Buy article online - an online subscription or single-article purchase is required to access this article.
The centrosymmetric title copper(II) complex, [Cu(C7H4NO4)2(H2O)2], was synthesized via the hydrothermal method at a mild temperature (353 K). The CuII ion has a distorted octahedral coordination environment, with two N and two O atoms from the pyridine-2,3-dicarboxylate ligands in a common plane and with two water molecules in axial positions. Hydrogen bonds play an important role in the formation of the three-dimensional structure.
Supporting information
CCDC reference: 608377
Key indicators
- Single-crystal X-ray study
- T = 273 K
- Mean (C-C) = 0.002 Å
- R factor = 0.030
- wR factor = 0.099
- Data-to-parameter ratio = 13.8
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.01
PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C5 - C7_a ... 1.54 Ang.
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
2 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.
Diaquabis(pyridine-2,3-dicarboxylato)copper(II)
top
Crystal data top
[Cu(C7H4NO4)2(H2O)2] | Z = 2 |
Mr = 431.80 | F(000) = 438 |
Monoclinic, P21/n | Dx = 1.905 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2115 (8) Å | µ = 1.52 mm−1 |
b = 7.9171 (6) Å | T = 273 K |
c = 10.3631 (9) Å | Block, blue |
β = 94.945 (1)° | 0.25 × 0.16 × 0.1 mm |
V = 752.95 (11) Å3 | |
Data collection top
Bruker SMART CCD area-detector diffractometer | 1802 independent reflections |
Radiation source: fine-focus sealed tube | 1706 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
φ and ω scans | θmax = 28.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.703, Tmax = 0.863 | k = −10→9 |
4841 measured reflections | l = −13→11 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0615P)2 + 0.6891P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1802 reflections | Δρmax = 0.47 e Å−3 |
131 parameters | Δρmin = −0.68 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.015 (3) |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 1.0000 | 0.0000 | 0.0000 | 0.02140 (16) | |
O1 | 1.13793 (14) | 0.15981 (16) | −0.07950 (14) | 0.0233 (3) | |
O4 | 0.36886 (15) | 0.24046 (19) | 0.18816 (16) | 0.0319 (3) | |
N1 | 0.83654 (16) | 0.16005 (19) | 0.03644 (15) | 0.0200 (3) | |
C1 | 0.8406 (2) | 0.3251 (2) | 0.01111 (19) | 0.0254 (4) | |
H1 | 0.9203 | 0.3691 | −0.0269 | 0.030* | |
C2 | 0.7298 (2) | 0.4323 (2) | 0.0398 (2) | 0.0290 (4) | |
H2 | 0.7344 | 0.5474 | 0.0229 | 0.035* | |
C3 | 0.6125 (2) | 0.3639 (2) | 0.09412 (19) | 0.0257 (4) | |
H3 | 0.5369 | 0.4343 | 0.1144 | 0.031* | |
C4 | 0.60387 (19) | 0.1909 (2) | 0.11968 (17) | 0.0196 (4) | |
C5 | 0.72218 (18) | 0.0917 (2) | 0.08963 (16) | 0.0179 (3) | |
C6 | 0.46496 (19) | 0.1355 (2) | 0.17667 (18) | 0.0239 (4) | |
C7 | 1.25601 (19) | 0.0997 (2) | −0.10779 (17) | 0.0193 (3) | |
O6 | 1.35512 (15) | 0.18855 (18) | −0.14866 (15) | 0.0293 (3) | |
O3 | 0.4475 (2) | −0.0181 (2) | 0.2111 (2) | 0.0400 (5) | |
H4 | 0.5146 | −0.0759 | 0.1883 | 0.048* | |
O5 | 1.10248 (15) | 0.0548 (2) | 0.18573 (14) | 0.0268 (3) | |
H5 | 1.172 (2) | 0.115 (3) | 0.181 (2) | 0.032* | |
H6 | 1.122 (3) | −0.0372 (19) | 0.216 (3) | 0.032* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0163 (2) | 0.0189 (2) | 0.0299 (2) | 0.00089 (9) | 0.00742 (14) | 0.00036 (10) |
O1 | 0.0187 (6) | 0.0178 (6) | 0.0346 (7) | 0.0011 (5) | 0.0093 (5) | 0.0018 (5) |
O4 | 0.0181 (6) | 0.0340 (8) | 0.0449 (8) | 0.0032 (5) | 0.0098 (6) | −0.0064 (6) |
N1 | 0.0166 (7) | 0.0172 (7) | 0.0267 (7) | 0.0007 (5) | 0.0058 (6) | −0.0005 (6) |
C1 | 0.0239 (9) | 0.0197 (8) | 0.0339 (9) | −0.0006 (7) | 0.0100 (7) | 0.0018 (7) |
C2 | 0.0304 (10) | 0.0179 (9) | 0.0396 (10) | 0.0038 (7) | 0.0081 (8) | 0.0031 (7) |
C3 | 0.0228 (9) | 0.0236 (9) | 0.0314 (9) | 0.0081 (7) | 0.0057 (7) | −0.0002 (7) |
C4 | 0.0159 (8) | 0.0232 (8) | 0.0199 (8) | 0.0011 (6) | 0.0028 (6) | −0.0015 (6) |
C5 | 0.0169 (8) | 0.0164 (8) | 0.0205 (8) | 0.0003 (6) | 0.0017 (6) | −0.0002 (6) |
C6 | 0.0169 (8) | 0.0297 (9) | 0.0256 (8) | 0.0002 (7) | 0.0050 (6) | −0.0048 (7) |
C7 | 0.0188 (8) | 0.0168 (8) | 0.0224 (8) | 0.0001 (6) | 0.0028 (6) | 0.0000 (6) |
O6 | 0.0227 (7) | 0.0207 (6) | 0.0463 (8) | −0.0026 (5) | 0.0142 (6) | 0.0027 (6) |
O3 | 0.0261 (9) | 0.0318 (9) | 0.0657 (13) | 0.0028 (6) | 0.0255 (8) | 0.0047 (7) |
O5 | 0.0218 (7) | 0.0280 (7) | 0.0309 (7) | −0.0034 (6) | 0.0037 (5) | 0.0015 (6) |
Geometric parameters (Å, º) top
Cu1—O1i | 2.0185 (13) | C2—H2 | 0.9300 |
Cu1—O1 | 2.0185 (13) | C3—C4 | 1.399 (3) |
Cu1—N1 | 2.0282 (15) | C3—H3 | 0.9300 |
Cu1—N1i | 2.0282 (15) | C4—C5 | 1.400 (2) |
Cu1—O5i | 2.1144 (14) | C4—C6 | 1.520 (2) |
Cu1—O5 | 2.1144 (14) | C5—C7i | 1.538 (3) |
O1—C7 | 1.245 (2) | C6—O3 | 1.281 (2) |
O4—C6 | 1.228 (2) | C7—O6 | 1.255 (2) |
N1—C1 | 1.334 (2) | C7—C5i | 1.538 (3) |
N1—C5 | 1.344 (2) | O3—H4 | 0.8200 |
C1—C2 | 1.380 (3) | O5—H5 | 0.806 (10) |
C1—H1 | 0.9300 | O5—H6 | 0.807 (10) |
C2—C3 | 1.372 (3) | | |
| | | |
O1i—Cu1—O1 | 180.00 (10) | C3—C2—C1 | 118.00 (17) |
O1i—Cu1—N1 | 79.17 (6) | C3—C2—H2 | 121.0 |
O1—Cu1—N1 | 100.83 (6) | C1—C2—H2 | 121.0 |
O1i—Cu1—N1i | 100.83 (6) | C2—C3—C4 | 121.57 (17) |
O1—Cu1—N1i | 79.17 (6) | C2—C3—H3 | 119.2 |
N1—Cu1—N1i | 180.00 (9) | C4—C3—H3 | 119.2 |
O1i—Cu1—O5i | 89.74 (5) | C3—C4—C5 | 116.71 (16) |
O1—Cu1—O5i | 90.26 (5) | C3—C4—C6 | 114.84 (16) |
N1—Cu1—O5i | 91.00 (6) | C5—C4—C6 | 128.45 (17) |
N1i—Cu1—O5i | 89.00 (6) | N1—C5—C4 | 121.19 (16) |
O1i—Cu1—O5 | 90.26 (5) | N1—C5—C7i | 110.37 (13) |
O1—Cu1—O5 | 89.74 (5) | C4—C5—C7i | 128.43 (15) |
N1—Cu1—O5 | 89.00 (6) | O4—C6—O3 | 120.44 (18) |
N1i—Cu1—O5 | 91.00 (6) | O4—C6—C4 | 118.71 (18) |
O5i—Cu1—O5 | 180.00 (9) | O3—C6—C4 | 120.85 (17) |
C7—O1—Cu1 | 116.75 (12) | O1—C7—O6 | 122.78 (17) |
C1—N1—C5 | 120.76 (15) | O1—C7—C5i | 117.07 (14) |
C1—N1—Cu1 | 122.78 (12) | O6—C7—C5i | 120.15 (15) |
C5—N1—Cu1 | 116.45 (12) | C6—O3—H4 | 109.5 |
N1—C1—C2 | 121.75 (17) | Cu1—O5—H5 | 110.9 (18) |
N1—C1—H1 | 119.1 | Cu1—O5—H6 | 104 (2) |
C2—C1—H1 | 119.1 | H5—O5—H6 | 114 (3) |
| | | |
N1—Cu1—O1—C7 | 176.64 (13) | C2—C3—C4—C5 | 1.3 (3) |
N1i—Cu1—O1—C7 | −3.36 (13) | C2—C3—C4—C6 | −178.47 (18) |
O5i—Cu1—O1—C7 | −92.29 (13) | C1—N1—C5—C4 | 0.2 (3) |
O5—Cu1—O1—C7 | 87.71 (13) | Cu1—N1—C5—C4 | 179.51 (12) |
O1i—Cu1—N1—C1 | 178.37 (16) | C1—N1—C5—C7i | 179.58 (16) |
O1—Cu1—N1—C1 | −1.63 (16) | Cu1—N1—C5—C7i | −1.12 (18) |
O5i—Cu1—N1—C1 | −92.08 (15) | C3—C4—C5—N1 | −1.3 (3) |
O5—Cu1—N1—C1 | 87.92 (15) | C6—C4—C5—N1 | 178.43 (16) |
O1i—Cu1—N1—C5 | −0.91 (12) | C3—C4—C5—C7i | 179.46 (16) |
O1—Cu1—N1—C5 | 179.09 (12) | C6—C4—C5—C7i | −0.8 (3) |
O5i—Cu1—N1—C5 | 88.64 (13) | C3—C4—C6—O4 | 4.6 (3) |
O5—Cu1—N1—C5 | −91.36 (13) | C5—C4—C6—O4 | −175.18 (17) |
C5—N1—C1—C2 | 0.9 (3) | C3—C4—C6—O3 | −176.05 (19) |
Cu1—N1—C1—C2 | −178.30 (15) | C5—C4—C6—O3 | 4.2 (3) |
N1—C1—C2—C3 | −0.9 (3) | Cu1—O1—C7—O6 | −174.55 (14) |
C1—C2—C3—C4 | −0.2 (3) | Cu1—O1—C7—C5i | 4.97 (19) |
Symmetry code: (i) −x+2, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H6···O4ii | 0.81 (1) | 2.02 (1) | 2.813 (2) | 167 (3) |
O3—H4···O6i | 0.82 | 1.58 | 2.398 (2) | 178 |
O5—H5···O4iii | 0.81 (1) | 2.06 (1) | 2.859 (2) | 171 (3) |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1, y, z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.