Buy article online - an online subscription or single-article purchase is required to access this article.
research papers
The hydrogen-bond acceptor characteristics of sulfate dianions are analyzed in crystal structures of small molecules. For 85 anions, neither coordinated to metal ions nor covalently bonded, 697 hydrogen bonds are faund. Of these, 266 (38%) are the OH—O type and 431 (62%) are the OH—N type, proportions that correspond well to the stoichiometry of the compounds studied and indicate no preference for a particular donor. The analysis of the data set, after classifying the hydrogen bonds according to the different types of donors, shows that OH—O bonds are more linear than OH—N. The anion oxygen–acceptor function is characterized by multiple hydrogen bonding. Only in 56 cases does a sulfate oxygen participate in a single hydrogen bond. In most cases every sulfate oxygen is coordinated by two (187 cases) or three (89 cases) hydrogen bonds. For three H donors, the preferred coordination geometry of the sulfate oxygen is pyramidal. The most frequent coordination around a sulfate dianion is with eight to ten H donors. Thus, sulfate dianions can play a significant cohesive role in molecular aggregation.