Download citation
Download citation
link to html
The crystal structures of four cyclo­alkane­spiro-4′-imidazolidine-2′,5′-dithiones, namely cyclo­pentane­spiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-diaza­spiro­[4.4]­nonane-2,4-dithione}, C7H10N2S2, cyclo­hexane­spiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-diaza­spiro­[4.5]decane-2,4-dithione}, C8H12N2S2, cyclo­heptane­spiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-diaza­spiro­[4.6]undecane-2,4-dithione}, C9H14N2S2, and cyclo­octane­spiro-4′-imidazolidine-2′,5′-dithione {systematic name: 1,3-di­aza­spiro­[4.7]dodecane-2,4-dithione}, C10H16N2S2, have been determined. The three-dimensional packing in all of the structures is based on closely similar chains, in which hydantoin moieties are linked through N—H...S hydrogen bonding. The size of the cyclo­alkane moiety influences the degree of its deformation. In the cyclo­octane compound, the cyclo­octane ring assumes both boat–chair and boat–boat conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106003489/bm1624sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106003489/bm1624Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106003489/bm1624IIsup3.hkl
Contains datablock new

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106003489/bm1624IIIsup4.hkl
Contains datablock new

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106003489/bm1624IVsup5.hkl
Contains datablock a034

CCDC references: 605691; 605692; 605693; 605694

Comment top

##AUTHOR: I cannot find any evidence in the literature for significant C—H···S interactions, so I have removed all such references. Please approve the changes.

The structural characteristics of spirohydantoins are interesting because of their potential biological activities (Somsak et al., 2005). Recently, we began a structural and biological investigation of new hydantoin derivatives and their organo-metallic complexes (Shivachev et al., 2005). As a part of this study, we report for the first time the crystal structures of four cycloalkanespirohydantoindithiones derivatives, namely the pentyl, (I), hexyl, (II), heptyl, (III), and octyl, (IV), compounds (Fig. 1). The synthesis and spectroscopic and theoretical ab-initio calculations for compounds (I)–(IV) were described elsewhere (Marinov et al., 2005).

For all of the structures, only one independent molecule is present in the asymmetric unit. The hydantoin moieties are almost planar, with r.m.s. deviations of 0.017, 0.066, 0.014 and 0.004 Å for the molecules of (I)–(IV), respectively. The bond distances and angles in the hydantoin moieties are comparable to those observed in other spiro hydantoins (Gauthier et al., 1997; Shivachev et al., 2005). In (I), the cyclopentane ring adopts an envelope (C5) conformation, in (II) the cyclohexane adopts a chair conformation, while in (III) the cycloheptane is in a twist-chair conformation (Allen et al., 1993) The cyclooctane ring in (IV) assumes either a boat–chair (62%) or a boat–boat (38%) conformation (Perez et al., 2005).

The geometrical parameters for compounds (I)–(IV) derived from the refined crystal structures and ab-initio calculated gas-phase molecular structures correspond in general (Tables 1, 3, 5 and 7). The bond distances calculated at the HF/3–21G* level in the theoretical models are slightly longer than the those obtained from crystal structure determination. The largest discrepancy is for the C2—N1 bond, where the average discrepancy is 0.02 Å. The only exception is the C2—S1 bond length, which is slightly shorter in all theoretical models, which we attribute to the absence of hydrogen bonding in the theoretical models. Experimental confirmation of the difference between C2S1 and C4S2 observed in the computational model shows that the elongation of the CS bond at the 2'-position is a fundamental feature of the spirohydantoin molecular structure. Another tendency suggested by the theoretical model is a relationship between the C5—C4 bond length [1.526, 1.535, 1.539 and 1.542 Å for (I)–(IV), respectively] and the size of the cycloalkane derivative. The values of the corresponding experimental bond lengths are 1.519 (4), 1.520 (2), 1.530 (2) and 1.525 (4) Å. Taking into account the standard uncertainties, the apparent differences between the experimental bond lengths were shown to be insignificant.

The molecular packing in (I)–(IV) is mainly governed by two factors, namely the hydrogen-bonding properties of the hydantoin moiety and the size of the cycloalkane ring. In all structures the organic molecules are arranged in chains in which hydantoin moieties are linked through hydrogen-bonded rings involving atom S1 (Tables 2, 4, 6 and 8). In compounds (I) and (IV), these rings are generated by a screw axis and have one H1 atom and one H3 atom in each ring. Thus, the chains for these compounds can be described by the graph-set notation C(4)[R22(8)] (Etter et al., 1990). A search of the Cambridge Structural Database performed by Yu et al. (2004) showed that six of the hydantoin structures are built up of similar chains, where one O atom analogous to S1 accepts two hydrogen bonds. In contrast, the extended structures of (II) and (III) comprise C(6)[R22(8)] chains where the R22(8) rings are generated by inversion and have two H1 atoms and two H3 atoms in successive rings. It is interesting to note that the same chains of rings involving atom S1 are formed in two different ways. It appears that this arrangement is common for this type of molecule and further investigations will show if the reason is steric (because S1 is more accessible than S2, which lies adjacent to a cycloalkyl ring); another factor could be different charges on S1 and S2. The similarity of the chain structures imparts almost the same values to the cell directions along which the chains propagate [specify the direction and distance for each structure] (Figs. 2–5). While the hydantoin moiety is responsible for the chain-like arrangement of the organic molecules, the cycloalkane moiety determines the three-dimensional arrangement of these chains.

Experimental top

Compounds (I)–(IV) were prepared according to the method described by Marinov et al. (2005). Crystals suitable for X-ray diffraction were obtained by slow evaporation from a methanol solution at 277 K.

Refinement top

H atoms were placed in idealized positions (C—H = 0.97 and N—H = 0.86 Å), and were constrained to ride on their parent atoms, with Uiso(H) values of 1.2Ueq(C,N). Disorder of atom C10 in the cyclooctane ring in (IV) was modelled by competitive refinement of two alternative sites. The major [0.622 (8)] and minor [0.378 (2)] occupancies correspond to the boat–chair and boat–boat conformations, respectively.

Computing details top

For all compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury 1.4 (Bruno et al., 2002) for (I), (II), (III); ORTEP-3 for Windows (Farrugia, 1997) and Mercury 1.4 (Bruno et al., 2002)' for (IV). For all compounds, software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
##AUTHOR: Orientation of Scheme should be rotated to match Figures. ##AUTHOR: All reference to C—H···S hydrogen bonds removed.

Fig. 1. A view of the structure and the atom-numbering scheme of the independent molecule in (a) (I), (b) (II), (c) (III) and (d) (IV), showing 50% probability displacement ellipsoids. For compound (IV), only the major (62%) disorder component is represented, the minor (38%) component being omitted for clarity (see text).

Fig. 2. A partial view of the molecular packing in (I). Dotted lines represent N—H···S1 hydrogen bonds. [Symmetry codes: (i) −x, y − 1/2, −z + 3/2; (ii) −x, y + 1/2, −z + 3/2.]

Fig. 3. A partial view of the molecular packing in (II). Dotted lines represent N—H···S1 hydrogen bonds. [Symmetry codes: (i) −x, −y + 1, −z; (ii) −x + 1, −y + 1, −z.]

Fig. 4. A partial view of the molecular packing in (III). Hydrogen bonds are indicated by dotted lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z.]

Fig. 5. A partial view of the molecular packing in (IV). Hydrogen bonds are indicated by dotted lines. [Symmetry codes: (i) x + 1/2, −y + 1/2, −z + 1; (ii) x − 1/2, −y + 1/2, −z + 1.]
(I) 1,3-diazaspiro[4.4]nonane-2,4-dithione top
Crystal data top
C7H10N2S2Dx = 1.363 Mg m3
Mr = 186.29Melting point: 495 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 22 reflections
a = 7.898 (5) Åθ = 20.3–20.7°
b = 8.4607 (19) ŵ = 0.52 mm1
c = 13.587 (2) ÅT = 290 K
V = 907.9 (6) Å3Square prism, orange
Z = 40.24 × 0.20 × 0.20 mm
F(000) = 392
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.056
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.8°
Graphite monochromatorh = 010
non–profiled ω/2θ scansk = 011
2483 measured reflectionsl = 1717
2198 independent reflections3 standard reflections every 120 min
1629 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.3808P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2198 reflectionsΔρmax = 0.26 e Å3
100 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 911 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (16)
Crystal data top
C7H10N2S2V = 907.9 (6) Å3
Mr = 186.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.898 (5) ŵ = 0.52 mm1
b = 8.4607 (19) ÅT = 290 K
c = 13.587 (2) Å0.24 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.056
2483 measured reflections3 standard reflections every 120 min
2198 independent reflections intensity decay: 2%
1629 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.29 e Å3
2198 reflectionsAbsolute structure: Flack (1983), 911 Friedel pairs
100 parametersAbsolute structure parameter: 0.06 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08105 (12)0.14147 (10)0.73014 (7)0.0490 (3)
S20.42294 (17)0.36691 (13)0.95075 (10)0.0758 (4)
N10.1853 (4)0.0174 (3)0.8266 (2)0.0445 (8)
H10.15970.07870.81250.053*
N30.1704 (4)0.2716 (3)0.8361 (2)0.0364 (6)
H30.13350.36580.82580.044*
C20.0955 (4)0.1392 (4)0.7984 (2)0.0338 (6)
C40.3087 (4)0.2393 (4)0.8914 (3)0.0411 (8)
C50.3338 (4)0.0617 (4)0.8848 (3)0.0366 (7)
C60.4999 (5)0.0135 (5)0.8350 (3)0.0583 (11)
H6A0.48640.01030.76400.070*
H6B0.58930.08780.85100.070*
C70.5410 (7)0.1478 (6)0.8742 (4)0.0899 (17)
H7A0.51270.22780.82580.108*
H7B0.66100.15540.88870.108*
C80.4421 (7)0.1716 (6)0.9636 (3)0.0804 (15)
H8A0.51700.19341.01850.096*
H8B0.36700.26140.95530.096*
C90.3411 (5)0.0266 (4)0.9840 (3)0.0465 (9)
H9A0.39570.03781.03380.056*
H9B0.22820.05381.00640.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0486 (5)0.0299 (4)0.0686 (6)0.0001 (5)0.0247 (4)0.0010 (4)
S20.0832 (8)0.0430 (5)0.1014 (9)0.0149 (7)0.0503 (7)0.0013 (6)
N10.0463 (19)0.0266 (14)0.061 (2)0.0025 (13)0.0171 (16)0.0035 (13)
N30.0395 (16)0.0238 (12)0.0460 (15)0.0011 (11)0.0064 (13)0.0004 (12)
C20.0351 (15)0.0288 (14)0.0376 (16)0.0035 (17)0.0030 (13)0.0001 (14)
C40.0425 (19)0.0331 (16)0.0476 (19)0.0061 (14)0.0060 (19)0.0056 (18)
C50.0330 (16)0.0325 (15)0.0442 (19)0.0004 (13)0.0074 (18)0.0022 (16)
C60.047 (2)0.064 (3)0.065 (2)0.012 (2)0.010 (2)0.008 (2)
C70.090 (4)0.075 (3)0.105 (4)0.046 (3)0.026 (3)0.015 (3)
C80.105 (4)0.063 (3)0.073 (3)0.044 (3)0.015 (3)0.016 (2)
C90.054 (2)0.0419 (19)0.044 (2)0.0103 (18)0.0008 (18)0.0049 (16)
Geometric parameters (Å, º) top
C2—N11.309 (4)C6—H6B0.9700
C2—N31.366 (4)C7—C81.458 (6)
C2—S11.674 (3)C7—H7A0.9700
C4—N31.353 (4)C7—H7B0.9700
C4—C51.519 (4)C8—C91.490 (5)
C4—S21.622 (4)C8—H8A0.9700
C5—N11.463 (4)C8—H8B0.9700
C5—C61.532 (5)C9—H9A0.9700
C5—C91.543 (5)C9—H9B0.9700
C6—C71.500 (6)N1—H10.8600
C6—H6A0.9700N3—H30.8600
N1—C2—N3107.5 (3)C8—C7—H7B110.1
N1—C2—S1128.5 (3)C6—C7—H7B110.1
N3—C2—S1124.0 (2)H7A—C7—H7B108.5
N3—C4—C5105.8 (3)C7—C8—C9109.2 (4)
N3—C4—S2126.2 (3)C7—C8—H8A109.8
C5—C4—S2128.0 (3)C9—C8—H8A109.8
N1—C5—C4100.4 (3)C7—C8—H8B109.8
N1—C5—C6112.3 (3)C9—C8—H8B109.8
C4—C5—C6113.7 (3)H8A—C8—H8B108.3
N1—C5—C9112.2 (3)C8—C9—C5104.8 (3)
C4—C5—C9115.6 (3)C8—C9—H9A110.8
C6—C5—C9103.0 (3)C5—C9—H9A110.8
C7—C6—C5105.7 (4)C8—C9—H9B110.8
C7—C6—H6A110.6C5—C9—H9B110.8
C5—C6—H6A110.6H9A—C9—H9B108.9
C7—C6—H6B110.6C2—N1—C5113.0 (3)
C5—C6—H6B110.6C2—N1—H1123.5
H6A—C6—H6B108.7C5—N1—H1123.5
C8—C7—C6107.8 (4)C4—N3—C2113.1 (3)
C8—C7—H7A110.1C4—N3—H3123.4
C6—C7—H7A110.1C2—N3—H3123.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.513.375 (3)179
N3—H3···S1ii0.862.493.332 (3)167
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2.
(II) 1,3-diazaspiro[4.5]decane-2,4-dithione top
Crystal data top
C8H12N2S2F(000) = 424
Mr = 200.32Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 22 reflections
a = 8.6896 (10) Åθ = 20.5–21.5°
b = 12.2674 (15) ŵ = 0.49 mm1
c = 9.7864 (10) ÅT = 290 K
β = 109.86 (9)°Cube, yellow
V = 981.2 (6) Å30.45 × 0.45 × 0.45 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.7°
Graphite monochromatorh = 011
non–profiled ω/2θ scansk = 1616
4892 measured reflectionsl = 1212
2356 independent reflections3 standard reflections every 120 min
2036 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.060P)2 + 0.2697P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2356 reflectionsΔρmax = 0.41 e Å3
110 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.097 (6)
Crystal data top
C8H12N2S2V = 981.2 (6) Å3
Mr = 200.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6896 (10) ŵ = 0.49 mm1
b = 12.2674 (15) ÅT = 290 K
c = 9.7864 (10) Å0.45 × 0.45 × 0.45 mm
β = 109.86 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
4892 measured reflections3 standard reflections every 120 min
2356 independent reflections intensity decay: 1%
2036 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.99Δρmax = 0.41 e Å3
2356 reflectionsΔρmin = 0.45 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21807 (5)0.51835 (4)0.08084 (4)0.04149 (16)
S20.61596 (6)0.28711 (5)0.36038 (5)0.0625 (2)
N10.19152 (15)0.41895 (10)0.15650 (13)0.0347 (3)
H10.09040.43610.13770.042*
N30.43244 (16)0.40577 (11)0.13720 (14)0.0395 (3)
H30.51000.41510.10240.047*
C20.27670 (17)0.44725 (12)0.07349 (15)0.0328 (3)
C40.45042 (19)0.34889 (13)0.26005 (16)0.0380 (3)
C50.28705 (17)0.35503 (12)0.28466 (15)0.0332 (3)
C60.2121 (2)0.24228 (14)0.28581 (19)0.0449 (4)
H6A0.19000.20820.19160.054*
H6B0.29020.19690.35780.054*
C70.0540 (2)0.24876 (17)0.3202 (2)0.0547 (5)
H7A0.02870.28590.24160.066*
H7B0.01500.17560.32720.066*
C80.0784 (2)0.3090 (2)0.4615 (2)0.0584 (5)
H8A0.02560.31510.47720.070*
H8B0.15250.26790.54170.070*
C90.1480 (2)0.42187 (18)0.4581 (2)0.0523 (5)
H9A0.16780.45710.55130.063*
H9B0.06880.46530.38440.063*
C100.30657 (19)0.41673 (15)0.42555 (17)0.0409 (4)
H10A0.38950.38100.50550.049*
H10B0.34380.49030.41790.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0345 (2)0.0507 (3)0.0390 (2)0.00483 (16)0.01217 (16)0.01622 (16)
S20.0474 (3)0.0923 (4)0.0497 (3)0.0355 (3)0.0190 (2)0.0276 (2)
N30.0326 (6)0.0501 (8)0.0390 (7)0.0109 (5)0.0165 (5)0.0119 (6)
N10.0282 (6)0.0420 (7)0.0336 (6)0.0046 (5)0.0102 (5)0.0088 (5)
C40.0362 (7)0.0443 (8)0.0348 (7)0.0108 (6)0.0136 (6)0.0051 (6)
C20.0310 (7)0.0330 (7)0.0336 (7)0.0021 (5)0.0100 (6)0.0021 (5)
C50.0306 (7)0.0387 (7)0.0296 (7)0.0052 (6)0.0091 (5)0.0057 (6)
C60.0555 (10)0.0377 (8)0.0387 (8)0.0021 (7)0.0126 (7)0.0059 (7)
C70.0456 (9)0.0591 (11)0.0522 (10)0.0124 (9)0.0072 (8)0.0173 (9)
C80.0408 (9)0.0881 (15)0.0512 (10)0.0036 (9)0.0221 (8)0.0191 (10)
C90.0422 (9)0.0746 (13)0.0439 (9)0.0107 (9)0.0196 (7)0.0023 (9)
C100.0347 (7)0.0525 (9)0.0348 (7)0.0024 (7)0.0110 (6)0.0041 (7)
Geometric parameters (Å, º) top
S1—C21.6669 (16)C6—H6B0.9700
S2—C41.627 (2)C7—C81.518 (3)
N3—C41.3524 (19)C7—H7A0.9700
N3—C21.380 (2)C7—H7B0.9700
N3—H30.8600C8—C91.515 (3)
N1—C21.318 (2)C8—H8A0.9700
N1—C51.473 (2)C8—H8B0.9700
N1—H10.8600C9—C101.518 (2)
C4—C51.520 (2)C9—H9A0.9700
C5—C61.530 (2)C9—H9B0.9700
C5—C101.531 (2)C10—H10A0.9700
C6—C71.524 (3)C10—H10B0.9700
C6—H6A0.9700
C4—N3—C2113.03 (14)C8—C7—C6111.67 (17)
C4—N3—H3123.5C8—C7—H7A109.3
C2—N3—H3123.5C6—C7—H7A109.3
C2—N1—C5113.14 (12)C8—C7—H7B109.3
C2—N1—H1123.4C6—C7—H7B109.3
C5—N1—H1123.4H7A—C7—H7B107.9
N3—C4—C5106.45 (14)C9—C8—C7110.98 (15)
N3—C4—S2126.03 (13)C9—C8—H8A109.4
C5—C4—S2127.52 (12)C7—C8—H8A109.4
N1—C2—N3107.11 (13)C9—C8—H8B109.4
N1—C2—S1129.31 (12)C7—C8—H8B109.4
N3—C2—S1123.58 (13)H8A—C8—H8B108.0
N1—C5—C4100.25 (12)C8—C9—C10111.35 (16)
N1—C5—C6111.68 (13)C8—C9—H9A109.4
C4—C5—C6112.26 (13)C10—C9—H9A109.4
N1—C5—C10111.20 (13)C8—C9—H9B109.4
C4—C5—C10110.09 (14)C10—C9—H9B109.4
C6—C5—C10110.95 (13)H9A—C9—H9B108.0
C7—C6—C5111.85 (15)C9—C10—C5112.27 (15)
C7—C6—H6A109.2C9—C10—H10A109.2
C5—C6—H6A109.2C5—C10—H10A109.2
C7—C6—H6B109.2C9—C10—H10B109.2
C5—C6—H6B109.2C5—C10—H10B109.2
H6A—C6—H6B107.9H10A—C10—H10B107.9
C5—C6—C7—C854.66 (19)C7—C8—C9—C1056.0 (2)
C6—C7—C8—C956.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.613.4665 (17)178
N3—H3···S1ii0.862.583.3959 (16)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
(III) 1,3-diazaspiro[4.6]undecane-2,4-dithione top
Crystal data top
C9H14N2S2F(000) = 456
Mr = 214.34Dx = 1.325 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 22 reflections
a = 7.4041 (14) Åθ = 18.4–19.8°
b = 17.859 (4) ŵ = 0.45 mm1
c = 8.4491 (14) ÅT = 290 K
β = 105.848 (19)°Cube, yellow
V = 1074.7 (4) Å30.33 × 0.33 × 0.33 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.3°
Graphite monochromatorh = 09
non–profiled ω/2θ scansk = 2323
5464 measured reflectionsl = 1110
2591 independent reflections3 standard reflections every 500 reflections
2042 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.254P]
where P = (Fo2 + 2Fc2)/3
2591 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C9H14N2S2V = 1074.7 (4) Å3
Mr = 214.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4041 (14) ŵ = 0.45 mm1
b = 17.859 (4) ÅT = 290 K
c = 8.4491 (14) Å0.33 × 0.33 × 0.33 mm
β = 105.848 (19)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
5464 measured reflections3 standard reflections every 500 reflections
2591 independent reflections intensity decay: none
2042 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2591 reflectionsΔρmin = 0.26 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54858 (6)0.45898 (3)0.26027 (5)0.04001 (13)
S20.00067 (7)0.63319 (3)0.09273 (5)0.05107 (16)
N10.29715 (19)0.55459 (8)0.32787 (15)0.0346 (3)
H10.33150.54620.43210.042*
N30.2837 (2)0.54828 (8)0.06919 (15)0.0351 (3)
H30.31350.53550.01860.042*
C20.3755 (2)0.52184 (8)0.22362 (18)0.0305 (3)
C40.1426 (2)0.59606 (9)0.06924 (18)0.0319 (3)
C50.1453 (2)0.60684 (8)0.24953 (17)0.0295 (3)
C60.2080 (2)0.68680 (9)0.3080 (2)0.0400 (4)
H6A0.27520.68450.42390.048*
H6B0.29620.70380.24930.048*
C70.0543 (3)0.74498 (10)0.2863 (3)0.0530 (5)
H7A0.04210.73450.18520.064*
H7B0.10650.79390.27500.064*
C80.0363 (3)0.74755 (12)0.4289 (3)0.0626 (6)
H8A0.06270.75060.53120.075*
H8B0.10990.79310.41920.075*
C90.1618 (3)0.68186 (12)0.4400 (3)0.0576 (5)
H9A0.27270.68410.34700.069*
H9B0.20260.68740.53910.069*
C100.0725 (3)0.60469 (11)0.4424 (2)0.0464 (4)
H10A0.15260.56770.47350.056*
H10B0.04730.60430.52560.056*
C110.0414 (2)0.58219 (9)0.2773 (2)0.0361 (4)
H11A0.14250.60310.19010.043*
H11B0.05000.52810.26770.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0452 (3)0.0481 (3)0.0278 (2)0.01627 (19)0.01183 (17)0.00268 (16)
S20.0536 (3)0.0663 (3)0.0295 (2)0.0192 (2)0.00480 (19)0.0103 (2)
N10.0402 (8)0.0432 (7)0.0204 (6)0.0115 (6)0.0083 (5)0.0017 (5)
N30.0403 (7)0.0456 (8)0.0209 (6)0.0089 (6)0.0108 (5)0.0020 (5)
C20.0347 (8)0.0334 (7)0.0241 (7)0.0000 (6)0.0092 (6)0.0005 (5)
C40.0351 (8)0.0343 (8)0.0267 (7)0.0002 (6)0.0092 (6)0.0017 (6)
C50.0333 (8)0.0319 (7)0.0231 (6)0.0027 (6)0.0074 (6)0.0003 (6)
C60.0386 (9)0.0365 (8)0.0457 (9)0.0045 (7)0.0129 (7)0.0076 (7)
C70.0595 (12)0.0335 (9)0.0691 (13)0.0026 (8)0.0230 (10)0.0004 (9)
C80.0683 (14)0.0515 (12)0.0734 (15)0.0134 (10)0.0289 (12)0.0165 (10)
C90.0592 (13)0.0692 (13)0.0531 (11)0.0139 (11)0.0301 (10)0.0058 (10)
C100.0535 (11)0.0538 (11)0.0387 (9)0.0004 (9)0.0242 (8)0.0021 (8)
C110.0389 (9)0.0367 (9)0.0350 (8)0.0018 (7)0.0140 (7)0.0009 (6)
Geometric parameters (Å, º) top
S1—C21.6676 (16)C7—C81.532 (3)
S2—C41.6263 (16)C7—H7A0.9700
N1—C21.3169 (19)C7—H7B0.9700
N1—C51.4717 (19)C8—C91.515 (3)
N1—H10.8600C8—H8A0.9700
N3—C41.349 (2)C8—H8B0.9700
N3—C21.3795 (19)C9—C101.526 (3)
N3—H30.8600C9—H9A0.9700
C4—C51.530 (2)C9—H9B0.9700
C5—C111.529 (2)C10—C111.528 (2)
C5—C61.541 (2)C10—H10A0.9700
C6—C71.515 (2)C10—H10B0.9700
C6—H6A0.9700C11—H11A0.9700
C6—H6B0.9700C11—H11B0.9700
C2—N1—C5113.75 (12)C6—C7—H7B108.8
C2—N1—H1123.1C8—C7—H7B108.8
C5—N1—H1123.1H7A—C7—H7B107.7
C4—N3—C2113.45 (13)C9—C8—C7115.66 (17)
C4—N3—H3123.3C9—C8—H8A108.4
C2—N3—H3123.3C7—C8—H8A108.4
N3—C4—C5106.27 (12)C9—C8—H8B108.4
N3—C4—S2125.79 (12)C7—C8—H8B108.4
C5—C4—S2127.93 (12)H8A—C8—H8B107.4
N1—C2—N3106.69 (13)C8—C9—C10115.44 (17)
N1—C2—S1129.15 (12)C8—C9—H9A108.4
N3—C2—S1124.15 (11)C10—C9—H9A108.4
N1—C5—C11111.11 (13)C8—C9—H9B108.4
N1—C5—C499.72 (12)C10—C9—H9B108.4
C11—C5—C4110.48 (13)H9A—C9—H9B107.5
N1—C5—C6108.49 (13)C9—C10—C11113.44 (15)
C11—C5—C6115.05 (13)C9—C10—H10A108.9
C4—C5—C6110.91 (13)C11—C10—H10A108.9
C7—C6—C5116.51 (14)C9—C10—H10B108.9
C7—C6—H6A108.2C11—C10—H10B108.9
C5—C6—H6A108.2H10A—C10—H10B107.7
C7—C6—H6B108.2C10—C11—C5115.62 (14)
C5—C6—H6B108.2C10—C11—H11A108.4
H6A—C6—H6B107.3C5—C11—H11A108.4
C6—C7—C8113.66 (17)C10—C11—H11B108.4
C6—C7—H7A108.8C5—C11—H11B108.4
C8—C7—H7A108.8H11A—C11—H11B107.4
C5—C6—C7—C886.0 (2)C7—C8—C9—C1053.5 (3)
C6—C7—C8—C971.7 (3)C8—C9—C10—C1170.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.513.3618 (14)172
N3—H3···S1ii0.862.523.3460 (15)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
(IV) 1,3-diazaspiro[4.7]dodecane-2,4-dithione top
Crystal data top
C10H16N2S2F(000) = 976
Mr = 228.37Dx = 1.296 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 22 reflections
a = 8.484 (2) Åθ = 17.9–19.1°
b = 11.5018 (18) ŵ = 0.42 mm1
c = 23.992 (10) ÅT = 290 K
V = 2341.2 (12) Å3Square prism, yellow
Z = 80.40 × 0.38 × 0.36 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.061
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 1.7°
Graphite monochromatorh = 011
non–profiled ω/2θ scansk = 1515
10820 measured reflectionsl = 3131
2812 independent reflections3 standard reflections every 120 min
1730 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0826P)2 + 1.361P]
where P = (Fo2 + 2Fc2)/3
2812 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H16N2S2V = 2341.2 (12) Å3
Mr = 228.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.484 (2) ŵ = 0.42 mm1
b = 11.5018 (18) ÅT = 290 K
c = 23.992 (10) Å0.40 × 0.38 × 0.36 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.061
10820 measured reflections3 standard reflections every 120 min
2812 independent reflections intensity decay: 5%
1730 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
2812 reflectionsΔρmin = 0.34 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. # start RESPONSE (PLAT301) "Normal" structure refinement (Npar = 127) finished at R1 = 0.063, wR2 = 0.1972, S = 1.021. Introducing 2 atomic positions for C10 we got the final model (Npar = 136) of the disordered molecule." # end RESPONSE PLAT301

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.9007 (3)0.3404 (2)0.55765 (10)0.0476 (6)
H10.99300.30990.55530.057*
N30.6569 (3)0.3784 (2)0.54033 (11)0.0540 (7)
H30.56660.37540.52410.065*
S10.78194 (9)0.21329 (8)0.47347 (4)0.0576 (3)
S20.56062 (11)0.53474 (10)0.61389 (5)0.0818 (4)
C20.7837 (3)0.3117 (3)0.52427 (12)0.0455 (7)
C40.6874 (3)0.4488 (3)0.58401 (14)0.0522 (7)
C50.8598 (3)0.4289 (3)0.59923 (12)0.0442 (7)
C60.9603 (4)0.5383 (3)0.58883 (14)0.0544 (8)
H6A1.06860.51360.58340.065*
H6B0.92540.57310.55410.065*
C70.9597 (5)0.6322 (3)0.6330 (2)0.0774 (11)
H7A0.86380.62500.65470.093*
H7B0.95720.70740.61470.093*
C81.1020 (8)0.6293 (5)0.6732 (2)0.121 (2)
H8A1.19580.63650.65030.145*
H8B1.09600.69930.69560.145*
C91.1285 (8)0.5374 (5)0.7098 (2)0.120 (2)
H9A1.03540.52800.73280.144*
H9B1.21480.55870.73420.144*
C101.1667 (9)0.4217 (7)0.6837 (4)0.0784 (18)0.62
H10A1.24790.38480.70600.094*0.62
H10B1.21130.43600.64710.094*0.62
C1011.1092 (18)0.4142 (12)0.7190 (5)0.088 (4)0.38
H10C1.05080.40560.75350.105*0.38
H10D1.21350.38270.72570.105*0.38
C111.0316 (5)0.3359 (4)0.67705 (17)0.0783 (12)
H11A1.06630.27670.65100.094*
H11B1.01740.29780.71280.094*
C120.8699 (4)0.3769 (3)0.65781 (13)0.0586 (8)
H12A0.83240.43460.68410.070*
H12B0.79820.31130.65960.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0265 (11)0.0625 (15)0.0540 (14)0.0049 (11)0.0022 (10)0.0135 (12)
N30.0252 (11)0.0704 (17)0.0665 (17)0.0039 (11)0.0033 (11)0.0144 (14)
S10.0307 (4)0.0809 (6)0.0611 (5)0.0017 (4)0.0000 (3)0.0244 (4)
S20.0446 (5)0.0897 (8)0.1112 (9)0.0120 (4)0.0123 (5)0.0378 (6)
C20.0293 (12)0.0595 (17)0.0477 (15)0.0046 (12)0.0044 (11)0.0043 (13)
C40.0342 (14)0.0606 (18)0.0617 (19)0.0008 (13)0.0056 (13)0.0088 (15)
C50.0323 (13)0.0523 (16)0.0481 (16)0.0002 (12)0.0022 (11)0.0063 (13)
C60.0472 (17)0.0610 (19)0.0550 (18)0.0025 (14)0.0010 (14)0.0031 (15)
C70.067 (2)0.060 (2)0.106 (3)0.0034 (18)0.013 (2)0.008 (2)
C80.146 (5)0.109 (4)0.108 (4)0.031 (4)0.045 (4)0.021 (3)
C90.145 (5)0.107 (4)0.107 (4)0.020 (4)0.066 (4)0.017 (3)
C100.066 (4)0.088 (5)0.081 (5)0.009 (4)0.025 (4)0.000 (4)
C1010.099 (10)0.109 (10)0.055 (6)0.000 (8)0.023 (7)0.010 (7)
C110.102 (3)0.070 (2)0.063 (2)0.010 (2)0.023 (2)0.0038 (19)
C120.066 (2)0.0577 (19)0.0520 (18)0.0127 (17)0.0064 (15)0.0003 (15)
Geometric parameters (Å, º) top
N1—C21.317 (3)C8—H8A0.9700
N1—C51.467 (4)C8—H8B0.9700
N1—H10.8600C12—C111.522 (5)
N3—C41.350 (4)C12—H12A0.9700
N3—C21.376 (4)C12—H12B0.9700
N3—H30.8600C9—C101.507 (9)
S1—C21.664 (3)C9—C1011.444 (15)
S2—C41.627 (3)C9—H9A0.9700
C4—C51.525 (4)C9—H9B0.9700
C5—C121.530 (4)C11—C101.520 (9)
C5—C61.540 (4)C11—C1011.501 (12)
C6—C71.513 (5)C11—H11A0.9700
C6—H6A0.9700C11—H11B0.9700
C6—H6B0.9700C10—H10A0.9700
C7—C81.544 (6)C10—H10B0.9700
C7—H7A0.9700C101—H10C0.9700
C7—H7B0.9700C101—H10D0.9700
C8—C91.392 (7)
C2—N1—C5114.1 (2)C11—C12—C5116.7 (3)
C2—N1—H1122.9C11—C12—H12A108.1
C5—N1—H1122.9C5—C12—H12A108.1
C4—N3—C2113.7 (2)C11—C12—H12B108.1
C4—N3—H3123.2C5—C12—H12B108.1
C2—N3—H3123.2H12A—C12—H12B107.3
N1—C2—N3106.2 (2)C8—C9—C101145.4 (6)
N1—C2—S1128.5 (2)C8—C9—C10116.3 (6)
N3—C2—S1125.2 (2)C8—C9—H9A108.2
N3—C4—C5106.3 (2)C101—C9—H9A73.2
N3—C4—S2125.4 (2)C10—C9—H9A108.2
C5—C4—S2128.3 (2)C8—C9—H9B108.2
N1—C5—C499.7 (2)C101—C9—H9B103.9
N1—C5—C12109.9 (2)C10—C9—H9B108.2
C4—C5—C12109.4 (2)H9A—C9—H9B107.4
N1—C5—C6109.0 (2)C101—C11—C12114.4 (6)
C4—C5—C6111.7 (3)C12—C11—C10120.7 (4)
C12—C5—C6116.0 (3)C101—C11—H11A136.0
C7—C6—C5117.9 (3)C12—C11—H11A107.2
C7—C6—H6A107.8C10—C11—H11A107.2
C5—C6—H6A107.8C101—C11—H11B74.6
C7—C6—H6B107.8C12—C11—H11B107.2
C5—C6—H6B107.8C10—C11—H11B107.2
H6A—C6—H6B107.2H11A—C11—H11B106.8
C6—C7—C8114.7 (4)C9—C10—C11117.1 (6)
C6—C7—H7A108.6C9—C10—H10A108.0
C8—C7—H7A108.6C11—C10—H10A108.0
C6—C7—H7B108.6C9—C10—H10B108.0
C8—C7—H7B108.6C11—C10—H10B108.0
H7A—C7—H7B107.6H10A—C10—H10B107.3
C9—C8—C7122.4 (5)C9—C101—C11122.4 (9)
C9—C8—H8A106.7C9—C101—H10C106.7
C7—C8—H8A106.7C11—C101—H10C106.7
C9—C8—H8B106.7C9—C101—H10D106.7
C7—C8—H8B106.7C11—C101—H10D106.7
H8A—C8—H8B106.6H10C—C101—H10D106.6
C5—C6—C7—C898.5 (4)C8—C9—C10—C1197.4 (8)
C6—C7—C8—C964.9 (7)C9—C10—C11—C1241.5 (8)
C7—C8—C9—C1065.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.563.376 (2)159
N3—H3···S1ii0.862.623.367 (3)146
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC7H10N2S2C8H12N2S2C9H14N2S2C10H16N2S2
Mr186.29200.32214.34228.37
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/nMonoclinic, P21/nOrthorhombic, Pbca
Temperature (K)290290290290
a, b, c (Å)7.898 (5), 8.4607 (19), 13.587 (2)8.6896 (10), 12.2674 (15), 9.7864 (10)7.4041 (14), 17.859 (4), 8.4491 (14)8.484 (2), 11.5018 (18), 23.992 (10)
α, β, γ (°)90, 90, 9090, 109.86 (9), 9090, 105.848 (19), 9090, 90, 90
V3)907.9 (6)981.2 (6)1074.7 (4)2341.2 (12)
Z4448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.520.490.450.42
Crystal size (mm)0.24 × 0.20 × 0.200.45 × 0.45 × 0.450.33 × 0.33 × 0.330.40 × 0.38 × 0.36
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2483, 2198, 1629 4892, 2356, 2036 5464, 2591, 2042 10820, 2812, 1730
Rint0.0560.0230.0230.061
(sin θ/λ)max1)0.6600.6600.6600.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.126, 1.05 0.036, 0.102, 0.99 0.034, 0.091, 1.00 0.057, 0.174, 1.02
No. of reflections2198235625912812
No. of parameters100110118136
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.290.41, 0.450.20, 0.260.61, 0.34
Absolute structureFlack (1983), 911 Friedel pairs???
Absolute structure parameter0.06 (16)???

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury 1.4 (Bruno et al., 2002)', WinGX (Farrugia, 1999).

Selected bond lengths (Å) for (I) top
C2—N11.309 (4)C4—C51.519 (4)
C2—N31.366 (4)C4—S21.622 (4)
C2—S11.674 (3)C5—N11.463 (4)
C4—N31.353 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.513.375 (3)179
N3—H3···S1ii0.862.493.332 (3)167
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2.
Selected bond lengths (Å) for (II) top
S1—C21.6669 (16)N1—C21.318 (2)
S2—C41.627 (2)N1—C51.473 (2)
N3—C41.3524 (19)C4—C51.520 (2)
N3—C21.380 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.613.4665 (17)178
N3—H3···S1ii0.862.583.3959 (16)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Selected bond lengths (Å) for (III) top
S1—C21.6676 (16)N3—C41.349 (2)
S2—C41.6263 (16)N3—C21.3795 (19)
N1—C21.3169 (19)C4—C51.530 (2)
N1—C51.4717 (19)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.513.3618 (14)172
N3—H3···S1ii0.862.523.3460 (15)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Selected bond lengths (Å) for (IV) top
N1—C21.317 (3)S1—C21.664 (3)
N1—C51.467 (4)S2—C41.627 (3)
N3—C41.350 (4)C4—C51.525 (4)
N3—C21.376 (4)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.563.376 (2)159
N3—H3···S1ii0.862.623.367 (3)146
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds