Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The single-crystal structure determination of the title compound, 2C2H7N2S+·SO42−, confirms the previous structure determination [Stam (1962). Acta Cryst. 15, 317–322]. The present study includes the determination of the H-atom parameters, which revealed several inter­ionic N—H...O hydrogen bonds. The S atom of the sulfate anion is situated on a crystallographic twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058059/bt2603sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058059/bt2603Isup2.hkl
Contains datablock I

CCDC reference: 672958

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](S-O) = 0.002 Å
  • R factor = 0.033
  • wR factor = 0.092
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The S-Methyl-thiuronium cation exhibits an almost planar thiourea-unit (r.m.s. deviation for N1,N2,C1,S1 = 0.0004 Å), the methyl-group differs from planarity to a considerable degree (C2—S1—C1—N2 - 18.4 (2)°). In the sulfate anion the coordination of the sulfur atom by the four oxygen atoms can be considered as slightly distorted tetrahedral, with O—S—O bond angles in the range 108.79 (13)–110.64 (13)° (Fig.1).

In the crystal structure, each C2H7N2S+ cation is linked to two SO4- anions by four N—H···O hydrogen-bonds (Fig.2) with relatively short donor-acceptor distances (Tab.2).

Related literature top

For an alternative method of preparation, see: Arndt (1921).

Experimental top

S-Methylisothiourea sulfate was synthesized in a modified literature procedure (Arndt 1921). Dimethylsulfate Me2SO4 (6.30 g, 49.95 mmol) was slowly added to a slurry of thiourea (NH2)2CS (7.60 g, 99.84 mmol) in 150 ml of water. The reaction mixture was stirred for 5 min at room temperature and then heated first to 30°C for 1.5 h and afterwards to 100°C under reflux. The solvent was destilled off. The colourless crystalline residue was washed with twice the volume of the crystalline residue of a mixture consisting of ethanole and water (10:1). The mixture was stirred for 5 min, filtrated and the crystalline solid dried in vacuo. Yield: 12.35 g (44.36 mmol, 44.5%). Anal. calc. (found) for C4H14N4O4S3: C 17.26 (17.14), H 5.07 (5.20), N 20.13 (20.02), S 34.56 (33.52)%. 1H-NMR (CDCl3, 25°C): δ = 2.41 (s, 3H, CH3), 4.63 (s, 4 H, H2NCNH2). 13C{1H}-NMR: δ = 172.89 (s, H2NCNH2), 12.96 (s, CH3). 14N-NMR: δ = - 280.22. IR (KBr, cm-1): ν = 3989 w, 3903 w, 3840 w, 3799 w, 3748 w, 3736 w, 3673 w, 3650 w, 3211 versus, 3030 versus, 2802 s, 2367 ms, 2291 m, 2103 w, 2052 w, 1682 versus (nsym C=N), 1564 s, 1438 s, 1419 s, 1321 m, 1150 s, 1127 s, 1078 s, 982 s, 732 s, 698 s, 602 s, 482 s, 429 m. Raman (200 mW, 25°C, cm-1): ν = 3029 (11), 3009 (11), 2944 (33), 1678 (5) (nsym C=N), 1436 (19), 1423 (16), 1326 (6), 1148 (40), 1133 (24), 1117 (31), 1075 (17), 976 (100), 733 (12), 702 (67), 603 (12), 485 (42), 431 (73), 268 (14), 146 (58). MS (FAB, 70 eV, NBA-Matrix, >5%); m/z: 359 (8), 91 (20) [M+], 89 (16) [(M - 2 H)+]. Crystallization from a saturated ethanole/water (10:1) solution at ambient temperature gave colourless X-ray quality crystals.

Refinement top

H atoms bonded to N atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the S1—C2 bond), with C—H = 0.96 Å and with Uiso(H) = 1.5 times Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell refinement: CAD-4 Software (Enraf–Nonius, 1994); data reduction: OpenMolEN (Enraf–Nonius, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) -x + 1, y, -z + 1/2.
[Figure 2] Fig. 2. Part of the packing diagram of (I). Unique N—H···O interactions represented by dashed lines are shown for one molecule of (I). Symmetry codes: (ii) -x + 1, -y + 2, -z + 1; (iii) x, -y + 2, z + 1/2; (iv) x + 1/2, -y + 3/2, -z + 1.
bis(S-methylthiuronium) sulfate top
Crystal data top
2C2H7N2S+·SO42F(000) = 584
Mr = 278.37Dx = 1.544 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 25 reflections
a = 11.3250 (19) Åθ = 9–18°
b = 8.3903 (18) ŵ = 0.62 mm1
c = 12.6041 (17) ÅT = 295 K
V = 1197.6 (4) Å3Block, colourless
Z = 40.57 × 0.53 × 0.47 mm
Data collection top
Nonius MACH3
diffractometer
1098 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.006
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
ο–2T–scanh = 130
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.717, Tmax = 0.749l = 015
1175 measured reflections3 standard reflections every 7200 min
1173 independent reflections intensity decay: 0.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.8658P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1173 reflectionsΔρmax = 0.61 e Å3
87 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.065 (4)
Crystal data top
2C2H7N2S+·SO42V = 1197.6 (4) Å3
Mr = 278.37Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 11.3250 (19) ŵ = 0.62 mm1
b = 8.3903 (18) ÅT = 295 K
c = 12.6041 (17) Å0.57 × 0.53 × 0.47 mm
Data collection top
Nonius MACH3
diffractometer
1098 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.006
Tmin = 0.717, Tmax = 0.7493 standard reflections every 7200 min
1175 measured reflections intensity decay: 0.7%
1173 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.61 e Å3
1173 reflectionsΔρmin = 0.36 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73533 (5)0.62211 (8)0.47370 (5)0.0500 (3)
N10.69384 (17)0.7584 (3)0.65367 (14)0.0402 (5)
H10.660 (2)0.820 (3)0.694 (2)0.043 (7)*
H20.760 (3)0.722 (3)0.666 (2)0.049 (7)*
N20.54254 (16)0.7861 (2)0.53413 (15)0.0341 (4)
H30.507 (2)0.840 (3)0.577 (2)0.045 (7)*
H40.518 (3)0.783 (3)0.469 (2)0.051 (8)*
C10.64701 (17)0.7327 (2)0.56010 (15)0.0312 (4)
C20.6354 (2)0.5513 (3)0.37475 (19)0.0451 (6)
H50.67480.47490.33050.054*
H60.60880.63910.33220.054*
H70.56880.50180.40840.054*
S20.50000.92901 (8)0.25000.0240 (2)
O10.58511 (12)1.03141 (18)0.30668 (11)0.0384 (4)
O20.43656 (12)0.82932 (19)0.32713 (10)0.0358 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0339 (4)0.0703 (5)0.0460 (4)0.0141 (3)0.0011 (2)0.0210 (3)
N10.0311 (9)0.0572 (12)0.0322 (9)0.0152 (9)0.0035 (8)0.0054 (8)
N20.0295 (9)0.0469 (10)0.0259 (9)0.0075 (8)0.0003 (7)0.0028 (7)
C10.0275 (9)0.0376 (10)0.0285 (9)0.0024 (7)0.0036 (7)0.0017 (8)
C20.0492 (13)0.0477 (12)0.0385 (11)0.0041 (10)0.0003 (10)0.0080 (9)
S20.0186 (3)0.0364 (4)0.0170 (3)0.0000.0003 (2)0.000
O10.0327 (7)0.0537 (9)0.0289 (7)0.0127 (7)0.0031 (6)0.0053 (6)
O20.0283 (7)0.0522 (8)0.0270 (7)0.0070 (6)0.0040 (5)0.0072 (6)
Geometric parameters (Å, º) top
S1—C11.7459 (19)C2—H50.9600
S1—C21.786 (2)C2—H60.9600
N1—C11.311 (3)C2—H70.9600
N1—H10.82 (3)S2—O2i1.4699 (13)
N1—H20.82 (3)S2—O21.4699 (13)
N2—C11.307 (3)S2—O11.4756 (14)
N2—H30.81 (3)S2—O1i1.4756 (14)
N2—H40.86 (3)
C1—S1—C2104.44 (10)S1—C2—H6109.5
C1—N1—H1118.3 (18)H5—C2—H6109.5
C1—N1—H2118.7 (19)S1—C2—H7109.5
H1—N1—H2122 (3)H5—C2—H7109.5
C1—N2—H3118.5 (19)H6—C2—H7109.5
C1—N2—H4121.1 (19)O2i—S2—O2110.64 (13)
H3—N2—H4119 (3)O2i—S2—O1109.40 (8)
N2—C1—N1122.37 (19)O2—S2—O1109.29 (8)
N2—C1—S1123.00 (16)O2i—S2—O1i109.29 (8)
N1—C1—S1114.63 (15)O2—S2—O1i109.40 (8)
S1—C2—H5109.5O1—S2—O1i108.79 (13)
C2—S1—C1—N218.4 (2)N1—N2—C1—S1180.0 (3)
C2—S1—C1—N1161.61 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O20.86 (3)2.05 (3)2.895 (2)165 (3)
N2—H3···O1ii0.81 (3)2.10 (3)2.908 (2)177 (3)
N1—H1···O1iii0.82 (3)2.08 (3)2.889 (2)175 (2)
N1—H2···O2iv0.82 (3)2.05 (3)2.856 (2)167 (3)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+2, z+1/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula2C2H7N2S+·SO42
Mr278.37
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)11.3250 (19), 8.3903 (18), 12.6041 (17)
V3)1197.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.57 × 0.53 × 0.47
Data collection
DiffractometerNonius MACH3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.717, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
1175, 1173, 1098
Rint0.006
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.08
No. of reflections1173
No. of parameters87
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1994), OpenMolEN (Enraf–Nonius, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 2005), SHELXL97 (Sheldrick, 1997.

Selected geometric parameters (Å, º) top
S1—C11.7459 (19)S2—O21.4699 (13)
S1—C21.786 (2)S2—O11.4756 (14)
N1—C11.311 (3)
C1—S1—C2104.44 (10)O2i—S2—O2110.64 (13)
N2—C1—N1122.37 (19)O2i—S2—O1109.40 (8)
N2—C1—S1123.00 (16)O2—S2—O1109.29 (8)
N1—C1—S1114.63 (15)O1—S2—O1i108.79 (13)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O20.86 (3)2.05 (3)2.895 (2)165 (3)
N2—H3···O1ii0.81 (3)2.10 (3)2.908 (2)177 (3)
N1—H1···O1iii0.82 (3)2.08 (3)2.889 (2)175 (2)
N1—H2···O2iv0.82 (3)2.05 (3)2.856 (2)167 (3)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+2, z+1/2; (iv) x+1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds