Download citation
Download citation
link to html
In the title compounds, {2,2′-[2,2-di­methyl-1,3-propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato-κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′-[2,2-di­methyl-1,3-propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato-κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′-bis­(salicyl­idene)-2,2-di­methyl-1,3-propane­diaminate (SALPD2−, C17H16N2O22−) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101008150/br1331sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101008150/br1331Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101008150/br1331IIsup3.hkl
Contains datablock II

CCDC references: 169931; 169932

Comment top

The chemistry of metal complexes with Schiff base ligands and their application has aroused considerable attention mainly because of their preparative accessibility, diversity and structural variability. For example, there has been interest in CuII–imine–phenols because of their color isomerism (Yao et al., 1997) and the NiII complexes have been used to probe the structural and electronic consequences of small modifications of the ligand skeleton (Gomes et al., 1999). Nickel(II) and copper(II) complexes of diamine Schiff bases generally display square-planar coordination (Akhtar et al., 1981; Radha et al., 1985; Drew et al., 1985). We have synthesized NiII[(SALPD)(CH3)2], (I), and CuII[(SALPD)(CH3)2], (II), and report their structures here.

In both compounds, the structure consists of asymmetric monomers (Figs. 1 and 2) which have a monoclinic unit cell containing four molecules. In the structure of (I), the Ni atom has a square-planar coordination involving two O and two N atoms of the tetradentate SALPD2- ligand. The Ni atom is located 0.013 (3) Å from the best coordination plane consisting of atoms N1, N2, O1 and O2; the dihedral angle between the two Ni/N/O planes is 17.20 (6)°.

Complexes of (N,N'-trimethylenedisalicylideneaminato)nickel(II), [Ni(salpd)], and (N,N'-trimethylenedisalicylideneaminato)copper(II), [Cu(salpd)] (Drew et al., 1985), show a similar structure apart from the methyl groups. Comparison of the Ni—N and Ni—O bond distances, and the O—Ni—O angles of the present work and [Ni(salpd)] show then to be very similar. In the present work, The Ni—N1, Ni—N2, Ni—O1 and Ni—O2 bond distances are 1.8764 (17), 1.8660 (17), 1.8463 (14) and 1.8461 (15) Å, respectively. In [Ni(salpd)], the Ni—N and Ni—O distances are 1.901 (4) and 1.845 (3) Å, respectively. The O1—Ni—O2 angle of 83.91° in (I) is is greater than the value of 78.31 (13)° in [Ni(salpd)].

In the structure of (II), the Cu atom is coordinated in a distorted planar coordination geometry by two N [Cu—N1 1.929 (2) Å and Cu—N2 1.9518 (19) Å] and two O [Cu—O1 1.8967 (17) Å and Cu—O2 1.8956 (17) Å] of the imine–phenol ligand. The tetrahedral distortion between the Cu/N/O planes is 35.13 (7)°. Similar distortions are found in the literature for CuII structures. This angle between planes can be compared to the value of 21.0 (1)° for [Cu(salpd)] and 42.7 (1)° for [N,N'-bis(salicylidene)-1,4-diiminobutane]copper(II) (Yao et al., 1997).

The SALPD2- ligand is not planar. The chelate ring composed of atoms M (Ni or Cu), N1, C8, C9, C10 and N2 has a distorted boat conformation. The distances of the two para-positioned boat atoms, M and C9, from the best plane of the six atoms are 0.0001 (3) and 0.06 (2) Å for Cu, and 0.0036 (3) and 0.155 (2) Å for Ni, respectively.

Experimental top

N,N'-Bis(salicylidene)-2,2-dimethyl-1,3-propanediamine (0.620 g, 0.002 mol) was dissolved in a hot dioxane–MeOH mixture (1:1, 50 ml). To this solution were added triethylamine (1 ml) and a solution of NiCl2·6H2O (0.476 g, 0.002 mol) in hot MeOH (30 ml) for the Ni complex and a solution of CuCl2·2H2O (0.340 g, 0.002 mol) in hot MeOH (30 ml) for the Cu complex. The mixture was set aside for 2 d and the dark-brown crystals of the nickel(II) complex and dark-green crystals of the copper(II) complex which formed were filtered off and dried in an oven at 373 K.

Refinement top

H atoms bonded to C atoms were placed geometrically. All H atoms were refined as riding with Ueq(H) = 1.2Uiso(C).

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: SHELXL97 (Sheldrick, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. PLATON (Spek, 2000) drawing of [Ni(C19H20N2O2)]. H atoms are shown as small circles with arbitrary radii and ellipsoids are shown at the 50% probability level. The CuII molecule is essentially identical to the NiII molecule.
(I) top
Crystal data top
[Ni(C19H20N2O2)]Z = 4
Mr = 367.08Dx = 1.406 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.9329 (12) Åθ = 4.9–74.2°
b = 15.8778 (11) ŵ = 1.72 mm1
c = 11.8793 (10) ÅT = 301 K
β = 112.200 (3)°Prism, dark brown
V = 1734.6 (3) Å30.35 × 0.30 × 0.25 mm
Data collection top
CAD-4 EXPRESS
diffractometer
Rint = 0.036
ω/2θ scansθmax = 74.2°
Absorption correction: ψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
h = 120
Tmin = 0.585, Tmax = 0.673k = 190
3704 measured reflectionsl = 1314
3503 independent reflections3 standard reflections every 120 min
3058 reflections with I > 2σ(I) intensity decay: 2.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.6415P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3503 reflectionsΔρmax = 0.29 e Å3
218 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: Larson (1970), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (4)
Crystal data top
[Ni(C19H20N2O2)]V = 1734.6 (3) Å3
Mr = 367.08Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.9329 (12) ŵ = 1.72 mm1
b = 15.8778 (11) ÅT = 301 K
c = 11.8793 (10) Å0.35 × 0.30 × 0.25 mm
β = 112.200 (3)°
Data collection top
CAD-4 EXPRESS
diffractometer
3058 reflections with I > 2σ(I)
Absorption correction: ψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
Rint = 0.036
Tmin = 0.585, Tmax = 0.6733 standard reflections every 120 min
3704 measured reflections intensity decay: 2.2%
3503 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
3503 reflectionsΔρmin = 0.28 e Å3
218 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.08080 (3)0.84458 (2)0.03050 (3)0.04271 (14)
O10.03878 (16)0.86878 (10)0.12785 (13)0.0533 (4)
O20.06158 (18)0.76706 (12)0.02109 (14)0.0661 (5)
N10.19661 (16)0.94094 (11)0.04913 (15)0.0435 (4)
N20.21126 (16)0.79860 (11)0.17515 (15)0.0457 (4)
C10.0227 (2)0.92728 (13)0.19938 (17)0.0449 (4)
C20.1143 (2)0.92654 (16)0.32386 (19)0.0541 (5)
C30.1071 (3)0.98985 (17)0.4003 (2)0.0613 (6)
C40.0095 (3)1.05648 (17)0.3573 (2)0.0634 (6)
C50.0805 (2)1.05831 (15)0.2384 (2)0.0564 (5)
C60.0791 (2)0.99361 (13)0.15711 (19)0.0456 (4)
C70.1773 (2)0.99832 (13)0.0332 (2)0.0468 (4)
C80.2948 (2)0.96133 (14)0.17390 (19)0.0510 (5)
C90.4209 (2)0.89987 (16)0.2274 (2)0.0557 (5)
C100.3666 (2)0.80918 (16)0.1963 (2)0.0563 (5)
C110.5389 (3)0.9152 (2)0.1765 (3)0.0858 (9)
C120.4821 (3)0.9131 (2)0.3656 (3)0.0906 (10)
C130.1777 (2)0.75188 (13)0.24973 (19)0.0492 (5)
C140.0331 (2)0.72554 (13)0.23033 (18)0.0459 (4)
C150.0031 (3)0.68684 (17)0.3251 (2)0.0630 (6)
C160.1313 (3)0.65550 (19)0.3073 (3)0.0761 (8)
C170.2391 (3)0.6585 (2)0.1920 (3)0.0792 (8)
C180.2124 (3)0.69404 (19)0.0979 (2)0.0724 (8)
C190.0785 (2)0.73099 (14)0.11370 (19)0.0515 (5)
H20.18170.88180.35500.065*
H30.16940.98820.48370.074*
H40.00621.10020.41070.076*
H50.14601.10410.20910.068*
H70.23381.04820.00880.056*
H8A0.23790.96230.22660.061*
H8B0.33461.01860.17460.061*
H10A0.38260.79130.12240.068*
H10B0.42500.77170.26370.068*
H11A0.61810.87460.21230.129*
H11B0.57680.97250.19650.129*
H11C0.49750.90810.08800.129*
H12A0.56390.87450.40370.136*
H12B0.40590.90170.39720.136*
H12C0.51570.97130.38420.136*
H130.25410.73390.32210.059*
H150.07840.68250.40330.076*
H160.15070.63190.37320.091*
H170.33240.63560.17820.095*
H180.28710.69370.01900.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.03443 (19)0.0535 (2)0.0356 (2)0.00042 (14)0.00791 (14)0.00660 (13)
O10.0494 (8)0.0631 (9)0.0385 (7)0.0025 (6)0.0065 (6)0.0155 (7)
O20.0581 (9)0.0876 (12)0.0383 (7)0.0096 (7)0.0020 (7)0.0319 (8)
N10.0335 (7)0.0513 (9)0.0435 (8)0.0049 (7)0.0119 (6)0.0008 (6)
N20.0324 (8)0.0538 (10)0.0461 (9)0.0013 (7)0.0094 (7)0.0013 (7)
C10.0406 (9)0.0555 (11)0.0405 (9)0.0023 (8)0.0174 (8)0.0023 (8)
C20.0516 (11)0.0660 (14)0.0425 (10)0.0013 (9)0.0155 (9)0.0033 (10)
C30.0597 (13)0.0827 (17)0.0440 (11)0.0118 (11)0.0224 (10)0.0156 (12)
C40.0630 (14)0.0734 (16)0.0621 (14)0.0225 (12)0.0332 (12)0.0150 (12)
C50.0482 (11)0.0602 (13)0.0668 (14)0.0102 (11)0.0287 (10)0.0045 (10)
C60.0377 (9)0.0527 (11)0.0501 (11)0.0040 (9)0.0210 (8)0.0047 (8)
C70.0362 (9)0.0496 (11)0.0569 (12)0.0034 (9)0.0203 (8)0.0030 (8)
C80.0412 (10)0.0586 (12)0.0469 (11)0.0103 (9)0.0096 (8)0.0053 (9)
C90.0327 (9)0.0677 (14)0.0578 (12)0.0058 (10)0.0071 (9)0.0046 (9)
C100.0326 (9)0.0648 (14)0.0666 (14)0.0008 (11)0.0134 (9)0.0042 (9)
C110.0465 (13)0.091 (2)0.124 (3)0.0004 (19)0.0368 (16)0.0065 (13)
C120.0733 (18)0.106 (2)0.0601 (16)0.0091 (16)0.0117 (14)0.0009 (17)
C130.0415 (10)0.0542 (12)0.0431 (10)0.0028 (9)0.0061 (8)0.0041 (9)
C140.0460 (10)0.0477 (11)0.0401 (10)0.0036 (8)0.0117 (8)0.0002 (8)
C150.0685 (15)0.0708 (15)0.0446 (11)0.0097 (11)0.0155 (11)0.0054 (12)
C160.0839 (19)0.087 (2)0.0640 (16)0.0126 (14)0.0355 (15)0.0196 (15)
C170.0615 (15)0.094 (2)0.0799 (18)0.0191 (15)0.0246 (14)0.0229 (14)
C180.0537 (13)0.0895 (19)0.0603 (14)0.0183 (13)0.0060 (11)0.0246 (13)
C190.0466 (11)0.0586 (12)0.0427 (10)0.0052 (9)0.0094 (8)0.0117 (9)
Geometric parameters (Å, º) top
C1—O11.309 (2)C11—H11A0.98
C1—C21.414 (3)C11—H11B0.98
C1—C61.414 (3)C11—H11C0.98
C2—C31.375 (3)C12—H12A0.98
C2—H20.95C12—H12B0.98
C3—C41.394 (4)C12—H12C0.98
C3—H30.95C13—N21.292 (3)
C4—C51.357 (3)C13—C141.429 (3)
C4—H40.95C13—H130.95
C5—C61.414 (3)C14—C151.410 (3)
C5—H50.95C14—C191.413 (3)
C6—C71.428 (3)C15—C161.364 (4)
C7—N11.297 (3)C15—H150.95
C7—H70.95C16—C171.385 (4)
C8—N11.470 (2)C16—H160.95
C8—C91.524 (3)C17—C181.365 (4)
C8—H8A0.99C17—H170.95
C8—H8B0.99C18—C191.399 (3)
C9—C111.528 (3)C18—H180.95
C9—C121.534 (4)C19—O21.306 (3)
C9—C101.533 (3)Ni—N11.8764 (17)
C10—N21.477 (2)Ni—N21.8660 (17)
C10—H10A0.99Ni—O21.8461 (15)
C10—H10B0.99Ni—O11.8463 (14)
O1—C1—C2119.00 (19)H11A—C11—H11C109.5
O1—C1—C6122.98 (18)H11B—C11—H11C109.5
C2—C1—C6117.98 (19)C9—C12—H12A109.5
C3—C2—C1120.7 (2)C9—C12—H12B109.5
C3—C2—H2119.6H12A—C12—H12B109.5
C1—C2—H2119.6C9—C12—H12C109.5
C2—C3—C4121.0 (2)H12A—C12—H12C109.5
C2—C3—H3119.5H12B—C12—H12C109.5
C4—C3—H3119.5N2—C13—C14124.16 (18)
C5—C4—C3119.4 (2)N2—C13—H13117.9
C5—C4—H4120.3C14—C13—H13117.9
C3—C4—H4120.3C15—C14—C19119.1 (2)
C4—C5—C6121.5 (2)C15—C14—C13120.12 (19)
C4—C5—H5119.2C19—C14—C13120.58 (18)
C6—C5—H5119.2C16—C15—C14121.7 (2)
C5—C6—C1119.27 (19)C16—C15—H15119.2
C5—C6—C7119.1 (2)C14—C15—H15119.2
C1—C6—C7121.57 (18)C15—C16—C17119.1 (2)
N1—C7—C6126.12 (19)C15—C16—H16120.5
N1—C7—H7116.9C17—C16—H16120.5
C6—C7—H7116.9C18—C17—C16120.5 (2)
N1—C8—C9114.02 (18)C18—C17—H17119.7
N1—C8—H8A108.7C16—C17—H17119.7
C9—C8—H8A108.7C17—C18—C19122.2 (2)
N1—C8—H8B108.7C17—C18—H18118.9
C9—C8—H8B108.7C19—C18—H18118.9
H8A—C8—H8B107.6O2—C19—C18119.3 (2)
C8—C9—C11111.4 (2)O2—C19—C14123.36 (19)
C8—C9—C12106.8 (2)C18—C19—C14117.4 (2)
C11—C9—C12110.4 (2)C7—N1—C8117.30 (18)
C8—C9—C10110.00 (16)C7—N1—Ni125.06 (14)
C11—C9—C10107.8 (2)C8—N1—Ni116.24 (14)
C12—C9—C10110.3 (2)C13—N2—C10118.20 (18)
N2—C10—C9113.42 (18)C13—N2—Ni125.93 (13)
N2—C10—H10A108.9C10—N2—Ni115.43 (14)
C9—C10—H10A108.9O2—Ni—O183.91 (7)
N2—C10—H10B108.9O2—Ni—N292.55 (7)
C9—C10—H10B108.9O1—Ni—N2167.22 (8)
H10A—C10—H10B107.7O2—Ni—N1166.48 (8)
C9—C11—H11A109.5O1—Ni—N194.60 (7)
C9—C11—H11B109.5N2—Ni—N191.66 (7)
H11A—C11—H11B109.5C1—O1—Ni128.30 (13)
C9—C11—H11C109.5C19—O2—Ni125.50 (14)
O1—C1—C2—C3175.9 (2)C9—C10—N2—C13115.2 (2)
C4—C5—C6—C7179.3 (2)C9—C10—N2—Ni71.9 (2)
O1—C1—C6—C5174.39 (19)C13—N2—Ni—O220.54 (19)
C2—C1—C6—C7178.95 (18)C10—N2—Ni—O2151.73 (16)
C5—C6—C7—N1174.19 (19)C13—N2—Ni—O194.0 (3)
C1—C6—C7—N17.9 (3)C10—N2—Ni—O178.2 (4)
N1—C8—C9—C1176.6 (3)C13—N2—Ni—N1146.61 (19)
N1—C8—C9—C12162.7 (2)C10—N2—Ni—N141.12 (16)
N1—C8—C9—C1042.9 (3)C7—N1—Ni—O281.7 (3)
C8—C9—C10—N225.9 (3)C8—N1—Ni—O284.3 (3)
C11—C9—C10—N2147.7 (2)C8—N1—Ni—O1167.38 (14)
C12—C9—C10—N291.7 (2)C7—N1—Ni—N2170.17 (17)
N2—C13—C14—C15169.3 (2)C8—N1—Ni—N223.77 (14)
N2—C13—C14—C1916.4 (3)C2—C1—O1—Ni169.90 (15)
C13—C14—C15—C16175.2 (3)C6—C1—O1—Ni12.6 (3)
C17—C18—C19—O2177.2 (3)O2—Ni—O1—C1175.94 (19)
C15—C14—C19—O2178.7 (2)N2—Ni—O1—C1109.6 (3)
C13—C14—C19—O26.9 (4)N1—Ni—O1—C19.43 (19)
C13—C14—C19—C18171.8 (2)C18—C19—O2—Ni160.9 (2)
C6—C7—N1—C8175.18 (18)C14—C19—O2—Ni20.4 (4)
C6—C7—N1—Ni9.3 (3)O1—Ni—O2—C19162.7 (2)
C9—C8—N1—C7123.0 (2)N2—Ni—O2—C1929.6 (2)
C9—C8—N1—Ni69.8 (2)N1—Ni—O2—C1978.4 (4)
C14—C13—N2—C10169.9 (2)
(II) top
Crystal data top
[Cu(C19H20N2O2)]Z = 4
Mr = 371.91Dx = 1.407 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 15 reflections
a = 9.7452 (12) Åθ = 5.0–74.2°
b = 17.2276 (14) ŵ = 1.86 mm1
c = 11.3606 (10) ÅT = 301 K
β = 112.981 (3)°Prism, dark green
V = 1755.9 (3) Å30.30 × 0.20 × 0.20 mm
Data collection top
CAD-4 EXPRESS
diffractometer
Rint = 0.036
ω/2θ scansθmax = 74.2°
Absorption correction: ψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
h = 1112
Tmin = 0.606, Tmax = 0.707k = 021
3591 measured reflectionsl = 140
3419 independent reflections3 standard reflections every 120 min
2982 reflections with I > 2σ(I) intensity decay: 1.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.8826P]
where P = (Fo2 + 2Fc2)/3
3419 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C19H20N2O2)]V = 1755.9 (3) Å3
Mr = 371.91Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.7452 (12) ŵ = 1.86 mm1
b = 17.2276 (14) ÅT = 301 K
c = 11.3606 (10) Å0.30 × 0.20 × 0.20 mm
β = 112.981 (3)°
Data collection top
CAD-4 EXPRESS
diffractometer
2982 reflections with I > 2σ(I)
Absorption correction: ψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
Rint = 0.036
Tmin = 0.606, Tmax = 0.7073 standard reflections every 120 min
3591 measured reflections intensity decay: 1.3%
3419 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
3419 reflectionsΔρmin = 0.28 e Å3
218 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.54580 (3)0.85029 (2)0.50685 (3)0.04307 (14)
O10.37681 (18)0.79780 (10)0.51132 (17)0.0512 (4)
O20.4367 (2)0.87954 (11)0.33448 (17)0.0554 (5)
N10.6881 (2)0.78903 (12)0.6416 (2)0.0484 (5)
N20.6845 (2)0.93727 (11)0.54226 (19)0.0424 (4)
C10.3761 (3)0.74868 (14)0.5991 (2)0.0451 (5)
C20.2376 (3)0.72296 (17)0.5969 (3)0.0591 (7)
C30.2291 (4)0.6712 (2)0.6858 (3)0.0718 (8)
C40.3569 (4)0.6419 (2)0.7811 (3)0.0761 (9)
C50.4924 (4)0.66565 (18)0.7862 (3)0.0654 (8)
C60.5069 (3)0.71909 (14)0.6973 (2)0.0481 (6)
C70.6554 (3)0.73841 (15)0.7104 (2)0.0517 (6)
C80.8451 (3)0.80062 (16)0.6600 (3)0.0558 (7)
C90.9083 (3)0.87958 (17)0.7201 (3)0.0533 (6)
C100.7883 (3)0.94358 (15)0.6758 (2)0.0484 (6)
C110.9638 (4)0.8752 (2)0.8661 (3)0.0808 (10)
C121.0369 (3)0.8997 (2)0.6805 (4)0.0786 (10)
C130.6724 (2)0.99340 (14)0.4645 (2)0.0436 (5)
C140.5688 (2)0.99732 (14)0.3333 (2)0.0435 (5)
C150.5763 (3)1.06304 (16)0.2616 (3)0.0546 (6)
C160.4832 (4)1.07150 (19)0.1362 (3)0.0670 (8)
C170.3784 (3)1.01392 (19)0.0769 (3)0.0641 (7)
C180.3667 (3)0.94992 (18)0.1440 (2)0.0556 (6)
C190.4589 (3)0.93972 (14)0.2746 (2)0.0442 (5)
H20.14820.74190.53260.071*
H30.13410.65510.68190.086*
H40.35000.60580.84190.091*
H50.57990.64570.85150.078*
H70.73560.71200.77430.062*
H8A0.85350.79630.57620.067*
H8B0.90620.75880.71570.067*
H10A0.73070.94200.73080.058*
H10B0.83850.99470.68850.058*
H11A0.88040.86230.89030.121*
H11B1.00580.92550.90310.121*
H11C1.04080.83510.89820.121*
H12A1.07970.94980.71760.118*
H12B0.99990.90270.58710.118*
H12C1.11370.85940.71150.118*
H130.73781.03630.49650.052*
H150.64791.10230.30160.065*
H160.48981.11620.08980.080*
H170.31461.01910.01070.077*
H180.29460.91140.10160.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03387 (19)0.0422 (2)0.0458 (2)0.00270 (14)0.00764 (14)0.00282 (13)
O10.0374 (8)0.0556 (10)0.0509 (9)0.0077 (8)0.0068 (7)0.0054 (7)
O20.0524 (10)0.0524 (10)0.0472 (9)0.0043 (8)0.0040 (8)0.0125 (8)
N10.0345 (9)0.0455 (11)0.0563 (12)0.0013 (9)0.0081 (9)0.0017 (8)
N20.0323 (9)0.0431 (10)0.0473 (10)0.0035 (8)0.0106 (8)0.0000 (8)
C10.0427 (12)0.0428 (12)0.0455 (12)0.0026 (10)0.0125 (10)0.0049 (10)
C20.0477 (14)0.0601 (16)0.0650 (17)0.0014 (13)0.0172 (12)0.0118 (12)
C30.0666 (19)0.077 (2)0.075 (2)0.0009 (17)0.0310 (16)0.0243 (16)
C40.090 (2)0.072 (2)0.0672 (19)0.0125 (16)0.0315 (18)0.0235 (18)
C50.0700 (18)0.0584 (17)0.0580 (16)0.0125 (13)0.0143 (14)0.0063 (14)
C60.0489 (13)0.0415 (12)0.0478 (13)0.0023 (10)0.0123 (11)0.0039 (10)
C70.0441 (12)0.0442 (13)0.0531 (14)0.0069 (11)0.0043 (11)0.0048 (10)
C80.0339 (12)0.0548 (15)0.0726 (17)0.0042 (13)0.0143 (11)0.0069 (10)
C90.0313 (11)0.0603 (15)0.0604 (15)0.0011 (13)0.0094 (10)0.0010 (10)
C100.0388 (12)0.0517 (14)0.0473 (13)0.0065 (11)0.0088 (10)0.0030 (10)
C110.0649 (19)0.089 (2)0.0622 (19)0.0051 (17)0.0038 (15)0.0028 (17)
C120.0436 (15)0.078 (2)0.115 (3)0.006 (2)0.0312 (17)0.0061 (14)
C130.0351 (10)0.0421 (12)0.0549 (14)0.0045 (10)0.0190 (10)0.0028 (9)
C140.0394 (11)0.0444 (12)0.0506 (13)0.0007 (10)0.0219 (10)0.0030 (9)
C150.0514 (14)0.0532 (15)0.0659 (16)0.0079 (13)0.0303 (13)0.0007 (11)
C160.0744 (19)0.0695 (19)0.0664 (18)0.0230 (15)0.0378 (16)0.0100 (16)
C170.0702 (18)0.075 (2)0.0474 (14)0.0093 (14)0.0230 (13)0.0129 (16)
C180.0540 (14)0.0623 (16)0.0466 (13)0.0011 (12)0.0153 (11)0.0030 (12)
C190.0413 (12)0.0449 (12)0.0453 (12)0.0001 (10)0.0158 (10)0.0036 (9)
Geometric parameters (Å, º) top
C1—O11.310 (3)C11—H11A0.98
C1—C21.412 (3)C11—H11B0.98
C1—C61.421 (3)C11—H11C0.98
C2—C31.374 (4)C12—H12A0.98
C2—H20.95C12—H12B0.98
C3—C41.388 (5)C12—H12C0.98
C3—H30.95C13—N21.284 (3)
C4—C51.362 (5)C13—C141.439 (3)
C4—H40.95C13—H130.95
C5—C61.414 (4)C14—C151.413 (3)
C5—H50.95C14—C191.421 (3)
C6—C71.435 (4)C15—C161.365 (4)
C7—N11.291 (3)C15—H150.95
C7—H70.95C16—C171.394 (4)
C8—N11.475 (3)C16—H160.95
C8—C91.538 (4)C17—C181.370 (4)
C8—H8A0.99C17—H170.95
C8—H8B0.99C18—C191.414 (3)
C9—C121.528 (4)C18—H180.95
C9—C111.532 (4)C19—O21.304 (3)
C9—C101.542 (3)Cu—O21.8956 (17)
C10—N21.463 (3)Cu—O11.8967 (17)
C10—H10A0.99Cu—N11.929 (2)
C10—H10B0.99Cu—N21.9518 (19)
O1—C1—C2118.6 (2)H11A—C11—H11C109.5
O1—C1—C6124.0 (2)H11B—C11—H11C109.5
C2—C1—C6117.4 (2)C9—C12—H12A109.5
C3—C2—C1121.5 (3)C9—C12—H12B109.5
C3—C2—H2119.3H12A—C12—H12B109.5
C1—C2—H2119.3C9—C12—H12C109.5
C2—C3—C4121.1 (3)H12A—C12—H12C109.5
C2—C3—H3119.5H12B—C12—H12C109.5
C4—C3—H3119.5N2—C13—C14125.9 (2)
C5—C4—C3118.9 (3)N2—C13—H13117.0
C5—C4—H4120.5C14—C13—H13117.0
C3—C4—H4120.5C15—C14—C19119.3 (2)
C4—C5—C6122.1 (3)C15—C14—C13117.5 (2)
C4—C5—H5119.0C19—C14—C13123.3 (2)
C6—C5—H5119.0C16—C15—C14121.6 (3)
C5—C6—C1119.0 (2)C16—C15—H15119.2
C5—C6—C7117.1 (2)C14—C15—H15119.2
C1—C6—C7123.9 (2)C15—C16—C17119.4 (3)
N1—C7—C6124.8 (2)C15—C16—H16120.3
N1—C7—H7117.6C17—C16—H16120.3
C6—C7—H7117.6C18—C17—C16120.6 (3)
N1—C8—C9113.3 (2)C18—C17—H17119.7
N1—C8—H8A108.9C16—C17—H17119.7
C9—C8—H8A108.9C17—C18—C19121.8 (3)
N1—C8—H8B108.9C17—C18—H18119.1
C9—C8—H8B108.9C19—C18—H18119.1
H8A—C8—H8B107.7O2—C19—C18118.6 (2)
C12—C9—C11110.2 (2)O2—C19—C14124.0 (2)
C12—C9—C8107.6 (2)C18—C19—C14117.3 (2)
C11—C9—C8110.4 (3)O2—Cu—O190.67 (8)
C12—C9—C10110.3 (2)O2—Cu—N1154.76 (9)
C11—C9—C10106.9 (2)O1—Cu—N194.61 (8)
C8—C9—C10111.51 (19)O2—Cu—N294.18 (8)
N2—C10—C9114.5 (2)O1—Cu—N2154.05 (9)
N2—C10—H10A108.6N1—Cu—N291.78 (8)
C9—C10—H10A108.6C7—N1—C8119.5 (2)
N2—C10—H10B108.6C7—N1—Cu125.40 (17)
C9—C10—H10B108.6C8—N1—Cu115.03 (17)
H10A—C10—H10B107.6C13—N2—C10119.9 (2)
C9—C11—H11A109.5C13—N2—Cu124.49 (16)
C9—C11—H11B109.5C10—N2—Cu114.44 (16)
H11A—C11—H11B109.5C1—O1—Cu126.24 (15)
C9—C11—H11C109.5C19—O2—Cu127.58 (16)
O1—C1—C2—C3179.6 (3)N2—Cu—N1—C7147.9 (2)
C4—C5—C6—C7178.6 (3)O2—Cu—N1—C868.8 (3)
O1—C1—C6—C5179.4 (3)O1—Cu—N1—C8170.30 (18)
C2—C1—C6—C7178.6 (3)N2—Cu—N1—C834.88 (19)
C5—C6—C7—N1176.2 (3)C14—C13—N2—C10175.8 (2)
C1—C6—C7—N15.7 (4)C14—C13—N2—Cu8.9 (3)
N1—C8—C9—C12155.2 (2)C9—C10—N2—C13121.4 (2)
N1—C8—C9—C1184.5 (3)C9—C10—N2—Cu70.4 (2)
N1—C8—C9—C1034.1 (3)O2—Cu—N2—C136.9 (2)
C12—C9—C10—N282.1 (3)O1—Cu—N2—C1393.3 (3)
C11—C9—C10—N2158.1 (2)N1—Cu—N2—C13162.3 (2)
C8—C9—C10—N237.4 (3)O2—Cu—N2—C10174.41 (16)
N2—C13—C14—C15177.8 (2)O1—Cu—N2—C1074.2 (2)
N2—C13—C14—C193.7 (4)N1—Cu—N2—C1030.13 (17)
C13—C14—C15—C16179.5 (2)C2—C1—O1—Cu171.53 (19)
C17—C18—C19—O2176.4 (3)C6—C1—O1—Cu8.6 (4)
C15—C14—C19—O2175.6 (2)O2—Cu—O1—C1166.3 (2)
C13—C14—C19—C18178.5 (2)N1—Cu—O1—C111.0 (2)
C6—C7—N1—C8176.8 (3)N2—Cu—O1—C192.7 (3)
C9—C8—N1—C7110.8 (3)C18—C19—O2—Cu178.28 (18)
C9—C8—N1—Cu71.8 (3)C14—C19—O2—Cu3.2 (4)
O2—Cu—N1—C7108.4 (3)O1—Cu—O2—C19153.4 (2)
O1—Cu—N1—C76.9 (2)N1—Cu—O2—C19104.2 (3)

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C19H20N2O2)][Cu(C19H20N2O2)]
Mr367.08371.91
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)301301
a, b, c (Å)9.9329 (12), 15.8778 (11), 11.8793 (10)9.7452 (12), 17.2276 (14), 11.3606 (10)
β (°) 112.200 (3) 112.981 (3)
V3)1734.6 (3)1755.9 (3)
Z44
Radiation typeCu KαCu Kα
µ (mm1)1.721.86
Crystal size (mm)0.35 × 0.30 × 0.250.30 × 0.20 × 0.20
Data collection
DiffractometerCAD-4 EXPRESS
diffractometer
CAD-4 EXPRESS
diffractometer
Absorption correctionψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
ψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
Tmin, Tmax0.585, 0.6730.606, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
3704, 3503, 3058 3591, 3419, 2982
Rint0.0360.036
(sin θ/λ)max1)0.6240.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.01 0.038, 0.106, 1.04
No. of reflections35033419
No. of parameters218218
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.280.47, 0.28

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), SHELXL97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97, PLATON (Spek, 2000).

Selected geometric parameters (Å, º) for (I) top
Ni—N11.8764 (17)Ni—O21.8461 (15)
Ni—N21.8660 (17)Ni—O11.8463 (14)
O2—Ni—O1—C1175.94 (19)O1—Ni—O2—C19162.7 (2)
N2—Ni—O1—C1109.6 (3)N2—Ni—O2—C1929.6 (2)
N1—Ni—O1—C19.43 (19)N1—Ni—O2—C1978.4 (4)
Selected geometric parameters (Å, º) for (II) top
Cu—O21.8956 (17)Cu—N11.929 (2)
Cu—O11.8967 (17)Cu—N21.9518 (19)
N2—Cu—N1—C7147.9 (2)O2—Cu—N2—C10174.41 (16)
O2—Cu—N1—C868.8 (3)O1—Cu—N2—C1074.2 (2)
O1—Cu—N1—C8170.30 (18)N1—Cu—N2—C1030.13 (17)
N2—Cu—N1—C834.88 (19)O1—Cu—O2—C19153.4 (2)
N1—Cu—N2—C13162.3 (2)N1—Cu—O2—C19104.2 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds