Download citation
Download citation
link to html
The crystal structure of the anhydrous 1:1 proton-transfer compound of 5-sulfosalicylic acid (3-carb­oxy-4-hydroxy­benzene­sulfonic acid) with 3-amino­benzoic acid, C7H8NO2+·C7H5O6S, shows heteromeric cyclic R22(8) carboxylic acid dimers formed through hydrogen-bonding inter­actions between the cation and anion species. Aminium–sulfonate N—H...O inter­actions link these dimers into zigzag chains and also give inter­chain associations. Cation–anion π–π ring inter­actions are also present, resulting in a three-dimensional layered polymer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029491/bt6739sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029491/bt6739Isup2.hkl
Contains datablock I

CCDC reference: 287481

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.158
  • Data-to-parameter ratio = 10.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The structures of a number of 1:1 proton-transfer compounds of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) with aniline-type Lewis bases have been reported. These include compounds with aniline (Bakasova et al., 1991), the 4-X-substituted anilines (X = F, Cl, Br) (Smith et al., 2005a), 4-aminobenzoic acid (PABA) (Smith et al., 2005b) and 1,4-phenylenediamine (in which 5-SSA is dianionic) (Smith et al., 2005). Although the isomeric aminobenzoic acids are quite strong for organic acids (pKa1 range 2.1–3.1), in the presence of stronger acids such as the nitrobenzoic acids or sulfonic acids, e.g. 5-SSA, protonation of the amine substituent will occur (for 3-aminobenzoic acid, pKa2 = 4.7). The resultant aminium group is particularly effective in giving up to six hydrogen-bonding interactions usually with available O-atom acceptors, resulting in formation of good crystalline materials. In these crystals, it is unusual that water molecules of solvation are incorporated, contrasting with those compounds of 5-SSA with heteroaromatic Lewis bases where water is often found, acting in a proton donor–acceptor capacity. Furthermore, with these hydrates, direct N+—H···O(water) rather than N+H···O(sulfonate) associations are more commonly found (Haynes et al., 2004). 3-Aminobenzoic acid (MABA) is less effective than PABA for the promotion of linear hydrogen-bonding extensions so that the structures of the proton-transfer compounds of MABA with organic acids are fewer. They include 1:1 compounds with 3,5-dinitrobenzoic acid (Lynch et al., 1994), 3,5-dinitrosalicylic acid (Smith et al., 1995a) and pyrazine-2,3-dicarboxylic acid (a dihydrate) (Smith et al., 1995b). Compounds in which MABA does not give proton transfer are the adducts with 2-aminopyrimidine (Smith et al., 1995) and 2-aminobenzothiazole (Lynch et al., 1998).

The structure of the anhydrous 1:1 proton-transfer compound formed from the reaction of 5-SSA with MABA in 50% aqueous ethanol, viz. 3-carboxyanilinium 5-sulfonatosalicylate, (I) (Fig. 1), has been determined and is reported here. In (I), the MABA cation and 5-SSA anion species form hydrogen-bonded heterodimers through symmetric cyclic R22(8) carboxylic acid interactions [O···O = 2.677 (4) and 2.679 (4) Å]. This is in contrast with the structure of the isomeric compound with PABA (Smith et al., 2005b), where both the PABA cations and the 5-SSA anions are involved in homomolecular R22(8) associations. In (I), the dimers form zigzag chains through head-to-tail N+H···O(sulfonate) interactions [N31···O53iv = 2.921 (5) Å; symmetry code: (iv) −1/2 + x, 1/2 − y, 1/2 + z], which run along the b axial direction (Figs. 2 and 3). The chains so formed are linked along the other two axial directions by similar N—H···O interactions (Table 1), giving a three-dimensional layered structure. In addition, there are some cation–anion ππ ring stacking interactions between the stacks which form down the a axial direction [ring centroid separation = 3.73 (1) Å and interplanar dihedral angle = 2.4 (1) °].

