Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [PtBr2(C27H26P2)], the mol­ecule adopts a distorted square-planar metal coordination, with the six-membered metallocyclic ring in a twist-boat conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015428/ac6013sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015428/ac6013Isup2.hkl
Contains datablock I

CCDC reference: 198290

Key indicators

  • Single-crystal X-ray study
  • T = 168 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.046
  • wR factor = 0.114
  • Data-to-parameter ratio = 17.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.072 Tmax scaled 0.072 Tmin scaled 0.046

Comment top

The title compound, cis-[PtBr2(dppp)2], (I), [dppp is 1,3-bis(diphenylphosphino)propane] was prepared, unexpectedly, from the reaction between the corresponding trifluoromethylsulfonate complex cis-[Pt(CF3SO3)2(dppp)] with Re(CO)3(DAAD)2Br (DAAD is 2,6-diazaanthracene-9,10-dione; Morgan et al., 2002). The molecular structure of cis-[PtBr2(dppp)] has the Pt atom in a slightly distorted square-planar environment (Fig. 1). The two bromo ligands are in a cis configuration, imposed by the chelating dppp ligand. This is similar to the structures found for the chloro analogue cis-[PtCl2(dppp)], (II) (Robertson & Wickramasinghe, 1987), and the isomorphous palladium complex cis-[PdCl2(dppp)], (III) (Steffen & Palenik, 1976).

Distortion in the square-planar Pt coordination sphere is signalled by angles about Pt ranging from 88.12 (4) to 91.95 (6)°. (Table 1). The r.m.s. deviation from the Br2PtP2 plane is 0.089 Å, with P2 showing the largest deviation of 0.1133 (8) Å. The angle between the PtP2 and PtBr2 planes is 8.01 (5)°. Similar distortions were found in (II) (Robertson et al., 1987) and have been attributed to steric strain within the chelating ligand (Steffen et al., 1976). This is further indicated by the significant variations from tetrahedral angles observed in the alkyl chain of the dppp moiety. Torsion angles around the six-membered Pt—P—C—C—C—P chelate ring are consistent with a twist-boat conformation.

Relatively few structures of square planar PtII complexes with a PtBr2P2 ligand set have been reported. The data suggest that Pt—Br bond lengths trans to the P atoms of bidentate phosphine ligands are generally longer than those in cis-PtBr2(monodentate phosphine)2 structures (Sembiring et al., 1999; Bhattacharyya et al., 1996) or for trans-[PtBr2P2] complexes (Messmer & Amma, 1966; Cameron et al., 1990). The Pt—Br and Pt—P bond lengths observed for (I) are within the anticipated ranges (Orpen et al., 1989). Furthermore, the Pt—P distances are identical within experimental error, while the Pt—Br distances differ [2.4951 (9) and 2.4855 (10) Å], mirroring the bond-length variations observed in (II) (Robertson et al., 1987) and (III) (Steffen et al., 1976). The Pt—Br distances observed for (I) are also similar to those found for the previously reported cis-PtBr2(bidentate phosphine) structures (Wilson et al., 1994; Sevillano et al., 2000).

Molecules of (I) are reasonably well separated in the unit cell, with the shortest intermolecular contact not involving H atoms being for C6···C24i of 3.4765 (9) Å [symmetry code: (i) x, y − 1, z]. The shortest contact involving the Br atoms is H8···Br2ii [H8···Br2ii 2.875 (1), C8···Br2 3.770 (1) Å and C8—H8···Br2 157.5 (2)°; symmetry code: (ii) x + 1, y − 1, z].

Experimental top

Re(CO)3(DAAD)2Br (115 mg, 0.15 mmol) and cis-[Pt(CF3SO3)2(dppp)] (135 mg, 0.15 mmol) were dissolved in dichloromethane (30 ml). The solution was stirred for 20 h at ambient temperature. The orange precipitate was filtered off and washed with dichloromethane, hexane, diethyl ether and ethyl acetate. Crystallization was achieved in d6-DMSO over a period of months at ambient temperature.

Refinement top

The final difference Fourier map revealed large residual density peaks around the Pt atom. Inspection of the absorption correction data showed a significant decrease in Rint (from 0.0972 to 0.0331) following the correction. It is possible, however, that selection of a smaller crystal and/or application of numerical absorption corrections may have resulted in better residual density values. All H atoms were included in calculated positions using a riding model, with Csp2—H and Csp3—H bond distances of 0.95 and 0.99 Å, respectively, and Uiso values equal to 1.2Ueq of the carrying C atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and TITAN2000); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective drawing of the title molecule, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles with arbitrary radii.
cis-[1,3-Bis(diphenylphosphino)propane]dibromoplatinum(II) top
Crystal data top
[PtBr2(C27H26P2)]Z = 2
Mr = 767.33F(000) = 732
Triclinic, P1Dx = 1.994 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.709 (2) ÅCell parameters from 5652 reflections
b = 10.760 (3) Åθ = 4.9–52.7°
c = 14.429 (4) ŵ = 8.76 mm1
α = 88.272 (3)°T = 168 K
β = 80.296 (4)°Block, pale brown
γ = 73.540 (3)°0.51 × 0.33 × 0.30 mm
V = 1278.0 (6) Å3
Data collection top
Siemens SMART
diffractometer
5118 independent reflections
Radiation source: fine-focus sealed tube4792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Area–detector ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker 1997)
h = 1010
Tmin = 0.641, Tmax = 1k = 1013
15666 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0571P)2 + 9.6036P]
where P = (Fo2 + 2Fc2)/3
5118 reflections(Δ/σ)max = 0.007
289 parametersΔρmax = 2.38 e Å3
36 restraintsΔρmin = 4.26 e Å3
Crystal data top
[PtBr2(C27H26P2)]γ = 73.540 (3)°
Mr = 767.33V = 1278.0 (6) Å3
Triclinic, P1Z = 2
a = 8.709 (2) ÅMo Kα radiation
b = 10.760 (3) ŵ = 8.76 mm1
c = 14.429 (4) ÅT = 168 K
α = 88.272 (3)°0.51 × 0.33 × 0.30 mm
β = 80.296 (4)°
Data collection top
Siemens SMART
diffractometer
5118 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker 1997)
4792 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 1Rint = 0.036
15666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04636 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.23Δρmax = 2.38 e Å3
5118 reflectionsΔρmin = 4.26 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04852 (10)0.17292 (8)0.77096 (6)0.02293 (19)
Br20.16107 (10)0.50253 (8)0.72957 (7)0.0302 (2)
Pt10.10137 (3)0.34041 (2)0.743254 (18)0.01006 (10)
P10.3214 (2)0.19242 (18)0.77836 (14)0.0137 (4)
C10.5077 (10)0.2460 (8)0.7658 (6)0.0237 (18)
H1A0.49230.31540.81290.028*
H1B0.59960.17240.77820.028*
C20.5481 (10)0.2965 (8)0.6671 (7)0.0280 (19)
H2A0.53890.23380.62100.034*
H2B0.66300.29770.65700.034*
C30.4433 (10)0.4323 (8)0.6450 (6)0.0223 (17)
H3A0.43260.43290.57780.027*
H3B0.50280.49580.65380.027*
C40.3920 (10)0.0441 (8)0.7085 (6)0.0231 (17)
C50.3284 (10)0.0323 (8)0.6265 (6)0.0248 (18)
H50.24370.10130.60870.030*
C60.3905 (13)0.0814 (11)0.5715 (8)0.042 (3)
H60.34610.08990.51700.050*
C70.5141 (14)0.1800 (10)0.5953 (8)0.042 (3)
H70.55530.25690.55760.051*
C80.5791 (14)0.1682 (9)0.6740 (9)0.047 (3)
H80.66650.23680.68930.057*
C90.5196 (12)0.0578 (9)0.7314 (7)0.035 (2)
H90.56530.05160.78580.042*
C100.2856 (9)0.1458 (7)0.9005 (5)0.0166 (15)
C110.2369 (11)0.0340 (9)0.9257 (6)0.0273 (19)
H110.23140.02320.87830.033*
C120.1966 (13)0.0068 (10)1.0201 (7)0.035 (2)
H120.16440.06931.03680.042*
C130.2029 (12)0.0891 (10)1.0893 (7)0.035 (2)
H130.17350.07041.15350.042*
C140.2515 (13)0.1983 (11)1.0664 (7)0.039 (2)
H140.25700.25421.11460.047*
C150.2934 (12)0.2274 (10)0.9711 (6)0.032 (2)
H150.32710.30310.95530.038*
P20.2371 (2)0.48954 (18)0.71495 (14)0.0145 (4)
C160.2601 (11)0.5585 (9)0.8246 (6)0.0257 (15)
C170.1330 (12)0.5758 (11)0.9011 (7)0.0352 (16)
H170.03650.55470.89460.042*
C180.1480 (13)0.6237 (11)0.9868 (7)0.0406 (18)
H180.06100.63541.03820.049*
C190.2844 (13)0.6536 (12)0.9976 (8)0.0435 (18)
H190.29270.68831.05580.052*
C200.4125 (14)0.6331 (13)0.9228 (8)0.0499 (19)
H200.51120.64950.93060.060*
C210.3971 (13)0.5889 (12)0.8372 (8)0.0424 (18)
H210.48370.57950.78580.051*
C220.1452 (10)0.6275 (8)0.6461 (6)0.0196 (16)
C230.0915 (11)0.7521 (8)0.6832 (6)0.0241 (17)
H230.10500.76850.74520.029*
C240.0167 (12)0.8544 (8)0.6284 (7)0.031 (2)
H240.02020.94040.65340.037*
C250.0031 (12)0.8303 (9)0.5388 (7)0.032 (2)
H250.05360.90000.50220.038*
C260.0495 (12)0.7060 (9)0.5014 (6)0.031 (2)
H260.03480.68990.43960.038*
C270.1240 (12)0.6048 (9)0.5551 (6)0.0272 (19)
H270.16100.51910.52950.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0207 (4)0.0228 (4)0.0287 (4)0.0120 (3)0.0043 (3)0.0052 (3)
Br20.0167 (4)0.0233 (4)0.0484 (6)0.0015 (3)0.0070 (4)0.0037 (4)
Pt10.00866 (15)0.01236 (15)0.01000 (15)0.00438 (10)0.00185 (10)0.00229 (10)
P10.0088 (8)0.0150 (9)0.0162 (9)0.0017 (7)0.0022 (7)0.0039 (7)
C10.013 (4)0.030 (4)0.031 (5)0.009 (3)0.007 (3)0.006 (4)
C20.018 (4)0.027 (4)0.034 (5)0.004 (3)0.005 (4)0.003 (4)
C30.021 (4)0.029 (4)0.017 (4)0.009 (3)0.001 (3)0.003 (3)
C40.027 (4)0.018 (4)0.020 (4)0.005 (3)0.006 (3)0.003 (3)
C50.019 (4)0.028 (4)0.026 (4)0.004 (3)0.000 (3)0.008 (4)
C60.035 (6)0.046 (6)0.040 (6)0.010 (5)0.003 (5)0.024 (5)
C70.051 (7)0.028 (5)0.042 (6)0.010 (5)0.008 (5)0.012 (4)
C80.044 (6)0.018 (4)0.064 (8)0.008 (4)0.004 (6)0.011 (5)
C90.032 (5)0.032 (5)0.034 (5)0.005 (4)0.009 (4)0.005 (4)
C100.016 (4)0.019 (4)0.014 (4)0.002 (3)0.008 (3)0.006 (3)
C110.029 (5)0.027 (4)0.028 (5)0.012 (4)0.006 (4)0.003 (4)
C120.041 (6)0.040 (5)0.026 (5)0.017 (4)0.008 (4)0.019 (4)
C130.034 (5)0.050 (6)0.022 (5)0.013 (4)0.009 (4)0.016 (4)
C140.045 (6)0.058 (6)0.016 (4)0.017 (5)0.004 (4)0.001 (4)
C150.041 (5)0.042 (5)0.020 (4)0.024 (4)0.008 (4)0.005 (4)
P20.0167 (9)0.0142 (9)0.0147 (9)0.0085 (7)0.0018 (7)0.0026 (7)
C160.024 (3)0.044 (4)0.018 (3)0.022 (3)0.002 (3)0.005 (3)
C170.029 (3)0.056 (4)0.026 (3)0.024 (3)0.001 (3)0.008 (3)
C180.037 (3)0.061 (4)0.028 (3)0.022 (3)0.002 (3)0.010 (3)
C190.040 (4)0.066 (4)0.030 (3)0.020 (3)0.007 (3)0.016 (3)
C200.039 (4)0.077 (4)0.041 (4)0.027 (3)0.004 (3)0.018 (4)
C210.032 (3)0.067 (4)0.035 (4)0.027 (3)0.001 (3)0.013 (3)
C220.022 (4)0.023 (4)0.018 (4)0.012 (3)0.003 (3)0.007 (3)
C230.032 (5)0.021 (4)0.022 (4)0.008 (3)0.012 (4)0.003 (3)
C240.044 (5)0.017 (4)0.033 (5)0.009 (4)0.015 (4)0.007 (4)
C250.037 (5)0.029 (5)0.036 (5)0.015 (4)0.021 (4)0.020 (4)
C260.045 (6)0.037 (5)0.020 (4)0.020 (4)0.016 (4)0.012 (4)
C270.038 (5)0.027 (4)0.019 (4)0.012 (4)0.008 (4)0.004 (3)
Geometric parameters (Å, º) top
Br1—Pt12.4951 (9)C12—C131.373 (15)
Br2—Pt12.4855 (10)C12—H120.9500
Pt1—P22.2384 (19)C13—C141.370 (15)
Pt1—P12.2394 (19)C13—H130.9500
P1—C41.809 (8)C14—C151.411 (13)
P1—C101.818 (8)C14—H140.9500
P1—C11.850 (8)C15—H150.9500
C1—C21.530 (12)P2—C221.827 (8)
C1—H1A0.9900P2—C161.832 (8)
C1—H1B0.9900C16—C211.364 (13)
C2—C31.544 (12)C16—C171.401 (12)
C2—H2A0.9900C17—C181.393 (14)
C2—H2B0.9900C17—H170.9500
C3—P21.850 (8)C18—C191.351 (15)
C3—H3A0.9900C18—H180.9500
C3—H3B0.9900C19—C201.389 (15)
C4—C91.400 (12)C19—H190.9500
C4—C51.412 (12)C20—C211.377 (15)
C5—C61.399 (12)C20—H200.9500
C5—H50.9500C21—H210.9500
C6—C71.363 (16)C22—C231.381 (12)
C6—H60.9500C22—C271.394 (12)
C7—C81.376 (17)C23—C241.406 (12)
C7—H70.9500C23—H230.9500
C8—C91.390 (15)C24—C251.375 (13)
C8—H80.9500C24—H240.9500
C9—H90.9500C25—C261.379 (14)
C10—C151.387 (12)C25—H250.9500
C10—C111.403 (11)C26—C271.387 (12)
C11—C121.392 (13)C26—H260.9500
C11—H110.9500C27—H270.9500
P2—Pt1—P191.67 (7)C13—C12—C11120.5 (9)
P2—Pt1—Br291.95 (6)C13—C12—H12119.8
P1—Pt1—Br2171.34 (5)C11—C12—H12119.8
P2—Pt1—Br1178.72 (5)C14—C13—C12120.4 (9)
P1—Pt1—Br188.45 (6)C14—C13—H13119.8
Br2—Pt1—Br188.12 (4)C12—C13—H13119.8
C4—P1—C10106.7 (4)C13—C14—C15120.0 (9)
C4—P1—C1101.7 (4)C13—C14—H14120.0
C10—P1—C1105.0 (4)C15—C14—H14120.0
C4—P1—Pt1116.6 (3)C10—C15—C14120.2 (9)
C10—P1—Pt1110.3 (2)C10—C15—H15119.9
C1—P1—Pt1115.4 (3)C14—C15—H15119.9
C2—C1—P1111.1 (6)C22—P2—C16105.9 (4)
C2—C1—H1A109.4C22—P2—C3101.0 (4)
P1—C1—H1A109.4C16—P2—C3106.4 (4)
C2—C1—H1B109.4C22—P2—Pt1115.6 (3)
P1—C1—H1B109.4C16—P2—Pt1111.3 (3)
H1A—C1—H1B108.0C3—P2—Pt1115.6 (3)
C1—C2—C3116.8 (7)C21—C16—C17118.0 (8)
C1—C2—H2A108.1C21—C16—P2123.6 (7)
C3—C2—H2A108.1C17—C16—P2118.3 (6)
C1—C2—H2B108.1C18—C17—C16120.1 (9)
C3—C2—H2B108.1C18—C17—H17119.9
H2A—C2—H2B107.3C16—C17—H17119.9
C2—C3—P2117.0 (6)C19—C18—C17120.9 (10)
C2—C3—H3A108.1C19—C18—H18119.5
P2—C3—H3A108.1C17—C18—H18119.5
C2—C3—H3B108.1C18—C19—C20119.2 (10)
P2—C3—H3B108.1C18—C19—H19120.4
H3A—C3—H3B107.3C20—C19—H19120.4
C9—C4—C5118.7 (8)C21—C20—C19120.3 (10)
C9—C4—P1120.1 (7)C21—C20—H20119.9
C5—C4—P1121.0 (6)C19—C20—H20119.9
C6—C5—C4119.8 (9)C16—C21—C20121.5 (10)
C6—C5—H5120.1C16—C21—H21119.3
C4—C5—H5120.1C20—C21—H21119.3
C7—C6—C5120.6 (10)C23—C22—C27119.7 (8)
C7—C6—H6119.7C23—C22—P2121.6 (6)
C5—C6—H6119.7C27—C22—P2118.7 (6)
C6—C7—C8120.0 (9)C22—C23—C24119.4 (8)
C6—C7—H7120.0C22—C23—H23120.3
C8—C7—H7120.0C24—C23—H23120.3
C7—C8—C9121.3 (10)C25—C24—C23120.2 (8)
C7—C8—H8119.3C25—C24—H24119.9
C9—C8—H8119.3C23—C24—H24119.9
C8—C9—C4119.5 (10)C24—C25—C26120.7 (8)
C8—C9—H9120.2C24—C25—H25119.6
C4—C9—H9120.2C26—C25—H25119.6
C15—C10—C11118.8 (8)C25—C26—C27119.3 (8)
C15—C10—P1119.5 (6)C25—C26—H26120.3
C11—C10—P1121.4 (6)C27—C26—H26120.3
C12—C11—C10120.1 (8)C26—C27—C22120.7 (8)
C12—C11—H11119.9C26—C27—H27119.6
C10—C11—H11119.9C22—C27—H27119.6
P2—Pt1—P1—C4121.6 (3)C13—C14—C15—C100.0 (16)
Br1—Pt1—P1—C457.1 (3)C2—C3—P2—C22166.0 (7)
P2—Pt1—P1—C10116.4 (3)C2—C3—P2—C1683.7 (7)
Br1—Pt1—P1—C1064.8 (3)C2—C3—P2—Pt140.5 (7)
P2—Pt1—P1—C12.3 (3)P1—Pt1—P2—C22161.7 (3)
Br1—Pt1—P1—C1176.4 (3)P1—Pt1—P2—C1677.5 (3)
C4—P1—C1—C272.3 (7)Br2—Pt1—P2—C1694.6 (3)
C10—P1—C1—C2176.5 (6)P1—Pt1—P2—C344.0 (3)
Pt1—P1—C1—C254.9 (7)Br2—Pt1—P2—C3143.9 (3)
P1—C1—C2—C375.5 (9)C22—P2—C16—C2192.0 (10)
C1—C2—C3—P224.7 (10)C3—P2—C16—C2114.8 (11)
C10—P1—C4—C950.5 (8)Pt1—P2—C16—C21141.6 (9)
C1—P1—C4—C959.3 (8)C22—P2—C16—C1790.9 (9)
Pt1—P1—C4—C9174.3 (7)C3—P2—C16—C17162.3 (8)
C10—P1—C4—C5134.2 (7)Pt1—P2—C16—C1735.5 (9)
C1—P1—C4—C5116.0 (7)C21—C16—C17—C180.5 (17)
Pt1—P1—C4—C510.4 (8)P2—C16—C17—C18177.8 (9)
C9—C4—C5—C61.7 (13)C16—C17—C18—C190.3 (18)
P1—C4—C5—C6177.1 (7)C17—C18—C19—C201.6 (19)
C4—C5—C6—C71.3 (15)C18—C19—C20—C213 (2)
C5—C6—C7—C80.1 (17)C17—C16—C21—C201.2 (18)
C6—C7—C8—C91.1 (17)P2—C16—C21—C20175.9 (10)
C7—C8—C9—C40.6 (17)C19—C20—C21—C163 (2)
C5—C4—C9—C80.8 (14)C16—P2—C22—C237.0 (8)
P1—C4—C9—C8176.2 (8)C3—P2—C22—C23117.8 (7)
C4—P1—C10—C15154.6 (7)Pt1—P2—C22—C23116.7 (7)
C1—P1—C10—C1547.2 (8)C16—P2—C22—C27175.3 (7)
Pt1—P1—C10—C1577.8 (7)C3—P2—C22—C2764.6 (7)
C4—P1—C10—C1130.7 (8)Pt1—P2—C22—C2761.0 (7)
C1—P1—C10—C11138.1 (7)C27—C22—C23—C240.2 (13)
Pt1—P1—C10—C1196.9 (7)P2—C22—C23—C24177.9 (7)
C15—C10—C11—C120.4 (13)C22—C23—C24—C250.2 (14)
P1—C10—C11—C12174.4 (7)C23—C24—C25—C260.1 (15)
C10—C11—C12—C130.4 (15)C24—C25—C26—C270.4 (15)
C11—C12—C13—C141.0 (16)C25—C26—C27—C220.4 (15)
C12—C13—C14—C150.8 (16)C23—C22—C27—C260.0 (13)
C11—C10—C15—C140.6 (14)P2—C22—C27—C26177.7 (7)
P1—C10—C15—C14174.3 (8)

Experimental details

Crystal data
Chemical formula[PtBr2(C27H26P2)]
Mr767.33
Crystal system, space groupTriclinic, P1
Temperature (K)168
a, b, c (Å)8.709 (2), 10.760 (3), 14.429 (4)
α, β, γ (°)88.272 (3), 80.296 (4), 73.540 (3)
V3)1278.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)8.76
Crystal size (mm)0.51 × 0.33 × 0.30
Data collection
DiffractometerSiemens SMART
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker 1997)
Tmin, Tmax0.641, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
15666, 5118, 4792
Rint0.036
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.23
No. of reflections5118
No. of parameters289
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.38, 4.26

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 1997) and TITAN2000), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Br1—Pt12.4951 (9)P1—C11.850 (8)
Br2—Pt12.4855 (10)C1—C21.530 (12)
Pt1—P22.2384 (19)C2—C31.544 (12)
Pt1—P12.2394 (19)C3—P21.850 (8)
P2—Pt1—P191.67 (7)Br2—Pt1—Br188.12 (4)
P2—Pt1—Br291.95 (6)C1—P1—Pt1115.4 (3)
P1—Pt1—Br2171.34 (5)C2—C1—P1111.1 (6)
P2—Pt1—Br1178.72 (5)C1—C2—C3116.8 (7)
P1—Pt1—Br188.45 (6)C2—C3—P2117.0 (6)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds