Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A triclinic polymorph of the title compound, [Au2Cl2{Fe(C17H14P)2}] or C34H28Au2Cl2FeP2, for which a monoclinic structure has already been found, is reported. It contains two linear gold(I) centres bridged by a 1,1′-bis­(diphenyl­phosphine)ferrocenyl ligand. Mol­ecules assemble into a three-dimensional network through weak Cl...HCphenyl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023835/bt2366sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023835/bt2366Isup2.hkl
Contains datablock I

CCDC reference: 650692

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.023
  • wR factor = 0.060
  • Data-to-parameter ratio = 24.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT143_ALERT_4_C su on c - Axis Small or Missing (x 100000) ..... 10 Ang. PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 10 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 70 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 3.78
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The structure of unsolvated I has previously been reported (Crespo et al., 2000) as has the structure of I.2CH2Cl2 (Canales et al., 1997). During the course of our investigations of 2,2':6',2"-terpyridine ligands functionalized in the 4'-position with alkyl gold(I) phosphine moieties (Constable et al., 2007), we have prepared a number of gold(I) phosphine derivatives including compound I. Crystals grown from CH3CN proved to be a polymorph, Ia, (triclinic, P1) of those grown by Crespo et al. from CH2Cl2/n-heptane, Ib, (monoclinic, P21/n, refcode XEGGEV) (CSD, Version 5.2.7; Allen, 2002; Bruno et al., 2002). The molecular structure of Ia is shown in Fig. 1. In both this and Ib, the Fe atom lies on an inversion centre. Bond distances are angles are unexceptional and show little variation between polymorphs. The difference in the structures is in the orientation of the phenyl rings and the effect that this has on the molecular packing. The hydrogen bond acceptor strength of an M—Cl chlorine atom is greater than that of a CCl group, and examples of CH···ClM interactions in the solid state have been recognized for some time (Desiraju & Steiner, 1999). Fig. 2 compares the CH···Cl close contacts that exist in polymorphs Ia and Ib, and details of those in Ia are given in Table 1. In Ia, CH···Cl interactions involving H6 connect molecules into chains running parallel to the crystallographic b axis. These chains are interconnected by interactions involving H10 such that the lattice is extended in the c direction, while contacts involving H11 extend the lattice in the a direction. In addition to these non-classical hydrogen bonds, the molecular packing in Ia involves CHphenyl···πcyclopentadienyl and CHcyclopentadienyl···πphenyl interactions (Table 1). The differences between the molecular structures of Ia and Ib are relatively small, but are sufficient to cause significant differences in assembly of molecules in the crystal lattice.

Related literature top

For related literature, see: Allen (2002); Bruno et al. (2002); Canales et al. (1997); Constable et al. (2007); Crespo et al. (2000); Desiraju & Steiner (1999); Gimeno et al. (1993); Hill et al. (1989).

Experimental top

Crystals of compound I (Hill et al., 1989; Gimeno et al., 1993) were grown from a CH3CN solution by slow evaporation at room temperature.

Refinement top

All H atoms were treated as riding models, with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The structure of unsolvated I has previously been reported (Crespo et al., 2000) as has the structure of I.2CH2Cl2 (Canales et al., 1997). During the course of our investigations of 2,2':6',2"-terpyridine ligands functionalized in the 4'-position with alkyl gold(I) phosphine moieties (Constable et al., 2007), we have prepared a number of gold(I) phosphine derivatives including compound I. Crystals grown from CH3CN proved to be a polymorph, Ia, (triclinic, P1) of those grown by Crespo et al. from CH2Cl2/n-heptane, Ib, (monoclinic, P21/n, refcode XEGGEV) (CSD, Version 5.2.7; Allen, 2002; Bruno et al., 2002). The molecular structure of Ia is shown in Fig. 1. In both this and Ib, the Fe atom lies on an inversion centre. Bond distances are angles are unexceptional and show little variation between polymorphs. The difference in the structures is in the orientation of the phenyl rings and the effect that this has on the molecular packing. The hydrogen bond acceptor strength of an M—Cl chlorine atom is greater than that of a CCl group, and examples of CH···ClM interactions in the solid state have been recognized for some time (Desiraju & Steiner, 1999). Fig. 2 compares the CH···Cl close contacts that exist in polymorphs Ia and Ib, and details of those in Ia are given in Table 1. In Ia, CH···Cl interactions involving H6 connect molecules into chains running parallel to the crystallographic b axis. These chains are interconnected by interactions involving H10 such that the lattice is extended in the c direction, while contacts involving H11 extend the lattice in the a direction. In addition to these non-classical hydrogen bonds, the molecular packing in Ia involves CHphenyl···πcyclopentadienyl and CHcyclopentadienyl···πphenyl interactions (Table 1). The differences between the molecular structures of Ia and Ib are relatively small, but are sufficient to cause significant differences in assembly of molecules in the crystal lattice.

For related literature, see: Allen (2002); Bruno et al. (2002); Canales et al. (1997); Constable et al. (2007); Crespo et al. (2000); Desiraju & Steiner (1999); Gimeno et al. (1993); Hill et al. (1989).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The molecular structure of Ia with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Close Cl···HC contacts in (a) Ia (symmetry codes: i = x, -1 + y, z; ii = 1 – x, 1 – y, 2 – z; iii = – 1 + x, y, z) and (b) Ib (CSD refcode XEGGEV) (symmetry codes: i = -1 + x, y, -1 + z; ii = –x, 1 –y, 1 – z; iii = x, y, -1 + z).
[µ-Ferrocene-1,1'-diylbis(diphenylphosphine)-κ2P:P']bis[chloridogold(I)] top
Crystal data top
[Au2Cl2{Fe(C17H14P)2}]Z = 1
Mr = 1019.23F(000) = 480
Triclinic, P1Dx = 2.144 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6273 (1) ÅCell parameters from 4616 reflections
b = 9.0401 (1) Åθ = 1–30°
c = 10.3715 (1) ŵ = 10.02 mm1
α = 80.9701 (7)°T = 173 K
β = 86.0279 (7)°Plate, colourless
γ = 81.6056 (7)°0.15 × 0.08 × 0.03 mm
V = 789.42 (1) Å3
Data collection top
Nonius KappaCCD
diffractometer
4217 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.022
φ & ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1112
Tmin = 0.41, Tmax = 0.74k = 1212
9181 measured reflectionsl = 1414
4616 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 Method = Modified Sheldrick (1997) w = 1/[σ2(F2) + ( 0.04P)2 + 0.29P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 0.97Δρmax = 1.50 e Å3
4592 reflectionsΔρmin = 1.28 e Å3
188 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 17.7 (19)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Au2Cl2{Fe(C17H14P)2}]γ = 81.6056 (7)°
Mr = 1019.23V = 789.42 (1) Å3
Triclinic, P1Z = 1
a = 8.6273 (1) ÅMo Kα radiation
b = 9.0401 (1) ŵ = 10.02 mm1
c = 10.3715 (1) ÅT = 173 K
α = 80.9701 (7)°0.15 × 0.08 × 0.03 mm
β = 86.0279 (7)°
Data collection top
Nonius KappaCCD
diffractometer
4616 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4217 reflections with I > 2.0σ(I)
Tmin = 0.41, Tmax = 0.74Rint = 0.022
9181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 0.97Δρmax = 1.50 e Å3
4592 reflectionsΔρmin = 1.28 e Å3
188 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.676196 (12)0.288418 (11)0.887313 (10)0.0239
Fe10.50000.50000.50000.0196
P10.58777 (9)0.18016 (8)0.73340 (7)0.0200
Cl10.77243 (11)0.39466 (9)1.04541 (8)0.0322
C10.5978 (3)0.2875 (3)0.5729 (3)0.0217
C20.7182 (3)0.3798 (3)0.5271 (3)0.0270
C30.6988 (4)0.4300 (4)0.3915 (3)0.0330
C40.5690 (4)0.3719 (4)0.3530 (3)0.0317
C50.5056 (4)0.2828 (3)0.4649 (3)0.0257
C60.7023 (3)0.0012 (3)0.7130 (3)0.0230
C70.7062 (4)0.1191 (4)0.8177 (3)0.0379
C80.7948 (5)0.2580 (4)0.8063 (4)0.0435
C90.8807 (4)0.2802 (4)0.6918 (4)0.0387
C100.8771 (4)0.1646 (4)0.5876 (4)0.0373
C110.7883 (4)0.0242 (3)0.5984 (3)0.0277
C120.3878 (3)0.1418 (3)0.7685 (3)0.0214
C130.2850 (4)0.2409 (4)0.8355 (3)0.0281
C140.1308 (4)0.2151 (4)0.8643 (4)0.0366
C150.0793 (4)0.0893 (5)0.8311 (4)0.0396
C160.1833 (4)0.0119 (4)0.7659 (4)0.0380
C170.3355 (4)0.0154 (4)0.7331 (3)0.0324
H10.80080.40370.58070.0323*
H20.76590.49610.33290.0374*
H30.52820.38980.26310.0375*
H40.41340.22690.46720.0307*
H50.64430.10320.90080.0445*
H60.79740.34190.88180.0507*
H70.94400.38050.68400.0466*
H80.93940.18050.50470.0444*
H90.78620.05980.52300.0341*
H100.32320.32990.86310.0347*
H110.05640.28790.90970.0446*
H120.03140.06990.85300.0481*
H130.14660.10400.74290.0483*
H140.40830.05580.68480.0409*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02774 (8)0.02168 (7)0.02296 (8)0.00291 (4)0.00047 (4)0.00619 (4)
Fe10.0205 (3)0.0160 (2)0.0210 (3)0.0003 (2)0.0025 (2)0.0029 (2)
P10.0228 (3)0.0166 (3)0.0203 (3)0.0005 (3)0.0000 (3)0.0041 (3)
Cl10.0438 (4)0.0305 (4)0.0254 (4)0.0080 (3)0.0015 (3)0.0108 (3)
C10.0243 (13)0.0166 (12)0.0226 (13)0.0014 (10)0.0014 (10)0.0026 (10)
C20.0174 (12)0.0240 (14)0.0363 (17)0.0019 (10)0.0026 (11)0.0000 (12)
C30.0328 (16)0.0239 (14)0.0358 (17)0.0050 (12)0.0147 (14)0.0005 (12)
C40.0422 (18)0.0247 (15)0.0245 (15)0.0070 (13)0.0050 (13)0.0060 (12)
C50.0335 (15)0.0161 (12)0.0271 (15)0.0015 (11)0.0009 (12)0.0066 (11)
C60.0238 (13)0.0168 (12)0.0276 (14)0.0007 (10)0.0033 (11)0.0035 (10)
C70.052 (2)0.0260 (16)0.0307 (17)0.0057 (15)0.0018 (15)0.0016 (13)
C80.056 (2)0.0263 (17)0.044 (2)0.0059 (16)0.0097 (18)0.0017 (15)
C90.0330 (17)0.0246 (16)0.058 (2)0.0070 (13)0.0125 (16)0.0112 (15)
C100.0261 (15)0.0291 (16)0.057 (2)0.0010 (13)0.0061 (15)0.0164 (16)
C110.0277 (14)0.0229 (14)0.0318 (16)0.0015 (11)0.0027 (12)0.0052 (12)
C120.0221 (12)0.0210 (12)0.0207 (13)0.0018 (10)0.0005 (10)0.0031 (10)
C130.0267 (14)0.0277 (15)0.0305 (16)0.0014 (12)0.0007 (12)0.0088 (12)
C140.0269 (15)0.044 (2)0.0368 (18)0.0015 (14)0.0048 (13)0.0095 (15)
C150.0281 (16)0.050 (2)0.040 (2)0.0112 (15)0.0002 (14)0.0006 (16)
C160.0408 (19)0.0343 (18)0.042 (2)0.0169 (15)0.0013 (15)0.0038 (15)
C170.0346 (17)0.0267 (15)0.0372 (18)0.0059 (13)0.0021 (14)0.0093 (13)
Geometric parameters (Å, º) top
Au1—P12.2283 (7)C5—H41.000
Au1—Cl12.2838 (8)C6—C71.395 (4)
Fe1—C3i2.061 (3)C6—C111.385 (4)
Fe1—C4i2.061 (3)C7—C81.389 (5)
Fe1—C5i2.046 (3)C7—H51.000
Fe1—C2i2.046 (3)C8—C91.382 (6)
Fe1—C1i2.033 (3)C8—H61.000
Fe1—C12.033 (3)C9—C101.379 (5)
Fe1—C22.046 (3)C9—H71.000
Fe1—C32.061 (3)C10—C111.399 (4)
Fe1—C42.061 (3)C10—H81.000
Fe1—C52.046 (3)C11—H91.000
P1—C11.793 (3)C12—C131.397 (4)
P1—C61.821 (3)C12—C171.396 (4)
P1—C121.811 (3)C13—C141.389 (5)
C1—C21.436 (4)C13—H101.000
C1—C51.428 (4)C14—C151.379 (5)
C2—C31.422 (5)C14—H111.000
C2—H11.000C15—C161.403 (5)
C3—C41.411 (5)C15—H121.000
C3—H21.000C16—C171.381 (5)
C4—C51.429 (4)C16—H131.000
C4—H31.000C17—H141.000
P1—Au1—Cl1178.51 (2)C1—C2—C3107.3 (3)
C3i—Fe1—C4i40.03 (14)Fe1—C2—C370.32 (17)
C3i—Fe1—C5i68.05 (13)C1—C2—H1126.2
C4i—Fe1—C5i40.72 (12)Fe1—C2—H1126.2
C3i—Fe1—C2i40.51 (13)C3—C2—H1126.4
C4i—Fe1—C2i68.30 (14)C2—C3—Fe169.16 (16)
C5i—Fe1—C2i68.93 (13)C2—C3—C4108.9 (3)
C3i—Fe1—C1i68.42 (12)Fe1—C3—C469.99 (17)
C4i—Fe1—C1i68.61 (12)C2—C3—H2125.6
C5i—Fe1—C1i40.98 (12)Fe1—C3—H2126.7
C2i—Fe1—C1i41.22 (11)C4—C3—H2125.4
C3i—Fe1—C1111.58 (12)C3—C4—Fe169.99 (18)
C4i—Fe1—C1111.39 (12)C3—C4—C5108.1 (3)
C5i—Fe1—C1139.02 (12)Fe1—C4—C569.07 (17)
C2i—Fe1—C1138.78 (11)C3—C4—H3126.1
C1i—Fe1—C1179.994Fe1—C4—H3126.6
C3i—Fe1—C2139.49 (13)C5—C4—H3125.9
C4i—Fe1—C2111.70 (14)C4—C5—C1107.8 (3)
C5i—Fe1—C2111.07 (13)C4—C5—Fe170.21 (17)
C2i—Fe1—C2179.994C1—C5—Fe169.04 (16)
C1i—Fe1—C2138.78 (11)C4—C5—H4126.2
C3i—Fe1—C3179.994C1—C5—H4126.1
C4i—Fe1—C3139.97 (14)Fe1—C5—H4126.3
C5i—Fe1—C3111.95 (13)P1—C6—C7118.7 (2)
C2i—Fe1—C3139.49 (13)P1—C6—C11122.1 (2)
C1i—Fe1—C3111.58 (12)C7—C6—C11119.2 (3)
C3i—Fe1—C4139.97 (14)C6—C7—C8120.1 (3)
C4i—Fe1—C4179.994C6—C7—H5119.6
C5i—Fe1—C4139.28 (12)C8—C7—H5120.2
C2i—Fe1—C4111.70 (14)C7—C8—C9120.3 (3)
C1i—Fe1—C4111.39 (12)C7—C8—H6119.8
C3i—Fe1—C5111.95 (13)C9—C8—H6119.9
C4i—Fe1—C5139.28 (12)C8—C9—C10120.0 (3)
C5i—Fe1—C5179.994C8—C9—H7120.0
C2i—Fe1—C5111.07 (13)C10—C9—H7120.1
C1i—Fe1—C5139.02 (12)C9—C10—C11120.0 (3)
C1—Fe1—C241.22 (11)C9—C10—H8120.0
C1—Fe1—C368.42 (12)C11—C10—H8120.0
C2—Fe1—C340.51 (13)C10—C11—C6120.3 (3)
C1—Fe1—C468.61 (12)C10—C11—H9120.0
C2—Fe1—C468.30 (14)C6—C11—H9119.7
C3—Fe1—C440.03 (14)P1—C12—C13118.3 (2)
C1—Fe1—C540.98 (12)P1—C12—C17122.0 (2)
C2—Fe1—C568.93 (13)C13—C12—C17119.7 (3)
C3—Fe1—C568.05 (13)C12—C13—C14119.9 (3)
C4—Fe1—C540.72 (12)C12—C13—H10119.8
Au1—P1—C1113.78 (10)C14—C13—H10120.3
Au1—P1—C6112.85 (10)C13—C14—C15120.5 (3)
C1—P1—C6103.33 (13)C13—C14—H11119.9
Au1—P1—C12112.80 (10)C15—C14—H11119.6
C1—P1—C12107.81 (13)C14—C15—C16119.5 (3)
C6—P1—C12105.49 (13)C14—C15—H12120.5
P1—C1—Fe1131.79 (15)C16—C15—H12120.0
P1—C1—C2123.9 (2)C15—C16—C17120.4 (3)
Fe1—C1—C269.86 (16)C15—C16—H13119.6
P1—C1—C5127.7 (2)C17—C16—H13120.0
Fe1—C1—C569.98 (15)C12—C17—C16119.9 (3)
C2—C1—C5107.9 (3)C12—C17—H14120.1
C1—C2—Fe168.93 (15)C16—C17—H14120.0
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Au2Cl2{Fe(C17H14P)2}]
Mr1019.23
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.6273 (1), 9.0401 (1), 10.3715 (1)
α, β, γ (°)80.9701 (7), 86.0279 (7), 81.6056 (7)
V3)789.42 (1)
Z1
Radiation typeMo Kα
µ (mm1)10.02
Crystal size (mm)0.15 × 0.08 × 0.03
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.41, 0.74
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
9181, 4616, 4217
Rint0.022
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 0.97
No. of reflections4592
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 1.28

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997), CRYSTALS.

Selected geometric parameters (Å, º) top
Au1—P12.2283 (7)P1—C61.821 (3)
Au1—Cl12.2838 (8)P1—C121.811 (3)
P1—C11.793 (3)
P1—Au1—Cl1178.51 (2)Au1—P1—C12112.80 (10)
Au1—P1—C1113.78 (10)C1—P1—C12107.81 (13)
Au1—P1—C6112.85 (10)C6—P1—C12105.49 (13)
C1—P1—C6103.33 (13)
Table 1 Intermolecular contacts (Å, deg) top
D—H···AH···AD···AD-H···ASymmetry code
C8—H6···Cl1i2.733.703 (4)166x, -1 + y, z
C13–H10···Cl1ii2.803.653 (4)1441-x, 1-y, 2-z
C14—H11···Cl1iii2.863.796 (4)156-1 + x, y, z
Cyclopentadienyl(centroid)···H14—C17iv3.313.711371-x,-y,1-z
Phenyl(C6–C11)(centroid)···H4—C5iv2.843.671411-x, -y, 1-z
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds