Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, caesium lanthanum tetrametaphosphate, CsLa(PO3)4, was grown using the flux method and its structure determined by single-crystal X-ray diffraction methods. This compound is isostructural with CsNd(PO3)4. The structure is built up from infinite helical chains, (PO3)n, which are connected by isolated LaO8 dodecahedra and irregularly shaped Cs polyhedra. These chains are formed by corner-sharing of PO4 tetrahedra and run along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680400131X/br6133sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680400131X/br6133Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](P-O) = 0.005 Å
  • R factor = 0.022
  • wR factor = 0.049
  • Data-to-parameter ratio = 12.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.61 Ratio PLAT241_ALERT_2_B Check High U(eq) as Compared to Neighbors .... O10
Alert level C PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... P3 PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... P4
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 28.04 From the CIF: _reflns_number_total 2073 Count of symmetry unique reflns 1503 Completeness (_total/calc) 137.92% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 570 Fraction of Friedel pairs measured 0.379 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

(I) top
Crystal data top
CsLa(PO3)4F(000) = 536
Mr = 587.70Dx = 3.341 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 961 reflections
a = 7.218 (3) Åθ = 3.2–28.0°
b = 9.254 (3) ŵ = 7.33 mm1
c = 8.864 (3) ÅT = 293 K
β = 99.377 (5)°Prism, colorless
V = 584.2 (4) Å30.14 × 0.06 × 0.04 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2073 independent reflections
Radiation source: fine-focus sealed tube1993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.453, Tmax = 0.746k = 128
3731 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0197P)2 + 0.0183P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.049Δρmax = 1.25 e Å3
S = 1.02Δρmin = 0.72 e Å3
2073 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
164 parametersExtinction coefficient: 0.0191 (8)
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (16)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.20222 (4)0.09932 (3)0.30272 (3)0.00782 (9)
Cs10.32599 (7)0.06604 (4)0.17489 (6)0.03065 (13)
P10.9168 (2)0.17812 (16)0.07312 (16)0.0095 (3)
P20.69456 (19)0.02300 (16)0.22824 (17)0.0105 (3)
P30.6474 (2)0.02504 (15)0.54399 (17)0.0102 (3)
P40.9393 (2)0.20722 (15)0.62514 (17)0.0118 (3)
O10.8567 (6)0.2511 (5)0.0743 (5)0.0190 (9)
O20.9607 (6)0.3021 (4)0.1993 (5)0.0179 (9)
O31.0737 (5)0.0722 (5)0.0894 (5)0.0124 (8)
O40.7305 (5)0.1060 (4)0.1170 (5)0.0161 (9)
O50.4950 (5)0.0665 (5)0.1825 (5)0.0170 (10)
O60.8433 (5)0.1333 (4)0.2329 (5)0.0181 (9)
O70.7231 (6)0.0573 (5)0.3886 (5)0.0191 (9)
O80.4626 (6)0.0448 (5)0.5110 (5)0.0229 (10)
O90.6624 (8)0.1584 (5)0.6349 (6)0.0297 (12)
O100.7875 (7)0.0875 (7)0.6333 (6)0.0442 (15)
O110.8521 (8)0.3499 (5)0.5941 (5)0.0292 (12)
O121.0770 (6)0.1512 (5)0.5349 (5)0.0257 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00746 (13)0.00934 (14)0.00701 (13)0.00021 (12)0.00226 (9)0.00030 (12)
Cs10.0372 (3)0.0235 (2)0.0360 (3)0.00028 (17)0.0202 (2)0.00060 (18)
P10.0117 (6)0.0108 (6)0.0064 (6)0.0004 (5)0.0023 (5)0.0008 (5)
P20.0093 (7)0.0132 (7)0.0095 (7)0.0018 (5)0.0029 (5)0.0009 (5)
P30.0102 (7)0.0105 (7)0.0099 (7)0.0002 (5)0.0015 (5)0.0014 (5)
P40.0128 (7)0.0120 (7)0.0109 (7)0.0013 (5)0.0031 (6)0.0039 (5)
O10.026 (2)0.018 (2)0.013 (2)0.0003 (18)0.0039 (18)0.0034 (17)
O20.026 (2)0.012 (2)0.014 (2)0.0044 (16)0.0011 (18)0.0059 (16)
O30.0119 (19)0.016 (2)0.0096 (19)0.0023 (17)0.0032 (15)0.0031 (16)
O40.013 (2)0.020 (2)0.017 (2)0.0024 (16)0.0068 (17)0.0113 (17)
O50.0110 (18)0.030 (3)0.0098 (19)0.0041 (15)0.0018 (16)0.0028 (15)
O60.0135 (18)0.018 (3)0.024 (2)0.0006 (15)0.0082 (17)0.0008 (16)
O70.019 (2)0.023 (2)0.017 (2)0.0119 (18)0.0083 (18)0.0089 (18)
O80.0101 (19)0.044 (3)0.014 (2)0.0112 (18)0.0007 (17)0.0029 (19)
O90.051 (3)0.018 (2)0.022 (2)0.015 (2)0.011 (2)0.0112 (19)
O100.042 (3)0.060 (4)0.035 (3)0.039 (3)0.018 (2)0.014 (3)
O110.048 (3)0.019 (2)0.016 (2)0.018 (2)0.009 (2)0.0059 (18)
O120.024 (2)0.036 (3)0.022 (2)0.0024 (19)0.015 (2)0.0106 (19)
Geometric parameters (Å, º) top
La1—O12i2.426 (4)P2—O41.597 (4)
La1—O1ii2.432 (4)P3—O81.468 (4)
La1—O82.463 (4)P3—O91.468 (5)
La1—O9iii2.472 (5)P3—O101.573 (5)
La1—O3i2.526 (4)P3—O71.590 (4)
La1—O52.535 (4)P4—O121.468 (4)
La1—O11iv2.537 (5)P4—O111.469 (5)
La1—O6i2.583 (4)P4—O101.568 (5)
Cs1—O6v3.049 (4)P4—O2viii1.608 (4)
Cs1—O2ii3.186 (4)O1—La1v2.432 (4)
Cs1—O3i3.193 (4)O2—P4ix1.608 (4)
Cs1—O8vi3.267 (5)O2—Cs1v3.186 (4)
Cs1—O9vi3.287 (5)O3—La1x2.526 (4)
Cs1—O53.430 (4)O3—Cs1x3.193 (4)
Cs1—O12vii3.519 (5)O5—Cs1ii3.642 (4)
Cs1—O43.591 (4)O6—La1x2.583 (4)
Cs1—O5v3.642 (4)O6—Cs1ii3.049 (4)
Cs1—O11v3.809 (5)O8—Cs1xi3.267 (5)
P1—O11.473 (4)O9—La1iv2.472 (5)
P1—O31.487 (4)O9—Cs1xi3.287 (5)
P1—O21.597 (4)O11—La1iii2.537 (5)
P1—O41.605 (4)O11—Cs1ii3.809 (5)
P2—O61.477 (4)O12—La1x2.426 (4)
P2—O51.487 (4)O12—Cs1xii3.519 (5)
P2—O71.588 (4)
O12i—La1—O1ii123.68 (15)O2ii—Cs1—O11v88.75 (11)
O12i—La1—O875.47 (15)O3i—Cs1—O11v124.74 (11)
O1ii—La1—O8138.52 (15)O8vi—Cs1—O11v48.19 (11)
O12i—La1—O9iii79.58 (16)O9vi—Cs1—O11v66.83 (13)
O1ii—La1—O9iii71.29 (16)O5—Cs1—O11v170.60 (10)
O8—La1—O9iii78.02 (18)O12vii—Cs1—O11v49.65 (11)
O12i—La1—O3i128.10 (14)O4—Cs1—O11v141.94 (10)
O1ii—La1—O3i75.01 (14)O5v—Cs1—O11v81.70 (10)
O8—La1—O3i125.08 (15)O1—P1—O3119.9 (2)
O9iii—La1—O3i145.15 (15)O1—P1—O2106.7 (2)
O12i—La1—O5146.23 (14)O3—P1—O2110.2 (2)
O1ii—La1—O576.29 (13)O1—P1—O4105.6 (2)
O8—La1—O572.77 (13)O3—P1—O4110.9 (2)
O9iii—La1—O582.90 (15)O2—P1—O4102.0 (2)
O3i—La1—O580.77 (13)O6—P2—O5119.2 (2)
O12i—La1—O11iv76.92 (16)O6—P2—O7108.1 (3)
O1ii—La1—O11iv143.28 (15)O5—P2—O7110.5 (2)
O8—La1—O11iv71.78 (16)O6—P2—O4110.1 (2)
O9iii—La1—O11iv145.42 (16)O5—P2—O4106.4 (2)
O3i—La1—O11iv68.82 (14)O7—P2—O4101.1 (2)
O5—La1—O11iv103.35 (16)O8—P3—O9117.6 (3)
O12i—La1—O6i71.43 (15)O8—P3—O10107.3 (3)
O1ii—La1—O6i72.47 (14)O9—P3—O10107.3 (3)
O8—La1—O6i144.87 (14)O8—P3—O7109.8 (2)
O9iii—La1—O6i106.73 (16)O9—P3—O7108.2 (3)
O3i—La1—O6i70.45 (13)O10—P3—O7106.1 (3)
O5—La1—O6i141.82 (14)O12—P4—O11121.5 (3)
O11iv—La1—O6i89.37 (15)O12—P4—O10108.4 (3)
O6v—Cs1—O2ii116.76 (11)O11—P4—O10111.2 (3)
O6v—Cs1—O3i81.18 (10)O12—P4—O2viii105.8 (3)
O2ii—Cs1—O3i67.77 (11)O11—P4—O2viii109.9 (2)
O6v—Cs1—O8vi108.13 (12)O10—P4—O2viii97.1 (3)
O2ii—Cs1—O8vi89.11 (11)P1—O1—La1v170.5 (3)
O3i—Cs1—O8vi156.67 (11)P1—O2—P4ix130.2 (3)
O6v—Cs1—O9vi89.16 (12)P1—O2—Cs1v116.8 (2)
O2ii—Cs1—O9vi133.68 (11)P4ix—O2—Cs1v106.90 (18)
O3i—Cs1—O9vi158.27 (11)P1—O3—La1x131.9 (2)
O8vi—Cs1—O9vi45.06 (11)P1—O3—Cs1x117.2 (2)
O6v—Cs1—O5123.67 (11)La1x—O3—Cs1x110.74 (13)
O2ii—Cs1—O585.29 (10)P2—O4—P1133.4 (3)
O3i—Cs1—O559.23 (10)P2—O4—Cs199.96 (18)
O8vi—Cs1—O5124.30 (11)P1—O4—Cs1118.90 (19)
O9vi—Cs1—O5112.67 (12)P2—O5—La1139.0 (2)
O6v—Cs1—O12vii104.79 (11)P2—O5—Cs1109.8 (2)
O2ii—Cs1—O12vii42.58 (10)La1—O5—Cs1103.63 (12)
O3i—Cs1—O12vii105.20 (10)P2—O5—Cs1ii85.81 (18)
O8vi—Cs1—O12vii52.16 (10)La1—O5—Cs1ii102.61 (13)
O9vi—Cs1—O12vii96.05 (11)Cs1—O5—Cs1ii112.99 (11)
O5—Cs1—O12vii122.23 (10)P2—O6—La1x128.2 (2)
O6v—Cs1—O4106.49 (10)P2—O6—Cs1ii110.9 (2)
O2ii—Cs1—O4124.81 (10)La1x—O6—Cs1ii120.67 (14)
O3i—Cs1—O487.90 (10)P2—O7—P3132.4 (3)
O8vi—Cs1—O4108.88 (10)P3—O8—La1142.9 (3)
O9vi—Cs1—O476.17 (11)P3—O8—Cs1xi94.7 (2)
O5—Cs1—O441.09 (9)La1—O8—Cs1xi113.81 (14)
O12vii—Cs1—O4147.57 (10)P3—O9—La1iv151.2 (3)
O6v—Cs1—O5v43.81 (10)P3—O9—Cs1xi93.9 (2)
O2ii—Cs1—O5v160.56 (10)La1iv—O9—Cs1xi114.79 (16)
O3i—Cs1—O5v104.08 (10)P4—O10—P3147.3 (4)
O8vi—Cs1—O5v96.90 (10)P4—O11—La1iii146.8 (3)
O9vi—Cs1—O5v56.89 (10)P4—O11—Cs1ii115.6 (2)
O5—Cs1—O5v106.08 (7)La1iii—O11—Cs1ii96.80 (13)
O12vii—Cs1—O5v131.32 (10)P4—O12—La1x155.6 (3)
O4—Cs1—O5v70.60 (9)P4—O12—Cs1xii96.5 (2)
O6v—Cs1—O11v65.60 (11)La1x—O12—Cs1xii106.89 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x+1, y+1/2, z; (vi) x, y, z1; (vii) x1, y, z1; (viii) x+2, y1/2, z+1; (ix) x+2, y+1/2, z+1; (x) x+1, y, z; (xi) x, y, z+1; (xii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds