Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of ribosomal protein L1 from the archaeon Methanococcus thermolithotrophicus has been determined at 2.7 Å resolution. The crystals belong to space group P212121, with unit-cell parameters a = 67.0, b = 70.1, c = 106.3 Å and two molecules per asymmetric unit. The structure was solved by the molecular-replacement method with AMoRe and refined with CNS to an R value of 18.9% and an Rfree of 25.4% in the resolution range 30-2.7 Å. Comparison of this structure with those obtained previously for two L1 proteins from other sources (the bacterium Thermus thermophilus and the archaeon M. jannaschii) as well as detailed analysis of intermolecular contacts in the corresponding L1 crystals reveal structural invariants on the molecular surface which are probably important for binding the 23S ribosomal RNA and protein function within the ribosome.

Supporting information

PDB reference: ribosomal protein MthL1, 1dwu, r1dwusf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds