Download citation
Download citation
link to html
BiV0.4Fe3IIIO(PO4)3 crystallizes with two Fe atoms (one on an inversion centre and one on a mirror plane) displaying octahedral geometry and a third Fe atom (on a mirror plane) with trigonal bipyramidal coordination. Fe atoms are seen in oxy­gen-bridged chains. BiV atoms are found in the interstitial sites between these chains. Bi shows sevenfold coordination, with Bi-O distances between 2.357 (7) and 2.529 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000977X/br1270sup1.cif
Contains datablocks kar2, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000977X/br1270Isup2.hkl
Contains datablock I

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1990b).

Bismuth(V) iron(III) tris(phosphate) oxide top
Crystal data top
Bi0.4Fe3O(PO4)3F(000) = 520.4
Mr = 552.04Dx = 3.890 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 7.496 (1) ÅCell parameters from 35 reflections
b = 6.308 (1) Åθ = 8.5–13.2°
c = 10.125 (2) ŵ = 12.58 mm1
β = 100.11 (1)°T = 293 K
V = 471.32 (13) Å3Chunk, red
Z = 20.1 × 0.1 × 0.1 mm
Data collection top
Syntex P4 four-circle
diffractometer
867 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Graphite monochromatorθmax = 30°, θmin = 2.8°
θ/2θ scansh = 110
Absorption correction: ψ-scan
(XEMP; Siemens, 1990a)
k = 18
Tmin = 0.244, Tmax = 0.284l = 1414
2030 measured reflections3 standard reflections every 97 reflections
1468 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Calculated w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max = 0.056
S = 0.84Δρmax = 0.25 e Å3
1468 reflectionsΔρmin = 0.72 e Å3
115 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0000 (19)
Special details top

Experimental. We have identified the heavy atom occupants of the metallic sites by refining their occupancy factors in a prefinal refinement. This has enabled us to establish the identities of the metals in each location and also to eliminate the possibility of shared sites. The anisotropy of O1 reflects a disorder of this position about the mirror plane and thus the 'looseness' with which the oxo-O atom is bound in the solid. A variable scan rate was used, in a θ/2θ scan mode with a scan width of 0.6° below Kα1 and 0.6° above Kα2 to a maximum 2θ value of 50°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Refinement was completed using full-matrix least-squares methods.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.6591 (2)1/40.19371 (15)0.0114 (5)0.40 (3)
Fe10000.0070 (4)
Fe20.6496 (2)1/40.20185 (16)0.0060 (4)
Fe30.2143 (2)1/40.43654 (16)0.0081 (4)
O10.8762 (11)1/40.0928 (7)0.0088 (16)
P10.7834 (4)1/40.5116 (3)0.0072 (6)
O110.9749 (10)1/40.5901 (8)0.0120 (18)
O120.6511 (11)1/40.6076 (8)0.0129 (18)
O130.7512 (8)0.0608 (9)0.4154 (5)0.0113 (12)
P20.3173 (4)1/40.1129 (3)0.0061 (6)
O210.3585 (10)1/40.2563 (7)0.0060 (15)
O220.5078 (11)1/40.0310 (7)0.0091 (16)
O230.2109 (7)0.0486 (9)0.0936 (5)0.0088 (12)
P30.2634 (4)1/40.2394 (3)0.0064 (6)
O310.2150 (12)1/40.3744 (8)0.0161 (19)
O320.0829 (10)1/40.1343 (7)0.0083 (16)
O330.3797 (7)0.4374 (9)0.2129 (5)0.0093 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0118 (8)0.0106 (9)0.0121 (8)00.0033 (6)0
Fe10.0078 (7)0.0038 (7)0.0098 (8)0.0015 (6)0.0030 (6)0.0002 (6)
Fe20.0051 (7)0.0052 (8)0.0078 (7)00.0018 (6)0
Fe30.0107 (8)0.0064 (8)0.0074 (8)00.0020 (6)0
O10.013 (4)0.008 (4)0.003 (3)00.004 (3)0
P10.0109 (13)0.0045 (13)0.0075 (13)00.0051 (11)0
O110.009 (4)0.015 (5)0.011 (4)00.002 (3)0
O120.010 (4)0.021 (5)0.008 (4)00.001 (3)0
O130.020 (3)0.005 (3)0.009 (3)0.002 (2)0.003 (2)0.002 (2)
P20.0074 (12)0.0049 (13)0.0076 (13)00.0059 (10)0
O210.002 (3)0.010 (4)0.006 (3)00.000 (3)0
O220.013 (4)0.011 (4)0.002 (3)00.001 (3)0
O230.011 (3)0.006 (3)0.011 (3)0.002 (2)0.004 (2)0.002 (2)
P30.0091 (13)0.0039 (13)0.0064 (13)00.0023 (10)0
O310.022 (4)0.020 (5)0.008 (4)00.006 (3)0
O320.022 (3)0.020 (4)0.007 (4)00.006 (3)0
O330.010 (3)0.005 (3)0.013 (3)0.000 (2)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
Bi1—O222.357 (7)Fe2—O222.183 (8)
Bi1—O23i2.423 (6)Fe2—Fe1i3.4175 (14)
Bi1—O23ii2.423 (6)Fe2—Fe1xi3.4175 (14)
Bi1—O33iii2.442 (6)Fe3—O11xii1.861 (8)
Bi1—O332.442 (6)Fe3—O31viii1.915 (8)
Bi1—O13iii2.529 (6)Fe3—O211.951 (7)
Bi1—O132.529 (6)Fe3—O13i1.984 (6)
Bi1—Fe1i3.8243 (14)Fe3—O13ii1.984 (6)
Fe1—O1ii1.981 (4)Fe3—Bi1ix4.0093 (14)
Fe1—O1iv1.981 (4)P1—O121.506 (8)
Fe1—O23v2.005 (5)P1—O111.514 (8)
Fe1—O232.005 (5)P1—O131.532 (6)
Fe1—O322.104 (5)P1—O13iii1.532 (6)
Fe1—O32v2.104 (5)P2—O221.520 (8)
Fe1—Fe1vi3.1540 (5)P2—O231.531 (6)
Fe1—Fe1vii3.1540 (5)P2—O23iii1.531 (6)
Fe2—O11.857 (8)P2—O211.537 (8)
Fe2—O12viii1.932 (8)P3—O311.475 (8)
Fe2—O33ix1.985 (6)P3—O331.520 (6)
Fe2—O33x1.985 (6)P3—O33iii1.520 (6)
Fe2—O212.154 (7)P3—O321.568 (8)
O22—Bi1—O23i75.93 (17)O12viii—Fe2—O33x87.91 (16)
O22—Bi1—O23ii75.93 (17)O33ix—Fe2—O33x166.8 (3)
O23i—Bi1—O23ii102.0 (3)O1—Fe2—O21158.8 (3)
O22—Bi1—O33iii78.6 (2)O12viii—Fe2—O2185.8 (3)
O23i—Bi1—O33iii145.39 (19)O33ix—Fe2—O2183.62 (16)
O23ii—Bi1—O33iii94.04 (19)O33x—Fe2—O2183.62 (16)
O22—Bi1—O3378.6 (2)O1—Fe2—O2292.9 (3)
O23i—Bi1—O3394.04 (19)O12viii—Fe2—O22151.7 (3)
O23ii—Bi1—O33145.39 (19)O33ix—Fe2—O2288.89 (16)
O33iii—Bi1—O3357.9 (3)O33x—Fe2—O2288.89 (16)
O22—Bi1—O13iii150.09 (15)O21—Fe2—O2265.9 (3)
O23i—Bi1—O13iii86.39 (18)O11xii—Fe3—O31viii108.5 (4)
O23ii—Bi1—O13iii132.13 (19)O11xii—Fe3—O21104.8 (3)
O33iii—Bi1—O13iii105.20 (19)O31viii—Fe3—O21146.8 (4)
O33—Bi1—O13iii78.77 (18)O11xii—Fe3—O13i95.46 (18)
O22—Bi1—O13150.09 (15)O31viii—Fe3—O13i94.85 (17)
O23i—Bi1—O13132.13 (19)O21—Fe3—O13i81.88 (17)
O23ii—Bi1—O1386.39 (18)O11xii—Fe3—O13ii95.46 (18)
O33iii—Bi1—O1378.77 (18)O31viii—Fe3—O13ii94.85 (16)
O33—Bi1—O13105.20 (19)O21—Fe3—O13ii81.88 (17)
O13iii—Bi1—O1356.3 (3)O13i—Fe3—O13ii162.3 (3)
O1ii—Fe1—O1iv180.0O12—P1—O11109.4 (4)
O1ii—Fe1—O23v89.8 (3)O12—P1—O13111.2 (3)
O1iv—Fe1—O23v90.2 (3)O11—P1—O13111.3 (3)
O1ii—Fe1—O2390.2 (3)O12—P1—O13iii111.2 (3)
O1iv—Fe1—O2389.8 (3)O11—P1—O13iii111.3 (3)
O23v—Fe1—O23180.0O13—P1—O13iii102.3 (4)
O1ii—Fe1—O32103.3 (2)O22—P2—O23113.0 (3)
O1iv—Fe1—O3276.7 (2)O22—P2—O23iii113.0 (3)
O23v—Fe1—O3288.7 (3)O23—P2—O23iii112.2 (4)
O23—Fe1—O3291.3 (3)O22—P2—O21101.0 (4)
O1ii—Fe1—O32v76.7 (2)O23—P2—O21108.4 (3)
O23v—Fe1—O32v91.3 (3)O23iii—P2—O21108.4 (3)
O23—Fe1—O32v88.7 (3)O31—P3—O33113.9 (3)
O32—Fe1—O32v180.0O31—P3—O33iii113.9 (3)
O1—Fe2—O12viii115.4 (3)O33—P3—O33iii102.1 (4)
O1—Fe2—O33ix96.54 (16)O31—P3—O32107.8 (5)
O12viii—Fe2—O33ix87.91 (16)O33—P3—O32109.5 (3)
O1—Fe2—O33x96.54 (16)O33iii—P3—O32109.5 (3)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y, z; (iii) x, y+1/2, z; (iv) x1, y, z; (v) x, y, z; (vi) x, y+1/2, z; (vii) x, y1/2, z; (viii) x, y, z1; (ix) x+1, y+1, z; (x) x+1, y1/2, z; (xi) x+1, y, z; (xii) x1, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds