Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The novel antimonide oxides Pr9Sb5O5, Sm9Sb5O5 and Dy9Sb5O5 were synthesized from the respective RESb, the rare-earth metals (RE = Pr, Sm, Dy), and RE2O3 (RE = Sm, Dy) or Pr4O7, respectively, in sealed tantalum ampoules at 1920 K. Those compounds, which are sensitive against air and moisture, form black cube-like crystals with metallic lustre. They crystallize in the La9Sb5O5 type of structure, which represents a fivefold superstructure of the KCoO2 structure: O10K5Co5 \^= La9□Sb5O5. The investigated crystals of the Sm and Dy compounds were twinned using the reticular merohedral law, with the twin symmetry 4/mmm′, and the (310) and (120) mirror planes as twinning symmetry elements. The twin index is [j] = 5.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768107051282/bp5006sup1.cif
Contains datablocks pr9Sb5o5, sm9sb5o5, dy9sb5o5, publication_text

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107051282/bp5006pr9Sb5o5sup2.hkl
Contains datablock nus147nm

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107051282/bp5006dy9sb5o5sup3.hkl
Contains datablock twin

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107051282/bp5006sm9sb5o5sup4.hkl
Contains datablock twin

Computing details top

For all compounds, data collection: Bruker Suite (Bruker AXS); cell refinement: SAINT32 (Bruker AXS); data reduction: SAINT32 (Bruker AXS); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: CIFTAB.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(pr9Sb5o5) top
Crystal data top
Pr9Sb5O5Dx = 6.799 Mg m3
Mr = 1956.94Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 7236 reflections
Hall symbol: -P 4aθ = 2.2–33.9°
a = 10.2203 (3) ŵ = 29.37 mm1
c = 9.1508 (3) ÅT = 296 K
V = 955.84 (5) Å3Block, metallic-dark-black
Z = 20.06 × 0.06 × 0.04 mm
F(000) = 1652
Data collection top
SMART APEX I, Bruker AXS
diffractometer
1957 independent reflections
Radiation source: fine-focus sealed tube1827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω–scansθmax = 34.0°, θmin = 2.2°
Absorption correction: multi-scan
SADABS (G. Sheldrick 2007)
h = 1616
Tmin = 0.272, Tmax = 0.386k = 1515
19532 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0189P)2 + 2.3275P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.22Δρmax = 1.67 e Å3
1957 reflectionsΔρmin = 1.52 e Å3
47 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00071 (4)
Crystal data top
Pr9Sb5O5Z = 2
Mr = 1956.94Mo Kα radiation
Tetragonal, P4/nµ = 29.37 mm1
a = 10.2203 (3) ÅT = 296 K
c = 9.1508 (3) Å0.06 × 0.06 × 0.04 mm
V = 955.84 (5) Å3
Data collection top
SMART APEX I, Bruker AXS
diffractometer
1957 independent reflections
Absorption correction: multi-scan
SADABS (G. Sheldrick 2007)
1827 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.386Rint = 0.045
19532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02347 parameters
wR(F2) = 0.0550 restraints
S = 1.22Δρmax = 1.67 e Å3
1957 reflectionsΔρmin = 1.52 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.329973 (18)0.021764 (19)0.997938 (19)0.01014 (6)
Pr20.25000.25000.33260 (4)0.01104 (8)
Pr30.146184 (18)0.953956 (17)0.65373 (2)0.01092 (6)
Sb10.25000.25000.69037 (5)0.01158 (9)
Sb20.15307 (2)0.94674 (2)0.29828 (3)0.01058 (7)
O10.25000.25000.0698 (6)0.0172 (10)
O20.1280 (2)0.9755 (3)0.9097 (3)0.0124 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00822 (8)0.01167 (9)0.01053 (10)0.00016 (6)0.00045 (6)0.00049 (6)
Pr20.01198 (11)0.01198 (11)0.00918 (16)0.0000.0000.000
Pr30.01210 (9)0.01245 (9)0.00820 (11)0.00051 (6)0.00003 (6)0.00051 (6)
Sb10.01100 (12)0.01100 (12)0.0127 (2)0.0000.0000.000
Sb20.01025 (11)0.01156 (11)0.00991 (14)0.00039 (6)0.00013 (7)0.00019 (7)
O10.0197 (16)0.0197 (16)0.012 (2)0.0000.0000.000
O20.0110 (10)0.0157 (11)0.0103 (11)0.0016 (9)0.0004 (9)0.0001 (9)
Geometric parameters (Å, º) top
Pr1—O2i2.266 (3)Pr3—Sb2xvii3.2483 (3)
Pr1—O2ii2.296 (2)Pr3—Sb2xviii3.2522 (3)
Pr1—O2iii2.406 (3)Pr3—Sb23.2542 (4)
Pr1—O1iv2.5576 (15)Pr3—Sb2xix3.2902 (3)
Pr1—Sb2v3.3780 (3)Pr3—Pr1xvi3.7323 (3)
Pr1—Sb2vi3.4590 (3)Pr3—Pr1xx3.8357 (3)
Pr1—Pr1vii3.4954 (3)Pr3—Pr1xxi4.0515 (3)
Pr1—Pr1viii3.4955 (3)Sb1—Pr3x3.2237 (2)
Pr1—Pr1ix3.5041 (4)Sb1—Pr3xi3.2238 (2)
Pr1—Pr3i3.7323 (3)Sb1—Pr3i3.2238 (2)
Pr1—Pr3ii3.8357 (3)Sb1—Pr3iii3.2238 (2)
Pr1—Pr2iv3.9354 (4)Sb2—Pr3xix3.2484 (3)
Pr2—O12.405 (6)Sb2—Pr3xviii3.2522 (3)
Pr2—Sb2x3.2690 (2)Sb2—Pr2xvi3.2690 (2)
Pr2—Sb2xi3.2690 (2)Sb2—Pr3xvii3.2901 (3)
Pr2—Sb2i3.2690 (2)Sb2—Pr1xxii3.3779 (3)
Pr2—Sb2iii3.2690 (2)Sb2—Pr1xxiii3.4590 (3)
Pr2—Sb13.2739 (6)O1—Pr1xii2.5576 (15)
Pr2—Pr1xii3.9354 (4)O1—Pr1xiii2.5576 (15)
Pr2—Pr1xiii3.9354 (4)O1—Pr1xiv2.5577 (15)
Pr2—Pr1xiv3.9354 (4)O1—Pr1xv2.5577 (15)
Pr2—Pr1xv3.9354 (4)O2—Pr1xvi2.266 (2)
Pr3—O22.360 (3)O2—Pr1xx2.296 (2)
Pr3—Sb1xvi3.2238 (2)O2—Pr1xxi2.406 (3)
O2i—Pr1—O2ii125.58 (13)Sb2i—Pr2—Pr1xiv107.565 (10)
O2i—Pr1—O2iii136.68 (13)Sb2iii—Pr2—Pr1xiv54.985 (7)
O2ii—Pr1—O2iii83.65 (10)Sb1—Pr2—Pr1xiv141.093 (5)
O2i—Pr1—O1iv89.49 (9)Pr1xii—Pr2—Pr1xiv52.732 (6)
O2ii—Pr1—O1iv136.10 (13)Pr1xiii—Pr2—Pr1xiv77.814 (10)
O2iii—Pr1—O1iv86.49 (8)O1—Pr2—Pr1xv38.907 (5)
O2i—Pr1—Sb2v75.83 (7)Sb2x—Pr2—Pr1xv107.565 (10)
O2ii—Pr1—Sb2v84.01 (7)Sb2xi—Pr2—Pr1xv115.106 (11)
O2iii—Pr1—Sb2v144.90 (7)Sb2i—Pr2—Pr1xv54.985 (7)
O1iv—Pr1—Sb2v80.03 (10)Sb2iii—Pr2—Pr1xv63.174 (7)
O2i—Pr1—Sb2vi85.81 (7)Sb1—Pr2—Pr1xv141.093 (5)
O2ii—Pr1—Sb2vi73.78 (7)Pr1xii—Pr2—Pr1xv77.814 (10)
O2iii—Pr1—Sb2vi71.63 (6)Pr1xiii—Pr2—Pr1xv52.732 (6)
O1iv—Pr1—Sb2vi141.52 (12)Pr1xiv—Pr2—Pr1xv52.732 (6)
Sb2v—Pr1—Sb2vi134.830 (9)O2—Pr3—Sb1xvi80.52 (6)
O2i—Pr1—Pr1vii43.10 (7)O2—Pr3—Sb2xvii86.04 (6)
O2ii—Pr1—Pr1vii150.79 (7)Sb1xvi—Pr3—Sb2xvii166.092 (14)
O2iii—Pr1—Pr1vii123.31 (6)O2—Pr3—Sb2xviii76.29 (6)
O1iv—Pr1—Pr1vii46.90 (3)Sb1xvi—Pr3—Sb2xviii90.149 (6)
Sb2v—Pr1—Pr1vii67.423 (6)Sb2xvii—Pr3—Sb2xviii90.129 (9)
Sb2vi—Pr1—Pr1vii122.334 (6)O2—Pr3—Sb2174.79 (7)
O2i—Pr1—Pr1viii125.66 (7)Sb1xvi—Pr3—Sb296.783 (11)
O2ii—Pr1—Pr1viii108.68 (7)Sb2xvii—Pr3—Sb296.891 (8)
O2iii—Pr1—Pr1viii40.07 (6)Sb2xviii—Pr3—Sb299.344 (8)
O1iv—Pr1—Pr1viii46.90 (3)O2—Pr3—Sb2xix88.39 (7)
Sb2v—Pr1—Pr1viii115.886 (5)Sb1xvi—Pr3—Sb2xix89.476 (6)
Sb2vi—Pr1—Pr1viii108.419 (7)Sb2xvii—Pr3—Sb2xix86.570 (7)
Pr1vii—Pr1—Pr1viii90.0Sb2xviii—Pr3—Sb2xix164.521 (13)
O2i—Pr1—Pr1ix151.71 (7)Sb2—Pr3—Sb2xix96.067 (8)
O2ii—Pr1—Pr1ix43.02 (7)O2—Pr3—Pr1xvi35.37 (6)
O2iii—Pr1—Pr1ix40.62 (6)Sb1xvi—Pr3—Pr1xvi64.679 (9)
O1iv—Pr1—Pr1ix115.47 (2)Sb2xvii—Pr3—Pr1xvi102.054 (8)
Sb2v—Pr1—Pr1ix119.557 (9)Sb2xviii—Pr3—Pr1xvi107.542 (8)
Sb2vi—Pr1—Pr1ix66.462 (7)Sb2—Pr3—Pr1xvi146.810 (7)
Pr1vii—Pr1—Pr1ix161.595 (10)Sb2xix—Pr3—Pr1xvi58.616 (6)
Pr1viii—Pr1—Pr1ix71.606 (10)O2—Pr3—Pr1xx33.98 (6)
O2i—Pr1—Pr3i37.07 (7)Sb1xvi—Pr3—Pr1xx111.773 (11)
O2ii—Pr1—Pr3i120.86 (7)Sb2xvii—Pr3—Pr1xx56.225 (7)
O2iii—Pr1—Pr3i102.50 (7)Sb2xviii—Pr3—Pr1xx64.536 (7)
O1iv—Pr1—Pr3i103.03 (10)Sb2—Pr3—Pr1xx146.387 (7)
Sb2v—Pr1—Pr3i112.033 (8)Sb2xix—Pr3—Pr1xx101.365 (8)
Sb2vi—Pr1—Pr3i54.292 (6)Pr1xvi—Pr3—Pr1xx65.495 (6)
Pr1vii—Pr1—Pr3i68.098 (5)O2—Pr3—Pr1xxi32.11 (7)
Pr1viii—Pr1—Pr3i112.675 (4)Sb1xvi—Pr3—Pr1xxi60.717 (9)
Pr1ix—Pr1—Pr3i118.991 (8)Sb2xvii—Pr3—Pr1xxi108.612 (8)
O2i—Pr1—Pr3ii120.24 (7)Sb2xviii—Pr3—Pr1xxi55.235 (6)
O2ii—Pr1—Pr3ii35.07 (7)Sb2—Pr3—Pr1xxi142.768 (7)
O2iii—Pr1—Pr3ii102.00 (6)Sb2xix—Pr3—Pr1xxi111.744 (8)
O1iv—Pr1—Pr3ii107.46 (12)Pr1xvi—Pr3—Pr1xxi53.175 (6)
Sb2v—Pr1—Pr3ii53.065 (6)Pr1xx—Pr3—Pr1xxi52.667 (6)
Sb2vi—Pr1—Pr3ii107.823 (7)Pr3x—Sb1—Pr3xi89.381 (2)
Pr1vii—Pr1—Pr3ii119.452 (5)Pr3x—Sb1—Pr3i89.380 (2)
Pr1viii—Pr1—Pr3ii105.073 (6)Pr3xi—Sb1—Pr3i168.06 (2)
Pr1ix—Pr1—Pr3ii66.831 (6)Pr3x—Sb1—Pr3iii168.06 (2)
Pr3i—Pr1—Pr3ii141.674 (8)Pr3xi—Sb1—Pr3iii89.380 (2)
O2i—Pr1—Pr2iv102.24 (7)Pr3i—Sb1—Pr3iii89.379 (2)
O2ii—Pr1—Pr2iv104.08 (7)Pr3x—Sb1—Pr284.030 (10)
O2iii—Pr1—Pr2iv99.52 (6)Pr3xi—Sb1—Pr284.030 (10)
O1iv—Pr1—Pr2iv36.19 (12)Pr3i—Sb1—Pr284.030 (10)
Sb2v—Pr1—Pr2iv52.428 (5)Pr3iii—Sb1—Pr284.030 (10)
Sb2vi—Pr1—Pr2iv170.988 (7)Pr3xix—Sb2—Pr3xviii164.423 (13)
Pr1vii—Pr1—Pr2iv63.634 (3)Pr3xix—Sb2—Pr383.797 (8)
Pr1viii—Pr1—Pr2iv63.634 (3)Pr3xviii—Sb2—Pr380.655 (8)
Pr1ix—Pr1—Pr2iv105.835 (8)Pr3xix—Sb2—Pr2xvi88.700 (6)
Pr3i—Pr1—Pr2iv131.474 (7)Pr3xviii—Sb2—Pr2xvi88.634 (6)
Pr3ii—Pr1—Pr2iv71.771 (6)Pr3—Sb2—Pr2xvi83.629 (10)
O1—Pr2—Sb2x84.488 (9)Pr3xix—Sb2—Pr3xvii91.358 (7)
O1—Pr2—Sb2xi84.488 (9)Pr3xviii—Sb2—Pr3xvii87.747 (8)
Sb2x—Pr2—Sb2xi89.472 (2)Pr3—Sb2—Pr3xvii83.140 (8)
O1—Pr2—Sb2i84.488 (9)Pr2xvi—Sb2—Pr3xvii166.684 (13)
Sb2x—Pr2—Sb2i89.472 (2)Pr3xix—Sb2—Pr1xxii70.710 (7)
Sb2xi—Pr2—Sb2i168.976 (18)Pr3xviii—Sb2—Pr1xxii122.846 (9)
O1—Pr2—Sb2iii84.488 (9)Pr3—Sb2—Pr1xxii145.049 (8)
Sb2x—Pr2—Sb2iii168.976 (18)Pr2xvi—Sb2—Pr1xxii72.586 (9)
Sb2xi—Pr2—Sb2iii89.471 (2)Pr3xvii—Sb2—Pr1xxii119.899 (9)
Sb2i—Pr2—Sb2iii89.470 (2)Pr3xix—Sb2—Pr1xxiii119.611 (9)
O1—Pr2—Sb1180.0Pr3xviii—Sb2—Pr1xxiii74.199 (7)
Sb2x—Pr2—Sb195.512 (9)Pr3—Sb2—Pr1xxiii141.254 (8)
Sb2xi—Pr2—Sb195.512 (9)Pr2xvi—Sb2—Pr1xxiii123.984 (11)
Sb2i—Pr2—Sb195.512 (9)Pr3xvii—Sb2—Pr1xxiii67.092 (7)
Sb2iii—Pr2—Sb195.512 (9)Pr1xxii—Sb2—Pr1xxiii73.573 (7)
O1—Pr2—Pr1xii38.906 (5)Pr2—O1—Pr1xii104.90 (12)
Sb2x—Pr2—Pr1xii63.175 (7)Pr2—O1—Pr1xiii104.90 (12)
Sb2xi—Pr2—Pr1xii54.986 (7)Pr1xii—O1—Pr1xiii86.21 (6)
Sb2i—Pr2—Pr1xii115.106 (11)Pr2—O1—Pr1xiv104.90 (12)
Sb2iii—Pr2—Pr1xii107.565 (10)Pr1xii—O1—Pr1xiv86.21 (6)
Sb1—Pr2—Pr1xii141.094 (5)Pr1xiii—O1—Pr1xiv150.2 (2)
O1—Pr2—Pr1xiii38.907 (5)Pr2—O1—Pr1xv104.90 (12)
Sb2x—Pr2—Pr1xiii54.986 (7)Pr1xii—O1—Pr1xv150.2 (2)
Sb2xi—Pr2—Pr1xiii107.566 (10)Pr1xiii—O1—Pr1xv86.21 (6)
Sb2i—Pr2—Pr1xiii63.174 (7)Pr1xiv—O1—Pr1xv86.21 (6)
Sb2iii—Pr2—Pr1xiii115.105 (11)Pr1xvi—O2—Pr1xx127.69 (12)
Sb1—Pr2—Pr1xiii141.093 (5)Pr1xvi—O2—Pr3107.56 (10)
Pr1xii—Pr2—Pr1xiii52.732 (6)Pr1xx—O2—Pr3110.96 (10)
O1—Pr2—Pr1xiv38.907 (5)Pr1xvi—O2—Pr1xxi96.83 (9)
Sb2x—Pr2—Pr1xiv115.106 (11)Pr1xx—O2—Pr1xxi96.35 (10)
Sb2xi—Pr2—Pr1xiv63.174 (7)Pr3—O2—Pr1xxi116.47 (11)
Symmetry codes: (i) x, y1, z; (ii) y1/2, x, z+2; (iii) y+3/2, x, z; (iv) x, y, z+1; (v) x, y1, z+1; (vi) y1/2, x, z+1; (vii) y, x+1/2, z; (viii) y+1/2, x, z; (ix) x+1, y, z+2; (x) y1, x+1/2, z; (xi) x+1/2, y+3/2, z; (xii) x+1/2, y+1/2, z1; (xiii) y, x+1/2, z1; (xiv) y+1/2, x, z1; (xv) x, y, z1; (xvi) x, y+1, z; (xvii) y+1, x+1/2, z+1; (xviii) x, y+2, z+1; (xix) y1/2, x+1, z+1; (xx) y, x+1/2, z+2; (xxi) y, x+3/2, z; (xxii) x, y+1, z1; (xxiii) y, x+1/2, z+1.
(sm9sb5o5) top
Crystal data top
Sm9Sb5O5Dx = 7.497 Mg m3
Mr = 2041.90Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 7294 reflections
Hall symbol: -P 4aθ = 2.3–36.8°
a = 10.0341 (4) ŵ = 36.01 mm1
c = 8.9839 (3) ÅT = 296 K
V = 904.53 (6) Å3Block, metallic-dark-black
Z = 20.05 × 0.05 × 0.03 mm
F(000) = 1706
Data collection top
SMART APEX II, Bruker AXS
diffractometer
4116 independent reflections
Radiation source: fine-focus sealed tube3266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω–scansθmax = 37.0°, θmin = 2.3°
Absorption correction: multi-scan
TWINABS (G. Sheldrick 2007)
h = 1112
Tmin = 0.185, Tmax = 0.339k = 016
31237 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0114P)2 + 3.5785P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.004
S = 1.08Δρmax = 2.05 e Å3
4116 reflectionsΔρmin = 1.87 e Å3
48 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00034 (2)
Crystal data top
Sm9Sb5O5Z = 2
Mr = 2041.90Mo Kα radiation
Tetragonal, P4/nµ = 36.01 mm1
a = 10.0341 (4) ÅT = 296 K
c = 8.9839 (3) Å0.05 × 0.05 × 0.03 mm
V = 904.53 (6) Å3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
4116 independent reflections
Absorption correction: multi-scan
TWINABS (G. Sheldrick 2007)
3266 reflections with I > 2σ(I)
Tmin = 0.185, Tmax = 0.339Rint = 0.050
31237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02948 parameters
wR(F2) = 0.0570 restraints
S = 1.08Δρmax = 2.05 e Å3
4116 reflectionsΔρmin = 1.87 e Å3
Special details top

Experimental. due to the multiple twinned crystal no numerical absorption is possible

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement as a twin with the twinning matrices T1=1 0 0 / 0 1 0/ 0 0 1, T2=3/5 4/5 0 / −4/5 3/5 0 / 0 0 1, Respective volume fractions are t1=0.5680 (6); t2=0.4320 (6).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.331062 (15)0.022362 (16)0.99790 (2)0.00766 (4)
Sm20.25000.25000.33213 (4)0.00877 (6)
Sm30.146291 (17)0.954159 (16)0.65454 (2)0.00861 (4)
Sb10.25000.25000.68789 (6)0.01000 (8)
Sb20.15360 (2)0.94649 (2)0.29929 (3)0.00843 (5)
O10.25000.25000.0664 (6)0.0150 (10)
O20.1290 (2)0.9749 (3)0.9108 (3)0.0098 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.00639 (7)0.00935 (7)0.00723 (6)0.00003 (5)0.00033 (6)0.00052 (6)
Sm20.01017 (9)0.01017 (9)0.00598 (14)0.0000.0000.000
Sm30.01015 (8)0.01027 (7)0.00542 (7)0.00046 (5)0.00018 (5)0.00048 (5)
Sb10.00931 (11)0.00931 (11)0.01137 (19)0.0000.0000.000
Sb20.00862 (9)0.00972 (9)0.00694 (10)0.00029 (6)0.00019 (7)0.00004 (7)
O10.0160 (15)0.0160 (15)0.013 (2)0.0000.0000.000
O20.0086 (10)0.0137 (11)0.0070 (10)0.0014 (8)0.0008 (8)0.0012 (9)
Geometric parameters (Å, º) top
Sm1—O2i2.225 (2)Sm3—Sb2xviii3.1970 (3)
Sm1—O2ii2.250 (2)Sm3—Sb2xix3.2272 (3)
Sm1—O2iii2.355 (3)Sm3—Sm1xvi3.6635 (3)
Sm1—O1iv2.5016 (14)Sm3—Sm1xx3.7602 (3)
Sm1—Sb2v3.3289 (3)Sm3—Sm1xxi3.9631 (3)
Sm1—Sb2vi3.4040 (3)Sb1—Sm3x3.1598 (2)
Sm1—Sm1vii3.4201 (3)Sb1—Sm3xi3.1598 (2)
Sm1—Sm1viii3.4289 (3)Sb1—Sm3i3.1598 (2)
Sm1—Sm1ix3.4290 (3)Sb1—Sm3iii3.1598 (2)
Sm1—Sm3i3.6635 (3)Sb1—Sm1xxii3.6927 (4)
Sm1—Sb13.6927 (4)Sb1—Sm1viii3.6927 (4)
Sm1—Sm3ii3.7602 (3)Sb1—Sm1ix3.6927 (4)
Sm2—O12.387 (6)Sb2—Sm3xix3.1835 (3)
Sm2—Sb13.1962 (6)Sb2—Sm3xviii3.1970 (3)
Sm2—Sb2x3.2090 (2)Sb2—Sm2xvi3.2090 (2)
Sm2—Sb2xi3.2090 (2)Sb2—Sm3xvii3.2272 (3)
Sm2—Sb2i3.2090 (2)Sb2—Sm1xxiii3.3289 (3)
Sm2—Sb2iii3.2090 (2)Sb2—Sm1xxiv3.4040 (3)
Sm2—Sm1xii3.8593 (4)O1—Sm1xii2.5016 (14)
Sm2—Sm1xiii3.8593 (4)O1—Sm1xiii2.5016 (14)
Sm2—Sm1xiv3.8594 (4)O1—Sm1xv2.5016 (14)
Sm2—Sm1xv3.8594 (4)O1—Sm1xiv2.5016 (14)
Sm3—O22.318 (3)O2—Sm1xvi2.225 (2)
Sm3—Sb1xvi3.1598 (2)O2—Sm1xx2.250 (2)
Sm3—Sb2xvii3.1834 (3)O2—Sm1xxi2.355 (3)
Sm3—Sb23.1933 (3)
O2i—Sm1—O2ii124.64 (13)Sm1xiv—Sm2—Sm1xv52.750 (6)
O2i—Sm1—O2iii137.20 (13)O2—Sm3—Sb1xvi81.15 (6)
O2ii—Sm1—O2iii84.11 (9)O2—Sm3—Sb2xvii86.20 (6)
O2i—Sm1—O1iv89.18 (8)Sb1xvi—Sm3—Sb2xvii166.891 (13)
O2ii—Sm1—O1iv137.32 (13)O2—Sm3—Sb2175.19 (7)
O2iii—Sm1—O1iv86.32 (8)Sb1xvi—Sm3—Sb296.307 (11)
O2i—Sm1—Sb2v75.50 (7)Sb2xvii—Sm3—Sb296.553 (8)
O2ii—Sm1—Sb2v83.81 (7)O2—Sm3—Sb2xviii76.86 (6)
O2iii—Sm1—Sb2v144.71 (7)Sb1xvi—Sm3—Sb2xviii90.271 (6)
O1iv—Sm1—Sb2v80.49 (10)Sb2xvii—Sm3—Sb2xviii90.186 (8)
O2i—Sm1—Sb2vi85.60 (7)Sb2—Sm3—Sb2xviii99.139 (7)
O2ii—Sm1—Sb2vi73.60 (7)O2—Sm3—Sb2xix88.42 (6)
O2iii—Sm1—Sb2vi72.17 (6)Sb1xvi—Sm3—Sb2xix89.724 (6)
O1iv—Sm1—Sb2vi141.01 (12)Sb2xvii—Sm3—Sb2xix86.490 (7)
Sb2v—Sm1—Sb2vi134.534 (8)Sb2—Sm3—Sb2xix95.680 (8)
O2i—Sm1—Sm1vii151.54 (7)Sb2xviii—Sm3—Sb2xix165.091 (11)
O2ii—Sm1—Sm1vii43.24 (7)O2—Sm3—Sm1xvi35.40 (6)
O2iii—Sm1—Sm1vii40.87 (6)Sb1xvi—Sm3—Sm1xvi65.039 (9)
O1iv—Sm1—Sm1vii116.07 (2)Sb2xvii—Sm3—Sm1xvi102.429 (7)
Sb2v—Sm1—Sm1vii119.424 (9)Sb2—Sm3—Sm1xvi146.556 (7)
Sb2vi—Sm1—Sm1vii66.628 (7)Sb2xviii—Sm3—Sm1xvi107.989 (7)
O2i—Sm1—Sm1viii42.99 (7)Sb2xix—Sm3—Sm1xvi58.800 (6)
O2ii—Sm1—Sm1viii150.34 (7)O2—Sm3—Sm1xx34.01 (6)
O2iii—Sm1—Sm1viii123.50 (6)Sb1xvi—Sm3—Sm1xx112.214 (11)
O1iv—Sm1—Sm1viii46.74 (3)Sb2xvii—Sm3—Sm1xx56.563 (6)
Sb2v—Sm1—Sm1viii67.350 (5)Sb2—Sm3—Sm1xx146.341 (7)
Sb2vi—Sm1—Sm1viii121.995 (5)Sb2xviii—Sm3—Sm1xx64.601 (6)
Sm1vii—Sm1—Sm1viii162.131 (8)Sb2xix—Sm3—Sm1xx101.727 (7)
O2i—Sm1—Sm1ix125.75 (7)Sm1xvi—Sm3—Sm1xx65.790 (5)
O2ii—Sm1—Sm1ix109.55 (7)O2—Sm3—Sm1xxi32.29 (7)
O2iii—Sm1—Sm1ix40.11 (6)Sb1xvi—Sm3—Sm1xxi61.228 (9)
O1iv—Sm1—Sm1ix46.74 (3)Sb2xvii—Sm3—Sm1xxi108.782 (7)
Sb2v—Sm1—Sm1ix115.851 (5)Sb2—Sm3—Sm1xxi142.963 (7)
Sb2vi—Sm1—Sm1ix108.822 (6)Sb2xviii—Sm3—Sm1xxi55.535 (6)
Sm1vii—Sm1—Sm1ix72.142 (8)Sb2xix—Sm3—Sm1xxi112.024 (7)
Sm1viii—Sm1—Sm1ix90.0Sm1xvi—Sm3—Sm1xxi53.260 (5)
O2i—Sm1—Sm3i37.13 (7)Sm1xx—Sm3—Sm1xxi52.488 (5)
O2ii—Sm1—Sm3i120.37 (7)Sm3x—Sb1—Sm3xi89.485 (2)
O2iii—Sm1—Sm3i102.91 (7)Sm3x—Sb1—Sm3i89.485 (2)
O1iv—Sm1—Sm3i102.31 (11)Sm3xi—Sb1—Sm3i169.12 (2)
Sb2v—Sm1—Sm3i111.805 (7)Sm3x—Sb1—Sm3iii169.12 (2)
Sb2vi—Sm1—Sm3i54.188 (6)Sm3xi—Sb1—Sm3iii89.485 (2)
Sm1vii—Sm1—Sm3i119.107 (9)Sm3i—Sb1—Sm3iii89.484 (2)
Sm1viii—Sm1—Sm3i67.850 (4)Sm3x—Sb1—Sm284.559 (10)
Sm1ix—Sm1—Sm3i112.694 (4)Sm3xi—Sb1—Sm284.559 (10)
O2i—Sm1—Sb170.51 (7)Sm3i—Sb1—Sm284.559 (10)
O2ii—Sm1—Sb1146.49 (7)Sm3iii—Sb1—Sm284.559 (10)
O2iii—Sm1—Sb169.55 (6)Sm3x—Sb1—Sm1xxii70.177 (6)
O1iv—Sm1—Sb163.20 (13)Sm3xi—Sb1—Sm1xxii64.084 (7)
Sb2v—Sm1—Sb1129.577 (7)Sm3i—Sb1—Sm1xxii125.456 (12)
Sb2vi—Sm1—Sb178.710 (8)Sm3iii—Sb1—Sm1xxii118.826 (11)
Sm1vii—Sm1—Sb1107.929 (8)Sm2—Sb1—Sm1xxii138.958 (6)
Sm1viii—Sm1—Sb162.336 (4)Sm3x—Sb1—Sm1viii64.085 (6)
Sm1ix—Sm1—Sb162.336 (4)Sm3xi—Sb1—Sm1viii118.827 (11)
Sm3i—Sm1—Sb150.876 (6)Sm3i—Sb1—Sm1viii70.176 (6)
O2i—Sm1—Sm3ii119.67 (7)Sm3iii—Sb1—Sm1viii125.455 (12)
O2ii—Sm1—Sm3ii35.19 (7)Sm2—Sb1—Sm1viii138.958 (6)
O2iii—Sm1—Sm3ii102.05 (6)Sm1xxii—Sb1—Sm1viii55.329 (7)
O1iv—Sm1—Sm3ii108.26 (13)Sm3x—Sb1—Sm1118.826 (11)
Sb2v—Sm1—Sm3ii52.942 (6)Sm3xi—Sb1—Sm1125.456 (12)
Sb2vi—Sm1—Sm3ii107.824 (7)Sm3i—Sb1—Sm164.084 (7)
Sm1vii—Sm1—Sm3ii66.806 (6)Sm3iii—Sb1—Sm170.176 (6)
Sm1viii—Sm1—Sm3ii119.326 (4)Sm2—Sb1—Sm1138.958 (6)
Sm1ix—Sm1—Sm3ii105.406 (5)Sm1xxii—Sb1—Sm182.084 (12)
Sm3i—Sm1—Sm3ii141.387 (7)Sm1viii—Sb1—Sm155.329 (7)
Sb1—Sm1—Sm3ii167.700 (7)Sm3x—Sb1—Sm1ix125.456 (12)
O1—Sm2—Sb1180.0Sm3xi—Sb1—Sm1ix70.176 (6)
O1—Sm2—Sb2x84.725 (8)Sm3i—Sb1—Sm1ix118.826 (11)
Sb1—Sm2—Sb2x95.275 (8)Sm3iii—Sb1—Sm1ix64.084 (6)
O1—Sm2—Sb2xi84.725 (8)Sm2—Sb1—Sm1ix138.958 (6)
Sb1—Sm2—Sb2xi95.275 (8)Sm1xxii—Sb1—Sm1ix55.329 (7)
Sb2x—Sm2—Sb2xi89.516 (1)Sm1viii—Sb1—Sm1ix82.084 (12)
O1—Sm2—Sb2i84.725 (8)Sm1—Sb1—Sm1ix55.329 (7)
Sb1—Sm2—Sb2i95.275 (8)Sm3xix—Sb2—Sm384.179 (7)
Sb2x—Sm2—Sb2i89.516 (1)Sm3xix—Sb2—Sm3xviii165.011 (11)
Sb2xi—Sm2—Sb2i169.451 (16)Sm3—Sb2—Sm3xviii80.862 (7)
O1—Sm2—Sb2iii84.725 (8)Sm3xix—Sb2—Sm2xvi88.854 (6)
Sb1—Sm2—Sb2iii95.275 (8)Sm3—Sb2—Sm2xvi83.809 (9)
Sb2x—Sm2—Sb2iii169.451 (16)Sm3xviii—Sb2—Sm2xvi88.617 (6)
Sb2xi—Sm2—Sb2iii89.515 (1)Sm3xix—Sb2—Sm3xvii91.588 (7)
Sb2i—Sm2—Sb2iii89.515 (1)Sm3—Sb2—Sm3xvii83.473 (7)
O1—Sm2—Sm1xii38.921 (5)Sm3xviii—Sb2—Sm3xvii87.650 (8)
Sb1—Sm2—Sm1xii141.079 (5)Sm2xvi—Sb2—Sm3xvii167.163 (12)
Sb2x—Sm2—Sm1xii55.272 (6)Sm3xix—Sb2—Sm1xxiii70.495 (6)
Sb2xi—Sm2—Sm1xii107.872 (9)Sm3—Sb2—Sm1xxiii145.053 (9)
Sb2i—Sm2—Sm1xii63.260 (6)Sm3xviii—Sb2—Sm1xxiii122.528 (8)
Sb2iii—Sm2—Sm1xii115.254 (10)Sm2xvi—Sb2—Sm1xxiii72.331 (8)
O1—Sm2—Sm1xiii38.921 (5)Sm3xvii—Sb2—Sm1xxiii119.818 (8)
Sb1—Sm2—Sm1xiii141.079 (5)Sm3xix—Sb2—Sm1xxiv119.610 (8)
Sb2x—Sm2—Sm1xiii63.260 (6)Sm3—Sb2—Sm1xxiv141.279 (9)
Sb2xi—Sm2—Sm1xiii55.272 (6)Sm3xviii—Sb2—Sm1xxiv73.719 (7)
Sb2i—Sm2—Sm1xiii115.255 (10)Sm2xvi—Sb2—Sm1xxiv123.461 (10)
Sb2iii—Sm2—Sm1xiii107.872 (9)Sm3xvii—Sb2—Sm1xxiv67.011 (6)
Sm1xii—Sm2—Sm1xiii52.750 (6)Sm1xxiii—Sb2—Sm1xxiv73.580 (7)
O1—Sm2—Sm1xiv38.921 (5)Sm2—O1—Sm1xii104.25 (13)
Sb1—Sm2—Sm1xiv141.079 (5)Sm2—O1—Sm1xiii104.25 (13)
Sb2x—Sm2—Sm1xiv107.872 (9)Sm1xii—O1—Sm1xiii86.53 (6)
Sb2xi—Sm2—Sm1xiv115.254 (10)Sm2—O1—Sm1xv104.25 (13)
Sb2i—Sm2—Sm1xiv55.272 (6)Sm1xii—O1—Sm1xv151.5 (3)
Sb2iii—Sm2—Sm1xiv63.260 (6)Sm1xiii—O1—Sm1xv86.53 (6)
Sm1xii—Sm2—Sm1xiv52.750 (6)Sm2—O1—Sm1xiv104.25 (13)
Sm1xiii—Sm2—Sm1xiv77.843 (9)Sm1xii—O1—Sm1xiv86.53 (6)
O1—Sm2—Sm1xv38.921 (5)Sm1xiii—O1—Sm1xiv151.5 (3)
Sb1—Sm2—Sm1xv141.079 (5)Sm1xv—O1—Sm1xiv86.53 (6)
Sb2x—Sm2—Sm1xv115.255 (10)Sm1xvi—O2—Sm1xx128.62 (13)
Sb2xi—Sm2—Sm1xv63.260 (6)Sm1xvi—O2—Sm3107.47 (10)
Sb2i—Sm2—Sm1xv107.872 (9)Sm1xx—O2—Sm3110.80 (10)
Sb2iii—Sm2—Sm1xv55.272 (6)Sm1xvi—O2—Sm1xxi96.90 (9)
Sm1xii—Sm2—Sm1xv77.843 (9)Sm1xx—O2—Sm1xxi95.89 (9)
Sm1xiii—Sm2—Sm1xv52.750 (6)Sm3—O2—Sm1xxi115.99 (11)
Symmetry codes: (i) x, y1, z; (ii) y1/2, x, z+2; (iii) y+3/2, x, z; (iv) x, y, z+1; (v) x, y1, z+1; (vi) y1/2, x, z+1; (vii) x+1, y, z+2; (viii) y, x+1/2, z; (ix) y+1/2, x, z; (x) y1, x+1/2, z; (xi) x+1/2, y+3/2, z; (xii) y, x+1/2, z1; (xiii) x+1/2, y+1/2, z1; (xiv) x, y, z1; (xv) y+1/2, x, z1; (xvi) x, y+1, z; (xvii) y+1, x+1/2, z+1; (xviii) x, y+2, z+1; (xix) y1/2, x+1, z+1; (xx) y, x+1/2, z+2; (xxi) y, x+3/2, z; (xxii) x+1/2, y+1/2, z; (xxiii) x, y+1, z1; (xxiv) y, x+1/2, z+1.
(dy9sb5o5) top
Crystal data top
Dy9Sb5O5Dx = 8.388 Mg m3
Mr = 2151.25Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 9912 reflections
Hall symbol: -P 4aθ = 2.3–35.4°
a = 9.8389 (3) ŵ = 46.70 mm1
c = 8.7986 (3) ÅT = 296 K
V = 851.74 (5) Å3Block, metallic-dark-black
Z = 20.06 × 0.04 × 0.02 mm
F(000) = 1778
Data collection top
SMART APEX II, Bruker AXS
diffractometer
3725 independent reflections
Radiation source: fine-focus sealed tube3165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω–scansθmax = 36.4°, θmin = 2.3°
Absorption correction: multi-scan
TWINABS (G. Sheldrick 2007)
h = 1111
Tmin = 0.143, Tmax = 0.391k = 016
39009 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0188P)2 + 4.6683P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.08Δρmax = 2.74 e Å3
3725 reflectionsΔρmin = 2.42 e Å3
48 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00063 (3)
0 constraints
Crystal data top
Dy9Sb5O5Z = 2
Mr = 2151.25Mo Kα radiation
Tetragonal, P4/nµ = 46.70 mm1
a = 9.8389 (3) ÅT = 296 K
c = 8.7986 (3) Å0.06 × 0.04 × 0.02 mm
V = 851.74 (5) Å3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
3725 independent reflections
Absorption correction: multi-scan
TWINABS (G. Sheldrick 2007)
3165 reflections with I > 2σ(I)
Tmin = 0.143, Tmax = 0.391Rint = 0.051
39009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02748 parameters
wR(F2) = 0.0580 restraints
S = 1.08Δρmax = 2.74 e Å3
3725 reflectionsΔρmin = 2.42 e Å3
Special details top

Experimental. due to the multiple twinned crystal no numerical absorption is possible

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement as a twin with the twinning matrices T1=1 0 0 / 0 1 0/ 0 0 1, T2=3/5 4/5 0 / −4/5 3/5 0 / 0 0 1, Respective volume fractions are t1=0.5542 (6); t2=0.4468 (6).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.331278 (16)0.022614 (17)0.99754 (2)0.00693 (4)
Dy20.25000.25000.32965 (4)0.00803 (6)
Dy30.145819 (17)0.954888 (16)0.65531 (2)0.00763 (4)
Sb10.25000.25000.68476 (6)0.00896 (8)
Sb20.15430 (2)0.94561 (2)0.30091 (3)0.00731 (5)
O10.25000.25000.0641 (8)0.0181 (12)
O20.1294 (3)0.9751 (3)0.9116 (3)0.0086 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.00535 (6)0.00841 (7)0.00702 (7)0.00002 (5)0.00046 (5)0.00073 (6)
Dy20.00922 (8)0.00922 (8)0.00566 (14)0.0000.0000.000
Dy30.00906 (7)0.00925 (7)0.00458 (8)0.00057 (5)0.00012 (5)0.00041 (5)
Sb10.00795 (11)0.00795 (11)0.0110 (2)0.0000.0000.000
Sb20.00743 (9)0.00871 (9)0.00579 (11)0.00023 (6)0.00027 (7)0.00031 (7)
O10.0171 (17)0.0171 (17)0.020 (3)0.0000.0000.000
O20.0090 (10)0.0096 (11)0.0074 (11)0.0007 (9)0.0022 (9)0.0032 (9)
Geometric parameters (Å, º) top
Dy1—O2i2.176 (3)Dy3—Sb2xviii3.1347 (3)
Dy1—O2ii2.209 (3)Dy3—Sb2xix3.1627 (3)
Dy1—O2iii2.303 (3)Dy3—Dy1xvi3.5834 (3)
Dy1—O1iv2.4471 (17)Dy3—Dy1xx3.6816 (3)
Dy1—Sb2v3.2757 (3)Dy3—Dy1xxi3.8682 (3)
Dy1—Sb2vi3.3453 (3)Sb1—Dy3x3.0901 (2)
Dy1—Dy1vii3.3501 (3)Sb1—Dy3i3.0901 (2)
Dy1—Dy1viii3.3600 (2)Sb1—Dy3xi3.0901 (2)
Dy1—Dy1ix3.3600 (2)Sb1—Dy3iii3.0901 (2)
Dy1—Dy3i3.5834 (3)Sb1—Dy1viii3.6357 (5)
Dy1—Sb13.6357 (5)Sb1—Dy1xxii3.6357 (5)
Dy1—Dy3ii3.6817 (3)Sb1—Dy1ix3.6357 (5)
Dy2—O12.336 (7)Sb2—Dy3xix3.1152 (3)
Dy2—Sb13.1245 (6)Sb2—Dy3xviii3.1346 (3)
Dy2—Sb2x3.1495 (2)Sb2—Dy2xvi3.1495 (2)
Dy2—Sb2i3.1495 (2)Sb2—Dy3xvii3.1627 (3)
Dy2—Sb2xi3.1496 (2)Sb2—Dy1xxiii3.2758 (3)
Dy2—Sb2iii3.1496 (2)Sb2—Dy1xxiv3.3453 (3)
Dy2—Dy1xii3.7661 (3)O1—Dy1xii2.4470 (17)
Dy2—Dy1xiii3.7661 (3)O1—Dy1xiii2.4471 (17)
Dy2—Dy1xiv3.7661 (3)O1—Dy1xiv2.4471 (17)
Dy2—Dy1xv3.7661 (3)O1—Dy1xv2.4471 (17)
Dy3—O22.270 (3)O2—Dy1xvi2.176 (3)
Dy3—Sb1xvi3.0901 (2)O2—Dy1xx2.209 (3)
Dy3—Sb2xvii3.1151 (3)O2—Dy1xxi2.303 (3)
Dy3—Sb23.1207 (3)
O2i—Dy1—O2ii124.42 (14)Dy1xiv—Dy2—Dy1xv52.985 (6)
O2i—Dy1—O2iii137.64 (15)O2—Dy3—Sb1xvi81.83 (7)
O2ii—Dy1—O2iii84.12 (10)O2—Dy3—Sb2xvii86.55 (7)
O2i—Dy1—O1iv88.92 (10)Sb1xvi—Dy3—Sb2xvii167.824 (14)
O2ii—Dy1—O1iv137.89 (16)O2—Dy3—Sb2175.78 (7)
O2iii—Dy1—O1iv86.09 (9)Sb1xvi—Dy3—Sb295.877 (12)
O2i—Dy1—Sb2v75.41 (7)Sb2xvii—Dy3—Sb295.941 (8)
O2ii—Dy1—Sb2v83.64 (7)O2—Dy3—Sb2xviii77.49 (7)
O2iii—Dy1—Sb2v144.35 (7)Sb1xvi—Dy3—Sb2xviii90.500 (6)
O1iv—Dy1—Sb2v80.95 (13)Sb2xvii—Dy3—Sb2xviii90.533 (9)
O2i—Dy1—Sb2vi85.56 (7)Sb2—Dy3—Sb2xviii99.039 (8)
O2ii—Dy1—Sb2vi73.51 (7)O2—Dy3—Sb2xix88.58 (7)
O2iii—Dy1—Sb2vi72.64 (7)Sb1xvi—Dy3—Sb2xix89.977 (6)
O1iv—Dy1—Sb2vi140.68 (16)Sb2xvii—Dy3—Sb2xix86.087 (7)
Sb2v—Dy1—Sb2vi134.269 (9)Sb2—Dy3—Sb2xix94.980 (8)
O2i—Dy1—Dy1vii151.72 (7)Sb2xviii—Dy3—Sb2xix165.849 (12)
O2ii—Dy1—Dy1vii43.14 (7)O2—Dy3—Dy1xvi35.41 (7)
O2iii—Dy1—Dy1vii40.98 (7)Sb1xvi—Dy3—Dy1xvi65.537 (10)
O1iv—Dy1—Dy1vii116.24 (2)Sb2xvii—Dy3—Dy1xvi102.691 (8)
Sb2v—Dy1—Dy1vii119.049 (9)Sb2—Dy3—Dy1xvi146.250 (8)
Sb2vi—Dy1—Dy1vii66.905 (7)Sb2xviii—Dy3—Dy1xvi108.564 (8)
O2i—Dy1—Dy1viii42.84 (7)Sb2xix—Dy3—Dy1xvi59.064 (6)
O2ii—Dy1—Dy1viii150.33 (7)O2—Dy3—Dy1xx34.17 (7)
O2iii—Dy1—Dy1viii123.53 (6)Sb1xvi—Dy3—Dy1xx112.964 (11)
O1iv—Dy1—Dy1viii46.64 (4)Sb2xvii—Dy3—Dy1xx56.895 (6)
Sb2v—Dy1—Dy1viii67.575 (6)Sb2—Dy3—Dy1xx146.237 (8)
Sb2vi—Dy1—Dy1viii121.773 (6)Sb2xviii—Dy3—Dy1xx64.990 (6)
Dy1vii—Dy1—Dy1viii162.287 (9)Sb2xix—Dy3—Dy1xx101.920 (7)
O2i—Dy1—Dy1ix125.77 (7)Dy1xvi—Dy3—Dy1xx66.015 (5)
O2ii—Dy1—Dy1ix109.74 (7)O2—Dy3—Dy1xxi32.49 (7)
O2iii—Dy1—Dy1ix39.98 (7)Sb1xvi—Dy3—Dy1xxi61.810 (9)
O1iv—Dy1—Dy1ix46.64 (4)Sb2xvii—Dy3—Dy1xxi109.247 (7)
Sb2v—Dy1—Dy1ix115.879 (5)Sb2—Dy3—Dy1xxi143.333 (7)
Sb2vi—Dy1—Dy1ix109.051 (6)Sb2xviii—Dy3—Dy1xxi55.895 (6)
Dy1vii—Dy1—Dy1ix72.303 (9)Sb2xix—Dy3—Dy1xxi112.471 (7)
Dy1viii—Dy1—Dy1ix90.0Dy1xvi—Dy3—Dy1xxi53.438 (6)
O2i—Dy1—Dy3i37.19 (7)Dy1xx—Dy3—Dy1xxi52.614 (5)
O2ii—Dy1—Dy3i120.29 (8)Dy3x—Sb1—Dy3i89.598 (2)
O2iii—Dy1—Dy3i103.31 (7)Dy3x—Sb1—Dy3xi89.597 (2)
O1iv—Dy1—Dy3i101.82 (13)Dy3i—Sb1—Dy3xi170.38 (2)
Sb2v—Dy1—Dy3i111.781 (7)Dy3x—Sb1—Dy3iii170.38 (2)
Sb2vi—Dy1—Dy3i54.186 (6)Dy3i—Sb1—Dy3iii89.597 (2)
Dy1vii—Dy1—Dy3i119.392 (8)Dy3xi—Sb1—Dy3iii89.596 (2)
Dy1viii—Dy1—Dy3i67.624 (5)Dy3x—Sb1—Dy285.189 (11)
Dy1ix—Dy1—Dy3i112.702 (4)Dy3i—Sb1—Dy285.189 (11)
O2i—Dy1—Sb170.63 (7)Dy3xi—Sb1—Dy285.189 (11)
O2ii—Dy1—Sb1146.25 (7)Dy3iii—Sb1—Dy285.189 (11)
O2iii—Dy1—Sb169.68 (7)Dy3x—Sb1—Dy1viii63.783 (7)
O1iv—Dy1—Sb163.05 (16)Dy3i—Sb1—Dy1viii69.677 (7)
Sb2v—Dy1—Sb1129.956 (7)Dy3xi—Sb1—Dy1viii118.312 (12)
Sb2vi—Dy1—Sb178.461 (9)Dy3iii—Sb1—Dy1viii124.662 (13)
Dy1vii—Dy1—Sb1108.028 (8)Dy2—Sb1—Dy1viii139.196 (7)
Dy1viii—Dy1—Sb162.478 (4)Dy3x—Sb1—Dy1xxii69.677 (7)
Dy1ix—Dy1—Sb162.479 (4)Dy3i—Sb1—Dy1xxii124.663 (13)
Dy3i—Dy1—Sb150.680 (6)Dy3xi—Sb1—Dy1xxii63.783 (7)
O2i—Dy1—Dy3ii119.54 (7)Dy3iii—Sb1—Dy1xxii118.311 (12)
O2ii—Dy1—Dy3ii35.26 (7)Dy2—Sb1—Dy1xxii139.196 (6)
O2iii—Dy1—Dy3ii101.80 (7)Dy1viii—Sb1—Dy1xxii55.043 (8)
O1iv—Dy1—Dy3ii108.71 (16)Dy3x—Sb1—Dy1118.312 (12)
Sb2v—Dy1—Dy3ii52.806 (6)Dy3i—Sb1—Dy163.783 (7)
Sb2vi—Dy1—Dy3ii107.814 (7)Dy3xi—Sb1—Dy1124.661 (13)
Dy1vii—Dy1—Dy3ii66.554 (6)Dy3iii—Sb1—Dy169.677 (7)
Dy1viii—Dy1—Dy3ii119.418 (4)Dy2—Sb1—Dy1139.196 (7)
Dy1ix—Dy1—Dy3ii105.397 (5)Dy1viii—Sb1—Dy155.043 (8)
Dy3i—Dy1—Dy3ii141.412 (7)Dy1xxii—Sb1—Dy181.609 (13)
Sb1—Dy1—Dy3ii167.854 (7)Dy3x—Sb1—Dy1ix124.662 (13)
O1—Dy2—Sb1180.0Dy3i—Sb1—Dy1ix118.312 (12)
O1—Dy2—Sb2x85.395 (8)Dy3xi—Sb1—Dy1ix69.676 (7)
Sb1—Dy2—Sb2x94.605 (8)Dy3iii—Sb1—Dy1ix63.782 (7)
O1—Dy2—Sb2i85.395 (8)Dy2—Sb1—Dy1ix139.195 (6)
Sb1—Dy2—Sb2i94.605 (8)Dy1viii—Sb1—Dy1ix81.609 (13)
Sb2x—Dy2—Sb2i89.631 (1)Dy1xxii—Sb1—Dy1ix55.043 (8)
O1—Dy2—Sb2xi85.395 (8)Dy1—Sb1—Dy1ix55.043 (8)
Sb1—Dy2—Sb2xi94.605 (8)Dy3xix—Sb2—Dy384.853 (8)
Sb2x—Dy2—Sb2xi89.631 (1)Dy3xix—Sb2—Dy3xviii165.769 (12)
Sb2i—Dy2—Sb2xi170.789 (16)Dy3—Sb2—Dy3xviii80.961 (8)
O1—Dy2—Sb2iii85.395 (8)Dy3xix—Sb2—Dy2xvi88.902 (7)
Sb1—Dy2—Sb2iii94.605 (8)Dy3—Sb2—Dy2xvi84.259 (9)
Sb2x—Dy2—Sb2iii170.789 (16)Dy3xviii—Sb2—Dy2xvi88.555 (6)
Sb2i—Dy2—Sb2iii89.630 (1)Dy3xix—Sb2—Dy3xvii92.183 (7)
Sb2xi—Dy2—Sb2iii89.630 (1)Dy3—Sb2—Dy3xvii84.060 (8)
O1—Dy2—Dy1xii39.113 (5)Dy3xviii—Sb2—Dy3xvii87.497 (8)
Sb1—Dy2—Dy1xii140.887 (5)Dy2xvi—Sb2—Dy3xvii168.122 (12)
Sb2x—Dy2—Dy1xii55.689 (6)Dy3xix—Sb2—Dy1xxiii70.299 (7)
Sb2i—Dy2—Dy1xii63.782 (6)Dy3—Sb2—Dy1xxiii145.250 (9)
Sb2xi—Dy2—Dy1xii108.494 (9)Dy3xviii—Sb2—Dy1xxiii121.912 (9)
Sb2iii—Dy2—Dy1xii116.046 (10)Dy2xvi—Sb2—Dy1xxiii71.735 (8)
O1—Dy2—Dy1xiii39.113 (5)Dy3xvii—Sb2—Dy1xxiii119.702 (9)
Sb1—Dy2—Dy1xiii140.887 (5)Dy3xix—Sb2—Dy1xxiv119.599 (9)
Sb2x—Dy2—Dy1xiii63.782 (6)Dy3—Sb2—Dy1xxiv141.286 (9)
Sb2i—Dy2—Dy1xiii116.047 (10)Dy3xviii—Sb2—Dy1xxiv73.222 (7)
Sb2xi—Dy2—Dy1xiii55.688 (6)Dy2xvi—Sb2—Dy1xxiv122.570 (10)
Sb2iii—Dy2—Dy1xiii108.493 (9)Dy3xvii—Sb2—Dy1xxiv66.749 (6)
Dy1xii—Dy2—Dy1xiii52.986 (6)Dy1xxiii—Sb2—Dy1xxiv73.424 (7)
O1—Dy2—Dy1xiv39.114 (4)Dy2—O1—Dy1xii103.86 (16)
Sb1—Dy2—Dy1xiv140.887 (5)Dy2—O1—Dy1xiii103.86 (16)
Sb2x—Dy2—Dy1xiv108.494 (9)Dy1xii—O1—Dy1xiii86.71 (8)
Sb2i—Dy2—Dy1xiv55.688 (6)Dy2—O1—Dy1xiv103.86 (16)
Sb2xi—Dy2—Dy1xiv116.046 (10)Dy1xii—O1—Dy1xiv86.71 (8)
Sb2iii—Dy2—Dy1xiv63.781 (6)Dy1xiii—O1—Dy1xiv152.3 (3)
Dy1xii—Dy2—Dy1xiv52.985 (6)Dy2—O1—Dy1xv103.86 (16)
Dy1xiii—Dy2—Dy1xiv78.227 (9)Dy1xii—O1—Dy1xv152.3 (3)
O1—Dy2—Dy1xv39.114 (5)Dy1xiii—O1—Dy1xv86.71 (8)
Sb1—Dy2—Dy1xv140.886 (5)Dy1xiv—O1—Dy1xv86.71 (8)
Sb2x—Dy2—Dy1xv116.047 (10)Dy1xvi—O2—Dy1xx129.05 (14)
Sb2i—Dy2—Dy1xv108.493 (9)Dy1xvi—O2—Dy3107.40 (11)
Sb2xi—Dy2—Dy1xv63.781 (6)Dy1xx—O2—Dy3110.57 (11)
Sb2iii—Dy2—Dy1xv55.688 (6)Dy1xvi—O2—Dy1xxi97.17 (10)
Dy1xii—Dy2—Dy1xv78.227 (9)Dy1xx—O2—Dy1xxi95.88 (10)
Dy1xiii—Dy2—Dy1xv52.985 (6)Dy3—O2—Dy1xxi115.54 (12)
Symmetry codes: (i) x, y1, z; (ii) y1/2, x, z+2; (iii) y+3/2, x, z; (iv) x, y, z+1; (v) x, y1, z+1; (vi) y1/2, x, z+1; (vii) x+1, y, z+2; (viii) y, x+1/2, z; (ix) y+1/2, x, z; (x) y1, x+1/2, z; (xi) x+1/2, y+3/2, z; (xii) y, x+1/2, z1; (xiii) x+1/2, y+1/2, z1; (xiv) x, y, z1; (xv) y+1/2, x, z1; (xvi) x, y+1, z; (xvii) y+1, x+1/2, z+1; (xviii) x, y+2, z+1; (xix) y1/2, x+1, z+1; (xx) y, x+1/2, z+2; (xxi) y, x+3/2, z; (xxii) x+1/2, y+1/2, z; (xxiii) x, y+1, z1; (xxiv) y, x+1/2, z+1.

Experimental details

(pr9Sb5o5)(sm9sb5o5)(dy9sb5o5)
Crystal data
Chemical formulaPr9Sb5O5Sm9Sb5O5Dy9Sb5O5
Mr1956.942041.902151.25
Crystal system, space groupTetragonal, P4/nTetragonal, P4/nTetragonal, P4/n
Temperature (K)296296296
a, c (Å)10.2203 (3), 9.1508 (3)10.0341 (4), 8.9839 (3)9.8389 (3), 8.7986 (3)
V3)955.84 (5)904.53 (6)851.74 (5)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)29.3736.0146.70
Crystal size (mm)0.06 × 0.06 × 0.040.05 × 0.05 × 0.030.06 × 0.04 × 0.02
Data collection
DiffractometerSMART APEX I, Bruker AXS
diffractometer
SMART APEX II, Bruker AXS
diffractometer
SMART APEX II, Bruker AXS
diffractometer
Absorption correctionMulti-scan
SADABS (G. Sheldrick 2007)
Multi-scan
TWINABS (G. Sheldrick 2007)
Multi-scan
TWINABS (G. Sheldrick 2007)
Tmin, Tmax0.272, 0.3860.185, 0.3390.143, 0.391
No. of measured, independent and
observed [I > 2σ(I)] reflections
19532, 1957, 1827 31237, 4116, 3266 39009, 3725, 3165
Rint0.0450.0500.051
(sin θ/λ)max1)0.7860.8470.835
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.22 0.029, 0.057, 1.08 0.027, 0.058, 1.08
No. of reflections195741163725
No. of parameters474848
Δρmax, Δρmin (e Å3)1.67, 1.522.05, 1.872.74, 2.42

Computer programs: Bruker Suite (Bruker AXS), SAINT32 (Bruker AXS), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 2005), CIFTAB.

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds