Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768107051282/bp5006sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768107051282/bp5006pr9Sb5o5sup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768107051282/bp5006dy9sb5o5sup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768107051282/bp5006sm9sb5o5sup4.hkl |
For all compounds, data collection: Bruker Suite (Bruker AXS); cell refinement: SAINT32 (Bruker AXS); data reduction: SAINT32 (Bruker AXS); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: CIFTAB.
Pr9Sb5O5 | Dx = 6.799 Mg m−3 |
Mr = 1956.94 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/n | Cell parameters from 7236 reflections |
Hall symbol: -P 4a | θ = 2.2–33.9° |
a = 10.2203 (3) Å | µ = 29.37 mm−1 |
c = 9.1508 (3) Å | T = 296 K |
V = 955.84 (5) Å3 | Block, metallic-dark-black |
Z = 2 | 0.06 × 0.06 × 0.04 mm |
F(000) = 1652 |
SMART APEX I, Bruker AXS diffractometer | 1957 independent reflections |
Radiation source: fine-focus sealed tube | 1827 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ω–scans | θmax = 34.0°, θmin = 2.2° |
Absorption correction: multi-scan SADABS (G. Sheldrick 2007) | h = −16→16 |
Tmin = 0.272, Tmax = 0.386 | k = −15→15 |
19532 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0189P)2 + 2.3275P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.055 | (Δ/σ)max = 0.001 |
S = 1.22 | Δρmax = 1.67 e Å−3 |
1957 reflections | Δρmin = −1.52 e Å−3 |
47 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00071 (4) |
Pr9Sb5O5 | Z = 2 |
Mr = 1956.94 | Mo Kα radiation |
Tetragonal, P4/n | µ = 29.37 mm−1 |
a = 10.2203 (3) Å | T = 296 K |
c = 9.1508 (3) Å | 0.06 × 0.06 × 0.04 mm |
V = 955.84 (5) Å3 |
SMART APEX I, Bruker AXS diffractometer | 1957 independent reflections |
Absorption correction: multi-scan SADABS (G. Sheldrick 2007) | 1827 reflections with I > 2σ(I) |
Tmin = 0.272, Tmax = 0.386 | Rint = 0.045 |
19532 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 47 parameters |
wR(F2) = 0.055 | 0 restraints |
S = 1.22 | Δρmax = 1.67 e Å−3 |
1957 reflections | Δρmin = −1.52 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pr1 | 0.329973 (18) | 0.021764 (19) | 0.997938 (19) | 0.01014 (6) | |
Pr2 | 0.2500 | 0.2500 | 0.33260 (4) | 0.01104 (8) | |
Pr3 | 0.146184 (18) | 0.953956 (17) | 0.65373 (2) | 0.01092 (6) | |
Sb1 | 0.2500 | 0.2500 | 0.69037 (5) | 0.01158 (9) | |
Sb2 | 0.15307 (2) | 0.94674 (2) | 0.29828 (3) | 0.01058 (7) | |
O1 | 0.2500 | 0.2500 | 0.0698 (6) | 0.0172 (10) | |
O2 | 0.1280 (2) | 0.9755 (3) | 0.9097 (3) | 0.0124 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.00822 (8) | 0.01167 (9) | 0.01053 (10) | 0.00016 (6) | −0.00045 (6) | 0.00049 (6) |
Pr2 | 0.01198 (11) | 0.01198 (11) | 0.00918 (16) | 0.000 | 0.000 | 0.000 |
Pr3 | 0.01210 (9) | 0.01245 (9) | 0.00820 (11) | −0.00051 (6) | −0.00003 (6) | −0.00051 (6) |
Sb1 | 0.01100 (12) | 0.01100 (12) | 0.0127 (2) | 0.000 | 0.000 | 0.000 |
Sb2 | 0.01025 (11) | 0.01156 (11) | 0.00991 (14) | −0.00039 (6) | 0.00013 (7) | 0.00019 (7) |
O1 | 0.0197 (16) | 0.0197 (16) | 0.012 (2) | 0.000 | 0.000 | 0.000 |
O2 | 0.0110 (10) | 0.0157 (11) | 0.0103 (11) | −0.0016 (9) | 0.0004 (9) | 0.0001 (9) |
Pr1—O2i | 2.266 (3) | Pr3—Sb2xvii | 3.2483 (3) |
Pr1—O2ii | 2.296 (2) | Pr3—Sb2xviii | 3.2522 (3) |
Pr1—O2iii | 2.406 (3) | Pr3—Sb2 | 3.2542 (4) |
Pr1—O1iv | 2.5576 (15) | Pr3—Sb2xix | 3.2902 (3) |
Pr1—Sb2v | 3.3780 (3) | Pr3—Pr1xvi | 3.7323 (3) |
Pr1—Sb2vi | 3.4590 (3) | Pr3—Pr1xx | 3.8357 (3) |
Pr1—Pr1vii | 3.4954 (3) | Pr3—Pr1xxi | 4.0515 (3) |
Pr1—Pr1viii | 3.4955 (3) | Sb1—Pr3x | 3.2237 (2) |
Pr1—Pr1ix | 3.5041 (4) | Sb1—Pr3xi | 3.2238 (2) |
Pr1—Pr3i | 3.7323 (3) | Sb1—Pr3i | 3.2238 (2) |
Pr1—Pr3ii | 3.8357 (3) | Sb1—Pr3iii | 3.2238 (2) |
Pr1—Pr2iv | 3.9354 (4) | Sb2—Pr3xix | 3.2484 (3) |
Pr2—O1 | 2.405 (6) | Sb2—Pr3xviii | 3.2522 (3) |
Pr2—Sb2x | 3.2690 (2) | Sb2—Pr2xvi | 3.2690 (2) |
Pr2—Sb2xi | 3.2690 (2) | Sb2—Pr3xvii | 3.2901 (3) |
Pr2—Sb2i | 3.2690 (2) | Sb2—Pr1xxii | 3.3779 (3) |
Pr2—Sb2iii | 3.2690 (2) | Sb2—Pr1xxiii | 3.4590 (3) |
Pr2—Sb1 | 3.2739 (6) | O1—Pr1xii | 2.5576 (15) |
Pr2—Pr1xii | 3.9354 (4) | O1—Pr1xiii | 2.5576 (15) |
Pr2—Pr1xiii | 3.9354 (4) | O1—Pr1xiv | 2.5577 (15) |
Pr2—Pr1xiv | 3.9354 (4) | O1—Pr1xv | 2.5577 (15) |
Pr2—Pr1xv | 3.9354 (4) | O2—Pr1xvi | 2.266 (2) |
Pr3—O2 | 2.360 (3) | O2—Pr1xx | 2.296 (2) |
Pr3—Sb1xvi | 3.2238 (2) | O2—Pr1xxi | 2.406 (3) |
O2i—Pr1—O2ii | 125.58 (13) | Sb2i—Pr2—Pr1xiv | 107.565 (10) |
O2i—Pr1—O2iii | 136.68 (13) | Sb2iii—Pr2—Pr1xiv | 54.985 (7) |
O2ii—Pr1—O2iii | 83.65 (10) | Sb1—Pr2—Pr1xiv | 141.093 (5) |
O2i—Pr1—O1iv | 89.49 (9) | Pr1xii—Pr2—Pr1xiv | 52.732 (6) |
O2ii—Pr1—O1iv | 136.10 (13) | Pr1xiii—Pr2—Pr1xiv | 77.814 (10) |
O2iii—Pr1—O1iv | 86.49 (8) | O1—Pr2—Pr1xv | 38.907 (5) |
O2i—Pr1—Sb2v | 75.83 (7) | Sb2x—Pr2—Pr1xv | 107.565 (10) |
O2ii—Pr1—Sb2v | 84.01 (7) | Sb2xi—Pr2—Pr1xv | 115.106 (11) |
O2iii—Pr1—Sb2v | 144.90 (7) | Sb2i—Pr2—Pr1xv | 54.985 (7) |
O1iv—Pr1—Sb2v | 80.03 (10) | Sb2iii—Pr2—Pr1xv | 63.174 (7) |
O2i—Pr1—Sb2vi | 85.81 (7) | Sb1—Pr2—Pr1xv | 141.093 (5) |
O2ii—Pr1—Sb2vi | 73.78 (7) | Pr1xii—Pr2—Pr1xv | 77.814 (10) |
O2iii—Pr1—Sb2vi | 71.63 (6) | Pr1xiii—Pr2—Pr1xv | 52.732 (6) |
O1iv—Pr1—Sb2vi | 141.52 (12) | Pr1xiv—Pr2—Pr1xv | 52.732 (6) |
Sb2v—Pr1—Sb2vi | 134.830 (9) | O2—Pr3—Sb1xvi | 80.52 (6) |
O2i—Pr1—Pr1vii | 43.10 (7) | O2—Pr3—Sb2xvii | 86.04 (6) |
O2ii—Pr1—Pr1vii | 150.79 (7) | Sb1xvi—Pr3—Sb2xvii | 166.092 (14) |
O2iii—Pr1—Pr1vii | 123.31 (6) | O2—Pr3—Sb2xviii | 76.29 (6) |
O1iv—Pr1—Pr1vii | 46.90 (3) | Sb1xvi—Pr3—Sb2xviii | 90.149 (6) |
Sb2v—Pr1—Pr1vii | 67.423 (6) | Sb2xvii—Pr3—Sb2xviii | 90.129 (9) |
Sb2vi—Pr1—Pr1vii | 122.334 (6) | O2—Pr3—Sb2 | 174.79 (7) |
O2i—Pr1—Pr1viii | 125.66 (7) | Sb1xvi—Pr3—Sb2 | 96.783 (11) |
O2ii—Pr1—Pr1viii | 108.68 (7) | Sb2xvii—Pr3—Sb2 | 96.891 (8) |
O2iii—Pr1—Pr1viii | 40.07 (6) | Sb2xviii—Pr3—Sb2 | 99.344 (8) |
O1iv—Pr1—Pr1viii | 46.90 (3) | O2—Pr3—Sb2xix | 88.39 (7) |
Sb2v—Pr1—Pr1viii | 115.886 (5) | Sb1xvi—Pr3—Sb2xix | 89.476 (6) |
Sb2vi—Pr1—Pr1viii | 108.419 (7) | Sb2xvii—Pr3—Sb2xix | 86.570 (7) |
Pr1vii—Pr1—Pr1viii | 90.0 | Sb2xviii—Pr3—Sb2xix | 164.521 (13) |
O2i—Pr1—Pr1ix | 151.71 (7) | Sb2—Pr3—Sb2xix | 96.067 (8) |
O2ii—Pr1—Pr1ix | 43.02 (7) | O2—Pr3—Pr1xvi | 35.37 (6) |
O2iii—Pr1—Pr1ix | 40.62 (6) | Sb1xvi—Pr3—Pr1xvi | 64.679 (9) |
O1iv—Pr1—Pr1ix | 115.47 (2) | Sb2xvii—Pr3—Pr1xvi | 102.054 (8) |
Sb2v—Pr1—Pr1ix | 119.557 (9) | Sb2xviii—Pr3—Pr1xvi | 107.542 (8) |
Sb2vi—Pr1—Pr1ix | 66.462 (7) | Sb2—Pr3—Pr1xvi | 146.810 (7) |
Pr1vii—Pr1—Pr1ix | 161.595 (10) | Sb2xix—Pr3—Pr1xvi | 58.616 (6) |
Pr1viii—Pr1—Pr1ix | 71.606 (10) | O2—Pr3—Pr1xx | 33.98 (6) |
O2i—Pr1—Pr3i | 37.07 (7) | Sb1xvi—Pr3—Pr1xx | 111.773 (11) |
O2ii—Pr1—Pr3i | 120.86 (7) | Sb2xvii—Pr3—Pr1xx | 56.225 (7) |
O2iii—Pr1—Pr3i | 102.50 (7) | Sb2xviii—Pr3—Pr1xx | 64.536 (7) |
O1iv—Pr1—Pr3i | 103.03 (10) | Sb2—Pr3—Pr1xx | 146.387 (7) |
Sb2v—Pr1—Pr3i | 112.033 (8) | Sb2xix—Pr3—Pr1xx | 101.365 (8) |
Sb2vi—Pr1—Pr3i | 54.292 (6) | Pr1xvi—Pr3—Pr1xx | 65.495 (6) |
Pr1vii—Pr1—Pr3i | 68.098 (5) | O2—Pr3—Pr1xxi | 32.11 (7) |
Pr1viii—Pr1—Pr3i | 112.675 (4) | Sb1xvi—Pr3—Pr1xxi | 60.717 (9) |
Pr1ix—Pr1—Pr3i | 118.991 (8) | Sb2xvii—Pr3—Pr1xxi | 108.612 (8) |
O2i—Pr1—Pr3ii | 120.24 (7) | Sb2xviii—Pr3—Pr1xxi | 55.235 (6) |
O2ii—Pr1—Pr3ii | 35.07 (7) | Sb2—Pr3—Pr1xxi | 142.768 (7) |
O2iii—Pr1—Pr3ii | 102.00 (6) | Sb2xix—Pr3—Pr1xxi | 111.744 (8) |
O1iv—Pr1—Pr3ii | 107.46 (12) | Pr1xvi—Pr3—Pr1xxi | 53.175 (6) |
Sb2v—Pr1—Pr3ii | 53.065 (6) | Pr1xx—Pr3—Pr1xxi | 52.667 (6) |
Sb2vi—Pr1—Pr3ii | 107.823 (7) | Pr3x—Sb1—Pr3xi | 89.381 (2) |
Pr1vii—Pr1—Pr3ii | 119.452 (5) | Pr3x—Sb1—Pr3i | 89.380 (2) |
Pr1viii—Pr1—Pr3ii | 105.073 (6) | Pr3xi—Sb1—Pr3i | 168.06 (2) |
Pr1ix—Pr1—Pr3ii | 66.831 (6) | Pr3x—Sb1—Pr3iii | 168.06 (2) |
Pr3i—Pr1—Pr3ii | 141.674 (8) | Pr3xi—Sb1—Pr3iii | 89.380 (2) |
O2i—Pr1—Pr2iv | 102.24 (7) | Pr3i—Sb1—Pr3iii | 89.379 (2) |
O2ii—Pr1—Pr2iv | 104.08 (7) | Pr3x—Sb1—Pr2 | 84.030 (10) |
O2iii—Pr1—Pr2iv | 99.52 (6) | Pr3xi—Sb1—Pr2 | 84.030 (10) |
O1iv—Pr1—Pr2iv | 36.19 (12) | Pr3i—Sb1—Pr2 | 84.030 (10) |
Sb2v—Pr1—Pr2iv | 52.428 (5) | Pr3iii—Sb1—Pr2 | 84.030 (10) |
Sb2vi—Pr1—Pr2iv | 170.988 (7) | Pr3xix—Sb2—Pr3xviii | 164.423 (13) |
Pr1vii—Pr1—Pr2iv | 63.634 (3) | Pr3xix—Sb2—Pr3 | 83.797 (8) |
Pr1viii—Pr1—Pr2iv | 63.634 (3) | Pr3xviii—Sb2—Pr3 | 80.655 (8) |
Pr1ix—Pr1—Pr2iv | 105.835 (8) | Pr3xix—Sb2—Pr2xvi | 88.700 (6) |
Pr3i—Pr1—Pr2iv | 131.474 (7) | Pr3xviii—Sb2—Pr2xvi | 88.634 (6) |
Pr3ii—Pr1—Pr2iv | 71.771 (6) | Pr3—Sb2—Pr2xvi | 83.629 (10) |
O1—Pr2—Sb2x | 84.488 (9) | Pr3xix—Sb2—Pr3xvii | 91.358 (7) |
O1—Pr2—Sb2xi | 84.488 (9) | Pr3xviii—Sb2—Pr3xvii | 87.747 (8) |
Sb2x—Pr2—Sb2xi | 89.472 (2) | Pr3—Sb2—Pr3xvii | 83.140 (8) |
O1—Pr2—Sb2i | 84.488 (9) | Pr2xvi—Sb2—Pr3xvii | 166.684 (13) |
Sb2x—Pr2—Sb2i | 89.472 (2) | Pr3xix—Sb2—Pr1xxii | 70.710 (7) |
Sb2xi—Pr2—Sb2i | 168.976 (18) | Pr3xviii—Sb2—Pr1xxii | 122.846 (9) |
O1—Pr2—Sb2iii | 84.488 (9) | Pr3—Sb2—Pr1xxii | 145.049 (8) |
Sb2x—Pr2—Sb2iii | 168.976 (18) | Pr2xvi—Sb2—Pr1xxii | 72.586 (9) |
Sb2xi—Pr2—Sb2iii | 89.471 (2) | Pr3xvii—Sb2—Pr1xxii | 119.899 (9) |
Sb2i—Pr2—Sb2iii | 89.470 (2) | Pr3xix—Sb2—Pr1xxiii | 119.611 (9) |
O1—Pr2—Sb1 | 180.0 | Pr3xviii—Sb2—Pr1xxiii | 74.199 (7) |
Sb2x—Pr2—Sb1 | 95.512 (9) | Pr3—Sb2—Pr1xxiii | 141.254 (8) |
Sb2xi—Pr2—Sb1 | 95.512 (9) | Pr2xvi—Sb2—Pr1xxiii | 123.984 (11) |
Sb2i—Pr2—Sb1 | 95.512 (9) | Pr3xvii—Sb2—Pr1xxiii | 67.092 (7) |
Sb2iii—Pr2—Sb1 | 95.512 (9) | Pr1xxii—Sb2—Pr1xxiii | 73.573 (7) |
O1—Pr2—Pr1xii | 38.906 (5) | Pr2—O1—Pr1xii | 104.90 (12) |
Sb2x—Pr2—Pr1xii | 63.175 (7) | Pr2—O1—Pr1xiii | 104.90 (12) |
Sb2xi—Pr2—Pr1xii | 54.986 (7) | Pr1xii—O1—Pr1xiii | 86.21 (6) |
Sb2i—Pr2—Pr1xii | 115.106 (11) | Pr2—O1—Pr1xiv | 104.90 (12) |
Sb2iii—Pr2—Pr1xii | 107.565 (10) | Pr1xii—O1—Pr1xiv | 86.21 (6) |
Sb1—Pr2—Pr1xii | 141.094 (5) | Pr1xiii—O1—Pr1xiv | 150.2 (2) |
O1—Pr2—Pr1xiii | 38.907 (5) | Pr2—O1—Pr1xv | 104.90 (12) |
Sb2x—Pr2—Pr1xiii | 54.986 (7) | Pr1xii—O1—Pr1xv | 150.2 (2) |
Sb2xi—Pr2—Pr1xiii | 107.566 (10) | Pr1xiii—O1—Pr1xv | 86.21 (6) |
Sb2i—Pr2—Pr1xiii | 63.174 (7) | Pr1xiv—O1—Pr1xv | 86.21 (6) |
Sb2iii—Pr2—Pr1xiii | 115.105 (11) | Pr1xvi—O2—Pr1xx | 127.69 (12) |
Sb1—Pr2—Pr1xiii | 141.093 (5) | Pr1xvi—O2—Pr3 | 107.56 (10) |
Pr1xii—Pr2—Pr1xiii | 52.732 (6) | Pr1xx—O2—Pr3 | 110.96 (10) |
O1—Pr2—Pr1xiv | 38.907 (5) | Pr1xvi—O2—Pr1xxi | 96.83 (9) |
Sb2x—Pr2—Pr1xiv | 115.106 (11) | Pr1xx—O2—Pr1xxi | 96.35 (10) |
Sb2xi—Pr2—Pr1xiv | 63.174 (7) | Pr3—O2—Pr1xxi | 116.47 (11) |
Symmetry codes: (i) x, y−1, z; (ii) y−1/2, −x, −z+2; (iii) −y+3/2, x, z; (iv) x, y, z+1; (v) x, y−1, z+1; (vi) y−1/2, −x, −z+1; (vii) y, −x+1/2, z; (viii) −y+1/2, x, z; (ix) −x+1, −y, −z+2; (x) y−1, −x+1/2, z; (xi) −x+1/2, −y+3/2, z; (xii) −x+1/2, −y+1/2, z−1; (xiii) y, −x+1/2, z−1; (xiv) −y+1/2, x, z−1; (xv) x, y, z−1; (xvi) x, y+1, z; (xvii) −y+1, x+1/2, −z+1; (xviii) −x, −y+2, −z+1; (xix) y−1/2, −x+1, −z+1; (xx) −y, x+1/2, −z+2; (xxi) y, −x+3/2, z; (xxii) x, y+1, z−1; (xxiii) −y, x+1/2, −z+1. |
Sm9Sb5O5 | Dx = 7.497 Mg m−3 |
Mr = 2041.90 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/n | Cell parameters from 7294 reflections |
Hall symbol: -P 4a | θ = 2.3–36.8° |
a = 10.0341 (4) Å | µ = 36.01 mm−1 |
c = 8.9839 (3) Å | T = 296 K |
V = 904.53 (6) Å3 | Block, metallic-dark-black |
Z = 2 | 0.05 × 0.05 × 0.03 mm |
F(000) = 1706 |
SMART APEX II, Bruker AXS diffractometer | 4116 independent reflections |
Radiation source: fine-focus sealed tube | 3266 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω–scans | θmax = 37.0°, θmin = 2.3° |
Absorption correction: multi-scan TWINABS (G. Sheldrick 2007) | h = −11→12 |
Tmin = 0.185, Tmax = 0.339 | k = 0→16 |
31237 measured reflections | l = 0→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0114P)2 + 3.5785P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.057 | (Δ/σ)max = 0.004 |
S = 1.08 | Δρmax = 2.05 e Å−3 |
4116 reflections | Δρmin = −1.87 e Å−3 |
48 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00034 (2) |
Sm9Sb5O5 | Z = 2 |
Mr = 2041.90 | Mo Kα radiation |
Tetragonal, P4/n | µ = 36.01 mm−1 |
a = 10.0341 (4) Å | T = 296 K |
c = 8.9839 (3) Å | 0.05 × 0.05 × 0.03 mm |
V = 904.53 (6) Å3 |
SMART APEX II, Bruker AXS diffractometer | 4116 independent reflections |
Absorption correction: multi-scan TWINABS (G. Sheldrick 2007) | 3266 reflections with I > 2σ(I) |
Tmin = 0.185, Tmax = 0.339 | Rint = 0.050 |
31237 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 48 parameters |
wR(F2) = 0.057 | 0 restraints |
S = 1.08 | Δρmax = 2.05 e Å−3 |
4116 reflections | Δρmin = −1.87 e Å−3 |
Experimental. due to the multiple twinned crystal no numerical absorption is possible |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement as a twin with the twinning matrices T1=1 0 0 / 0 1 0/ 0 0 1, T2=3/5 4/5 0 / −4/5 3/5 0 / 0 0 1, Respective volume fractions are t1=0.5680 (6); t2=0.4320 (6). Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.331062 (15) | 0.022362 (16) | 0.99790 (2) | 0.00766 (4) | |
Sm2 | 0.2500 | 0.2500 | 0.33213 (4) | 0.00877 (6) | |
Sm3 | 0.146291 (17) | 0.954159 (16) | 0.65454 (2) | 0.00861 (4) | |
Sb1 | 0.2500 | 0.2500 | 0.68789 (6) | 0.01000 (8) | |
Sb2 | 0.15360 (2) | 0.94649 (2) | 0.29929 (3) | 0.00843 (5) | |
O1 | 0.2500 | 0.2500 | 0.0664 (6) | 0.0150 (10) | |
O2 | 0.1290 (2) | 0.9749 (3) | 0.9108 (3) | 0.0098 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.00639 (7) | 0.00935 (7) | 0.00723 (6) | 0.00003 (5) | −0.00033 (6) | 0.00052 (6) |
Sm2 | 0.01017 (9) | 0.01017 (9) | 0.00598 (14) | 0.000 | 0.000 | 0.000 |
Sm3 | 0.01015 (8) | 0.01027 (7) | 0.00542 (7) | −0.00046 (5) | 0.00018 (5) | −0.00048 (5) |
Sb1 | 0.00931 (11) | 0.00931 (11) | 0.01137 (19) | 0.000 | 0.000 | 0.000 |
Sb2 | 0.00862 (9) | 0.00972 (9) | 0.00694 (10) | −0.00029 (6) | 0.00019 (7) | −0.00004 (7) |
O1 | 0.0160 (15) | 0.0160 (15) | 0.013 (2) | 0.000 | 0.000 | 0.000 |
O2 | 0.0086 (10) | 0.0137 (11) | 0.0070 (10) | −0.0014 (8) | 0.0008 (8) | −0.0012 (9) |
Sm1—O2i | 2.225 (2) | Sm3—Sb2xviii | 3.1970 (3) |
Sm1—O2ii | 2.250 (2) | Sm3—Sb2xix | 3.2272 (3) |
Sm1—O2iii | 2.355 (3) | Sm3—Sm1xvi | 3.6635 (3) |
Sm1—O1iv | 2.5016 (14) | Sm3—Sm1xx | 3.7602 (3) |
Sm1—Sb2v | 3.3289 (3) | Sm3—Sm1xxi | 3.9631 (3) |
Sm1—Sb2vi | 3.4040 (3) | Sb1—Sm3x | 3.1598 (2) |
Sm1—Sm1vii | 3.4201 (3) | Sb1—Sm3xi | 3.1598 (2) |
Sm1—Sm1viii | 3.4289 (3) | Sb1—Sm3i | 3.1598 (2) |
Sm1—Sm1ix | 3.4290 (3) | Sb1—Sm3iii | 3.1598 (2) |
Sm1—Sm3i | 3.6635 (3) | Sb1—Sm1xxii | 3.6927 (4) |
Sm1—Sb1 | 3.6927 (4) | Sb1—Sm1viii | 3.6927 (4) |
Sm1—Sm3ii | 3.7602 (3) | Sb1—Sm1ix | 3.6927 (4) |
Sm2—O1 | 2.387 (6) | Sb2—Sm3xix | 3.1835 (3) |
Sm2—Sb1 | 3.1962 (6) | Sb2—Sm3xviii | 3.1970 (3) |
Sm2—Sb2x | 3.2090 (2) | Sb2—Sm2xvi | 3.2090 (2) |
Sm2—Sb2xi | 3.2090 (2) | Sb2—Sm3xvii | 3.2272 (3) |
Sm2—Sb2i | 3.2090 (2) | Sb2—Sm1xxiii | 3.3289 (3) |
Sm2—Sb2iii | 3.2090 (2) | Sb2—Sm1xxiv | 3.4040 (3) |
Sm2—Sm1xii | 3.8593 (4) | O1—Sm1xii | 2.5016 (14) |
Sm2—Sm1xiii | 3.8593 (4) | O1—Sm1xiii | 2.5016 (14) |
Sm2—Sm1xiv | 3.8594 (4) | O1—Sm1xv | 2.5016 (14) |
Sm2—Sm1xv | 3.8594 (4) | O1—Sm1xiv | 2.5016 (14) |
Sm3—O2 | 2.318 (3) | O2—Sm1xvi | 2.225 (2) |
Sm3—Sb1xvi | 3.1598 (2) | O2—Sm1xx | 2.250 (2) |
Sm3—Sb2xvii | 3.1834 (3) | O2—Sm1xxi | 2.355 (3) |
Sm3—Sb2 | 3.1933 (3) | ||
O2i—Sm1—O2ii | 124.64 (13) | Sm1xiv—Sm2—Sm1xv | 52.750 (6) |
O2i—Sm1—O2iii | 137.20 (13) | O2—Sm3—Sb1xvi | 81.15 (6) |
O2ii—Sm1—O2iii | 84.11 (9) | O2—Sm3—Sb2xvii | 86.20 (6) |
O2i—Sm1—O1iv | 89.18 (8) | Sb1xvi—Sm3—Sb2xvii | 166.891 (13) |
O2ii—Sm1—O1iv | 137.32 (13) | O2—Sm3—Sb2 | 175.19 (7) |
O2iii—Sm1—O1iv | 86.32 (8) | Sb1xvi—Sm3—Sb2 | 96.307 (11) |
O2i—Sm1—Sb2v | 75.50 (7) | Sb2xvii—Sm3—Sb2 | 96.553 (8) |
O2ii—Sm1—Sb2v | 83.81 (7) | O2—Sm3—Sb2xviii | 76.86 (6) |
O2iii—Sm1—Sb2v | 144.71 (7) | Sb1xvi—Sm3—Sb2xviii | 90.271 (6) |
O1iv—Sm1—Sb2v | 80.49 (10) | Sb2xvii—Sm3—Sb2xviii | 90.186 (8) |
O2i—Sm1—Sb2vi | 85.60 (7) | Sb2—Sm3—Sb2xviii | 99.139 (7) |
O2ii—Sm1—Sb2vi | 73.60 (7) | O2—Sm3—Sb2xix | 88.42 (6) |
O2iii—Sm1—Sb2vi | 72.17 (6) | Sb1xvi—Sm3—Sb2xix | 89.724 (6) |
O1iv—Sm1—Sb2vi | 141.01 (12) | Sb2xvii—Sm3—Sb2xix | 86.490 (7) |
Sb2v—Sm1—Sb2vi | 134.534 (8) | Sb2—Sm3—Sb2xix | 95.680 (8) |
O2i—Sm1—Sm1vii | 151.54 (7) | Sb2xviii—Sm3—Sb2xix | 165.091 (11) |
O2ii—Sm1—Sm1vii | 43.24 (7) | O2—Sm3—Sm1xvi | 35.40 (6) |
O2iii—Sm1—Sm1vii | 40.87 (6) | Sb1xvi—Sm3—Sm1xvi | 65.039 (9) |
O1iv—Sm1—Sm1vii | 116.07 (2) | Sb2xvii—Sm3—Sm1xvi | 102.429 (7) |
Sb2v—Sm1—Sm1vii | 119.424 (9) | Sb2—Sm3—Sm1xvi | 146.556 (7) |
Sb2vi—Sm1—Sm1vii | 66.628 (7) | Sb2xviii—Sm3—Sm1xvi | 107.989 (7) |
O2i—Sm1—Sm1viii | 42.99 (7) | Sb2xix—Sm3—Sm1xvi | 58.800 (6) |
O2ii—Sm1—Sm1viii | 150.34 (7) | O2—Sm3—Sm1xx | 34.01 (6) |
O2iii—Sm1—Sm1viii | 123.50 (6) | Sb1xvi—Sm3—Sm1xx | 112.214 (11) |
O1iv—Sm1—Sm1viii | 46.74 (3) | Sb2xvii—Sm3—Sm1xx | 56.563 (6) |
Sb2v—Sm1—Sm1viii | 67.350 (5) | Sb2—Sm3—Sm1xx | 146.341 (7) |
Sb2vi—Sm1—Sm1viii | 121.995 (5) | Sb2xviii—Sm3—Sm1xx | 64.601 (6) |
Sm1vii—Sm1—Sm1viii | 162.131 (8) | Sb2xix—Sm3—Sm1xx | 101.727 (7) |
O2i—Sm1—Sm1ix | 125.75 (7) | Sm1xvi—Sm3—Sm1xx | 65.790 (5) |
O2ii—Sm1—Sm1ix | 109.55 (7) | O2—Sm3—Sm1xxi | 32.29 (7) |
O2iii—Sm1—Sm1ix | 40.11 (6) | Sb1xvi—Sm3—Sm1xxi | 61.228 (9) |
O1iv—Sm1—Sm1ix | 46.74 (3) | Sb2xvii—Sm3—Sm1xxi | 108.782 (7) |
Sb2v—Sm1—Sm1ix | 115.851 (5) | Sb2—Sm3—Sm1xxi | 142.963 (7) |
Sb2vi—Sm1—Sm1ix | 108.822 (6) | Sb2xviii—Sm3—Sm1xxi | 55.535 (6) |
Sm1vii—Sm1—Sm1ix | 72.142 (8) | Sb2xix—Sm3—Sm1xxi | 112.024 (7) |
Sm1viii—Sm1—Sm1ix | 90.0 | Sm1xvi—Sm3—Sm1xxi | 53.260 (5) |
O2i—Sm1—Sm3i | 37.13 (7) | Sm1xx—Sm3—Sm1xxi | 52.488 (5) |
O2ii—Sm1—Sm3i | 120.37 (7) | Sm3x—Sb1—Sm3xi | 89.485 (2) |
O2iii—Sm1—Sm3i | 102.91 (7) | Sm3x—Sb1—Sm3i | 89.485 (2) |
O1iv—Sm1—Sm3i | 102.31 (11) | Sm3xi—Sb1—Sm3i | 169.12 (2) |
Sb2v—Sm1—Sm3i | 111.805 (7) | Sm3x—Sb1—Sm3iii | 169.12 (2) |
Sb2vi—Sm1—Sm3i | 54.188 (6) | Sm3xi—Sb1—Sm3iii | 89.485 (2) |
Sm1vii—Sm1—Sm3i | 119.107 (9) | Sm3i—Sb1—Sm3iii | 89.484 (2) |
Sm1viii—Sm1—Sm3i | 67.850 (4) | Sm3x—Sb1—Sm2 | 84.559 (10) |
Sm1ix—Sm1—Sm3i | 112.694 (4) | Sm3xi—Sb1—Sm2 | 84.559 (10) |
O2i—Sm1—Sb1 | 70.51 (7) | Sm3i—Sb1—Sm2 | 84.559 (10) |
O2ii—Sm1—Sb1 | 146.49 (7) | Sm3iii—Sb1—Sm2 | 84.559 (10) |
O2iii—Sm1—Sb1 | 69.55 (6) | Sm3x—Sb1—Sm1xxii | 70.177 (6) |
O1iv—Sm1—Sb1 | 63.20 (13) | Sm3xi—Sb1—Sm1xxii | 64.084 (7) |
Sb2v—Sm1—Sb1 | 129.577 (7) | Sm3i—Sb1—Sm1xxii | 125.456 (12) |
Sb2vi—Sm1—Sb1 | 78.710 (8) | Sm3iii—Sb1—Sm1xxii | 118.826 (11) |
Sm1vii—Sm1—Sb1 | 107.929 (8) | Sm2—Sb1—Sm1xxii | 138.958 (6) |
Sm1viii—Sm1—Sb1 | 62.336 (4) | Sm3x—Sb1—Sm1viii | 64.085 (6) |
Sm1ix—Sm1—Sb1 | 62.336 (4) | Sm3xi—Sb1—Sm1viii | 118.827 (11) |
Sm3i—Sm1—Sb1 | 50.876 (6) | Sm3i—Sb1—Sm1viii | 70.176 (6) |
O2i—Sm1—Sm3ii | 119.67 (7) | Sm3iii—Sb1—Sm1viii | 125.455 (12) |
O2ii—Sm1—Sm3ii | 35.19 (7) | Sm2—Sb1—Sm1viii | 138.958 (6) |
O2iii—Sm1—Sm3ii | 102.05 (6) | Sm1xxii—Sb1—Sm1viii | 55.329 (7) |
O1iv—Sm1—Sm3ii | 108.26 (13) | Sm3x—Sb1—Sm1 | 118.826 (11) |
Sb2v—Sm1—Sm3ii | 52.942 (6) | Sm3xi—Sb1—Sm1 | 125.456 (12) |
Sb2vi—Sm1—Sm3ii | 107.824 (7) | Sm3i—Sb1—Sm1 | 64.084 (7) |
Sm1vii—Sm1—Sm3ii | 66.806 (6) | Sm3iii—Sb1—Sm1 | 70.176 (6) |
Sm1viii—Sm1—Sm3ii | 119.326 (4) | Sm2—Sb1—Sm1 | 138.958 (6) |
Sm1ix—Sm1—Sm3ii | 105.406 (5) | Sm1xxii—Sb1—Sm1 | 82.084 (12) |
Sm3i—Sm1—Sm3ii | 141.387 (7) | Sm1viii—Sb1—Sm1 | 55.329 (7) |
Sb1—Sm1—Sm3ii | 167.700 (7) | Sm3x—Sb1—Sm1ix | 125.456 (12) |
O1—Sm2—Sb1 | 180.0 | Sm3xi—Sb1—Sm1ix | 70.176 (6) |
O1—Sm2—Sb2x | 84.725 (8) | Sm3i—Sb1—Sm1ix | 118.826 (11) |
Sb1—Sm2—Sb2x | 95.275 (8) | Sm3iii—Sb1—Sm1ix | 64.084 (6) |
O1—Sm2—Sb2xi | 84.725 (8) | Sm2—Sb1—Sm1ix | 138.958 (6) |
Sb1—Sm2—Sb2xi | 95.275 (8) | Sm1xxii—Sb1—Sm1ix | 55.329 (7) |
Sb2x—Sm2—Sb2xi | 89.516 (1) | Sm1viii—Sb1—Sm1ix | 82.084 (12) |
O1—Sm2—Sb2i | 84.725 (8) | Sm1—Sb1—Sm1ix | 55.329 (7) |
Sb1—Sm2—Sb2i | 95.275 (8) | Sm3xix—Sb2—Sm3 | 84.179 (7) |
Sb2x—Sm2—Sb2i | 89.516 (1) | Sm3xix—Sb2—Sm3xviii | 165.011 (11) |
Sb2xi—Sm2—Sb2i | 169.451 (16) | Sm3—Sb2—Sm3xviii | 80.862 (7) |
O1—Sm2—Sb2iii | 84.725 (8) | Sm3xix—Sb2—Sm2xvi | 88.854 (6) |
Sb1—Sm2—Sb2iii | 95.275 (8) | Sm3—Sb2—Sm2xvi | 83.809 (9) |
Sb2x—Sm2—Sb2iii | 169.451 (16) | Sm3xviii—Sb2—Sm2xvi | 88.617 (6) |
Sb2xi—Sm2—Sb2iii | 89.515 (1) | Sm3xix—Sb2—Sm3xvii | 91.588 (7) |
Sb2i—Sm2—Sb2iii | 89.515 (1) | Sm3—Sb2—Sm3xvii | 83.473 (7) |
O1—Sm2—Sm1xii | 38.921 (5) | Sm3xviii—Sb2—Sm3xvii | 87.650 (8) |
Sb1—Sm2—Sm1xii | 141.079 (5) | Sm2xvi—Sb2—Sm3xvii | 167.163 (12) |
Sb2x—Sm2—Sm1xii | 55.272 (6) | Sm3xix—Sb2—Sm1xxiii | 70.495 (6) |
Sb2xi—Sm2—Sm1xii | 107.872 (9) | Sm3—Sb2—Sm1xxiii | 145.053 (9) |
Sb2i—Sm2—Sm1xii | 63.260 (6) | Sm3xviii—Sb2—Sm1xxiii | 122.528 (8) |
Sb2iii—Sm2—Sm1xii | 115.254 (10) | Sm2xvi—Sb2—Sm1xxiii | 72.331 (8) |
O1—Sm2—Sm1xiii | 38.921 (5) | Sm3xvii—Sb2—Sm1xxiii | 119.818 (8) |
Sb1—Sm2—Sm1xiii | 141.079 (5) | Sm3xix—Sb2—Sm1xxiv | 119.610 (8) |
Sb2x—Sm2—Sm1xiii | 63.260 (6) | Sm3—Sb2—Sm1xxiv | 141.279 (9) |
Sb2xi—Sm2—Sm1xiii | 55.272 (6) | Sm3xviii—Sb2—Sm1xxiv | 73.719 (7) |
Sb2i—Sm2—Sm1xiii | 115.255 (10) | Sm2xvi—Sb2—Sm1xxiv | 123.461 (10) |
Sb2iii—Sm2—Sm1xiii | 107.872 (9) | Sm3xvii—Sb2—Sm1xxiv | 67.011 (6) |
Sm1xii—Sm2—Sm1xiii | 52.750 (6) | Sm1xxiii—Sb2—Sm1xxiv | 73.580 (7) |
O1—Sm2—Sm1xiv | 38.921 (5) | Sm2—O1—Sm1xii | 104.25 (13) |
Sb1—Sm2—Sm1xiv | 141.079 (5) | Sm2—O1—Sm1xiii | 104.25 (13) |
Sb2x—Sm2—Sm1xiv | 107.872 (9) | Sm1xii—O1—Sm1xiii | 86.53 (6) |
Sb2xi—Sm2—Sm1xiv | 115.254 (10) | Sm2—O1—Sm1xv | 104.25 (13) |
Sb2i—Sm2—Sm1xiv | 55.272 (6) | Sm1xii—O1—Sm1xv | 151.5 (3) |
Sb2iii—Sm2—Sm1xiv | 63.260 (6) | Sm1xiii—O1—Sm1xv | 86.53 (6) |
Sm1xii—Sm2—Sm1xiv | 52.750 (6) | Sm2—O1—Sm1xiv | 104.25 (13) |
Sm1xiii—Sm2—Sm1xiv | 77.843 (9) | Sm1xii—O1—Sm1xiv | 86.53 (6) |
O1—Sm2—Sm1xv | 38.921 (5) | Sm1xiii—O1—Sm1xiv | 151.5 (3) |
Sb1—Sm2—Sm1xv | 141.079 (5) | Sm1xv—O1—Sm1xiv | 86.53 (6) |
Sb2x—Sm2—Sm1xv | 115.255 (10) | Sm1xvi—O2—Sm1xx | 128.62 (13) |
Sb2xi—Sm2—Sm1xv | 63.260 (6) | Sm1xvi—O2—Sm3 | 107.47 (10) |
Sb2i—Sm2—Sm1xv | 107.872 (9) | Sm1xx—O2—Sm3 | 110.80 (10) |
Sb2iii—Sm2—Sm1xv | 55.272 (6) | Sm1xvi—O2—Sm1xxi | 96.90 (9) |
Sm1xii—Sm2—Sm1xv | 77.843 (9) | Sm1xx—O2—Sm1xxi | 95.89 (9) |
Sm1xiii—Sm2—Sm1xv | 52.750 (6) | Sm3—O2—Sm1xxi | 115.99 (11) |
Symmetry codes: (i) x, y−1, z; (ii) y−1/2, −x, −z+2; (iii) −y+3/2, x, z; (iv) x, y, z+1; (v) x, y−1, z+1; (vi) y−1/2, −x, −z+1; (vii) −x+1, −y, −z+2; (viii) y, −x+1/2, z; (ix) −y+1/2, x, z; (x) y−1, −x+1/2, z; (xi) −x+1/2, −y+3/2, z; (xii) y, −x+1/2, z−1; (xiii) −x+1/2, −y+1/2, z−1; (xiv) x, y, z−1; (xv) −y+1/2, x, z−1; (xvi) x, y+1, z; (xvii) −y+1, x+1/2, −z+1; (xviii) −x, −y+2, −z+1; (xix) y−1/2, −x+1, −z+1; (xx) −y, x+1/2, −z+2; (xxi) y, −x+3/2, z; (xxii) −x+1/2, −y+1/2, z; (xxiii) x, y+1, z−1; (xxiv) −y, x+1/2, −z+1. |
Dy9Sb5O5 | Dx = 8.388 Mg m−3 |
Mr = 2151.25 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/n | Cell parameters from 9912 reflections |
Hall symbol: -P 4a | θ = 2.3–35.4° |
a = 9.8389 (3) Å | µ = 46.70 mm−1 |
c = 8.7986 (3) Å | T = 296 K |
V = 851.74 (5) Å3 | Block, metallic-dark-black |
Z = 2 | 0.06 × 0.04 × 0.02 mm |
F(000) = 1778 |
SMART APEX II, Bruker AXS diffractometer | 3725 independent reflections |
Radiation source: fine-focus sealed tube | 3165 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω–scans | θmax = 36.4°, θmin = 2.3° |
Absorption correction: multi-scan TWINABS (G. Sheldrick 2007) | h = −11→11 |
Tmin = 0.143, Tmax = 0.391 | k = 0→16 |
39009 measured reflections | l = 0→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0188P)2 + 4.6683P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.058 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 2.74 e Å−3 |
3725 reflections | Δρmin = −2.42 e Å−3 |
48 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00063 (3) |
0 constraints |
Dy9Sb5O5 | Z = 2 |
Mr = 2151.25 | Mo Kα radiation |
Tetragonal, P4/n | µ = 46.70 mm−1 |
a = 9.8389 (3) Å | T = 296 K |
c = 8.7986 (3) Å | 0.06 × 0.04 × 0.02 mm |
V = 851.74 (5) Å3 |
SMART APEX II, Bruker AXS diffractometer | 3725 independent reflections |
Absorption correction: multi-scan TWINABS (G. Sheldrick 2007) | 3165 reflections with I > 2σ(I) |
Tmin = 0.143, Tmax = 0.391 | Rint = 0.051 |
39009 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 48 parameters |
wR(F2) = 0.058 | 0 restraints |
S = 1.08 | Δρmax = 2.74 e Å−3 |
3725 reflections | Δρmin = −2.42 e Å−3 |
Experimental. due to the multiple twinned crystal no numerical absorption is possible |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement as a twin with the twinning matrices T1=1 0 0 / 0 1 0/ 0 0 1, T2=3/5 4/5 0 / −4/5 3/5 0 / 0 0 1, Respective volume fractions are t1=0.5542 (6); t2=0.4468 (6). Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.331278 (16) | 0.022614 (17) | 0.99754 (2) | 0.00693 (4) | |
Dy2 | 0.2500 | 0.2500 | 0.32965 (4) | 0.00803 (6) | |
Dy3 | 0.145819 (17) | 0.954888 (16) | 0.65531 (2) | 0.00763 (4) | |
Sb1 | 0.2500 | 0.2500 | 0.68476 (6) | 0.00896 (8) | |
Sb2 | 0.15430 (2) | 0.94561 (2) | 0.30091 (3) | 0.00731 (5) | |
O1 | 0.2500 | 0.2500 | 0.0641 (8) | 0.0181 (12) | |
O2 | 0.1294 (3) | 0.9751 (3) | 0.9116 (3) | 0.0086 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.00535 (6) | 0.00841 (7) | 0.00702 (7) | 0.00002 (5) | −0.00046 (5) | 0.00073 (6) |
Dy2 | 0.00922 (8) | 0.00922 (8) | 0.00566 (14) | 0.000 | 0.000 | 0.000 |
Dy3 | 0.00906 (7) | 0.00925 (7) | 0.00458 (8) | −0.00057 (5) | 0.00012 (5) | −0.00041 (5) |
Sb1 | 0.00795 (11) | 0.00795 (11) | 0.0110 (2) | 0.000 | 0.000 | 0.000 |
Sb2 | 0.00743 (9) | 0.00871 (9) | 0.00579 (11) | −0.00023 (6) | 0.00027 (7) | −0.00031 (7) |
O1 | 0.0171 (17) | 0.0171 (17) | 0.020 (3) | 0.000 | 0.000 | 0.000 |
O2 | 0.0090 (10) | 0.0096 (11) | 0.0074 (11) | −0.0007 (9) | 0.0022 (9) | −0.0032 (9) |
Dy1—O2i | 2.176 (3) | Dy3—Sb2xviii | 3.1347 (3) |
Dy1—O2ii | 2.209 (3) | Dy3—Sb2xix | 3.1627 (3) |
Dy1—O2iii | 2.303 (3) | Dy3—Dy1xvi | 3.5834 (3) |
Dy1—O1iv | 2.4471 (17) | Dy3—Dy1xx | 3.6816 (3) |
Dy1—Sb2v | 3.2757 (3) | Dy3—Dy1xxi | 3.8682 (3) |
Dy1—Sb2vi | 3.3453 (3) | Sb1—Dy3x | 3.0901 (2) |
Dy1—Dy1vii | 3.3501 (3) | Sb1—Dy3i | 3.0901 (2) |
Dy1—Dy1viii | 3.3600 (2) | Sb1—Dy3xi | 3.0901 (2) |
Dy1—Dy1ix | 3.3600 (2) | Sb1—Dy3iii | 3.0901 (2) |
Dy1—Dy3i | 3.5834 (3) | Sb1—Dy1viii | 3.6357 (5) |
Dy1—Sb1 | 3.6357 (5) | Sb1—Dy1xxii | 3.6357 (5) |
Dy1—Dy3ii | 3.6817 (3) | Sb1—Dy1ix | 3.6357 (5) |
Dy2—O1 | 2.336 (7) | Sb2—Dy3xix | 3.1152 (3) |
Dy2—Sb1 | 3.1245 (6) | Sb2—Dy3xviii | 3.1346 (3) |
Dy2—Sb2x | 3.1495 (2) | Sb2—Dy2xvi | 3.1495 (2) |
Dy2—Sb2i | 3.1495 (2) | Sb2—Dy3xvii | 3.1627 (3) |
Dy2—Sb2xi | 3.1496 (2) | Sb2—Dy1xxiii | 3.2758 (3) |
Dy2—Sb2iii | 3.1496 (2) | Sb2—Dy1xxiv | 3.3453 (3) |
Dy2—Dy1xii | 3.7661 (3) | O1—Dy1xii | 2.4470 (17) |
Dy2—Dy1xiii | 3.7661 (3) | O1—Dy1xiii | 2.4471 (17) |
Dy2—Dy1xiv | 3.7661 (3) | O1—Dy1xiv | 2.4471 (17) |
Dy2—Dy1xv | 3.7661 (3) | O1—Dy1xv | 2.4471 (17) |
Dy3—O2 | 2.270 (3) | O2—Dy1xvi | 2.176 (3) |
Dy3—Sb1xvi | 3.0901 (2) | O2—Dy1xx | 2.209 (3) |
Dy3—Sb2xvii | 3.1151 (3) | O2—Dy1xxi | 2.303 (3) |
Dy3—Sb2 | 3.1207 (3) | ||
O2i—Dy1—O2ii | 124.42 (14) | Dy1xiv—Dy2—Dy1xv | 52.985 (6) |
O2i—Dy1—O2iii | 137.64 (15) | O2—Dy3—Sb1xvi | 81.83 (7) |
O2ii—Dy1—O2iii | 84.12 (10) | O2—Dy3—Sb2xvii | 86.55 (7) |
O2i—Dy1—O1iv | 88.92 (10) | Sb1xvi—Dy3—Sb2xvii | 167.824 (14) |
O2ii—Dy1—O1iv | 137.89 (16) | O2—Dy3—Sb2 | 175.78 (7) |
O2iii—Dy1—O1iv | 86.09 (9) | Sb1xvi—Dy3—Sb2 | 95.877 (12) |
O2i—Dy1—Sb2v | 75.41 (7) | Sb2xvii—Dy3—Sb2 | 95.941 (8) |
O2ii—Dy1—Sb2v | 83.64 (7) | O2—Dy3—Sb2xviii | 77.49 (7) |
O2iii—Dy1—Sb2v | 144.35 (7) | Sb1xvi—Dy3—Sb2xviii | 90.500 (6) |
O1iv—Dy1—Sb2v | 80.95 (13) | Sb2xvii—Dy3—Sb2xviii | 90.533 (9) |
O2i—Dy1—Sb2vi | 85.56 (7) | Sb2—Dy3—Sb2xviii | 99.039 (8) |
O2ii—Dy1—Sb2vi | 73.51 (7) | O2—Dy3—Sb2xix | 88.58 (7) |
O2iii—Dy1—Sb2vi | 72.64 (7) | Sb1xvi—Dy3—Sb2xix | 89.977 (6) |
O1iv—Dy1—Sb2vi | 140.68 (16) | Sb2xvii—Dy3—Sb2xix | 86.087 (7) |
Sb2v—Dy1—Sb2vi | 134.269 (9) | Sb2—Dy3—Sb2xix | 94.980 (8) |
O2i—Dy1—Dy1vii | 151.72 (7) | Sb2xviii—Dy3—Sb2xix | 165.849 (12) |
O2ii—Dy1—Dy1vii | 43.14 (7) | O2—Dy3—Dy1xvi | 35.41 (7) |
O2iii—Dy1—Dy1vii | 40.98 (7) | Sb1xvi—Dy3—Dy1xvi | 65.537 (10) |
O1iv—Dy1—Dy1vii | 116.24 (2) | Sb2xvii—Dy3—Dy1xvi | 102.691 (8) |
Sb2v—Dy1—Dy1vii | 119.049 (9) | Sb2—Dy3—Dy1xvi | 146.250 (8) |
Sb2vi—Dy1—Dy1vii | 66.905 (7) | Sb2xviii—Dy3—Dy1xvi | 108.564 (8) |
O2i—Dy1—Dy1viii | 42.84 (7) | Sb2xix—Dy3—Dy1xvi | 59.064 (6) |
O2ii—Dy1—Dy1viii | 150.33 (7) | O2—Dy3—Dy1xx | 34.17 (7) |
O2iii—Dy1—Dy1viii | 123.53 (6) | Sb1xvi—Dy3—Dy1xx | 112.964 (11) |
O1iv—Dy1—Dy1viii | 46.64 (4) | Sb2xvii—Dy3—Dy1xx | 56.895 (6) |
Sb2v—Dy1—Dy1viii | 67.575 (6) | Sb2—Dy3—Dy1xx | 146.237 (8) |
Sb2vi—Dy1—Dy1viii | 121.773 (6) | Sb2xviii—Dy3—Dy1xx | 64.990 (6) |
Dy1vii—Dy1—Dy1viii | 162.287 (9) | Sb2xix—Dy3—Dy1xx | 101.920 (7) |
O2i—Dy1—Dy1ix | 125.77 (7) | Dy1xvi—Dy3—Dy1xx | 66.015 (5) |
O2ii—Dy1—Dy1ix | 109.74 (7) | O2—Dy3—Dy1xxi | 32.49 (7) |
O2iii—Dy1—Dy1ix | 39.98 (7) | Sb1xvi—Dy3—Dy1xxi | 61.810 (9) |
O1iv—Dy1—Dy1ix | 46.64 (4) | Sb2xvii—Dy3—Dy1xxi | 109.247 (7) |
Sb2v—Dy1—Dy1ix | 115.879 (5) | Sb2—Dy3—Dy1xxi | 143.333 (7) |
Sb2vi—Dy1—Dy1ix | 109.051 (6) | Sb2xviii—Dy3—Dy1xxi | 55.895 (6) |
Dy1vii—Dy1—Dy1ix | 72.303 (9) | Sb2xix—Dy3—Dy1xxi | 112.471 (7) |
Dy1viii—Dy1—Dy1ix | 90.0 | Dy1xvi—Dy3—Dy1xxi | 53.438 (6) |
O2i—Dy1—Dy3i | 37.19 (7) | Dy1xx—Dy3—Dy1xxi | 52.614 (5) |
O2ii—Dy1—Dy3i | 120.29 (8) | Dy3x—Sb1—Dy3i | 89.598 (2) |
O2iii—Dy1—Dy3i | 103.31 (7) | Dy3x—Sb1—Dy3xi | 89.597 (2) |
O1iv—Dy1—Dy3i | 101.82 (13) | Dy3i—Sb1—Dy3xi | 170.38 (2) |
Sb2v—Dy1—Dy3i | 111.781 (7) | Dy3x—Sb1—Dy3iii | 170.38 (2) |
Sb2vi—Dy1—Dy3i | 54.186 (6) | Dy3i—Sb1—Dy3iii | 89.597 (2) |
Dy1vii—Dy1—Dy3i | 119.392 (8) | Dy3xi—Sb1—Dy3iii | 89.596 (2) |
Dy1viii—Dy1—Dy3i | 67.624 (5) | Dy3x—Sb1—Dy2 | 85.189 (11) |
Dy1ix—Dy1—Dy3i | 112.702 (4) | Dy3i—Sb1—Dy2 | 85.189 (11) |
O2i—Dy1—Sb1 | 70.63 (7) | Dy3xi—Sb1—Dy2 | 85.189 (11) |
O2ii—Dy1—Sb1 | 146.25 (7) | Dy3iii—Sb1—Dy2 | 85.189 (11) |
O2iii—Dy1—Sb1 | 69.68 (7) | Dy3x—Sb1—Dy1viii | 63.783 (7) |
O1iv—Dy1—Sb1 | 63.05 (16) | Dy3i—Sb1—Dy1viii | 69.677 (7) |
Sb2v—Dy1—Sb1 | 129.956 (7) | Dy3xi—Sb1—Dy1viii | 118.312 (12) |
Sb2vi—Dy1—Sb1 | 78.461 (9) | Dy3iii—Sb1—Dy1viii | 124.662 (13) |
Dy1vii—Dy1—Sb1 | 108.028 (8) | Dy2—Sb1—Dy1viii | 139.196 (7) |
Dy1viii—Dy1—Sb1 | 62.478 (4) | Dy3x—Sb1—Dy1xxii | 69.677 (7) |
Dy1ix—Dy1—Sb1 | 62.479 (4) | Dy3i—Sb1—Dy1xxii | 124.663 (13) |
Dy3i—Dy1—Sb1 | 50.680 (6) | Dy3xi—Sb1—Dy1xxii | 63.783 (7) |
O2i—Dy1—Dy3ii | 119.54 (7) | Dy3iii—Sb1—Dy1xxii | 118.311 (12) |
O2ii—Dy1—Dy3ii | 35.26 (7) | Dy2—Sb1—Dy1xxii | 139.196 (6) |
O2iii—Dy1—Dy3ii | 101.80 (7) | Dy1viii—Sb1—Dy1xxii | 55.043 (8) |
O1iv—Dy1—Dy3ii | 108.71 (16) | Dy3x—Sb1—Dy1 | 118.312 (12) |
Sb2v—Dy1—Dy3ii | 52.806 (6) | Dy3i—Sb1—Dy1 | 63.783 (7) |
Sb2vi—Dy1—Dy3ii | 107.814 (7) | Dy3xi—Sb1—Dy1 | 124.661 (13) |
Dy1vii—Dy1—Dy3ii | 66.554 (6) | Dy3iii—Sb1—Dy1 | 69.677 (7) |
Dy1viii—Dy1—Dy3ii | 119.418 (4) | Dy2—Sb1—Dy1 | 139.196 (7) |
Dy1ix—Dy1—Dy3ii | 105.397 (5) | Dy1viii—Sb1—Dy1 | 55.043 (8) |
Dy3i—Dy1—Dy3ii | 141.412 (7) | Dy1xxii—Sb1—Dy1 | 81.609 (13) |
Sb1—Dy1—Dy3ii | 167.854 (7) | Dy3x—Sb1—Dy1ix | 124.662 (13) |
O1—Dy2—Sb1 | 180.0 | Dy3i—Sb1—Dy1ix | 118.312 (12) |
O1—Dy2—Sb2x | 85.395 (8) | Dy3xi—Sb1—Dy1ix | 69.676 (7) |
Sb1—Dy2—Sb2x | 94.605 (8) | Dy3iii—Sb1—Dy1ix | 63.782 (7) |
O1—Dy2—Sb2i | 85.395 (8) | Dy2—Sb1—Dy1ix | 139.195 (6) |
Sb1—Dy2—Sb2i | 94.605 (8) | Dy1viii—Sb1—Dy1ix | 81.609 (13) |
Sb2x—Dy2—Sb2i | 89.631 (1) | Dy1xxii—Sb1—Dy1ix | 55.043 (8) |
O1—Dy2—Sb2xi | 85.395 (8) | Dy1—Sb1—Dy1ix | 55.043 (8) |
Sb1—Dy2—Sb2xi | 94.605 (8) | Dy3xix—Sb2—Dy3 | 84.853 (8) |
Sb2x—Dy2—Sb2xi | 89.631 (1) | Dy3xix—Sb2—Dy3xviii | 165.769 (12) |
Sb2i—Dy2—Sb2xi | 170.789 (16) | Dy3—Sb2—Dy3xviii | 80.961 (8) |
O1—Dy2—Sb2iii | 85.395 (8) | Dy3xix—Sb2—Dy2xvi | 88.902 (7) |
Sb1—Dy2—Sb2iii | 94.605 (8) | Dy3—Sb2—Dy2xvi | 84.259 (9) |
Sb2x—Dy2—Sb2iii | 170.789 (16) | Dy3xviii—Sb2—Dy2xvi | 88.555 (6) |
Sb2i—Dy2—Sb2iii | 89.630 (1) | Dy3xix—Sb2—Dy3xvii | 92.183 (7) |
Sb2xi—Dy2—Sb2iii | 89.630 (1) | Dy3—Sb2—Dy3xvii | 84.060 (8) |
O1—Dy2—Dy1xii | 39.113 (5) | Dy3xviii—Sb2—Dy3xvii | 87.497 (8) |
Sb1—Dy2—Dy1xii | 140.887 (5) | Dy2xvi—Sb2—Dy3xvii | 168.122 (12) |
Sb2x—Dy2—Dy1xii | 55.689 (6) | Dy3xix—Sb2—Dy1xxiii | 70.299 (7) |
Sb2i—Dy2—Dy1xii | 63.782 (6) | Dy3—Sb2—Dy1xxiii | 145.250 (9) |
Sb2xi—Dy2—Dy1xii | 108.494 (9) | Dy3xviii—Sb2—Dy1xxiii | 121.912 (9) |
Sb2iii—Dy2—Dy1xii | 116.046 (10) | Dy2xvi—Sb2—Dy1xxiii | 71.735 (8) |
O1—Dy2—Dy1xiii | 39.113 (5) | Dy3xvii—Sb2—Dy1xxiii | 119.702 (9) |
Sb1—Dy2—Dy1xiii | 140.887 (5) | Dy3xix—Sb2—Dy1xxiv | 119.599 (9) |
Sb2x—Dy2—Dy1xiii | 63.782 (6) | Dy3—Sb2—Dy1xxiv | 141.286 (9) |
Sb2i—Dy2—Dy1xiii | 116.047 (10) | Dy3xviii—Sb2—Dy1xxiv | 73.222 (7) |
Sb2xi—Dy2—Dy1xiii | 55.688 (6) | Dy2xvi—Sb2—Dy1xxiv | 122.570 (10) |
Sb2iii—Dy2—Dy1xiii | 108.493 (9) | Dy3xvii—Sb2—Dy1xxiv | 66.749 (6) |
Dy1xii—Dy2—Dy1xiii | 52.986 (6) | Dy1xxiii—Sb2—Dy1xxiv | 73.424 (7) |
O1—Dy2—Dy1xiv | 39.114 (4) | Dy2—O1—Dy1xii | 103.86 (16) |
Sb1—Dy2—Dy1xiv | 140.887 (5) | Dy2—O1—Dy1xiii | 103.86 (16) |
Sb2x—Dy2—Dy1xiv | 108.494 (9) | Dy1xii—O1—Dy1xiii | 86.71 (8) |
Sb2i—Dy2—Dy1xiv | 55.688 (6) | Dy2—O1—Dy1xiv | 103.86 (16) |
Sb2xi—Dy2—Dy1xiv | 116.046 (10) | Dy1xii—O1—Dy1xiv | 86.71 (8) |
Sb2iii—Dy2—Dy1xiv | 63.781 (6) | Dy1xiii—O1—Dy1xiv | 152.3 (3) |
Dy1xii—Dy2—Dy1xiv | 52.985 (6) | Dy2—O1—Dy1xv | 103.86 (16) |
Dy1xiii—Dy2—Dy1xiv | 78.227 (9) | Dy1xii—O1—Dy1xv | 152.3 (3) |
O1—Dy2—Dy1xv | 39.114 (5) | Dy1xiii—O1—Dy1xv | 86.71 (8) |
Sb1—Dy2—Dy1xv | 140.886 (5) | Dy1xiv—O1—Dy1xv | 86.71 (8) |
Sb2x—Dy2—Dy1xv | 116.047 (10) | Dy1xvi—O2—Dy1xx | 129.05 (14) |
Sb2i—Dy2—Dy1xv | 108.493 (9) | Dy1xvi—O2—Dy3 | 107.40 (11) |
Sb2xi—Dy2—Dy1xv | 63.781 (6) | Dy1xx—O2—Dy3 | 110.57 (11) |
Sb2iii—Dy2—Dy1xv | 55.688 (6) | Dy1xvi—O2—Dy1xxi | 97.17 (10) |
Dy1xii—Dy2—Dy1xv | 78.227 (9) | Dy1xx—O2—Dy1xxi | 95.88 (10) |
Dy1xiii—Dy2—Dy1xv | 52.985 (6) | Dy3—O2—Dy1xxi | 115.54 (12) |
Symmetry codes: (i) x, y−1, z; (ii) y−1/2, −x, −z+2; (iii) −y+3/2, x, z; (iv) x, y, z+1; (v) x, y−1, z+1; (vi) y−1/2, −x, −z+1; (vii) −x+1, −y, −z+2; (viii) y, −x+1/2, z; (ix) −y+1/2, x, z; (x) y−1, −x+1/2, z; (xi) −x+1/2, −y+3/2, z; (xii) y, −x+1/2, z−1; (xiii) −x+1/2, −y+1/2, z−1; (xiv) x, y, z−1; (xv) −y+1/2, x, z−1; (xvi) x, y+1, z; (xvii) −y+1, x+1/2, −z+1; (xviii) −x, −y+2, −z+1; (xix) y−1/2, −x+1, −z+1; (xx) −y, x+1/2, −z+2; (xxi) y, −x+3/2, z; (xxii) −x+1/2, −y+1/2, z; (xxiii) x, y+1, z−1; (xxiv) −y, x+1/2, −z+1. |
Experimental details
(pr9Sb5o5) | (sm9sb5o5) | (dy9sb5o5) | |
Crystal data | |||
Chemical formula | Pr9Sb5O5 | Sm9Sb5O5 | Dy9Sb5O5 |
Mr | 1956.94 | 2041.90 | 2151.25 |
Crystal system, space group | Tetragonal, P4/n | Tetragonal, P4/n | Tetragonal, P4/n |
Temperature (K) | 296 | 296 | 296 |
a, c (Å) | 10.2203 (3), 9.1508 (3) | 10.0341 (4), 8.9839 (3) | 9.8389 (3), 8.7986 (3) |
V (Å3) | 955.84 (5) | 904.53 (6) | 851.74 (5) |
Z | 2 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 29.37 | 36.01 | 46.70 |
Crystal size (mm) | 0.06 × 0.06 × 0.04 | 0.05 × 0.05 × 0.03 | 0.06 × 0.04 × 0.02 |
Data collection | |||
Diffractometer | SMART APEX I, Bruker AXS diffractometer | SMART APEX II, Bruker AXS diffractometer | SMART APEX II, Bruker AXS diffractometer |
Absorption correction | Multi-scan SADABS (G. Sheldrick 2007) | Multi-scan TWINABS (G. Sheldrick 2007) | Multi-scan TWINABS (G. Sheldrick 2007) |
Tmin, Tmax | 0.272, 0.386 | 0.185, 0.339 | 0.143, 0.391 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19532, 1957, 1827 | 31237, 4116, 3266 | 39009, 3725, 3165 |
Rint | 0.045 | 0.050 | 0.051 |
(sin θ/λ)max (Å−1) | 0.786 | 0.847 | 0.835 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.055, 1.22 | 0.029, 0.057, 1.08 | 0.027, 0.058, 1.08 |
No. of reflections | 1957 | 4116 | 3725 |
No. of parameters | 47 | 48 | 48 |
Δρmax, Δρmin (e Å−3) | 1.67, −1.52 | 2.05, −1.87 | 2.74, −2.42 |
Computer programs: Bruker Suite (Bruker AXS), SAINT32 (Bruker AXS), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 2005), CIFTAB.
Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register