Structurally, the 5-SSA anion molecules are similar to those in previously reported compounds. The carboxylic acid group is essentially coplanar with the benzene ring [C2–C1–C7–O72 = 177.7 (4)°] because of the intramolecular OH(phenol)···O(carboxyl) hydrogen bond [O···O = 2.598 (5) Å]. The carboxylic acid group of the MABA cation molecule shows significant deviation from coplanarity with the benzene ring [C21—C11—C71—O711 = 167.1 (4)°] as is observed in the compound with 3,5-dinitrosalicylic acid (−153°; Smith et al., 1995a) but different from the equivalent angle in the planar parent acid (−178°; Voogd et al., 1980).

Experimental top

The title compound was synthesized by heating 1 mmol quantities of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid) and 3-aminobenzoic acid in 50% ethanol–water (50 ml) for 10 min under reflux. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale-brown crystal prisms of (I) (m.p. 541 K).

Refinement top

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement in calculated positions (C—H = 0.96 Å) using a riding-model approximation, with Ueq values fixed at 1.2Ueq(C). A 15.8% decay in the diffraction intensities during data collection was allowed for using a linear correction.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the MABA cation and 5-SSA anion in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Perspective view of the packing of (I) in the unit cell, viewed down the approximate c-cell direction, showing hydrogen-bonding associations as dashed lines. [Symmetry code: (v) 1/2 + x, 1/2 − y, 1/2 + z; for other codes, see Table 1].
[Figure 3] Fig. 3. Perspective view of the packing of (I) in the unit cell, viewed down the approximate a-cell direction, showing the zigzag chain-polymer extensions.
3-carboxyanilinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C7H8NO2+·C7H5O6SF(000) = 736
Mr = 355.31Dx = 1.620 Mg m3
Monoclinic, P21/nMelting point: 541 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 7.3325 (14) ÅCell parameters from 25 reflections
b = 31.430 (5) Åθ = 10.3–17.5°
c = 6.3749 (18) ŵ = 0.27 mm1
β = 97.35 (2)°T = 297 K
V = 1457.1 (6) Å3Prism, pale brown
Z = 40.25 × 0.10 × 0.07 mm
Data collection top
Rigaku AFC-7R
diffractometer
1655 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.040
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω–2θ scansh = 84
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
k = 037
Tmin = 0.936, Tmax = 0.981l = 77
3013 measured reflections3 standard reflections every 150 min
2573 independent reflections intensity decay: 15.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.1P)2 + 5.4071P]
where P = (Fo2 + 2Fc2)/3
2573 reflections(Δ/σ)max = 0.008
241 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C7H8NO2+·C7H5O6SV = 1457.1 (6) Å3
Mr = 355.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3325 (14) ŵ = 0.27 mm1
b = 31.430 (5) ÅT = 297 K
c = 6.3749 (18) Å0.25 × 0.10 × 0.07 mm
β = 97.35 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
1655 reflections with I > 2σ(I)
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
Rint = 0.040
Tmin = 0.936, Tmax = 0.9813 standard reflections every 150 min
3013 measured reflections intensity decay: 15.8%
2573 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.28 e Å3
2573 reflectionsΔρmin = 0.37 e Å3
241 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S50.69845 (13)0.20812 (3)0.17349 (14)0.0243 (3)
O20.8977 (5)0.04304 (10)0.5757 (5)0.0501 (13)
O510.6699 (4)0.23702 (8)0.3422 (4)0.0399 (10)
O520.5377 (4)0.20265 (8)0.0194 (4)0.0323 (9)
O530.8583 (4)0.21940 (9)0.0680 (5)0.0372 (9)
O710.7940 (5)0.00769 (9)0.2116 (5)0.0527 (13)
O720.6675 (5)0.04736 (9)0.0567 (5)0.0458 (10)
C10.7702 (5)0.08173 (11)0.2643 (6)0.0287 (11)
C20.8466 (5)0.07979 (12)0.4770 (6)0.0320 (12)
C30.8720 (6)0.11682 (13)0.5963 (6)0.0348 (14)
C40.8241 (5)0.15583 (12)0.5053 (6)0.0292 (11)
C50.7506 (5)0.15801 (11)0.2930 (6)0.0241 (11)
C60.7239 (5)0.12168 (11)0.1737 (6)0.0267 (11)
C70.7452 (6)0.04283 (12)0.1373 (7)0.0361 (12)
O7110.3273 (5)0.02781 (9)0.2533 (5)0.0525 (13)
O7210.1735 (5)0.06575 (9)0.0062 (5)0.0512 (10)
N310.2327 (5)0.21833 (10)0.2410 (6)0.0268 (10)
C110.2776 (5)0.10096 (11)0.3127 (6)0.0284 (11)
C210.2343 (5)0.14040 (12)0.2193 (6)0.0271 (11)
C310.2640 (5)0.17654 (11)0.3436 (6)0.0235 (11)
C410.3310 (6)0.17449 (12)0.5537 (6)0.0323 (11)
C510.3682 (6)0.13476 (13)0.6448 (6)0.0342 (12)
C610.3457 (6)0.09846 (12)0.5248 (6)0.0339 (12)
C710.2608 (6)0.06135 (12)0.1841 (7)0.0351 (14)
H30.9242000.1152000.7424000.0390*
H40.8418000.1815000.5881000.0340*
H60.6728000.1237000.0274000.0300*
H20.858 (7)0.0223 (16)0.479 (9)0.066 (17)*
H720.669 (6)0.0222 (15)0.123 (7)0.052 (14)*
H31A0.118 (6)0.2217 (13)0.184 (7)0.031 (11)*
H210.1858000.1427000.0730000.0310*
H31B0.299 (7)0.2198 (15)0.122 (8)0.058 (15)*
H31C0.266 (7)0.2375 (16)0.341 (9)0.064 (17)*
H410.3524000.2000000.6370000.0370*
H510.4102000.1325000.7937000.0390*
H610.3776000.0713000.5876000.0400*
H7210.184 (6)0.0411 (15)0.075 (7)0.062 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0267 (5)0.0186 (4)0.0274 (5)0.0003 (4)0.0027 (4)0.0015 (4)
O20.080 (3)0.0280 (16)0.0382 (18)0.0132 (16)0.0078 (17)0.0078 (14)
O510.0579 (19)0.0252 (14)0.0362 (16)0.0050 (13)0.0040 (14)0.0065 (12)
O520.0322 (15)0.0314 (15)0.0313 (15)0.0018 (12)0.0035 (12)0.0030 (12)
O530.0297 (15)0.0363 (16)0.0469 (17)0.0006 (12)0.0094 (13)0.0153 (13)
O710.087 (3)0.0251 (16)0.0433 (19)0.0148 (16)0.0022 (17)0.0008 (14)
O720.075 (2)0.0250 (14)0.0343 (16)0.0088 (14)0.0055 (15)0.0037 (12)
C10.030 (2)0.0235 (19)0.032 (2)0.0012 (15)0.0014 (17)0.0012 (16)
C20.033 (2)0.028 (2)0.034 (2)0.0077 (16)0.0008 (18)0.0053 (17)
C30.045 (3)0.034 (2)0.024 (2)0.0039 (18)0.0005 (18)0.0023 (16)
C40.035 (2)0.0265 (19)0.0254 (19)0.0006 (16)0.0009 (16)0.0008 (15)
C50.0227 (18)0.0214 (18)0.0292 (19)0.0032 (14)0.0075 (15)0.0034 (15)
C60.028 (2)0.0254 (19)0.0260 (19)0.0005 (15)0.0003 (16)0.0010 (16)
C70.041 (2)0.026 (2)0.040 (2)0.0053 (17)0.0001 (19)0.0007 (18)
O7110.090 (3)0.0210 (15)0.0434 (18)0.0048 (16)0.0033 (17)0.0039 (13)
O7210.082 (2)0.0293 (16)0.0381 (18)0.0092 (15)0.0087 (17)0.0067 (13)
N310.0300 (19)0.0218 (17)0.0284 (18)0.0012 (14)0.0031 (16)0.0005 (14)
C110.029 (2)0.0234 (19)0.032 (2)0.0026 (15)0.0006 (17)0.0001 (16)
C210.028 (2)0.0282 (19)0.0252 (19)0.0010 (15)0.0040 (16)0.0017 (15)
C310.0200 (19)0.0218 (18)0.0291 (19)0.0004 (14)0.0051 (15)0.0035 (15)
C410.034 (2)0.0255 (19)0.036 (2)0.0002 (16)0.0007 (18)0.0047 (17)
C510.038 (2)0.035 (2)0.027 (2)0.0010 (18)0.0059 (18)0.0019 (17)
C610.042 (2)0.025 (2)0.034 (2)0.0023 (17)0.0020 (19)0.0045 (17)
C710.046 (3)0.024 (2)0.036 (2)0.0031 (17)0.008 (2)0.0039 (17)
Geometric parameters (Å, º) top
S5—O511.443 (3)C2—C31.390 (6)
S5—O521.445 (3)C3—C41.382 (6)
S5—O531.467 (3)C4—C51.393 (5)
S5—C51.770 (4)C5—C61.372 (5)
O2—C21.345 (5)C3—H30.9619
O71—C71.236 (5)C4—H40.9638
O72—C71.302 (5)C6—H60.9617
O2—H20.92 (6)C11—C211.394 (5)
O72—H720.90 (5)C11—C611.382 (5)
O711—C711.220 (5)C11—C711.487 (5)
O721—C711.305 (5)C21—C311.386 (5)
O721—H7210.90 (5)C31—C411.368 (5)
N31—C311.472 (5)C41—C511.389 (6)
N31—H31C0.89 (6)C51—C611.372 (6)
N31—H31B0.95 (5)C21—H210.9574
N31—H31A0.88 (4)C41—H410.9634
C1—C71.465 (5)C51—H510.9623
C1—C21.401 (5)C61—H610.9590
C1—C61.405 (5)
O51—S5—O52113.45 (17)O71—C7—O72122.1 (4)
O51—S5—O53112.95 (17)C2—C3—H3119.63
O51—S5—C5106.45 (17)C4—C3—H3120.10
O52—S5—O53110.31 (17)C3—C4—H4120.23
O52—S5—C5107.42 (17)C5—C4—H4119.95
O53—S5—C5105.72 (17)C1—C6—H6120.08
C2—O2—H2105 (3)C5—C6—H6119.53
C7—O72—H72109 (3)C21—C11—C61120.2 (3)
C71—O721—H721108 (3)C21—C11—C71120.7 (3)
H31A—N31—H31C112 (4)C61—C11—C71119.1 (3)
H31B—N31—H31C115 (5)C11—C21—C31118.3 (3)
H31A—N31—H31B103 (4)N31—C31—C41119.5 (3)
C31—N31—H31A112 (3)N31—C31—C21118.2 (3)
C31—N31—H31B109 (3)C21—C31—C41122.1 (3)
C31—N31—H31C106 (4)C31—C41—C51118.6 (3)
C6—C1—C7120.8 (3)C41—C51—C61120.7 (4)
C2—C1—C7120.3 (3)C11—C61—C51120.1 (4)
C2—C1—C6118.8 (3)O711—C71—O721123.6 (4)
O2—C2—C3117.0 (3)O711—C71—C11121.5 (4)
O2—C2—C1122.9 (3)O721—C71—C11114.8 (3)
C1—C2—C3120.2 (3)C11—C21—H21121.27
C2—C3—C4120.3 (4)C31—C21—H21120.44
C3—C4—C5119.8 (3)C31—C41—H41120.88
C4—C5—C6120.5 (3)C51—C41—H41120.54
S5—C5—C6119.6 (3)C41—C51—H51119.97
S5—C5—C4119.8 (3)C61—C51—H51119.28
C1—C6—C5120.4 (3)C11—C61—H61119.81
O72—C7—C1116.3 (3)C51—C61—H61120.13
O71—C7—C1121.6 (4)
O51—S5—C5—C424.2 (4)C3—C4—C5—S5177.3 (3)
O51—S5—C5—C6158.0 (3)C3—C4—C5—C60.5 (6)
O52—S5—C5—C4146.0 (3)S5—C5—C6—C1177.9 (3)
O52—S5—C5—C636.1 (4)C4—C5—C6—C10.1 (6)
O53—S5—C5—C496.2 (3)C61—C11—C21—C311.0 (6)
O53—S5—C5—C681.7 (3)C71—C11—C21—C31175.8 (4)
C6—C1—C7—O724.4 (6)C21—C11—C61—C511.0 (6)
C7—C1—C2—O21.0 (6)C71—C11—C61—C51177.8 (4)
C6—C1—C7—O71176.2 (4)C21—C11—C71—O711167.1 (4)
C6—C1—C2—O2178.9 (4)C21—C11—C71—O72111.8 (6)
C6—C1—C2—C31.4 (6)C61—C11—C71—O721171.4 (4)
C2—C1—C6—C51.0 (6)C61—C11—C71—O7119.7 (6)
C7—C1—C6—C5178.9 (4)C11—C21—C31—C411.1 (6)
C7—C1—C2—C3179.3 (4)C11—C21—C31—N31175.1 (3)
C2—C1—C7—O711.7 (6)N31—C31—C41—C51176.8 (4)
C2—C1—C7—O72177.7 (4)C21—C31—C41—C510.7 (6)
C1—C2—C3—C40.8 (6)C31—C41—C51—C612.7 (7)
O2—C2—C3—C4179.5 (4)C41—C51—C61—C112.9 (7)
C2—C3—C4—C50.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O710.92 (6)1.77 (6)2.598 (5)149 (5)
O72—H72···O711i0.90 (5)1.78 (5)2.677 (4)180 (6)
O721—H721···O71i0.90 (5)1.78 (5)2.679 (4)180 (6)
N31—H31A···O53ii0.88 (4)1.95 (4)2.825 (5)171 (4)
N31—H31B···O520.95 (5)2.02 (5)2.837 (5)143 (4)
N31—H31B···O51iii0.95 (5)2.34 (5)2.889 (5)116 (4)
N31—H31C···O53iv0.89 (6)2.03 (6)2.921 (5)177 (5)
C4—H4···O510.962.572.928 (5)102
C41—H41···O53iv0.962.573.342 (5)137
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H8NO2+·C7H5O6S
Mr355.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)7.3325 (14), 31.430 (5), 6.3749 (18)
β (°) 97.35 (2)
V3)1457.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.10 × 0.07
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
Tmin, Tmax0.936, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3013, 2573, 1655
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.158, 0.90
No. of reflections2573
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.37

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1999), SIR92 (Altomare, 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O710.92 (6)1.77 (6)2.598 (5)149 (5)
O72—H72···O711i0.90 (5)1.78 (5)2.677 (4)180 (6)
O721—H721···O71i0.90 (5)1.78 (5)2.679 (4)180 (6)
N31—H31A···O53ii0.88 (4)1.95 (4)2.825 (5)171 (4)
N31—H31B···O520.95 (5)2.02 (5)2.837 (5)143 (4)
N31—H31B···O51iii0.95 (5)2.34 (5)2.889 (5)116 (4)
N31—H31C···O53iv0.89 (6)2.03 (6)2.921 (5)177 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds