Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of [Ni(CO)(η5-C5H5)]2 has been redetermined at 115 K. The low temperature data provide a more precise structure solution and indicate the presence of a minor degree of disorder in the material. There are two molecules in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012984/bt6287sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012984/bt6287Isup2.hkl
Contains datablock I

CCDC reference: 217388

Key indicators

  • Single-crystal X-ray study
  • T = 115 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.024
  • wR factor = 0.065
  • Data-to-parameter ratio = 20.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The structure of [Ni(CO)(η5-C5H5)]2 had been determined previously on two separate occassions, both at room temperature (Byers & Dahl, 1980; Madach et al., 1980). The advances made in crystallographic techniques since this time allowed for a redetermination of the structure at lower temperature with a significant increase in the quality of the structural solution.

As previously reported, there are two independent molecules within the asymmetric unit (Figure 1). The Ni—Ni distances [2.3691 (3) and 2.3575 (3) Å for Ni(1)—Ni(2) and Ni(3)—Ni(4) respectively] are greater than those previously reported [2.3627 (9) and 2.3510 (9) Å Byers & Dahl, 1980; 2.361 (2) and 2.348 (2) Å Madach et al., 1980] though the remaining bond parameters of the molecules display no significant differences. Both molecules possess non-planar Ni2(CO)2 units, analogous to that found for Co2(CO)8 (Sumner et al., 1964; Leung & Coppens, 1983), with the η5-C5H5 rings tilted in the opposite direction. The angle between the η5-C5H5 and NiC2 planes ranges from 80.3–82.6° across the two molecules.

A minor component of disorder was noted from difference maps and the positions of the nickel atoms in this component identified. Refinement indicated the extent of the disorder to be approximately 1% with the Ni—Ni distances in the minor component [2.32 (2) and 2.34 (2) Å for Ni(1a)—Ni(2a) and Ni(3a)—Ni(4a) respectively] similar to those in the main structure. The positions of the nickel atoms in the minor component of the disorder appear related to those of the major component by a translation of 6.3–6.4 Å along the c axis of the unit cell (Figure 2). The possibility that this electron density was a result of twinning rather than disorder was examined using the ROTAX program (Cooper et al., 2002) to test for the presence of a 2-fold axis though none was identified. Similarly, the set comprising the weakest 655 reflections provided a K-factor of 1.87, lower than generally observed for a genuine twinned structure. There was also no evidence from the diffraction pattern observed for a twinned crystal.

Experimental top

[Ni(CO)(η5-C5H5)]2 was obtained from a commercial source. Crystals suitable for structural determination were obtained from a concentrated hexane solution at −20°C. Contrary to previous reports, all crystals obtained through sublimation displayed evidence of twinning and were disregarded.

Refinement top

All H atoms were placed in calculated positions (Uiso 1.2 times that of the carbon to which they were attached) using a riding model. The nickel atoms of the minor component of the disorder were identified from difference maps and refined using isotropic thermal parameters.

Computing details top

Data collection: Collect (Nonius BV, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the two molecules in the asymmetric unit showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level with H atoms represented by circles of arbitrary size. The minor component of the disorder has been omitted
[Figure 2] Fig. 2. View of the unit cell indicating the positions of the nickel atoms in both components of the disorder.
(I) top
Crystal data top
C12H10Ni2O2Z = 4
Mr = 303.62F(000) = 616
Triclinic, P1Dx = 1.871 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7498 (1) ÅCell parameters from 133537 reflections
b = 10.8752 (1) Åθ = 1–35.0°
c = 13.4942 (2) ŵ = 3.47 mm1
α = 76.776 (1)°T = 115 K
β = 81.112 (1)°Prism, black
γ = 78.449 (1)°0.40 × 0.28 × 0.15 mm
V = 1077.65 (2) Å3
Data collection top
KappaCCD
diffractometer
6276 independent reflections
Radiation source: Enraf Nonius FR5905839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
CCD rotation images, thick slices scansθmax = 30°, θmin = 1.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.264, Tmax = 0.594k = 1515
84232 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.5418P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
6276 reflectionsΔρmax = 0.62 e Å3
307 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (4)
Crystal data top
C12H10Ni2O2γ = 78.449 (1)°
Mr = 303.62V = 1077.65 (2) Å3
Triclinic, P1Z = 4
a = 7.7498 (1) ÅMo Kα radiation
b = 10.8752 (1) ŵ = 3.47 mm1
c = 13.4942 (2) ÅT = 115 K
α = 76.776 (1)°0.40 × 0.28 × 0.15 mm
β = 81.112 (1)°
Data collection top
KappaCCD
diffractometer
6276 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5839 reflections with I > 2σ(I)
Tmin = 0.264, Tmax = 0.594Rint = 0.071
84232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.10Δρmax = 0.62 e Å3
6276 reflectionsΔρmin = 0.64 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.22846 (2)0.276719 (17)0.470339 (13)0.01510 (5)0.9893 (6)
Ni20.40518 (2)0.403569 (17)0.345001 (14)0.01549 (5)0.9893 (6)
O10.60220 (15)0.19174 (12)0.47306 (10)0.0311 (3)
O20.07454 (16)0.38667 (13)0.28323 (9)0.0298 (3)
C10.47518 (19)0.25718 (14)0.44374 (12)0.0206 (3)
C20.18366 (19)0.36542 (14)0.33737 (11)0.0195 (3)
C110.0354 (2)0.29308 (17)0.54332 (12)0.0263 (3)
H110.13050.3560.51720.032*
C120.0722 (2)0.30539 (15)0.61484 (12)0.0235 (3)
H120.05960.37590.64740.028*
C130.2022 (2)0.19308 (15)0.62888 (11)0.0228 (3)
H130.29610.1770.67030.027*
C140.1690 (2)0.10783 (16)0.57036 (12)0.0253 (3)
H140.2340.02440.56810.03*
C150.0229 (2)0.16948 (18)0.51673 (13)0.0286 (3)
H150.02780.13560.47130.034*
C210.6220 (2)0.50014 (17)0.33382 (14)0.0298 (4)
H210.70190.4810.38420.036*
C220.4677 (2)0.59468 (15)0.32982 (13)0.0255 (3)
H220.42810.65290.37470.031*
C230.3834 (2)0.58662 (15)0.24689 (12)0.0241 (3)
H230.27340.63620.22810.029*
C240.4904 (2)0.49164 (16)0.19554 (13)0.0280 (3)
H240.4660.4690.13580.034*
C250.6380 (2)0.43782 (17)0.24927 (15)0.0314 (4)
H250.73150.37210.23260.038*
Ni30.27696 (2)0.106655 (17)0.154043 (14)0.01574 (5)0.9893 (6)
Ni40.08613 (2)0.231899 (18)0.034791 (14)0.01724 (5)0.9893 (6)
O30.41294 (16)0.32257 (12)0.02415 (10)0.0314 (3)
O40.09044 (16)0.13918 (14)0.23367 (10)0.0365 (3)
C30.3095 (2)0.25505 (14)0.05641 (11)0.0203 (3)
C40.0303 (2)0.15367 (15)0.17137 (12)0.0230 (3)
C310.5362 (2)0.00498 (16)0.14873 (13)0.0267 (3)
H310.62440.00580.09160.032*
C320.5029 (2)0.06396 (16)0.23048 (15)0.0322 (4)
H320.5660.12730.23770.039*
C330.3605 (3)0.02107 (17)0.29782 (13)0.0311 (4)
H330.31090.04930.35940.037*
C340.3030 (2)0.07296 (15)0.25739 (12)0.0257 (3)
H340.20570.11560.28610.031*
C350.4162 (2)0.09125 (14)0.16744 (12)0.0235 (3)
H350.4120.15110.12680.028*
C410.0077 (2)0.38819 (16)0.08238 (12)0.0261 (3)
H410.04090.46990.09180.031*
C420.1419 (2)0.34940 (19)0.02176 (13)0.0316 (4)
H420.22920.39960.0170.038*
C430.1397 (2)0.2193 (2)0.02877 (15)0.0379 (4)
H430.22360.1670.00670.045*
C440.0096 (3)0.18205 (18)0.09793 (15)0.0362 (4)
H440.04020.10250.11960.043*
C450.1028 (2)0.28468 (18)0.12799 (12)0.0282 (3)
H450.21140.28530.17160.034*
Ni1A0.365 (2)0.0565 (16)0.6844 (13)0.015 (4)*0.0107 (6)
Ni2A0.183 (2)0.174 (2)0.5624 (15)0.019 (4)*0.0107 (6)
Ni3A0.865 (2)0.6841 (17)0.0648 (13)0.016 (4)*0.0107 (6)
Ni4A0.687 (2)0.5609 (16)0.1891 (12)0.014 (4)*0.0107 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01393 (9)0.01538 (9)0.01476 (9)0.00276 (6)0.00137 (6)0.00058 (6)
Ni20.01394 (9)0.01544 (9)0.01568 (9)0.00304 (6)0.00117 (6)0.00022 (6)
O10.0190 (5)0.0299 (6)0.0369 (7)0.0010 (4)0.0059 (5)0.0058 (5)
O20.0258 (6)0.0370 (7)0.0259 (6)0.0102 (5)0.0106 (5)0.0043 (5)
C10.0180 (6)0.0195 (6)0.0223 (7)0.0032 (5)0.0015 (5)0.0010 (5)
C20.0186 (6)0.0206 (6)0.0187 (6)0.0052 (5)0.0021 (5)0.0008 (5)
C110.0156 (6)0.0338 (8)0.0233 (7)0.0028 (6)0.0015 (5)0.0029 (6)
C120.0247 (7)0.0230 (7)0.0194 (7)0.0018 (6)0.0032 (5)0.0033 (5)
C130.0245 (7)0.0250 (7)0.0155 (6)0.0022 (6)0.0020 (5)0.0006 (5)
C140.0308 (8)0.0178 (7)0.0232 (7)0.0068 (6)0.0050 (6)0.0009 (6)
C150.0265 (8)0.0363 (9)0.0262 (8)0.0191 (7)0.0020 (6)0.0042 (7)
C210.0231 (7)0.0316 (8)0.0332 (8)0.0137 (6)0.0083 (6)0.0075 (7)
C220.0304 (8)0.0206 (7)0.0265 (7)0.0106 (6)0.0002 (6)0.0036 (6)
C230.0235 (7)0.0194 (7)0.0260 (7)0.0058 (5)0.0039 (6)0.0046 (6)
C240.0355 (8)0.0274 (8)0.0201 (7)0.0122 (7)0.0032 (6)0.0013 (6)
C250.0206 (7)0.0248 (8)0.0410 (9)0.0043 (6)0.0110 (7)0.0002 (7)
Ni30.01522 (9)0.01507 (9)0.01543 (9)0.00127 (6)0.00317 (6)0.00030 (6)
Ni40.01623 (9)0.01686 (9)0.01767 (9)0.00220 (7)0.00520 (7)0.00006 (7)
O30.0285 (6)0.0321 (6)0.0325 (6)0.0144 (5)0.0092 (5)0.0075 (5)
O40.0211 (6)0.0423 (7)0.0340 (7)0.0008 (5)0.0045 (5)0.0077 (6)
C30.0197 (6)0.0207 (7)0.0195 (6)0.0037 (5)0.0054 (5)0.0002 (5)
C40.0195 (6)0.0216 (7)0.0243 (7)0.0007 (5)0.0037 (5)0.0011 (5)
C310.0176 (6)0.0238 (7)0.0319 (8)0.0007 (5)0.0011 (6)0.0031 (6)
C320.0315 (8)0.0234 (8)0.0444 (10)0.0011 (6)0.0241 (8)0.0026 (7)
C330.0433 (10)0.0270 (8)0.0185 (7)0.0100 (7)0.0117 (7)0.0040 (6)
C340.0256 (7)0.0205 (7)0.0238 (7)0.0005 (6)0.0002 (6)0.0054 (6)
C350.0275 (7)0.0167 (6)0.0240 (7)0.0011 (5)0.0054 (6)0.0025 (5)
C410.0340 (8)0.0224 (7)0.0211 (7)0.0021 (6)0.0122 (6)0.0008 (6)
C420.0236 (7)0.0421 (10)0.0232 (7)0.0079 (7)0.0084 (6)0.0028 (7)
C430.0302 (9)0.0455 (11)0.0382 (10)0.0182 (8)0.0198 (8)0.0115 (8)
C440.0477 (11)0.0265 (8)0.0407 (10)0.0003 (7)0.0273 (8)0.0107 (7)
C450.0277 (8)0.0385 (9)0.0176 (7)0.0006 (7)0.0072 (6)0.0053 (6)
Geometric parameters (Å, º) top
Ni1—C11.8681 (15)Ni3—C41.8696 (15)
Ni1—C21.8807 (15)Ni3—C322.0879 (16)
Ni1—C152.0956 (15)Ni3—C332.0905 (16)
Ni1—C142.1023 (16)Ni3—C342.1176 (15)
Ni1—C132.1202 (15)Ni3—C312.1295 (15)
Ni1—C112.1205 (15)Ni3—C352.1867 (15)
Ni1—C122.1825 (15)Ni3—Ni42.3575 (3)
Ni1—Ni22.3691 (3)Ni4—C41.8685 (16)
Ni2—C21.8679 (15)Ni4—C31.8733 (15)
Ni2—C11.8738 (15)Ni4—C422.0989 (16)
Ni2—C242.0925 (16)Ni4—C412.1006 (15)
Ni2—C252.0957 (16)Ni4—C432.1049 (17)
Ni2—C232.1149 (15)Ni4—C452.1299 (16)
Ni2—C212.1224 (16)Ni4—C442.1806 (17)
Ni2—C222.1848 (15)O3—C31.1632 (19)
O1—C11.1589 (19)O4—C41.1672 (19)
O2—C21.1566 (18)C31—C351.406 (2)
C11—C121.413 (2)C31—C321.435 (3)
C11—C151.438 (3)C31—H310.95
C11—H110.95C32—C331.401 (3)
C12—C131.416 (2)C32—H320.95
C12—H120.95C33—C341.433 (3)
C13—C141.429 (2)C33—H330.95
C13—H130.95C34—C351.412 (2)
C14—C151.408 (2)C34—H340.95
C14—H140.95C35—H350.95
C15—H150.95C41—C421.391 (2)
C21—C221.411 (2)C41—C451.426 (2)
C21—C251.433 (3)C41—H410.95
C21—H210.95C42—C431.436 (3)
C22—C231.407 (2)C42—H420.95
C22—H220.95C43—C441.423 (3)
C23—C241.429 (2)C43—H430.95
C23—H230.95C44—C451.399 (3)
C24—C251.404 (3)C44—H440.95
C24—H240.95C45—H450.95
C25—H250.95Ni1A—Ni2A2.32 (2)
Ni3—C31.8685 (15)Ni3A—Ni4A2.34 (2)
C1—Ni1—C295.61 (6)C3—Ni3—C493.72 (7)
C1—Ni1—C15141.48 (7)C3—Ni3—C32103.64 (7)
C2—Ni1—C15103.16 (7)C4—Ni3—C32143.36 (8)
C1—Ni1—C14107.02 (7)C3—Ni3—C33135.63 (7)
C2—Ni1—C14136.92 (7)C4—Ni3—C33108.03 (7)
C15—Ni1—C1439.19 (7)C32—Ni3—C3339.19 (8)
C1—Ni1—C13100.01 (6)C3—Ni3—C34167.00 (6)
C2—Ni1—C13164.09 (6)C4—Ni3—C3499.25 (6)
C15—Ni1—C1365.90 (7)C32—Ni3—C3466.03 (7)
C14—Ni1—C1339.57 (7)C33—Ni3—C3439.82 (7)
C1—Ni1—C11163.84 (7)C3—Ni3—C31102.22 (6)
C2—Ni1—C1199.15 (6)C4—Ni3—C31162.05 (7)
C15—Ni1—C1139.87 (7)C32—Ni3—C3139.76 (7)
C14—Ni1—C1165.83 (6)C33—Ni3—C3165.70 (7)
C13—Ni1—C1164.98 (6)C34—Ni3—C3164.83 (6)
C1—Ni1—C12125.85 (6)C3—Ni3—C35131.30 (6)
C2—Ni1—C12127.51 (6)C4—Ni3—C35124.15 (7)
C15—Ni1—C1265.49 (7)C32—Ni3—C3565.21 (6)
C14—Ni1—C1265.27 (6)C33—Ni3—C3565.16 (6)
C13—Ni1—C1238.38 (6)C34—Ni3—C3538.26 (6)
C11—Ni1—C1238.31 (6)C31—Ni3—C3538.00 (6)
C1—Ni1—Ni250.82 (5)C3—Ni3—Ni451.04 (5)
C2—Ni1—Ni250.56 (4)C4—Ni3—Ni450.88 (5)
C15—Ni1—Ni2152.70 (5)C32—Ni3—Ni4154.58 (5)
C14—Ni1—Ni2155.60 (5)C33—Ni3—Ni4157.47 (5)
C13—Ni1—Ni2141.38 (5)C34—Ni3—Ni4139.31 (5)
C11—Ni1—Ni2138.33 (5)C31—Ni3—Ni4136.82 (5)
C12—Ni1—Ni2133.39 (4)C35—Ni3—Ni4130.50 (4)
C2—Ni2—C195.85 (6)C4—Ni4—C393.59 (7)
C2—Ni2—C24105.03 (7)C4—Ni4—C42109.41 (7)
C1—Ni2—C24139.17 (7)C3—Ni4—C42136.44 (7)
C2—Ni2—C25139.33 (7)C4—Ni4—C41144.21 (7)
C1—Ni2—C25105.10 (7)C3—Ni4—C41104.05 (7)
C24—Ni2—C2539.17 (7)C42—Ni4—C4138.70 (7)
C2—Ni2—C2399.29 (6)C4—Ni4—C43100.68 (7)
C1—Ni2—C23164.11 (7)C3—Ni4—C43165.45 (7)
C24—Ni2—C2339.69 (7)C42—Ni4—C4339.94 (8)
C25—Ni2—C2365.79 (6)C41—Ni4—C4365.51 (7)
C2—Ni2—C21163.55 (7)C4—Ni4—C45163.26 (7)
C1—Ni2—C2199.77 (7)C3—Ni4—C45100.65 (7)
C24—Ni2—C2165.75 (7)C42—Ni4—C4565.50 (7)
C25—Ni2—C2139.71 (8)C41—Ni4—C4539.39 (7)
C23—Ni2—C2164.75 (6)C43—Ni4—C4564.81 (7)
C2—Ni2—C22126.19 (6)C4—Ni4—C44125.46 (8)
C1—Ni2—C22126.88 (7)C3—Ni4—C44128.61 (8)
C24—Ni2—C2265.23 (6)C42—Ni4—C4465.57 (7)
C25—Ni2—C2265.29 (7)C41—Ni4—C4464.83 (7)
C23—Ni2—C2238.16 (6)C43—Ni4—C4438.74 (8)
C21—Ni2—C2238.22 (7)C45—Ni4—C4437.85 (7)
C2—Ni2—Ni151.04 (4)C4—Ni4—Ni350.92 (5)
C1—Ni2—Ni150.61 (5)C3—Ni4—Ni350.86 (5)
C24—Ni2—Ni1154.52 (5)C42—Ni4—Ni3159.27 (5)
C25—Ni2—Ni1154.30 (5)C41—Ni4—Ni3154.88 (5)
C23—Ni2—Ni1139.85 (4)C43—Ni4—Ni3139.25 (5)
C21—Ni2—Ni1139.65 (5)C45—Ni4—Ni3135.24 (5)
C22—Ni2—Ni1133.18 (4)C44—Ni4—Ni3128.75 (5)
O1—C1—Ni1140.83 (13)O3—C3—Ni3141.24 (13)
O1—C1—Ni2140.60 (13)O3—C3—Ni4140.61 (12)
Ni1—C1—Ni278.56 (6)Ni3—C3—Ni478.11 (6)
O2—C2—Ni2141.60 (12)O4—C4—Ni4141.57 (13)
O2—C2—Ni1139.97 (12)O4—C4—Ni3140.22 (13)
Ni2—C2—Ni178.39 (6)Ni4—C4—Ni378.20 (6)
C12—C11—C15108.60 (14)C35—C31—C32108.43 (15)
C12—C11—Ni173.22 (9)C35—C31—Ni373.20 (9)
C15—C11—Ni169.13 (9)C32—C31—Ni368.56 (9)
C12—C11—H11125.7C35—C31—H31125.8
C15—C11—H11125.7C32—C31—H31125.8
Ni1—C11—H11123.5Ni3—C31—H31124
C11—C12—C13107.27 (14)C33—C32—C31107.66 (15)
C11—C12—Ni168.47 (9)C33—C32—Ni370.51 (10)
C13—C12—Ni168.43 (8)C31—C32—Ni371.68 (9)
C11—C12—H12126.4C33—C32—H32126.2
C13—C12—H12126.4C31—C32—H32126.2
Ni1—C12—H12128.3Ni3—C32—H32123.3
C12—C13—C14108.70 (14)C32—C33—C34107.87 (15)
C12—C13—Ni173.19 (9)C32—C33—Ni370.30 (9)
C14—C13—Ni169.54 (9)C34—C33—Ni371.11 (9)
C12—C13—H13125.6C32—C33—H33126.1
C14—C13—H13125.6C34—C33—H33126.1
Ni1—C13—H13123.2Ni3—C33—H33124.1
C15—C14—C13107.84 (15)C35—C34—C33108.18 (15)
C15—C14—Ni170.15 (9)C35—C34—Ni373.52 (9)
C13—C14—Ni170.89 (9)C33—C34—Ni369.07 (9)
C15—C14—H14126.1C35—C34—H34125.9
C13—C14—H14126.1C33—C34—H34125.9
Ni1—C14—H14124.5Ni3—C34—H34123.1
C14—C15—C11107.49 (15)C31—C35—C34107.76 (15)
C14—C15—Ni170.66 (9)C31—C35—Ni368.80 (9)
C11—C15—Ni170.99 (9)C34—C35—Ni368.22 (8)
C14—C15—H15126.3C31—C35—H35126.1
C11—C15—H15126.3C34—C35—H35126.1
Ni1—C15—H15123.7Ni3—C35—H35128.4
C22—C21—C25108.63 (15)C42—C41—C45108.57 (16)
C22—C21—Ni273.28 (9)C42—C41—Ni470.58 (9)
C25—C21—Ni269.14 (9)C45—C41—Ni471.41 (9)
C22—C21—H21125.7C42—C41—H41125.7
C25—C21—H21125.7C45—C41—H41125.7
Ni2—C21—H21123.5Ni4—C41—H41123.9
C23—C22—C21107.22 (15)C41—C42—C43107.17 (16)
C23—C22—Ni268.23 (9)C41—C42—Ni470.72 (9)
C21—C22—Ni268.49 (9)C43—C42—Ni470.26 (10)
C23—C22—H22126.4C41—C42—H42126.4
C21—C22—H22126.4C43—C42—H42126.4
Ni2—C22—H22128.4Ni4—C42—H42124.2
C22—C23—C24108.87 (14)C44—C43—C42108.37 (16)
C22—C23—Ni273.61 (9)C44—C43—Ni473.50 (10)
C24—C23—Ni269.31 (9)C42—C43—Ni469.80 (10)
C22—C23—H23125.6C44—C43—H43125.8
C24—C23—H23125.6C42—C43—H43125.8
Ni2—C23—H23123.1Ni4—C43—H43122.5
C25—C24—C23107.67 (15)C45—C44—C43107.07 (16)
C25—C24—Ni270.53 (9)C45—C44—Ni469.11 (9)
C23—C24—Ni271.00 (9)C43—C44—Ni467.76 (10)
C25—C24—H24126.2C45—C44—H44126.5
C23—C24—H24126.2C43—C44—H44126.5
Ni2—C24—H24123.9Ni4—C44—H44128.2
C24—C25—C21107.52 (15)C44—C45—C41108.71 (16)
C24—C25—Ni270.29 (9)C44—C45—Ni473.04 (10)
C21—C25—Ni271.15 (9)C41—C45—Ni469.19 (9)
C24—C25—H25126.2C44—C45—H45125.6
C21—C25—H25126.2C41—C45—H45125.6
Ni2—C25—H25123.9Ni4—C45—H45123.7

Experimental details

Crystal data
Chemical formulaC12H10Ni2O2
Mr303.62
Crystal system, space groupTriclinic, P1
Temperature (K)115
a, b, c (Å)7.7498 (1), 10.8752 (1), 13.4942 (2)
α, β, γ (°)76.776 (1), 81.112 (1), 78.449 (1)
V3)1077.65 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.47
Crystal size (mm)0.40 × 0.28 × 0.15
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.264, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
84232, 6276, 5839
Rint0.071
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.10
No. of reflections6276
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.64

Computer programs: Collect (Nonius BV, 1997-2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds