Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044844/bq2035sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044844/bq2035Isup2.hkl |
CCDC reference: 663643
Key indicators
- Single-crystal X-ray study
- T = 173 K
- Mean (N-C) = 0.005 Å
- R factor = 0.030
- wR factor = 0.070
- Data-to-parameter ratio = 24.9
checkCIF/PLATON results
No syntax errors found
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.402 0.709 Tmin(prime) and Tmax expected: 0.498 0.713 RR(prime) = 0.812 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.79
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
The title compound was prepared by adding 2 mmol of tetramethylthiourea in 15–20 ml of methanol to 1 mmol (0.17 g) of AgNO3, followed by the addition of 1 mmol of KCN dissolved in 15 - 20 ml of distilled water. A clear solution was obtained and was stirred for ca 30 min. The solution was filtered and the filtrate allowed to evaporate slowly at room temperature, giving colorless block-like crystals.
The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.98 Å with Uiso(H) = 1.5U eq (C).
The structure of the asymmetric unit of the title compound is shown in Fig. 1. The reaction of the silver nitrate complex of tetramethylthiourea with KCN lead to the formation of an unusual ionic three dimensional polymer. The asymmetric unit is composed of a cation, [(µ-tetramethylthiourea-S)Ag]+, and an anion, [(Ag(CN)2]-. The S-atom of the cation asymmetrically bridges two silver Ag1 atoms in two almost parallel symmetry related chains; bond distance S1—Ag1 is 2.4990 (9) Å, while distance S1—Ag1i is 2.7075 (9) Å [symmetry operation (i) = x + 1/2, -y + 1/2, -z]. The Ag1 atoms in these chains are further linked via the N-atoms of the [(Ag(CN)2]- anions (Fig. 2), so building up the three dimensional framework.
The Ag1—N(CN) distances are normal [2.288 (3) and 2.242 (3) Å], as are the Ag2—C distances [2.047 (3) and 2.048 (3) Å], indicating no disorder of the C≡N bonds. The reaction of tetramethylthiourea with AgCN lead to the formation of a one-dimensional chiral polymer (Stocker et al., 2000). There the cyanide groups, coordinated to equivalent Ag atoms, have equal distances at both ends (2.155 (4) Å) and are completely disordered.
In the crystal structure the shortest Ag···Ag intermolecular contact distance involves atom Ag2 of the [Ag(CN)2]- anion; distance Ag2···Ag2iii is equal to 3.6965 (5) Å [symmetry operation (iii) = x - 1/2, y, -z - 1/2].
For related literature, see: Stocker et al. (2000).
Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).
[Ag2(CN)2(C5H12N2S)] | F(000) = 1536 |
Mr = 400.01 | Dx = 2.195 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 23959 reflections |
a = 7.3563 (4) Å | θ = 1.8–29.6° |
b = 15.6735 (11) Å | µ = 3.38 mm−1 |
c = 20.9978 (16) Å | T = 173 K |
V = 2421.0 (3) Å3 | Block, colourless |
Z = 8 | 0.20 × 0.20 × 0.10 mm |
Stoe IPDS-2 diffractometer | 3284 independent reflections |
Radiation source: fine-focus sealed tube | 2731 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
φ and ω scans | θmax = 29.3°, θmin = 1.9° |
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2003) | h = −10→9 |
Tmin = 0.402, Tmax = 0.709 | k = −21→21 |
32772 measured reflections | l = −28→28 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0265P)2 + 3.3418P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3284 reflections | Δρmax = 0.46 e Å−3 |
132 parameters | Δρmin = −0.94 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00073 (8) |
[Ag2(CN)2(C5H12N2S)] | V = 2421.0 (3) Å3 |
Mr = 400.01 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.3563 (4) Å | µ = 3.38 mm−1 |
b = 15.6735 (11) Å | T = 173 K |
c = 20.9978 (16) Å | 0.20 × 0.20 × 0.10 mm |
Stoe IPDS-2 diffractometer | 3284 independent reflections |
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2003) | 2731 reflections with I > 2σ(I) |
Tmin = 0.402, Tmax = 0.709 | Rint = 0.070 |
32772 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.46 e Å−3 |
3284 reflections | Δρmin = −0.94 e Å−3 |
132 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.34332 (3) | 0.25371 (2) | −0.08070 (1) | 0.0319 (1) | |
Ag2 | 0.51946 (4) | −0.00703 (2) | −0.24123 (1) | 0.0409 (1) | |
S1 | 0.16344 (11) | 0.22840 (6) | 0.01848 (4) | 0.0326 (2) | |
N1 | 0.3533 (4) | 0.25257 (19) | 0.12435 (13) | 0.0349 (8) | |
N2 | 0.3000 (4) | 0.37387 (19) | 0.06475 (13) | 0.0340 (8) | |
N3 | 0.3898 (5) | 0.1365 (2) | −0.14355 (15) | 0.0412 (10) | |
N4 | 0.3563 (5) | 0.3562 (2) | −0.15502 (16) | 0.0425 (10) | |
C1 | 0.2806 (5) | 0.2894 (2) | 0.07285 (15) | 0.0304 (9) | |
C2 | 0.3721 (6) | 0.2957 (3) | 0.18619 (17) | 0.0526 (15) | |
C3 | 0.3799 (5) | 0.1602 (3) | 0.1272 (2) | 0.0447 (12) | |
C4 | 0.1848 (6) | 0.4213 (3) | 0.02035 (18) | 0.0437 (11) | |
C5 | 0.4564 (6) | 0.4223 (3) | 0.0878 (2) | 0.0520 (14) | |
C6 | 0.4379 (5) | 0.0842 (2) | −0.17756 (17) | 0.0367 (10) | |
C7 | 0.3986 (6) | 0.4043 (2) | −0.19317 (17) | 0.0378 (10) | |
H2A | 0.30460 | 0.34960 | 0.18540 | 0.0780* | |
H2B | 0.50090 | 0.30730 | 0.19450 | 0.0780* | |
H2C | 0.32340 | 0.25900 | 0.21990 | 0.0780* | |
H3A | 0.26920 | 0.13310 | 0.14350 | 0.0670* | |
H3B | 0.48190 | 0.14720 | 0.15560 | 0.0670* | |
H3C | 0.40620 | 0.13850 | 0.08440 | 0.0670* | |
H4A | 0.06390 | 0.39510 | 0.01880 | 0.0660* | |
H4B | 0.23930 | 0.42000 | −0.02220 | 0.0660* | |
H4C | 0.17390 | 0.48060 | 0.03470 | 0.0660* | |
H5A | 0.54660 | 0.38290 | 0.10560 | 0.0780* | |
H5B | 0.41690 | 0.46230 | 0.12080 | 0.0780* | |
H5C | 0.51080 | 0.45400 | 0.05240 | 0.0780* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0352 (1) | 0.0369 (1) | 0.0236 (1) | −0.0003 (1) | 0.0017 (1) | −0.0003 (1) |
Ag2 | 0.0590 (2) | 0.0348 (1) | 0.0290 (1) | 0.0060 (1) | −0.0008 (1) | −0.0063 (1) |
S1 | 0.0276 (4) | 0.0458 (4) | 0.0245 (3) | −0.0063 (3) | 0.0019 (3) | −0.0043 (3) |
N1 | 0.0337 (14) | 0.0465 (16) | 0.0246 (12) | 0.0047 (13) | −0.0024 (11) | −0.0015 (12) |
N2 | 0.0328 (15) | 0.0401 (15) | 0.0292 (13) | 0.0021 (12) | −0.0053 (12) | −0.0058 (12) |
N3 | 0.0458 (18) | 0.0419 (16) | 0.0358 (16) | −0.0038 (13) | 0.0028 (14) | −0.0075 (13) |
N4 | 0.0450 (19) | 0.0447 (16) | 0.0377 (16) | −0.0011 (14) | −0.0037 (14) | 0.0085 (14) |
C1 | 0.0268 (14) | 0.0400 (17) | 0.0243 (14) | 0.0031 (13) | 0.0021 (12) | −0.0029 (13) |
C2 | 0.056 (3) | 0.078 (3) | 0.0237 (16) | 0.015 (2) | −0.0075 (16) | −0.0088 (18) |
C3 | 0.039 (2) | 0.051 (2) | 0.044 (2) | 0.0043 (16) | −0.0001 (16) | 0.0111 (18) |
C4 | 0.048 (2) | 0.045 (2) | 0.0382 (18) | 0.0076 (17) | −0.0065 (17) | 0.0007 (16) |
C5 | 0.049 (2) | 0.049 (2) | 0.058 (3) | −0.0059 (19) | −0.013 (2) | −0.0116 (19) |
C6 | 0.044 (2) | 0.0343 (16) | 0.0317 (17) | −0.0023 (14) | 0.0013 (14) | −0.0039 (14) |
C7 | 0.047 (2) | 0.0347 (17) | 0.0316 (17) | −0.0025 (15) | −0.0029 (15) | 0.0030 (14) |
Ag1—S1 | 2.4990 (9) | N4—C7 | 1.143 (5) |
Ag1—N3 | 2.288 (3) | C2—H2A | 0.9800 |
Ag1—N4 | 2.242 (3) | C2—H2B | 0.9800 |
Ag1—S1i | 2.7075 (9) | C2—H2C | 0.9800 |
Ag2—C6 | 2.047 (3) | C3—H3A | 0.9800 |
Ag2—C7ii | 2.048 (3) | C3—H3B | 0.9800 |
S1—C1 | 1.721 (3) | C3—H3C | 0.9800 |
N1—C1 | 1.337 (4) | C4—H4A | 0.9800 |
N1—C2 | 1.470 (5) | C4—H4B | 0.9800 |
N1—C3 | 1.462 (6) | C4—H4C | 0.9800 |
N2—C1 | 1.342 (4) | C5—H5A | 0.9800 |
N2—C4 | 1.463 (5) | C5—H5B | 0.9800 |
N2—C5 | 1.461 (5) | C5—H5C | 0.9800 |
N3—C6 | 1.143 (5) | ||
Ag1···C4 | 3.572 (4) | C6···C2vi | 3.459 (5) |
Ag1···C4i | 3.929 (5) | C6···Ag2vii | 3.798 (4) |
Ag1···C5iii | 3.967 (5) | C7···Ag2x | 3.523 (4) |
Ag1···N1iii | 3.721 (3) | C2···H5A | 2.5300 |
Ag1···C1iii | 4.198 (4) | C2···H5B | 2.9700 |
Ag1···C2iii | 4.186 (4) | C5···H2B | 2.8900 |
Ag1···C3iii | 3.794 (4) | C5···H2A | 2.6000 |
Ag1···C3i | 4.284 (4) | C6···H2Ai | 2.8900 |
Ag2···C6iv | 3.798 (4) | C7···H3Ai | 2.9800 |
Ag2···C3v | 3.471 (4) | C7···H5Bxii | 2.9200 |
Ag2···C2vi | 3.804 (5) | H2A···N2 | 2.5600 |
Ag2···C5vi | 3.856 (4) | H2A···C5 | 2.6000 |
Ag2···Ag2vii | 3.6965 (5) | H2A···H5A | 2.5000 |
Ag2···Ag2iv | 3.6965 (5) | H2A···H5B | 2.3800 |
Ag2···N4viii | 3.939 (3) | H2A···Ag2iii | 3.4400 |
Ag2···C7viii | 3.523 (4) | H2A···C6iii | 2.8900 |
Ag1···H3Ciii | 3.6300 | H2A···Ag2xi | 3.3100 |
Ag1···H4A | 3.6700 | H2B···C5 | 2.8900 |
Ag1···H2Biii | 3.6000 | H2B···H5A | 2.2400 |
Ag1···H3Biii | 3.4600 | H2B···Ag1i | 3.6000 |
Ag1···H4Ai | 3.1200 | H2B···Ag2xi | 3.4100 |
Ag1···H5Aiii | 3.1000 | H2C···H3A | 2.5700 |
Ag1···H4B | 2.9800 | H2C···H3B | 2.5000 |
Ag2···H3Aix | 3.7800 | H3A···S1 | 3.1200 |
Ag2···H2Ai | 3.4400 | H3A···H2C | 2.5700 |
Ag2···H3Av | 3.2500 | H3A···Ag2xiii | 3.7800 |
Ag2···H3Bv | 2.8400 | H3A···C7iii | 2.9800 |
Ag2···H2Avi | 3.3100 | H3A···Ag2v | 3.2500 |
Ag2···H2Bvi | 3.4100 | H3B···H2C | 2.5000 |
Ag2···H5Avi | 3.7600 | H3B···Ag1i | 3.4600 |
Ag2···H5Bvi | 3.0700 | H3B···N4i | 2.7500 |
S1···C1iii | 3.419 (4) | H3B···Ag2v | 2.8400 |
S1···C5iii | 3.589 (5) | H3C···S1 | 2.6600 |
S1···H3A | 3.1200 | H3C···Ag1i | 3.6300 |
S1···H4B | 3.1700 | H3C···H4Ai | 2.5100 |
S1···H3C | 2.6600 | H4A···Ag1 | 3.6700 |
S1···H4A | 2.7100 | H4A···S1 | 2.7100 |
N1···Ag1i | 3.721 (3) | H4A···Ag1iii | 3.1200 |
N3···C1i | 3.438 (5) | H4A···H3Ciii | 2.5100 |
N4···Ag2x | 3.939 (3) | H4B···Ag1 | 2.9800 |
N1···H5A | 2.5200 | H4B···S1 | 3.1700 |
N2···H2A | 2.5600 | H4B···H5C | 2.5900 |
N3···H5Aiii | 2.6600 | H4C···H5B | 2.5600 |
N4···H3Biii | 2.7500 | H4C···H5C | 2.5400 |
C1···Ag1i | 4.198 (4) | H5A···N1 | 2.5200 |
C2···C5 | 2.931 (6) | H5A···C2 | 2.5300 |
C2···Ag2xi | 3.804 (5) | H5A···H2A | 2.5000 |
C2···C6xi | 3.459 (5) | H5A···H2B | 2.2400 |
C2···Ag1i | 4.186 (4) | H5A···Ag1i | 3.1000 |
C3···Ag2v | 3.471 (4) | H5A···N3i | 2.6600 |
C3···Ag1iii | 4.284 (4) | H5A···Ag2xi | 3.7600 |
C3···Ag1i | 3.794 (4) | H5B···C2 | 2.9700 |
C4···Ag1 | 3.572 (4) | H5B···H2A | 2.3800 |
C4···Ag1iii | 3.929 (5) | H5B···H4C | 2.5600 |
C5···Ag2xi | 3.856 (4) | H5B···C7xii | 2.9200 |
C5···S1i | 3.589 (5) | H5B···Ag2xi | 3.0700 |
C5···C2 | 2.931 (6) | H5C···H4B | 2.5900 |
C5···Ag1i | 3.967 (5) | H5C···H4C | 2.5400 |
S1—Ag1—N3 | 115.62 (9) | N1—C2—H2B | 109.00 |
S1—Ag1—N4 | 135.76 (9) | N1—C2—H2C | 109.00 |
S1—Ag1—S1i | 94.30 (3) | H2A—C2—H2B | 109.00 |
N3—Ag1—N4 | 99.64 (12) | H2A—C2—H2C | 109.00 |
S1i—Ag1—N3 | 103.39 (9) | H2B—C2—H2C | 109.00 |
S1i—Ag1—N4 | 102.98 (9) | N1—C3—H3A | 109.00 |
C6—Ag2—C7ii | 178.41 (13) | N1—C3—H3B | 109.00 |
Ag1—S1—C1 | 101.51 (12) | N1—C3—H3C | 109.00 |
Ag1—S1—Ag1iii | 147.80 (4) | H3A—C3—H3B | 109.00 |
Ag1iii—S1—C1 | 93.32 (12) | H3A—C3—H3C | 109.00 |
C1—N1—C2 | 123.6 (3) | H3B—C3—H3C | 110.00 |
C1—N1—C3 | 120.9 (3) | N2—C4—H4A | 110.00 |
C2—N1—C3 | 114.0 (3) | N2—C4—H4B | 109.00 |
C1—N2—C4 | 121.4 (3) | N2—C4—H4C | 109.00 |
C1—N2—C5 | 123.7 (3) | H4A—C4—H4B | 109.00 |
C4—N2—C5 | 113.8 (3) | H4A—C4—H4C | 109.00 |
Ag1—N3—C6 | 169.2 (3) | H4B—C4—H4C | 109.00 |
Ag1—N4—C7 | 166.4 (3) | N2—C5—H5A | 109.00 |
S1—C1—N1 | 119.8 (2) | N2—C5—H5B | 109.00 |
S1—C1—N2 | 121.2 (2) | N2—C5—H5C | 110.00 |
N1—C1—N2 | 119.1 (3) | H5A—C5—H5B | 110.00 |
Ag2—C6—N3 | 177.8 (3) | H5A—C5—H5C | 109.00 |
Ag2xiv—C7—N4 | 177.7 (3) | H5B—C5—H5C | 109.00 |
N1—C2—H2A | 109.00 | ||
N3—Ag1—S1—C1 | 139.11 (15) | Ag1—S1—C1—N1 | −120.5 (3) |
N3—Ag1—S1—Ag1iii | −105.15 (12) | Ag1—S1—C1—N2 | 59.8 (3) |
N4—Ag1—S1—C1 | −81.55 (18) | Ag1iii—S1—C1—N1 | 88.3 (3) |
N4—Ag1—S1—Ag1iii | 34.19 (16) | Ag1iii—S1—C1—N2 | −91.4 (3) |
S1i—Ag1—S1—C1 | 32.04 (12) | C2—N1—C1—S1 | −148.1 (3) |
S1i—Ag1—S1—Ag1iii | 147.78 (7) | C2—N1—C1—N2 | 31.6 (5) |
S1—Ag1—S1i—Ag1i | 18.94 (8) | C3—N1—C1—S1 | 17.1 (5) |
S1—Ag1—S1i—C1i | 136.79 (11) | C3—N1—C1—N2 | −163.2 (3) |
N3—Ag1—S1i—Ag1i | −98.68 (11) | C4—N2—C1—S1 | 16.8 (5) |
N3—Ag1—S1i—C1i | 19.17 (14) | C4—N2—C1—N1 | −162.9 (3) |
N4—Ag1—S1i—Ag1i | 157.94 (11) | C5—N2—C1—S1 | −149.9 (3) |
N4—Ag1—S1i—C1i | −84.21 (14) | C5—N2—C1—N1 | 30.4 (5) |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) −x+1, y−1/2, −z−1/2; (iii) x−1/2, −y+1/2, −z; (iv) x+1/2, y, −z−1/2; (v) −x+1, −y, −z; (vi) x, −y+1/2, z−1/2; (vii) x−1/2, y, −z−1/2; (viii) −x+1/2, y−1/2, z; (ix) −x+1/2, −y, z−1/2; (x) −x+1/2, y+1/2, z; (xi) x, −y+1/2, z+1/2; (xii) −x+1, −y+1, −z; (xiii) −x+1/2, −y, z+1/2; (xiv) −x+1, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ag2(CN)2(C5H12N2S)] |
Mr | 400.01 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 173 |
a, b, c (Å) | 7.3563 (4), 15.6735 (11), 20.9978 (16) |
V (Å3) | 2421.0 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.38 |
Crystal size (mm) | 0.20 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Stoe IPDS2 |
Absorption correction | Multi-scan (MULscanABS in PLATON; Spek, 2003) |
Tmin, Tmax | 0.402, 0.709 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32772, 3284, 2731 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.689 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.070, 1.07 |
No. of reflections | 3284 |
No. of parameters | 132 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.94 |
Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).
Ag1—S1 | 2.4990 (9) | Ag1—S1i | 2.7075 (9) |
Ag1—N3 | 2.288 (3) | Ag2—C6 | 2.047 (3) |
Ag1—N4 | 2.242 (3) | Ag2—C7ii | 2.048 (3) |
Ag2···Ag2iii | 3.6965 (5) | Ag2···Ag2iv | 3.6965 (5) |
S1—Ag1—N3 | 115.62 (9) | S1i—Ag1—N4 | 102.98 (9) |
S1—Ag1—N4 | 135.76 (9) | C6—Ag2—C7ii | 178.41 (13) |
S1—Ag1—S1i | 94.30 (3) | Ag1—S1—C1 | 101.51 (12) |
N3—Ag1—N4 | 99.64 (12) | Ag1—S1—Ag1v | 147.80 (4) |
S1i—Ag1—N3 | 103.39 (9) | Ag1v—S1—C1 | 93.32 (12) |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) −x+1, y−1/2, −z−1/2; (iii) x−1/2, y, −z−1/2; (iv) x+1/2, y, −z−1/2; (v) x−1/2, −y+1/2, −z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
The structure of the asymmetric unit of the title compound is shown in Fig. 1. The reaction of the silver nitrate complex of tetramethylthiourea with KCN lead to the formation of an unusual ionic three dimensional polymer. The asymmetric unit is composed of a cation, [(µ-tetramethylthiourea-S)Ag]+, and an anion, [(Ag(CN)2]-. The S-atom of the cation asymmetrically bridges two silver Ag1 atoms in two almost parallel symmetry related chains; bond distance S1—Ag1 is 2.4990 (9) Å, while distance S1—Ag1i is 2.7075 (9) Å [symmetry operation (i) = x + 1/2, -y + 1/2, -z]. The Ag1 atoms in these chains are further linked via the N-atoms of the [(Ag(CN)2]- anions (Fig. 2), so building up the three dimensional framework.
The Ag1—N(CN) distances are normal [2.288 (3) and 2.242 (3) Å], as are the Ag2—C distances [2.047 (3) and 2.048 (3) Å], indicating no disorder of the C≡N bonds. The reaction of tetramethylthiourea with AgCN lead to the formation of a one-dimensional chiral polymer (Stocker et al., 2000). There the cyanide groups, coordinated to equivalent Ag atoms, have equal distances at both ends (2.155 (4) Å) and are completely disordered.
In the crystal structure the shortest Ag···Ag intermolecular contact distance involves atom Ag2 of the [Ag(CN)2]- anion; distance Ag2···Ag2iii is equal to 3.6965 (5) Å [symmetry operation (iii) = x - 1/2, y, -z - 1/2].