | intensity decay: 5% |
1730 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.174 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.61 e Å−3 |
2812 reflections | Δρmin = −0.34 e Å−3 |
136 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. # start RESPONSE (PLAT301) "Normal" structure refinement (Npar = 127) finished at R1 = 0.063, wR2 = 0.1972, S = 1.021. Introducing 2 atomic positions for C10 we got the final model (Npar = 136) of the disordered molecule." # end RESPONSE PLAT301 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
N1 | 0.9007 (3) | 0.3404 (2) | 0.55765 (10) | 0.0476 (6) | |
H1 | 0.9930 | 0.3099 | 0.5553 | 0.057* | |
N3 | 0.6569 (3) | 0.3784 (2) | 0.54033 (11) | 0.0540 (7) | |
H3 | 0.5666 | 0.3754 | 0.5241 | 0.065* | |
S1 | 0.78194 (9) | 0.21329 (8) | 0.47347 (4) | 0.0576 (3) | |
S2 | 0.56062 (11) | 0.53474 (10) | 0.61389 (5) | 0.0818 (4) | |
C2 | 0.7837 (3) | 0.3117 (3) | 0.52427 (12) | 0.0455 (7) | |
C4 | 0.6874 (3) | 0.4488 (3) | 0.58401 (14) | 0.0522 (7) | |
C5 | 0.8598 (3) | 0.4289 (3) | 0.59923 (12) | 0.0442 (7) | |
C6 | 0.9603 (4) | 0.5383 (3) | 0.58883 (14) | 0.0544 (8) | |
H6A | 1.0686 | 0.5136 | 0.5834 | 0.065* | |
H6B | 0.9254 | 0.5731 | 0.5541 | 0.065* | |
C7 | 0.9597 (5) | 0.6322 (3) | 0.6330 (2) | 0.0774 (11) | |
H7A | 0.8638 | 0.6250 | 0.6547 | 0.093* | |
H7B | 0.9572 | 0.7074 | 0.6147 | 0.093* | |
C8 | 1.1020 (8) | 0.6293 (5) | 0.6732 (2) | 0.121 (2) | |
H8A | 1.1958 | 0.6365 | 0.6503 | 0.145* | |
H8B | 1.0960 | 0.6993 | 0.6956 | 0.145* | |
C9 | 1.1285 (8) | 0.5374 (5) | 0.7098 (2) | 0.120 (2) | |
H9A | 1.0354 | 0.5280 | 0.7328 | 0.144* | |
H9B | 1.2148 | 0.5587 | 0.7342 | 0.144* | |
C10 | 1.1667 (9) | 0.4217 (7) | 0.6837 (4) | 0.0784 (18) | 0.62 |
H10A | 1.2479 | 0.3848 | 0.7060 | 0.094* | 0.62 |
H10B | 1.2113 | 0.4360 | 0.6471 | 0.094* | 0.62 |
C101 | 1.1092 (18) | 0.4142 (12) | 0.7190 (5) | 0.088 (4) | 0.38 |
H10C | 1.0508 | 0.4056 | 0.7535 | 0.105* | 0.38 |
H10D | 1.2135 | 0.3827 | 0.7257 | 0.105* | 0.38 |
C11 | 1.0316 (5) | 0.3359 (4) | 0.67705 (17) | 0.0783 (12) | |
H11A | 1.0663 | 0.2767 | 0.6510 | 0.094* | |
H11B | 1.0174 | 0.2978 | 0.7128 | 0.094* | |
C12 | 0.8699 (4) | 0.3769 (3) | 0.65781 (13) | 0.0586 (8) | |
H12A | 0.8324 | 0.4346 | 0.6841 | 0.070* | |
H12B | 0.7982 | 0.3113 | 0.6596 | 0.070* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0265 (11) | 0.0625 (15) | 0.0540 (14) | 0.0049 (11) | −0.0022 (10) | −0.0135 (12) |
N3 | 0.0252 (11) | 0.0704 (17) | 0.0665 (17) | 0.0039 (11) | −0.0033 (11) | −0.0144 (14) |
S1 | 0.0307 (4) | 0.0809 (6) | 0.0611 (5) | −0.0017 (4) | 0.0000 (3) | −0.0244 (4) |
S2 | 0.0446 (5) | 0.0897 (8) | 0.1112 (9) | 0.0120 (4) | 0.0123 (5) | −0.0378 (6) |
C2 | 0.0293 (12) | 0.0595 (17) | 0.0477 (15) | −0.0046 (12) | 0.0044 (11) | −0.0043 (13) |
C4 | 0.0342 (14) | 0.0606 (18) | 0.0617 (19) | −0.0008 (13) | 0.0056 (13) | −0.0088 (15) |
C5 | 0.0323 (13) | 0.0523 (16) | 0.0481 (16) | −0.0002 (12) | 0.0022 (11) | −0.0063 (13) |
C6 | 0.0472 (17) | 0.0610 (19) | 0.0550 (18) | −0.0025 (14) | 0.0010 (14) | 0.0031 (15) |
C7 | 0.067 (2) | 0.060 (2) | 0.106 (3) | −0.0034 (18) | 0.013 (2) | −0.008 (2) |
C8 | 0.146 (5) | 0.109 (4) | 0.108 (4) | −0.031 (4) | −0.045 (4) | −0.021 (3) |
C9 | 0.145 (5) | 0.107 (4) | 0.107 (4) | −0.020 (4) | −0.066 (4) | −0.017 (3) |
C10 | 0.066 (4) | 0.088 (5) | 0.081 (5) | 0.009 (4) | −0.025 (4) | 0.000 (4) |
C101 | 0.099 (10) | 0.109 (10) | 0.055 (6) | 0.000 (8) | −0.023 (7) | −0.010 (7) |
C11 | 0.102 (3) | 0.070 (2) | 0.063 (2) | 0.010 (2) | −0.023 (2) | 0.0038 (19) |
C12 | 0.066 (2) | 0.0577 (19) | 0.0520 (18) | −0.0127 (17) | 0.0064 (15) | 0.0003 (15) |
Geometric parameters (Å, º) top
N1—C2 | 1.317 (3) | C8—H8A | 0.9700 |
N1—C5 | 1.467 (4) | C8—H8B | 0.9700 |
N1—H1 | 0.8600 | C12—C11 | 1.522 (5) |
N3—C4 | 1.350 (4) | C12—H12A | 0.9700 |
N3—C2 | 1.376 (4) | C12—H12B | 0.9700 |
N3—H3 | 0.8600 | C9—C10 | 1.507 (9) |
S1—C2 | 1.664 (3) | C9—C101 | 1.444 (15) |
S2—C4 | 1.627 (3) | C9—H9A | 0.9700 |
C4—C5 | 1.525 (4) | C9—H9B | 0.9700 |
C5—C12 | 1.530 (4) | C11—C10 | 1.520 (9) |
C5—C6 | 1.540 (4) | C11—C101 | 1.501 (12) |
C6—C7 | 1.513 (5) | C11—H11A | 0.9700 |
C6—H6A | 0.9700 | C11—H11B | 0.9700 |
C6—H6B | 0.9700 | C10—H10A | 0.9700 |
C7—C8 | 1.544 (6) | C10—H10B | 0.9700 |
C7—H7A | 0.9700 | C101—H10C | 0.9700 |
C7—H7B | 0.9700 | C101—H10D | 0.9700 |
C8—C9 | 1.392 (7) | | |
| | | |
C2—N1—C5 | 114.1 (2) | C11—C12—C5 | 116.7 (3) |
C2—N1—H1 | 122.9 | C11—C12—H12A | 108.1 |
C5—N1—H1 | 122.9 | C5—C12—H12A | 108.1 |
C4—N3—C2 | 113.7 (2) | C11—C12—H12B | 108.1 |
C4—N3—H3 | 123.2 | C5—C12—H12B | 108.1 |
C2—N3—H3 | 123.2 | H12A—C12—H12B | 107.3 |
N1—C2—N3 | 106.2 (2) | C8—C9—C101 | 145.4 (6) |
N1—C2—S1 | 128.5 (2) | C8—C9—C10 | 116.3 (6) |
N3—C2—S1 | 125.2 (2) | C8—C9—H9A | 108.2 |
N3—C4—C5 | 106.3 (2) | C101—C9—H9A | 73.2 |
N3—C4—S2 | 125.4 (2) | C10—C9—H9A | 108.2 |
C5—C4—S2 | 128.3 (2) | C8—C9—H9B | 108.2 |
N1—C5—C4 | 99.7 (2) | C101—C9—H9B | 103.9 |
N1—C5—C12 | 109.9 (2) | C10—C9—H9B | 108.2 |
C4—C5—C12 | 109.4 (2) | H9A—C9—H9B | 107.4 |
N1—C5—C6 | 109.0 (2) | C101—C11—C12 | 114.4 (6) |
C4—C5—C6 | 111.7 (3) | C12—C11—C10 | 120.7 (4) |
C12—C5—C6 | 116.0 (3) | C101—C11—H11A | 136.0 |
C7—C6—C5 | 117.9 (3) | C12—C11—H11A | 107.2 |
C7—C6—H6A | 107.8 | C10—C11—H11A | 107.2 |
C5—C6—H6A | 107.8 | C101—C11—H11B | 74.6 |
C7—C6—H6B | 107.8 | C12—C11—H11B | 107.2 |
C5—C6—H6B | 107.8 | C10—C11—H11B | 107.2 |
H6A—C6—H6B | 107.2 | H11A—C11—H11B | 106.8 |
C6—C7—C8 | 114.7 (4) | C9—C10—C11 | 117.1 (6) |
C6—C7—H7A | 108.6 | C9—C10—H10A | 108.0 |
C8—C7—H7A | 108.6 | C11—C10—H10A | 108.0 |
C6—C7—H7B | 108.6 | C9—C10—H10B | 108.0 |
C8—C7—H7B | 108.6 | C11—C10—H10B | 108.0 |
H7A—C7—H7B | 107.6 | H10A—C10—H10B | 107.3 |
C9—C8—C7 | 122.4 (5) | C9—C101—C11 | 122.4 (9) |
C9—C8—H8A | 106.7 | C9—C101—H10C | 106.7 |
C7—C8—H8A | 106.7 | C11—C101—H10C | 106.7 |
C9—C8—H8B | 106.7 | C9—C101—H10D | 106.7 |
C7—C8—H8B | 106.7 | C11—C101—H10D | 106.7 |
H8A—C8—H8B | 106.6 | H10C—C101—H10D | 106.6 |
| | | |
C5—C6—C7—C8 | 98.5 (4) | C8—C9—C10—C11 | −97.4 (8) |
C6—C7—C8—C9 | −64.9 (7) | C9—C10—C11—C12 | 41.5 (8) |
C7—C8—C9—C10 | 65.9 (9) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.56 | 3.376 (2) | 159 |
N3—H3···S1ii | 0.86 | 2.62 | 3.367 (3) | 146 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1/2, −y+1/2, −z+1. |
Experimental details
| (I) | (II) | (III) | (IV) |
Crystal data |
Chemical formula | C7H10N2S2 | C8H12N2S2 | C9H14N2S2 | C10H16N2S2 |
Mr | 186.29 | 200.32 | 214.34 | 228.37 |
Crystal system, space group | Orthorhombic, P212121 | Monoclinic, P21/n | Monoclinic, P21/n | Orthorhombic, Pbca |
Temperature (K) | 290 | 290 | 290 | 290 |
a, b, c (Å) | 7.898 (5), 8.4607 (19), 13.587 (2) | 8.6896 (10), 12.2674 (15), 9.7864 (10) | 7.4041 (14), 17.859 (4), 8.4491 (14) | 8.484 (2), 11.5018 (18), 23.992 (10) |
α, β, γ (°) | 90, 90, 90 | 90, 109.86 (9), 90 | 90, 105.848 (19), 90 | 90, 90, 90 |
V (Å3) | 907.9 (6) | 981.2 (6) | 1074.7 (4) | 2341.2 (12) |
Z | 4 | 4 | 4 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.52 | 0.49 | 0.45 | 0.42 |
Crystal size (mm) | 0.24 × 0.20 × 0.20 | 0.45 × 0.45 × 0.45 | 0.33 × 0.33 × 0.33 | 0.40 × 0.38 × 0.36 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer | Enraf–Nonius CAD-4 diffractometer | Enraf–Nonius CAD-4 diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – | – | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2483, 2198, 1629 | 4892, 2356, 2036 | 5464, 2591, 2042 | 10820, 2812, 1730 |
Rint | 0.056 | 0.023 | 0.023 | 0.061 |
(sin θ/λ)max (Å−1) | 0.660 | 0.660 | 0.660 | 0.660 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.126, 1.05 | 0.036, 0.102, 0.99 | 0.034, 0.091, 1.00 | 0.057, 0.174, 1.02 |
No. of reflections | 2198 | 2356 | 2591 | 2812 |
No. of parameters | 100 | 110 | 118 | 136 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.29 | 0.41, −0.45 | 0.20, −0.26 | 0.61, −0.34 |
Absolute structure | Flack (1983), 911 Friedel pairs | ? | ? | ? |
Absolute structure parameter | 0.06 (16) | ? | ? | ? |
Selected bond lengths (Å) for (I) topC2—N1 | 1.309 (4) | C4—C5 | 1.519 (4) |
C2—N3 | 1.366 (4) | C4—S2 | 1.622 (4) |
C2—S1 | 1.674 (3) | C5—N1 | 1.463 (4) |
C4—N3 | 1.353 (4) | | |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.51 | 3.375 (3) | 179 |
N3—H3···S1ii | 0.86 | 2.49 | 3.332 (3) | 167 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, y+1/2, −z+3/2. |
Selected bond lengths (Å) for (II) topS1—C2 | 1.6669 (16) | N1—C2 | 1.318 (2) |
S2—C4 | 1.627 (2) | N1—C5 | 1.473 (2) |
N3—C4 | 1.3524 (19) | C4—C5 | 1.520 (2) |
N3—C2 | 1.380 (2) | | |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.61 | 3.4665 (17) | 178 |
N3—H3···S1ii | 0.86 | 2.58 | 3.3959 (16) | 160 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z. |
Selected bond lengths (Å) for (III) topS1—C2 | 1.6676 (16) | N3—C4 | 1.349 (2) |
S2—C4 | 1.6263 (16) | N3—C2 | 1.3795 (19) |
N1—C2 | 1.3169 (19) | C4—C5 | 1.530 (2) |
N1—C5 | 1.4717 (19) | | |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.51 | 3.3618 (14) | 172 |
N3—H3···S1ii | 0.86 | 2.52 | 3.3460 (15) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
Selected bond lengths (Å) for (IV) topN1—C2 | 1.317 (3) | S1—C2 | 1.664 (3) |
N1—C5 | 1.467 (4) | S2—C4 | 1.627 (3) |
N3—C4 | 1.350 (4) | C4—C5 | 1.525 (4) |
N3—C2 | 1.376 (4) | | |
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.56 | 3.376 (2) | 159 |
N3—H3···S1ii | 0.86 | 2.62 | 3.367 (3) | 146 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1/2, −y+1/2, −z+1. |
##AUTHOR: I cannot find any evidence in the literature for significant C—H···S interactions, so I have removed all such references. Please approve the changes.
The structural characteristics of spirohydantoins are interesting because of their potential biological activities (Somsak et al., 2005). Recently, we began a structural and biological investigation of new hydantoin derivatives and their organo-metallic complexes (Shivachev et al., 2005). As a part of this study, we report for the first time the crystal structures of four cycloalkanespirohydantoindithiones derivatives, namely the pentyl, (I), hexyl, (II), heptyl, (III), and octyl, (IV), compounds (Fig. 1). The synthesis and spectroscopic and theoretical ab-initio calculations for compounds (I)–(IV) were described elsewhere (Marinov et al., 2005).
For all of the structures, only one independent molecule is present in the asymmetric unit. The hydantoin moieties are almost planar, with r.m.s. deviations of 0.017, 0.066, 0.014 and 0.004 Å for the molecules of (I)–(IV), respectively. The bond distances and angles in the hydantoin moieties are comparable to those observed in other spiro hydantoins (Gauthier et al., 1997; Shivachev et al., 2005). In (I), the cyclopentane ring adopts an envelope (C5) conformation, in (II) the cyclohexane adopts a chair conformation, while in (III) the cycloheptane is in a twist-chair conformation (Allen et al., 1993) The cyclooctane ring in (IV) assumes either a boat–chair (62%) or a boat–boat (38%) conformation (Perez et al., 2005).
The geometrical parameters for compounds (I)–(IV) derived from the refined crystal structures and ab-initio calculated gas-phase molecular structures correspond in general (Tables 1, 3, 5 and 7). The bond distances calculated at the HF/3–21G* level in the theoretical models are slightly longer than the those obtained from crystal structure determination. The largest discrepancy is for the C2—N1 bond, where the average discrepancy is 0.02 Å. The only exception is the C2—S1 bond length, which is slightly shorter in all theoretical models, which we attribute to the absence of hydrogen bonding in the theoretical models. Experimental confirmation of the difference between C2═S1 and C4═S2 observed in the computational model shows that the elongation of the C═S bond at the 2'-position is a fundamental feature of the spirohydantoin molecular structure. Another tendency suggested by the theoretical model is a relationship between the C5—C4 bond length [1.526, 1.535, 1.539 and 1.542 Å for (I)–(IV), respectively] and the size of the cycloalkane derivative. The values of the corresponding experimental bond lengths are 1.519 (4), 1.520 (2), 1.530 (2) and 1.525 (4) Å. Taking into account the standard uncertainties, the apparent differences between the experimental bond lengths were shown to be insignificant.
The molecular packing in (I)–(IV) is mainly governed by two factors, namely the hydrogen-bonding properties of the hydantoin moiety and the size of the cycloalkane ring. In all structures the organic molecules are arranged in chains in which hydantoin moieties are linked through hydrogen-bonded rings involving atom S1 (Tables 2, 4, 6 and 8). In compounds (I) and (IV), these rings are generated by a screw axis and have one H1 atom and one H3 atom in each ring. Thus, the chains for these compounds can be described by the graph-set notation C(4)[R22(8)] (Etter et al., 1990). A search of the Cambridge Structural Database performed by Yu et al. (2004) showed that six of the hydantoin structures are built up of similar chains, where one O atom analogous to S1 accepts two hydrogen bonds. In contrast, the extended structures of (II) and (III) comprise C(6)[R22(8)] chains where the R22(8) rings are generated by inversion and have two H1 atoms and two H3 atoms in successive rings. It is interesting to note that the same chains of rings involving atom S1 are formed in two different ways. It appears that this arrangement is common for this type of molecule and further investigations will show if the reason is steric (because S1 is more accessible than S2, which lies adjacent to a cycloalkyl ring); another factor could be different charges on S1 and S2. The similarity of the chain structures imparts almost the same values to the cell directions along which the chains propagate [specify the direction and distance for each structure] (Figs. 2–5). While the hydantoin moiety is responsible for the chain-like arrangement of the organic molecules, the cycloalkane moiety determines the three-dimensional arrangement of these chains.